[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4556312B2 - Ceramic multilayer electronic component and manufacturing method thereof - Google Patents

Ceramic multilayer electronic component and manufacturing method thereof Download PDF

Info

Publication number
JP4556312B2
JP4556312B2 JP2000287338A JP2000287338A JP4556312B2 JP 4556312 B2 JP4556312 B2 JP 4556312B2 JP 2000287338 A JP2000287338 A JP 2000287338A JP 2000287338 A JP2000287338 A JP 2000287338A JP 4556312 B2 JP4556312 B2 JP 4556312B2
Authority
JP
Japan
Prior art keywords
electronic component
ceramic multilayer
multilayer electronic
exposed electrode
component according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000287338A
Other languages
Japanese (ja)
Other versions
JP2002100529A (en
Inventor
正人 野宮
雅人 宇藤
信太郎 唐木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000287338A priority Critical patent/JP4556312B2/en
Publication of JP2002100529A publication Critical patent/JP2002100529A/en
Application granted granted Critical
Publication of JP4556312B2 publication Critical patent/JP4556312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はセラミック積層電子部品およびその製造方法に関し、特に、露出電極を備えるセラミック積層電子部品およびその製造方法に関する。
【0002】
【従来の技術】
従来、焼成電極を酸化などによる劣化要因から保護し、はんだ等との良好な接合性を維持するために、電極表面にめっきなどによる金属被膜を形成していた。
しかし、近年、電子部品についても小型化、高機能化への要求が大きく、電子部品自体の露出電極が緻密かつ繊細になってきているため、金属めっきでは被覆率の低下や短絡などの問題が発生しやすい状況にある。
【0003】
めっきの主たるものには、電解、無電解にかかわらず、Ni/Au,Ni/Sn,Ni/はんだなどがある。Cu電極をNi/Auめっきで被覆した例について述べると、以下のような特徴がある。
▲1▼Cu電極がむき出しのままでは、酸化などによる電極の劣化が起こり、はんだ濡れ性が悪化する。
▲2▼Auは酸化防止膜となり、はんだ濡れ性も良好であるが、めっき後の組立工程中の加熱によって、AuがCu電極中に拡散してしまう性質がある。
▲3▼NiをCu電極/Au間に挟みこむことにより、AuのCu電極中への拡散を防止する効果がある。
▲4▼NiにAuに対する拡散防止効果を発揮させるためには、Niの膜厚は3μm程度以上必要である。
▲5▼Ni単体では、はんだに対する濡れ性が良くないため、表面にAuめっきが必要となる。
【0004】
従来、無電解Ni/Auめっきプロセスなどでは、露出電極に触媒付与を行い、この触媒をNiと置換することで露出電極表面にのみNiを析出させていた。
また、Auはその後、NiとAuとの置換を行うことで析出させていた。
【0005】
【発明が解決しようとする課題】
しかしながら、このプロセスには以下に列記する不都合があった。
▲1▼無電解めっきの場合には、触媒の付着不良および置換不良により、めっき不良が発生する。
▲2▼析出しためっき金属の結晶性のばらつきや異物付着により、析出膜に変色不良が発生する。
▲3▼電極の印刷むらや、ダイシングなどによる電極の削りカスが基板表面に存在していると、めっきの異常析出の原因となる。また、Niめっきなどは、そのストッパ効果を有効に働かせるためには、膜厚が3μm程度以上必要であるため、印刷ムラや削りカスなどが密着しているところにめっきを析出させてしまうと、微細な粉の間がめっきによって接合されて、ショートパスの原因となる。
▲4▼めっきによって析出する金属は等方的に成長するため、ラインスペースが縮小された場合には、隣接するライン間をめっきが跨いでしまい、ショートパスを形成してしまう。
▲5▼めっきによって電極上に金属被膜を析出させると、金属被膜の電極表面に対する残留応力などの影響により、電極接合強度が低下する。
▲6▼めっき析出中の副生成物やめっき液自体が膜中に取り込まれ、均一なめっき膜の析出が妨げられている。
▲7▼重金属を析出させる工法であるため、周辺環境に対して悪影響の及ぶおそれがある。
【0006】
それゆえに、本発明の主たる目的は、上記不都合の生じないセラミック積層電子部品およびその製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明は、露出電極の表面に酸化被膜が形成され、その酸化被膜が形成された露出電極を有機被膜で被覆したことを特徴とする、セラミック積層電子部品である。
また、本発明は、露出電極表面に存在する酸化物を溶解除去した後に、その露出電極の表面に酸化被膜を形成し、その後、その酸化被膜を形成した露出電極表面に有機被膜を形成するステップを含む、セラミック積層電子部品の製造方法である。
本発明において、有機被膜は防錆効果を有することが好ましい。
また、本発明において、有機被膜は絶縁性であることが好ましい。
さらに、本発明において、有機被膜は、イミダゾール、ベンズイミダゾール、ベンゾトリアゾール、トリルトリアゾールをはじめとするアゾール化合物およびそれらの誘導体(メチル基やエチル基などのアルキル基、カルボキシル基、アミノ基、ヒドロキシル基などを前記アゾール化合物中のベンゼン環に結合させた化合物群)を成分に含むものが好ましい。
また、本発明において、露出電極は焼成金属を主成分とすることが好ましい。
さらに、本発明において、露出電極はCu、Ag、Ni、Sn、Feの少なくとも一つを成分に含むことが好ましい。
本発明において、酸化被膜は、たとえば、露出電極に対して加熱されたイオン交換水による洗浄を行うことによって形成される。
また、本発明において、セラミック積層電子部品の表面に露出している全ての電極が露出電極であることが好ましい。
【0008】
本発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の発明の実施の形態の詳細な説明から一層明らかとなろう。
【0009】
【発明の実施の形態】
まず、外部に露出した電極を備えるセラミック積層電子部品を用意する。露出電極は、たとえばCu、Ag、Ni、Sn、Feの少なくとも一つを成分に含む焼成金属で形成される。次に、露出電極表面を、塩化第二胴、塩化第二鉄、亜硫酸塩類、アルカリエッチャント、過流酸アンモニウム、過流酸ナトリウム、あるいは硫酸と過酸化水素水の混合液などの水溶液エッチング剤によってエッチングする。エッチング液を露出電極表面に塗布するためには、セラミック基板をエッチング液に浸してもよく、エッチング液を噴霧またはロールコータによって塗布しても良い。このエッチングにより、電極表面の酸化物層や有機汚染物を除去することができる。
【0010】
エッチング処理を行った直後、未乾燥状態で40℃〜70℃程度に加熱されたイオン交換水で5秒〜60秒間洗浄した後、常温のイオン交換水で洗浄を行うのが好ましい。イオン交換水は蒸留水でも良く、また他の比較的溶解物の少ない水でも良い。また、加熱されたイオン交換水による洗浄工程は、電極表面を酸化させることを目的としているため、洗浄効果としては劣るが、温風や温められた水蒸気、温められたアルコール類によって処理してもよい。
【0011】
電極表面に残ったエッチング剤および洗浄液が次工程に持ち込されるのを防ぐため、水切り、乾燥を行う。エッチング液が次工程の有機被膜溶液に持ち込まれると溶液が分解反応を示し、安定な有機被膜が形成されなくなるからである。この工程は、冷風乾燥、温風乾燥、さらに吸水性材料で脱水しても良いが、露点温度の低い気体で水切りを行った後、熱乾燥を行うのが効果的である。
【0012】
有機被膜の溶液に電極を浸漬させ、電極表面に有機被膜を析出させる。必要であれば、浸漬中に電極の揺動や液の攪拌などを行う。有機被膜の析出方法は浸漬法に限らず、スプレーなどによる溶液の噴霧やロールコータによって塗布してもよい。有機被膜を形成するための溶液は、イミダゾール、ベンズイミダゾール、ベンゾトリアゾール、トリルトリアゾールをはじめとするアゾール化合物およびそれらの誘導体(メチル基やエチル基などのアルキル基、カルボキシル基、アミノ基、ヒドロキシル基などを前記アゾール化合物中のベンゼン環に結合させた化合物群)を成分に含むものが用いられる。
【0013】
塗布後は再度イオン交換水などの洗浄液により洗浄し乾燥する。この工程は、冷風乾燥、温風乾燥、吸水性材料で脱水しても良いが、露天温度の低い気体で水切りを行うのが良い。その後、熱乾燥を行うことは、有機被膜が安定化されるため効果的である。
【0014】
【実施例1】
図1(A)は実施例1で用いたセラミック積層電子部品の試験片の正面図であり、図1(B)はその底面図である。図1において、a1=0.35±0.20mm、a2=0.50±0.10mm、h1=0.70±0.20mm、b1=0.35±0.20mmである。
【0015】
図1に示す形状の銅電極を有するセラミック積層電子部品の試験片を、4倍に希釈した四国化成工業株式会社製TH−1に30秒間浸漬してエッチングした。
その後、55℃に加熱したイオン交換水にて10秒間洗浄した。次に、25℃のイオン交換水にて30秒間洗浄し、洗浄機にて入念に洗浄を行った後、ドライエアにて水切りを行い、100℃のエアオーブン中にて30秒間熱乾燥を行った。
次に、40℃に加熱した四国化成工業株式会社製タフエース(登録商標)F2に揺動を行いながら5分間浸漬して露出電極を有機被膜で被覆した。この有機被膜は絶縁性および防錆性を有するものである。次に、25℃のイオン交換水にて30秒間洗浄した後、洗浄機にて入念に洗浄を行い、ドライエアにて水切りし、100℃のエアオーブン中にて30秒間熱乾燥を行った。
【0016】
このようにして得た試験片について、JIS規格に従い、はんだ小球法によるはんだ濡れ性の測定を行った。測定方法は次の通りである。上記試験片10個を用意して、各試験片の電極にフラックスを塗布した後、試験片電極が垂直方向と45℃の角度を保つようにしながら、表面が清浄で輝いている235℃の加熱された溶融小球はんだ(60重量%錫/40重量%鉛共晶はんだ)に0.4mm/secの速度で0.1mmの深さ浸漬した。電極と小球はんだが接触してから5秒後に引き上げた後、10倍の顕微鏡によりはんだの濡れを確認し、はんだが電極表面を99%以上覆っているものを良品とした(対応規格:国際規格 IEC68−2−54−(1985)、日本工業規格 JIS C0053(1990),電子機械工業会規格 EIAJ ET−7401(1996))。この測定結果を表1に示す。
【0017】
また、比較例1として、図1に示す形状の試験片の露出電極上に、無電解めっきにより、Ni:5μm/Au:0.4μmの金属被膜を設け、実施例1と同様に試験した結果を、表1に合わせて示す。
また、比較例2として、図1に示す形状の焼成後まったく未処理の試験片を準備し、実施例1と同様に試験した結果を、表1に合わせて示す。
【0018】
【表1】

Figure 0004556312
【0019】
表1の結果より、本実施例は、金属めっき処理を行った比較例1と同等のはんだ濡れ性を有することがわかる。また、焼成後の処理を行っていない比較例2では、まったくはんだ濡れ性を示さないことから、本実施例による有機被膜がはんだ濡れ性に対して効果的に作用していることがわかる。
【0020】
【実施例2】
図2は実施例2で用いたセラミック積層電子部品の試験片を示す底面図である。このセラミック積層電子部品は、0.7mm角の正方形の銅電極を1.27mmピッチで底面の4方の辺に沿って複数配列したものである。この試験片を、4倍に希釈した四国化成工業株式会社製TH−1に30秒間浸漬してエッチングした。その後、55℃に加熱したイオン交換水にて10秒間洗浄した。次に、25℃のイオン交換水にて30秒間洗浄し、洗浄機にて入念に洗浄を行った。その後、ドライエアにて水切りを行い、100℃のエアオーブン中にて30秒間熱乾燥を行った。次に、40℃に加熱した四国化成工業株式会社製タフエース(登録商標)F2に、揺動を行いながら5分間浸漬することにより、露出電極を有機被膜で被覆した。次に、25℃のイオン交換水にて30秒間洗浄した後、洗浄機にて入念に洗浄を行い、ドライエアにて水切りし、100℃のエアオーブン中にて30秒間熱乾燥を行った。その後、高温リフロー炉(ピーク温度:260℃、250℃以上:40秒間)を2回通過させた。
【0021】
このようにして得た試験片について、JIS規格に従い、はんだ小球法によるはんだ濡れ性の測定を行った。測定方法は次の通りである。上記試験片10個を用意して、各試験片の電極にフラックスを塗布した後、試験対象電極を垂直にしながら、表面が清浄で輝いている235℃の加熱された溶融小球はんだ(60重量%錫/40重量%鉛共晶はんだ)に25±5mm/secの速度で試験片の下端側の10個の試験対象電極を浸漬した。電極と小球はんだが接触してから2±0.5秒後に引き上げた後、10倍の顕微鏡によりはんだの濡れを確認し、はんだが電極表面を95%以上覆っているものを良品とした(対応規格:国際規格 IEC 68−2−20−(1979)、日本工業規格 JIS C0050(1985))。この測定結果を表2に示す。
【0022】
また、比較例3として、実施例2における55℃に加熱したイオン交換水による洗浄を行わず、TH−1によるエッチング後25℃のイオン交換水で洗浄を行ったものについて、実施例2と同様に試験した結果を表2に合わせて示す。なお、表2においてNG数とは、電極100個(試験片10個)中のNG電極の個数を示す。
【0023】
【表2】
Figure 0004556312
【0024】
セラミック積層電子部品の露出電極は、ペースト粒などに起因する凹凸が大きく、通常の処理工程では均一に有機被膜を形成することは困難である。そのため、リフローなどによる熱履歴が加わると、均一に有機被膜が形成されていない電極表面が劣化し、はんだ濡れ性が悪化する。
しかし、エッチングによって清浄な電極表面を形成した直後に、加熱したイオン交換水による洗浄を行うことで、電極表面に薄く均一な酸化被膜を形成することができる。
また、アゾール系の化合物は、金属の1価イオン成分と結合する性質をもっているため、純粋な金属状態のものよりも酸化した金属成分のほうが化合物の付着確率が高くなる。
よって、エッチング後の露出電極に対し加熱したイオン交換水による洗浄を行うことにより、凹凸の大きな電極表面においても有機被膜の形成確率を高めることができる。
これらの理由により、エッチング直後の露出電極に対し加熱したイオン交換水による洗浄を行った実施例2は、加熱したイオン交換水による洗浄を行わなかった比較例3に比べて、リフロー後のはんだ濡れ性を格段に向上させることが可能である。
【0025】
【発明の効果】
本発明に係る有機被膜によれば、以下の効果を得ることができる。
▲1▼金属被膜と同等の電極保護効果を得ながら、異常変色やショートパスの発生の低減が可能となる。
▲2▼触媒との置換反応によって析出するものではないので、触媒の付着不良、触媒との反応不良などによる析出不良の問題が生じない。
▲3▼サブミクロンオーダーの膜厚で電極保護効果が達成できる。
▲4▼有機被膜自体が絶縁性なので、被膜を原因とした隣接電極間のショートバスが生じない
▲5▼有機被膜は電極接合強度を低下させるような応力を電極に働かせない。
▲6▼有機被膜は電極表面への吸着によって析出するので、無電解めっきのような副生成物は発生しない。そのため、膜中への異物取り込みが少ない。
▲7▼有機被膜によれば透明な被膜を形成することが可能であり、透明な被膜によれば保護膜形成工程による電極の色調変化が起こらない。
▲8▼有機被膜の主要構成元素はC、N、Hなので、重金属を用いるめっきプロセスに比べて周辺環境への悪影響が少ない。
【図面の簡単な説明】
【図1】(A)は実施例1で用いたセラミック積層電子部品の試験片の正面図であり、(B)はその底面図である。
【図2】実施例2で用いたセラミック積層電子部品の試験片を示す底面図である。
【符号の説明】
10 セラミック積層電子部品
12 露出電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic multilayer electronic component and a manufacturing method thereof, and more particularly to a ceramic multilayer electronic component including an exposed electrode and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, in order to protect the fired electrode from deterioration factors due to oxidation or the like and to maintain good bonding properties with solder or the like, a metal film by plating or the like has been formed on the electrode surface.
However, in recent years, there has been a great demand for miniaturization and high functionality of electronic components, and the exposed electrodes of electronic components themselves have become dense and delicate. The situation is likely to occur.
[0003]
The main plating includes Ni / Au, Ni / Sn, and Ni / solder regardless of electrolysis or electroless. An example in which the Cu electrode is coated with Ni / Au plating has the following characteristics.
(1) If the Cu electrode is left exposed, the electrode is deteriorated due to oxidation or the like, and the solder wettability is deteriorated.
{Circle around (2)} Au is an antioxidant film and has good solder wettability, but has the property that Au diffuses into the Cu electrode by heating during the assembly process after plating.
(3) By sandwiching Ni between the Cu electrode / Au, there is an effect of preventing the diffusion of Au into the Cu electrode.
(4) In order for Ni to exhibit the effect of preventing diffusion to Au, the thickness of Ni needs to be about 3 μm or more.
(5) Since Ni alone has poor wettability with respect to solder, Au plating is required on the surface.
[0004]
Conventionally, in an electroless Ni / Au plating process or the like, a catalyst is applied to an exposed electrode, and Ni is deposited only on the exposed electrode surface by replacing the catalyst with Ni.
In addition, Au was then deposited by replacing Ni with Au.
[0005]
[Problems to be solved by the invention]
However, this process has the disadvantages listed below.
(1) In the case of electroless plating, defective plating occurs due to poor adhesion of the catalyst and defective replacement.
(2) Discoloration defects occur in the deposited film due to variations in crystallinity of the deposited plated metal and foreign matter adhesion.
{Circle around (3)} Electrode printing unevenness or electrode scraping due to dicing or the like is present on the substrate surface, which causes abnormal deposition of plating. In addition, since Ni plating and the like require a film thickness of about 3 μm or more in order to make the stopper effect work effectively, if plating is deposited where printing unevenness or shavings are in close contact, The fine powder is joined by plating to cause a short path.
(4) Since the metal deposited by plating grows isotropically, when the line space is reduced, the plating straddles between adjacent lines and forms a short path.
(5) When a metal film is deposited on the electrode by plating, the electrode bonding strength is lowered due to the influence of the residual stress on the electrode surface of the metal film.
{Circle around (6)} By-products during plating deposition and the plating solution itself are taken into the film, preventing the uniform plating film from being deposited.
(7) Since it is a method of depositing heavy metals, there is a risk of adverse effects on the surrounding environment.
[0006]
Therefore, a main object of the present invention is to provide a ceramic multilayer electronic component which does not cause the above disadvantages and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
The present invention is a ceramic multilayer electronic component in which an oxide film is formed on the surface of an exposed electrode , and the exposed electrode on which the oxide film is formed is coated with an organic film.
In the present invention, the oxide present on the surface of the exposed electrode is dissolved and removed , and then an oxide film is formed on the surface of the exposed electrode . Thereafter, an organic film is formed on the surface of the exposed electrode on which the oxide film is formed. It is a manufacturing method of a ceramic multilayer electronic component including the step of forming.
In the present invention, the organic coating preferably has an antirust effect.
In the present invention, the organic coating is preferably insulative.
Furthermore, in the present invention, the organic coating is composed of azole compounds such as imidazole, benzimidazole, benzotriazole, tolyltriazole and derivatives thereof (alkyl groups such as methyl and ethyl groups, carboxyl groups, amino groups, hydroxyl groups, etc. It is preferable that the compound contains a compound group in which benzene is bonded to the benzene ring in the azole compound.
In the present invention, the exposed electrode preferably contains a fired metal as a main component.
Furthermore, in the present invention, the exposed electrode preferably contains at least one of Cu, Ag, Ni, Sn, and Fe as a component.
In the present invention, the oxide film is formed, for example, by cleaning the exposed electrode with heated ion exchange water.
Moreover, in this invention, it is preferable that all the electrodes exposed on the surface of a ceramic multilayer electronic component are exposed electrodes.
[0008]
The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments of the present invention with reference to the drawings.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
First, a ceramic multilayer electronic component having electrodes exposed to the outside is prepared. The exposed electrode is formed of a fired metal containing at least one of Cu, Ag, Ni, Sn, and Fe as a component, for example. Next, the exposed electrode surface is etched with an aqueous solution etchant such as ferric chloride, ferric chloride, sulfites, alkaline etchant, ammonium persulfate, sodium persulfate, or a mixture of sulfuric acid and hydrogen peroxide. Etch. In order to apply the etching solution to the exposed electrode surface, the ceramic substrate may be immersed in the etching solution, or the etching solution may be applied by spraying or a roll coater. By this etching, an oxide layer and organic contaminants on the electrode surface can be removed.
[0010]
Immediately after etching, undried at at 40 ° C. to 70 ° C. ion-exchanged water heated to approximately After washing 5 seconds to 60 seconds, have the preferred to carry out the washing at room temperature in deionized water. The ion exchange water may be distilled water or other water with relatively little dissolved matter. In addition, the cleaning process with heated ion-exchanged water is intended to oxidize the electrode surface, so the cleaning effect is inferior, but it can be treated with warm air, warmed water vapor, or warmed alcohols. Good.
[0011]
In order to prevent the etching agent and cleaning liquid remaining on the electrode surface from being brought into the next process, draining and drying are performed. This is because when the etching solution is brought into the organic coating solution in the next step, the solution exhibits a decomposition reaction and a stable organic coating is not formed. In this step, cold air drying, hot air drying, and water-absorbing material may be used for dehydration, but it is effective to perform heat drying after draining with a gas having a low dew point temperature.
[0012]
The electrode is immersed in the organic coating solution, and the organic coating is deposited on the electrode surface. If necessary, the electrode is swung or the liquid is stirred during immersion. The method for depositing the organic film is not limited to the dipping method, and it may be applied by spraying a solution such as spray or a roll coater. Solutions for forming organic films include azole compounds such as imidazole, benzimidazole, benzotriazole, tolyltriazole and their derivatives (alkyl groups such as methyl and ethyl groups, carboxyl groups, amino groups, hydroxyl groups, etc. In the above azole compound, a compound group in which the compound group is bonded to the benzene ring in the azole compound is used.
[0013]
After the application, it is again washed with a cleaning solution such as ion exchange water and dried. In this step, cold air drying, hot air drying, or water-absorbing material may be used for dehydration, but draining with a gas having a low outdoor temperature is preferable. Thereafter, heat drying is effective because the organic coating is stabilized.
[0014]
[Example 1]
1A is a front view of a test piece of a ceramic multilayer electronic component used in Example 1, and FIG. 1B is a bottom view thereof. In FIG. 1, a1 = 0.35 ± 0.20 mm, a2 = 0.50 ± 0.10 mm, h1 = 0.70 ± 0.20 mm, and b1 = 0.35 ± 0.20 mm.
[0015]
A test piece of a ceramic multilayer electronic component having a copper electrode having the shape shown in FIG. 1 was immersed and etched in TH-1 manufactured by Shikoku Kasei Kogyo Co., Ltd. diluted 4 times.
Thereafter, it was washed with ion exchange water heated to 55 ° C. for 10 seconds. Next, it was washed with ion exchange water at 25 ° C. for 30 seconds, carefully washed with a washing machine, drained with dry air, and heat-dried in an air oven at 100 ° C. for 30 seconds. .
Next, the exposed electrode was covered with an organic coating by immersing in Toughace (registered trademark) F2 manufactured by Shikoku Kasei Kogyo Co., Ltd. heated for 5 minutes while swinging. This organic coating has insulating properties and rust prevention properties. Next, after washing with ion exchange water at 25 ° C. for 30 seconds, it was carefully washed with a washing machine, drained with dry air, and heat-dried in an air oven at 100 ° C. for 30 seconds.
[0016]
The test pieces thus obtained were measured for solder wettability by the solder ball method in accordance with JIS standards. The measuring method is as follows. After preparing the above 10 test pieces and applying flux to the electrodes of each test piece, the surface of the test piece is maintained at a 45 ° C. angle with the vertical direction, and the surface is clean and shining at 235 ° C. The resulting molten small ball solder (60 wt% tin / 40 wt% lead eutectic solder) was immersed to a depth of 0.1 mm at a speed of 0.4 mm / sec. After 5 seconds from the contact between the electrode and the small ball solder, it was lifted up, and the wetness of the solder was confirmed with a 10x microscope. Standard IEC68-2-54- (1985), Japanese Industrial Standards JIS C0053 (1990), Electronic Machinery Manufacturers Association Standard EIAJ ET-7401 (1996)). The measurement results are shown in Table 1.
[0017]
Further, as Comparative Example 1, a test result was obtained in the same manner as in Example 1 by providing a metal film of Ni: 5 μm / Au: 0.4 μm by electroless plating on the exposed electrode of the test piece having the shape shown in FIG. Is shown together with Table 1.
Further, as Comparative Example 2, a completely untreated test piece after firing having the shape shown in FIG. 1 was prepared, and the results of the same test as in Example 1 are shown in Table 1.
[0018]
[Table 1]
Figure 0004556312
[0019]
From the results in Table 1, it can be seen that this example has solder wettability equivalent to that of Comparative Example 1 in which metal plating was performed. Moreover, in Comparative Example 2 in which the treatment after firing was not performed, the solder wettability was not exhibited at all, and thus it can be seen that the organic coating according to this example effectively acts on the solder wettability.
[0020]
[Example 2]
2 is a bottom view showing a test piece of a ceramic multilayer electronic component used in Example 2. FIG. In this ceramic multilayer electronic component, a plurality of 0.7 mm square copper electrodes are arranged at a pitch of 1.27 mm along the four sides of the bottom surface. This test piece was etched by being immersed in TH-1 manufactured by Shikoku Chemicals Co., Ltd. diluted 4 times for 30 seconds. Thereafter, it was washed with ion exchange water heated to 55 ° C. for 10 seconds. Next, it was washed with ion exchange water at 25 ° C. for 30 seconds and carefully washed with a washing machine. Then, it drained with dry air and heat-dried for 30 seconds in 100 degreeC air oven. Next, the exposed electrode was covered with an organic coating by immersing it in Toughace (registered trademark) F2 manufactured by Shikoku Kasei Kogyo Co., Ltd. heated at 40 ° C. for 5 minutes while swinging. Next, after washing with ion exchange water at 25 ° C. for 30 seconds, it was carefully washed with a washing machine, drained with dry air, and heat-dried in an air oven at 100 ° C. for 30 seconds. Then, it was passed twice through a high temperature reflow furnace (peak temperature: 260 ° C., 250 ° C. or higher: 40 seconds).
[0021]
The test pieces thus obtained were measured for solder wettability by the solder ball method in accordance with JIS standards. The measuring method is as follows. After preparing the above 10 test pieces and applying a flux to the electrodes of each test piece, the surface of the test object was vertical and the surface was clean and shining and heated 235 ° C. heated molten ball solder (60 wt. 10 tin electrodes to be tested on the lower end side of the test piece at a speed of 25 ± 5 mm / sec. After 2 ± 0.5 seconds from the contact between the electrode and the small ball solder, it was pulled up, and the solder wetness was confirmed with a 10 × microscope. The solder covered the electrode surface by 95% or more. Corresponding standard: International standard IEC 68-2-20- (1979), Japanese Industrial Standard JIS C0050 (1985)). The measurement results are shown in Table 2.
[0022]
Further, as Comparative Example 3, the same cleaning as in Example 2 was performed, except that cleaning with ion-exchanged water heated to 55 ° C. in Example 2 was performed and cleaning with ion-exchanged water at 25 ° C. was performed after etching with TH-1. Table 2 shows the results of the tests. In Table 2, the number of NG indicates the number of NG electrodes in 100 electrodes (10 test pieces).
[0023]
[Table 2]
Figure 0004556312
[0024]
The exposed electrode of the ceramic multilayer electronic component has large irregularities due to paste grains and the like, and it is difficult to form an organic film uniformly in a normal processing process. Therefore, when a thermal history due to reflow or the like is added, the electrode surface on which the organic film is not uniformly formed deteriorates, and solder wettability deteriorates.
However, a thin and uniform oxide film can be formed on the electrode surface by performing cleaning with heated ion exchange water immediately after forming a clean electrode surface by etching.
In addition, since azole compounds have a property of binding to a metal monovalent ion component, the probability of adhesion of the compound is higher in the oxidized metal component than in the pure metal state.
Therefore, by performing cleaning with heated ion-exchanged water on the exposed electrode after etching, the probability of forming an organic coating can be increased even on an electrode surface with large irregularities.
For these reasons, Example 2 in which the exposed electrode immediately after etching was cleaned with heated ion-exchanged water was compared with Comparative Example 3 in which cleaning was not performed with heated ion-exchanged water, and solder wetting after reflow was performed. It is possible to remarkably improve the nature.
[0025]
【The invention's effect】
According to the organic film according to the present invention, the following effects can be obtained.
(1) It is possible to reduce the occurrence of abnormal discoloration and short paths while obtaining the same electrode protection effect as that of a metal coating.
{Circle around (2)} Since no precipitation occurs due to a substitution reaction with the catalyst, the problem of poor deposition due to poor adhesion of the catalyst or poor reaction with the catalyst does not occur.
(3) An electrode protection effect can be achieved with a film thickness on the order of submicrons.
(4) Since the organic coating itself is insulative, a short bus between adjacent electrodes due to the coating does not occur. (5) The organic coating does not exert stress on the electrode that reduces the electrode bonding strength.
(6) Since the organic film is deposited by adsorption onto the electrode surface, no by-product such as electroless plating is generated. Therefore, there is little foreign substance taking in into a film | membrane.
(7) According to the organic film, it is possible to form a transparent film, and according to the transparent film, the color tone of the electrode is not changed by the protective film forming process.
(8) Since the main constituent elements of the organic coating are C, N, and H, there are few adverse effects on the surrounding environment compared to plating processes using heavy metals.
[Brief description of the drawings]
1A is a front view of a test piece of a ceramic multilayer electronic component used in Example 1, and FIG. 1B is a bottom view thereof.
2 is a bottom view showing a test piece of a ceramic multilayer electronic component used in Example 2. FIG.
[Explanation of symbols]
10 Ceramic multilayer electronic component 12 Exposed electrode

Claims (13)

露出電極の表面に酸化被膜が形成され、前記酸化被膜が形成された前記露出電極を有機被膜で被覆したことを特徴とする、セラミック積層電子部品。 A ceramic multilayer electronic component , wherein an oxide film is formed on a surface of an exposed electrode, and the exposed electrode on which the oxide film is formed is coated with an organic film. 前記有機被膜は防錆効果を有する、請求項1に記載のセラミック積層電子部品。  The ceramic multilayer electronic component according to claim 1, wherein the organic coating has a rust prevention effect. 前記有機被膜は絶縁性である、請求項1または請求項2に記載のセラミック積層電子部品。  The ceramic multilayer electronic component according to claim 1, wherein the organic coating is insulative. 前記有機被膜は、イミダゾール、ベンズイミダゾール、ベンゾトリアゾール、トリルトリアゾールをはじめとするアゾール化合物およびそれらの誘導体(メチル基やエチル基などのアルキル基、カルボキシル基、アミノ基、ヒドロキシル基などを前記アゾール化合物中のベンゼン環に結合させた化合物群)を成分に含む、請求項1ないし請求項3のいずれかに記載のセラミック積層電子部品。  The organic coating is composed of azole compounds such as imidazole, benzimidazole, benzotriazole, tolyltriazole and derivatives thereof (alkyl groups such as methyl and ethyl groups, carboxyl groups, amino groups, hydroxyl groups, etc. in the azole compounds). The ceramic multilayer electronic component according to any one of claims 1 to 3, comprising as a component a compound group bonded to a benzene ring. 前記露出電極は焼成金属を主成分とする、請求項1ないし請求項4のいずれかに記載のセラミック積層電子部品。  The ceramic multilayer electronic component according to any one of claims 1 to 4, wherein the exposed electrode is mainly composed of a fired metal. 前記露出電極はCu、Ag、Ni、Sn、Feの少なくとも一つを成分に含む、請求項1ないし請求項5のいずれかに記載のセラミック積層電子部品。  6. The ceramic multilayer electronic component according to claim 1, wherein the exposed electrode contains at least one of Cu, Ag, Ni, Sn, and Fe as a component. 露出電極表面に存在する酸化物を溶解除去した後に、前記露出電極の表面に酸化被膜を形成し、その後、前記酸化被膜を形成した前記露出電極表面に有機被膜を形成するステップを含む、セラミック積層電子部品の製造方法。After dissolving and removing the oxide present on the surface of the exposed electrode, an oxide film is formed on the surface of the exposed electrode, and thereafter, an organic film is formed on the surface of the exposed electrode on which the oxide film is formed. , Manufacturing method of ceramic multilayer electronic components. 前記酸化被膜は、前記露出電極に対して加熱されたイオン交換水による洗浄を行うことによって形成されることを特徴とする、請求項7に記載のセラミック積層電子部品の製造方法。 The method for manufacturing a ceramic multilayer electronic component according to claim 7, wherein the oxide film is formed by cleaning the exposed electrode with heated ion exchange water . 前記有機被膜は防錆効果を有する、請求項7または請求項8に記載のセラミック積層電子部品の製造方法。 The method for manufacturing a ceramic multilayer electronic component according to claim 7 or 8, wherein the organic coating has a rust prevention effect . 前記有機被膜は絶縁性である、請求項7ないし請求項9のいずれかに記載のセラミック積層電子部品の製造方法。 The method for manufacturing a ceramic multilayer electronic component according to claim 7, wherein the organic coating is insulative . 前記有機被膜は、イミダゾール、ベンズイミダゾール、ベンゾトリアゾール、トリルトリアゾールをはじめとするアゾール化合物およびそれらの誘導体(メチル基やエチル基などのアルキル基、カルボキシル基、アミノ基、ヒドロキシル基などを前記アゾール化合物中のベンゼン環に結合させた化合物群)を成分に含む、請求項7ないし請求項10のいずれかに記載のセラミック積層電子部品の製造方法。 The organic coating is composed of azole compounds such as imidazole, benzimidazole, benzotriazole, tolyltriazole and derivatives thereof (alkyl groups such as methyl and ethyl groups, carboxyl groups, amino groups, hydroxyl groups, etc. in the azole compounds). The method for producing a multilayer ceramic electronic component according to claim 7, wherein the compound group is a compound group bonded to a benzene ring . 前記露出電極は焼成金属を主成分とする、請求項7ないし請求項11のいずれかに記載のセラミック積層電子部品の製造方法。 The method for manufacturing a ceramic multilayer electronic component according to claim 7, wherein the exposed electrode includes a fired metal as a main component . 前記露出電極はCu、Ag、Ni、Sn、Feの少なくとも一つを成分に含む、請求項7ないし請求項12のいずれかに記載のセラミック積層電子部品の製造方法。The method for manufacturing a ceramic multilayer electronic component according to claim 7, wherein the exposed electrode contains at least one of Cu, Ag, Ni, Sn, and Fe as a component.
JP2000287338A 2000-09-21 2000-09-21 Ceramic multilayer electronic component and manufacturing method thereof Expired - Lifetime JP4556312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000287338A JP4556312B2 (en) 2000-09-21 2000-09-21 Ceramic multilayer electronic component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000287338A JP4556312B2 (en) 2000-09-21 2000-09-21 Ceramic multilayer electronic component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002100529A JP2002100529A (en) 2002-04-05
JP4556312B2 true JP4556312B2 (en) 2010-10-06

Family

ID=18771099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000287338A Expired - Lifetime JP4556312B2 (en) 2000-09-21 2000-09-21 Ceramic multilayer electronic component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4556312B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5209260B2 (en) * 2007-09-25 2013-06-12 コーア株式会社 Resistor manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242323A (en) * 1986-04-14 1987-10-22 松下電器産業株式会社 Chip capacitor
JPH01197907A (en) * 1988-02-01 1989-08-09 Fujikura Ltd Lead wire for electronic component and manufacture thereof
JPH0312423U (en) * 1989-06-21 1991-02-07
JPH04352408A (en) * 1991-05-30 1992-12-07 Rohm Co Ltd Terminal electrode for electronic component with leads
JPH08115848A (en) * 1994-10-14 1996-05-07 Taiyo Yuden Co Ltd Chip-shaped ceramic electronic component and its manufacture
JPH08158074A (en) * 1994-12-05 1996-06-18 Mitsui Mining & Smelting Co Ltd Organic anticorrosive treated copper foil
JPH08288173A (en) * 1995-04-17 1996-11-01 Murata Mfg Co Ltd Ceramic electronic component
JPH08330105A (en) * 1995-05-31 1996-12-13 Matsushita Electric Ind Co Ltd Electronic component
JPH09116066A (en) * 1995-10-20 1997-05-02 Kobe Steel Ltd Copper lead frame excellent in resin close contactness
JP2000216045A (en) * 1998-11-20 2000-08-04 Matsushita Electric Ind Co Ltd Electronic component for surface packaging

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3199208B2 (en) * 1994-03-24 2001-08-13 三井金属鉱業株式会社 Organic rust-resistant copper foil and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242323A (en) * 1986-04-14 1987-10-22 松下電器産業株式会社 Chip capacitor
JPH01197907A (en) * 1988-02-01 1989-08-09 Fujikura Ltd Lead wire for electronic component and manufacture thereof
JPH0312423U (en) * 1989-06-21 1991-02-07
JPH04352408A (en) * 1991-05-30 1992-12-07 Rohm Co Ltd Terminal electrode for electronic component with leads
JPH08115848A (en) * 1994-10-14 1996-05-07 Taiyo Yuden Co Ltd Chip-shaped ceramic electronic component and its manufacture
JPH08158074A (en) * 1994-12-05 1996-06-18 Mitsui Mining & Smelting Co Ltd Organic anticorrosive treated copper foil
JPH08288173A (en) * 1995-04-17 1996-11-01 Murata Mfg Co Ltd Ceramic electronic component
JPH08330105A (en) * 1995-05-31 1996-12-13 Matsushita Electric Ind Co Ltd Electronic component
JPH09116066A (en) * 1995-10-20 1997-05-02 Kobe Steel Ltd Copper lead frame excellent in resin close contactness
JP2000216045A (en) * 1998-11-20 2000-08-04 Matsushita Electric Ind Co Ltd Electronic component for surface packaging

Also Published As

Publication number Publication date
JP2002100529A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
CA1172525A (en) Copper-containing articles with a corrosion inhibitor coating and method of producing the coating
EP0797380B1 (en) Method for enhancing the solderability of a surface
CN101810063B (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
KR20180101202A (en) Method for producing metal/ceramic circuit board
JP5710670B2 (en) Solution and method for treating the surface of a copper alloy to improve adhesion between a metal surface and a bonded polymeric material
JPH08255968A (en) Manufacturing of printed-circuit board
CA2417071A1 (en) Bath and method of electroless plating of silver on metal surfaces
US6200451B1 (en) Method for enhancing the solderability of a surface
KR20020040788A (en) Process for selective deposition of copper substrates
EP2014798B1 (en) Solution and process for increasing the solderability and corrosion resistance of metal or metal alloy surface
CN107256832B (en) Metallic solderability preserving coatings on metal portions of semiconductor packages
KR101696796B1 (en) A method for plating copper alloy with tin
JP4556312B2 (en) Ceramic multilayer electronic component and manufacturing method thereof
TWI395832B (en) Method for enhancing the solderability of a surface
JP2002513090A (en) Method for covering copper or copper alloy surface with tin film or tin alloy film
JP4453443B2 (en) Tin plating film and method for producing plating film
EP1029944B1 (en) Method for enhancing the solderability of a surface
CN108754466B (en) Anti-rat-bite tin deposition liquid for copper-based surface, chemical tin deposition method of anti-rat-bite tin deposition liquid and anti-rat-bite copper substrate
CN108493117B (en) Surface modification method for inhibiting conductive silver adhesive on surface of packaging substrate bonding pad from diffusing
KR100661739B1 (en) Surface treatment of flecxible printed circuit board
JP2005518328A (en) Method for metallizing titanate-based ceramics
JP3994295B2 (en) Method for preventing discoloration of copper or copper alloy material and copper or copper alloy material
JP3567539B2 (en) Electronic component substrate and method of manufacturing the same
KR102298998B1 (en) Organic coating agent for surface treatment of plating layer containing copper and surface treatment of plating layer using the same
JP3206630B2 (en) Method for producing electroless plated copper-based material of tin-lead alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Ref document number: 4556312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

EXPY Cancellation because of completion of term