[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4556260B2 - Additive insulation film for printed wiring boards - Google Patents

Additive insulation film for printed wiring boards Download PDF

Info

Publication number
JP4556260B2
JP4556260B2 JP30545499A JP30545499A JP4556260B2 JP 4556260 B2 JP4556260 B2 JP 4556260B2 JP 30545499 A JP30545499 A JP 30545499A JP 30545499 A JP30545499 A JP 30545499A JP 4556260 B2 JP4556260 B2 JP 4556260B2
Authority
JP
Japan
Prior art keywords
printed wiring
insulating film
core
epoxy resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30545499A
Other languages
Japanese (ja)
Other versions
JP2001123143A (en
Inventor
信之 小川
敦之 高橋
高示 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP30545499A priority Critical patent/JP4556260B2/en
Publication of JP2001123143A publication Critical patent/JP2001123143A/en
Application granted granted Critical
Publication of JP4556260B2 publication Critical patent/JP4556260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高密度配線に適したアディティブ法プリント配線板に用いられる絶縁フィルムに関する。
【0002】
【従来の技術】
周知のようにアディティブ法プリント配線板は、接着剤絶縁基材に無電解めっきで必要な配線パターンを形成するものである。
例えば、めっき触媒等を含有する絶縁基材上にめっき触媒を含有する接着剤層を形成し、ディプコートまたはカーテンコート等を用いて接着剤層を形成する。次いで、100℃〜150℃の温度で10分〜60分乾燥して接着剤中に含まれる溶剤を蒸発させると同時に接着剤を仮硬化させる。さらに、140℃〜190℃の温度で20分〜90分加熱して硬化させる。
【0003】
次いで、回路形成部以外をめっきレジストでマスクし、無電解めっき銅との接着力を向上するための前処理として、クロム−硫酸などの酸化性エッチング液で回路形成部の接着剤表面を選択的に化学粗化する。
その後、中和及び水洗工程を経て無電解めっき液に浸漬し、回路部に銅を析出させて配線パターンを形成する。
【0004】
この様なアディティブ法プリント配線板用接着剤としては、一般にめっき銅との接着性が良いアクリロニトリルブタジエンゴムを主成分とし、また電気特性を確保するためにエポキシ樹脂を配合する。
さらに、接着剤塗膜の補強や化学粗化時の接着剤凹凸増加のために、無機充填剤などを配合した接着剤が提案されてきた。
この様な接着剤に関する技術を開示するものとしては、特公昭48−24250号公報、特公昭45−9843号公報、特公昭55−16391号公報、特公平1−53910号公報等がある。
【0005】
【発明が解決しようとする課題】
ところで、近年、電子機器の小型化、多機能化に伴い、プリント配線板はより配線密度を増す必要が生じており、配線幅の細線化が急激に進行している。このような背景から、回路導体を支える接着剤は、絶縁性が重要な特性となりつつある。
このため、一般的には、絶縁性がエポキシ樹脂等より劣るアクリロニトリルブタジエンゴムの配合量を減らし、エポキシ樹脂の配合量を増すことが行われる。しかしながら、この場合、粗化液溶解性がアクリロニトリルブタジエンゴムより著しく低いエポキシ樹脂を増加するために、粗化凹凸が小さくなり、めっき銅との接着力が低下してしまう。
【0006】
また、細線化になるほどめっき銅との接着力が高いことが有利になることは言うまでもない。
【0007】
さらに、電子機器の低コスト化に伴い、製造プロセスの簡素化、短時間化が可能な方法として、アディティブ用接着剤をフィルム化し、内層基板上にラミネートすることにより、カーテンコート等の複雑な工程がなくても、絶縁層形成が可能なプロセスが検討されるようになった。
本発明は絶縁性を損なうことなく、めっき銅との接着力に優れ、ラミネートにより絶縁層形成が可能なアディティブ法配線板用絶縁フィルムを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、次のものに関する。
(1) 絶縁基板に絶縁フィルムをラミネートし、接着剤表面を化学的に粗化し、必要な箇所のみ無電解めっきによって回路形成するアディティブ法によって得られるプリント配線板用として用いられ、エポキシ樹脂、エポキシ樹脂硬化剤、硬化促進剤及びコアシェル型架橋ゴムを含有することを特徴とするアディティブ法プリント配線板用絶縁フィルム。
(2) コアシェル型架橋ゴムが、フィルム組成中の樹脂分総量に対して0.5〜50重量%含有することを特徴とする項(1)に記載のアディティブ法プリント配線板用絶縁フィルム。
(3) コアシェル構造架橋ゴムのコア層が架橋ポリブタジエンであり、シェル層が架橋アクリル樹脂である項(1)または(2)に記載のアディティブ法プリント配線板用絶縁フィルム。
(4) コアシェル構造架橋ゴムのコア層が架橋ポリブタジエンであり、シェル層が架橋ポリメタクリル酸メチルである項(1)または(2)に記載のアディティブ法プリント配線板用絶縁フィルム。
【0009】
本発明で用いるエポキシ樹脂は、分子内に二個以上のエポキシ基をもつ化合物であればどのようなものでもよく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、エポキシ化ポリブタジエン、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂などがあり、特にビスフェノールA型エポキシ樹脂とクレゾールノボラック型エポキシ樹脂等の多官能エポキシ樹脂との混合物が内層回路充填性及び耐熱性の向上のために好ましい。これらの化合物の分子量はどのようなものでもよく、何種類かを併用することができる。
【0010】
本発明で用いるエポキシ樹脂硬化剤は、通常エポキシ樹脂の硬化剤に用いるものであればどのようなものでもよく、例えばアミン類、フェノール類、酸無水物、イミダゾール類などがある。これらのなかで、アミン類であるジシアンジアミド、フェノール類であるフェノールノボラック樹脂等が耐熱性の向上のため好ましい。これらの化合物は何種類かを併用することができる。このエポキシ樹脂硬化剤のエポキシ樹脂に対する割合は、エポキシ樹脂100重量部に対し、2〜100重量部の範囲が好ましい。エポキシ樹脂硬化剤が2重量部より少ない場合、エポキシ樹脂の硬化が不十分となって、耐熱性が低下する傾向があり、100重量部より多い場合は、硬化剤が過剰となって可塑剤として機能し、耐熱性が低下する傾向がある。
本発明で用いる硬化促進剤は、通常エポキシ樹脂の硬化反応を促進するものであればどのようなものでもよく、例えばイミダゾール類、有機りん化合物、第三級アミン、第四級アンモニウム塩などがある。硬化促進剤のエポキシ樹脂に対する割合は、エポキシ樹脂100重量部に対し、0.01〜10重量部の範囲が好ましい。硬化促進剤が0.01重量部より少ない場合、エポキシ樹脂の硬化が不十分となり、耐熱性が低下し、10重量部より多い場合は、硬化促進剤が過剰となって耐熱性が低下する。
【0011】
本発明において、下記のコアシェル構造架橋ゴム以外のゴムを使用してもよい。このようなものとして、めっき銅と接着性が良好なアクリロニトリルブタジエンゴム(エポキシ基、カルボキシル基を含有していてもよい)が好ましい。このようなゴムは、使用するときは、エポキシ樹脂とエポキシ樹脂硬化剤との総量/ゴムが重量比で97/3〜50/50の範囲になるように使用することが好ましい。このようなゴムの使用量が少なすぎると、ラミネート成形時に樹脂がしみ出す傾向があり、多すぎると内層回路への充填性や絶縁信頼性が低下する傾向がある。
【0012】
本発明で使用するコアシェル構造架橋ゴムは、2層または3層構造であり、コア層がゴム弾性を示す架橋ゴムであり、コア層をゴム弾性を示さない架橋ポリマで被服した構造であればどのようなものでもよい。コア層には、架橋ポリブタジエン、架橋ポリイソプレンなどが有効であり、シェル層には、架橋ポリメタクリル酸メチル、架橋ポリスチレンなどが好ましい。コアシェル構造架橋ゴムの平均粒子径は、1μm以下が好ましい。平均粒子径が1μmより大きい場合、プリント配線板用の絶縁信頼性が低下する傾向がある。また、コアシェル構造架橋ゴムはその粒子径が小さすぎると凝集しやすくなるため、平均粒子径は0.1μm以上であることが好ましい。コアシェル構造架橋ゴムの添加量は、絶縁フィルムの樹脂分の総量(エポキシ樹脂、エポキシ樹脂硬化剤、硬化促進剤、コアシェル型架橋ゴム及びコアシェル型架橋ゴム以外のゴムの総量)に対して0.5〜50重量%が好ましい。0.5重量%より少ない場合、コアシェル構造架橋ゴムの効果が見られず、耐熱性及び銅接着性の向上が見られなくなる傾向があり、50重量%より多い場合、樹脂弾性率の低下や絶縁性といったプリント配線板用絶縁樹脂としての特性が得られなくなる傾向がある。
【0013】
本発明の絶縁フィルムは、溶剤を用いて樹脂をワニス化し、離型フィルム上に塗布乾燥することで、絶縁フィルムを作製する。ここで使用する溶剤は、エポキシ樹脂組成物及びゴムを溶解するものであればどのようなものでもよいが、特にアセトン、メチルエチルケトン、メチルブチルケトン、トルエン、キシレン、酢酸エチル、N、N−ジメチルホルムアミド、N、N−ジメチルアセトアミド、エタノール、エチレングリコールモノメチルエーテル等がエポキシ樹脂組成物及びゴムの溶解性に優れ、比較的沸点が低いため、好ましい。これらの溶剤の配合量は、樹脂が溶解する量であればどのような量でもよいが、樹脂100重量部に対して、5〜300重量部の範囲が好ましく、50〜250重量部の範囲がさらに好ましい。また、これらを組み合わせて用いても構わない
【0014】
本発明で使用する離型フィルムは、絶縁フィルムのワニスを塗布、乾燥することができればどのようなものでも構わないが、ラミネート後の離型が容易で、乾燥する温度での強度が十分なものが好ましい。このような離型フィルムとして例えばポリエチレンテレフタレートフィルム、ポリイミドフィルム等がある。
本発明において、絶縁フィルム中に無電解銅めっきの析出核となるめっき触媒を含有することができる。めっき触媒としては、元素周期律表のVIII、1B及び2B属の金属の塩あるいは酸化物が使用できる。
例えば、白金、パラジウム、錫などの金属の化合物が用いられ、固体粒子あるいは有機溶剤に溶解又は他の樹脂とともに溶解分散させたよう液状態として接着剤中に混合することができる。
めっき触媒の接着剤中の配合量は、2〜15重量%の範囲であれば無電解めっきによって銅が析出する。
さらにシランカップリング剤を添加してもかまわないし、充填剤を配合しても構わない。
【0015】
本発明の絶縁フィルムを使用する内層基板としては、フェノール樹脂系又はエポキシ樹脂系あるいは無機系又は有機複合物からなる基材等を用いることができる。
本発明の絶縁フィルムを、内層基板にラミネートし、離型フィルムを剥離後、140℃〜190℃の温度で30分〜60分加熱硬化が行われる。
【0016】
無電解めっきを析出させるに際しては、接着剤表面を化学的に粗化して接着に適した形状にする。
化学的粗化に使用される粗化液としては、クロム酸−濃硫酸混合物、クロム酸−濃硫酸−フツ化ナトリウム混合物、過マンガン酸カリウム、過マンガン酸ナトリウム等の過マンガン酸塩と水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属を含む水溶液、ホウフツ化水素酸−重クロム酸混合物等が使用できる。
【0017】
また、パターン形成は、めっきレジストをスクリーン印刷、あるいはフォトマスクを紫外線硬化し現像して形成する。これらのめっきレジストは、化学的粗化処理工程の前あるいは処理した後で行われる。
【0018】
【作用】
本発明の絶縁フィルムに含まれるコアシェル構造架橋ゴムは、微小な粒子であり、このコアシェル構造架橋ゴムが粗化液に溶解することで、絶縁樹脂表面に適した微小凹凸形状を形成できる。また、コアシェル構造の架橋ゴムであるため、配合量に比例した絶縁性の低下が全くない。さらに、絶縁樹脂をフィルム化し、内層板にラミネートにより、絶縁層を形成できるため、製造プロセスの簡素化が容易になった。
【0019】
【実施例】
以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
【0020】
実施例1
ビスフェノールA型エポキシ樹脂(油化シェルエポキシ株式会社商品名エピコート828、エポキシ当量190)40重量部、クレゾールノボラック型エポキシ樹脂(住友化学工業株式会社商品名ESCN−190−3、エポキシ当量190)10重量部、ジシアンジアミド2重量部、2−エチル−4−メチルイミダゾール0.5重量部、コア層:架橋ポリブタジエン−シェル層:架橋ポリメタクリル酸メチルのコアシェル構造架橋ゴム(呉羽化学工業株式会社商品名:パラロイドEXL2655、粒子径200nm)20重量部、アクリロニトリルブタジエンゴム(日本ゼオン株式会社商品名ニポール1031)20重量部、充填材(ケイ酸ジルコニウム)10重量部、無電解めっき用触媒(塩化パラジウムの樹脂混合物、日立化成工業株式会社商品名:PEC−8)4重量部、メチルエチルケトン200重量部を秤量し、攪拌してワニスを得た。
【0021】
このワニスを離型フィルム(ポリエチレンテレフタレートフィルム、東レ製、商品名:ピューレックスA−63、50μm厚)上に乾燥後50μmになるように塗布し、100℃で15分間乾燥し、アディティブ法配線板用絶縁フィルムを得た。
この絶縁フィルムをガラス布エポキシ積層板(日立化成工業株式会社商品名:LE−168)にプレスを用い150℃、2MPa、2分間の条件でラミネートし、離型フィルムを剥離して、160℃で60分間乾燥して硬化させる。
さらにめっき用レジスト(日立化成工業株式会社商品名:SR−3000)をラミネートし、回路形成用フォトマスクを介して紫外線露光し、現像した。
次に、クロム酸−濃硫酸−フッ化ナトリウム混合物(クロム酸40g/l、濃硫酸300ml/l、フッ化ナトリウム10g/l)からなる粗化液に40℃−5分間浸漬して、接着剤露出部のみ選択的に化学粗化し、その後中和、水洗した。
さらに、無電解銅めっき液(日立化成工業株式会社製、商品名:CC−41液)に投入して、35μmのめっき銅を析出させた後、160℃−60分間アニーリングして、アディティブ法プリント配線板を作製した。得られたアディティブ法プリント配線板の288℃のはんだ耐熱性は、180秒以上膨れ等が発生せず良好であり、めっき銅の引きはがし強さは、2.0kN/mであった。
【0022】
実施例2
ビスフェノールA型エポキシ樹脂(エピコート828)40重量部、クレゾールノボラック型エポキシ樹脂(ESCN−190−3)10重量部、ジシアンジアミド2重量部、2−エチル−4−メチルイミダゾール0.5重量部、コア架橋ブタジエン−シェル架橋ポリメタクリル酸メチルのコアシェル構造架橋ゴム(パラロイドEXL2655)40重量部、アクリロニトリルブタジエンゴム(日本ゼオン株式会社、商品名ニポール1031)20重量部、充填材(ケイ酸ジルコニウム)10重量部、無電解めっき用触媒(PEC−8)4重量部、メチルエチルケトン200重量部とした以外、実施例1と同様にしてアディティブ法プリント配線板を作製した。
【0023】
得られたアディティブ法プリント配線板の288℃のはんだ耐熱性は、180秒以上膨れ等が発生せず良好であり、銅の引きはがし強さは、2.1kN/mであった。
【0024】
実施例3
ビスフェノールA型エポキシ樹脂(エピコート828)40重量部、クレゾールノボラック型エポキシ樹脂(ESCN−190−3)10重量部、フェノールノボラック樹脂(日立化成株式会社商品名HP−850N、フェノール性水酸基当量106)30重量部、2−エチル−4−メチルイミダゾール0.5重量部、コア架橋ブタジエン−シェル架橋ポリメタクリル酸メチルのコアシェル構造架橋ゴム(パラロイドEXL2655)20重量部、充填材(ケイ酸ジルコニウム)10重量部、メチルエチルケトン200重量部とした以外、実施例1と同様にしてアディティブ法プリント配線板を作製した。
【0025】
得られた両面銅はく付絶縁樹脂硬化物の288℃のはんだ耐熱性は、180秒以上膨れ等が発生せず良好であり、銅の引きはがし強さは、1.9kN/mであった。
【0026】
比較例
コアシェル構造架橋ゴムを添加しないこと以外、実施例1と同様にしてアディティブ法プリント配線板を作製した。得られたアディティブ法プリント配線板の288℃のはんだ耐熱性は、125秒で膨れが発生し、銅の引きはがし強さは、1.5kN/mであった。
【0027】
【発明の効果】
以上に説明した様に、絶縁樹脂組成中にコアシェル構造架橋ゴムを用いることで、絶縁性及び耐熱性を損なうことなくめっき銅との接着力を向上できるアディティブ法プリント配線板用絶縁フィルムを提供することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulating film used for an additive printed wiring board suitable for high-density wiring.
[0002]
[Prior art]
As is well known, an additive printed wiring board forms a necessary wiring pattern on an adhesive insulating base material by electroless plating.
For example, an adhesive layer containing a plating catalyst is formed on an insulating substrate containing a plating catalyst or the like, and the adhesive layer is formed using dip coating or curtain coating. Next, drying is performed at a temperature of 100 ° C. to 150 ° C. for 10 minutes to 60 minutes to evaporate the solvent contained in the adhesive, and at the same time, the adhesive is temporarily cured. Furthermore, it is cured by heating at a temperature of 140 ° C. to 190 ° C. for 20 minutes to 90 minutes.
[0003]
Next, the surface other than the circuit formation part is masked with a plating resist, and the adhesive surface of the circuit formation part is selectively used with an oxidizing etching solution such as chromium-sulfuric acid as a pretreatment for improving the adhesion with the electroless plating copper. Chemical roughening.
Thereafter, the substrate is immersed in an electroless plating solution through neutralization and water washing steps, and copper is deposited on the circuit portion to form a wiring pattern.
[0004]
As an adhesive for such an additive method printed wiring board, generally an acrylonitrile butadiene rubber having good adhesion to plated copper is used as a main component, and an epoxy resin is blended in order to ensure electrical characteristics.
Furthermore, an adhesive containing an inorganic filler or the like has been proposed in order to reinforce the adhesive film or increase the unevenness of the adhesive during chemical roughening.
Japanese Patent Publication No. 48-24250, Japanese Patent Publication No. 45-9843, Japanese Patent Publication No. 55-16391, Japanese Patent Publication No. 1-53910, etc. are disclosed as techniques relating to such an adhesive.
[0005]
[Problems to be solved by the invention]
By the way, in recent years, with the downsizing and multi-functionalization of electronic devices, it is necessary to increase the wiring density of printed wiring boards, and the wiring width has been rapidly reduced. Against this background, insulation is becoming an important characteristic for adhesives that support circuit conductors.
For this reason, generally, the blending amount of the acrylonitrile butadiene rubber whose insulation is inferior to that of the epoxy resin or the like is reduced and the blending amount of the epoxy resin is increased. However, in this case, since the epoxy resin whose roughening solution solubility is remarkably lower than that of acrylonitrile butadiene rubber is increased, the roughening unevenness is reduced and the adhesive strength with the plated copper is lowered.
[0006]
Needless to say, the thinner the wire, the more advantageous the adhesive strength with the plated copper.
[0007]
In addition, as the cost of electronic equipment has been reduced, the manufacturing process can be simplified and the process can be shortened. Filming the additive adhesive and laminating it on the inner layer substrate can be used for complicated processes such as curtain coating. Even without this, a process capable of forming an insulating layer has been studied.
An object of the present invention is to provide an insulating film for an additive method wiring board that is excellent in adhesive strength with plated copper without impairing the insulating properties and can form an insulating layer by lamination.
[0008]
[Means for Solving the Problems]
The present invention relates to the following.
(1) An insulating film is laminated on an insulating substrate, the surface of the adhesive is chemically roughened, and used for printed wiring boards obtained by an additive method in which only necessary portions are formed by electroless plating. An insulating film for an additive method printed wiring board, comprising a resin curing agent, a curing accelerator, and a core-shell type crosslinked rubber.
(2) The insulating film for an additive method printed wiring board according to item (1), wherein the core-shell type crosslinked rubber is contained in an amount of 0.5 to 50% by weight based on the total resin content in the film composition.
(3) The insulating film for an additive method printed wiring board according to item (1) or (2), wherein the core layer of the core-shell structure crosslinked rubber is a crosslinked polybutadiene and the shell layer is a crosslinked acrylic resin.
(4) The insulating film for an additive method printed wiring board according to item (1) or (2), wherein the core layer of the core-shell structure crosslinked rubber is crosslinked polybutadiene and the shell layer is crosslinked polymethyl methacrylate.
[0009]
The epoxy resin used in the present invention may be any compound as long as it has two or more epoxy groups in the molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, Aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, epoxidized polybutadiene, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, etc., especially bisphenol A type epoxy resin and cresol novolac type epoxy resin A mixture with a polyfunctional epoxy resin such as is preferred for improving the inner layer circuit filling property and heat resistance. These compounds may have any molecular weight, and several types can be used in combination.
[0010]
The epoxy resin curing agent used in the present invention may be any one as long as it is usually used as a curing agent for epoxy resins, and examples thereof include amines, phenols, acid anhydrides, and imidazoles. Among these, dicyandiamide, which is an amine, and phenol novolac resin, which is a phenol, are preferable for improving heat resistance. Several kinds of these compounds can be used in combination. The ratio of the epoxy resin curing agent to the epoxy resin is preferably in the range of 2 to 100 parts by weight with respect to 100 parts by weight of the epoxy resin. When the amount of the epoxy resin curing agent is less than 2 parts by weight, the curing of the epoxy resin tends to be insufficient and the heat resistance tends to decrease. When the amount is more than 100 parts by weight, the curing agent becomes excessive and becomes a plasticizer. It functions and tends to decrease heat resistance.
The curing accelerator used in the present invention may be any as long as it normally accelerates the curing reaction of the epoxy resin, such as imidazoles, organophosphorus compounds, tertiary amines, quaternary ammonium salts and the like. . The ratio of the curing accelerator to the epoxy resin is preferably in the range of 0.01 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin. When the amount of the curing accelerator is less than 0.01 parts by weight, the epoxy resin is not sufficiently cured and the heat resistance is lowered. When the amount is more than 10 parts by weight, the curing accelerator is excessive and the heat resistance is lowered.
[0011]
In the present invention, rubbers other than the following core-shell structure crosslinked rubber may be used. As such, acrylonitrile butadiene rubber (which may contain an epoxy group or a carboxyl group) having good adhesion to plated copper is preferable. Such rubber is preferably used so that the total amount of the epoxy resin and the epoxy resin curing agent / rubber is in the range of 97/3 to 50/50 by weight. If the amount of such rubber used is too small, the resin tends to ooze out during lamination molding, and if it is too large, the filling property to the inner layer circuit and the insulation reliability tend to decrease.
[0012]
The core-shell structure cross-linked rubber used in the present invention has a two-layer or three-layer structure, the core layer is a cross-linked rubber exhibiting rubber elasticity, and any structure can be used as long as the core layer is covered with a cross-linked polymer that does not exhibit rubber elasticity. Something like that. Cross-linked polybutadiene, cross-linked polyisoprene and the like are effective for the core layer, and cross-linked polymethyl methacrylate and cross-linked polystyrene are preferable for the shell layer. The average particle diameter of the core-shell structure crosslinked rubber is preferably 1 μm or less. When the average particle diameter is larger than 1 μm, the insulation reliability for the printed wiring board tends to decrease. Further, since the core-shell structure crosslinked rubber tends to aggregate when its particle size is too small, the average particle size is preferably 0.1 μm or more. The addition amount of the core-shell structure crosslinked rubber is 0.5 with respect to the total resin content of the insulating film (epoxy resin, epoxy resin curing agent, curing accelerator, core-shell crosslinked rubber, and total amount of rubber other than the core-shell crosslinked rubber). -50% by weight is preferred. When the amount is less than 0.5% by weight, the effect of the core-shell structure crosslinked rubber is not seen, and there is a tendency that the heat resistance and the copper adhesion are not improved. There is a tendency that characteristics as an insulating resin for printed wiring boards cannot be obtained.
[0013]
The insulating film of this invention produces an insulating film by varnishing resin using a solvent, apply | coating and drying on a release film. The solvent used here may be any solvent that dissolves the epoxy resin composition and rubber, but in particular acetone, methyl ethyl ketone, methyl butyl ketone, toluene, xylene, ethyl acetate, N, N-dimethylformamide. , N, N-dimethylacetamide, ethanol, ethylene glycol monomethyl ether and the like are preferable because they are excellent in solubility of the epoxy resin composition and rubber and have a relatively low boiling point. The amount of these solvents may be any amount as long as the resin dissolves, but is preferably in the range of 5 to 300 parts by weight, and in the range of 50 to 250 parts by weight with respect to 100 parts by weight of the resin. Further preferred. Further, these may be used in combination. [0014]
The release film used in the present invention may be any film as long as the insulating film varnish can be applied and dried, but is easy to release after lamination and has sufficient strength at the drying temperature. Is preferred. Examples of such a release film include a polyethylene terephthalate film and a polyimide film.
In this invention, the plating catalyst used as the precipitation nucleus of electroless copper plating can be contained in an insulating film. As the plating catalyst, salts or oxides of metals of Groups VIII, 1B and 2B of the Periodic Table of Elements can be used.
For example, a metal compound such as platinum, palladium, and tin can be used, and can be mixed into the adhesive in a liquid state so that it is dissolved in solid particles or an organic solvent or dissolved and dispersed together with other resins.
If the amount of the plating catalyst in the adhesive is in the range of 2 to 15% by weight, copper is deposited by electroless plating.
Further, a silane coupling agent may be added, or a filler may be blended.
[0015]
As the inner layer substrate using the insulating film of the present invention, a substrate made of a phenol resin, an epoxy resin, an inorganic or organic composite, or the like can be used.
The insulating film of the present invention is laminated on the inner layer substrate, and the release film is peeled off, followed by heat curing at a temperature of 140 ° C. to 190 ° C. for 30 minutes to 60 minutes.
[0016]
When depositing electroless plating, the surface of the adhesive is chemically roughened to a shape suitable for bonding.
Roughening solutions used for chemical roughening include chromic acid-concentrated sulfuric acid mixture, chromic acid-concentrated sulfuric acid-sodium fluoride mixture, potassium permanganate such as potassium permanganate, sodium permanganate and hydroxylation. An aqueous solution containing an alkali metal hydroxide such as sodium or potassium hydroxide, a borofluoric acid-bichromic acid mixture, or the like can be used.
[0017]
The pattern is formed by screen-printing a plating resist or ultraviolet-curing and developing a photomask. These plating resists are performed before or after the chemical roughening treatment step.
[0018]
[Action]
The core-shell structured crosslinked rubber contained in the insulating film of the present invention is a fine particle, and the core-shell structured crosslinked rubber dissolves in the roughening liquid, whereby a fine uneven shape suitable for the insulating resin surface can be formed. Further, since it is a cross-linked rubber having a core-shell structure, there is no deterioration in insulation proportional to the blending amount. Furthermore, since the insulating layer can be formed by forming the insulating resin into a film and laminating the inner layer plate, the manufacturing process can be simplified.
[0019]
【Example】
Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited thereto.
[0020]
Example 1
40 parts by weight of bisphenol A type epoxy resin (Oilized Shell Epoxy Co., Ltd. trade name Epicoat 828, epoxy equivalent 190), cresol novolac type epoxy resin (Sumitomo Chemical Co., Ltd. trade name ESCN-190-3, epoxy equivalent 190) 10 weights Parts, 2 parts by weight of dicyandiamide, 0.5 parts by weight of 2-ethyl-4-methylimidazole, core layer: cross-linked polybutadiene-shell layer: cross-linked polymethyl methacrylate core-shell structure cross-linked rubber (Kureha Chemical Industries, Ltd., trade name: Paraloid) EXL2655, particle size 200 nm) 20 parts by weight, acrylonitrile butadiene rubber (Nippon Zeon Corporation trade name Nipol 1031) 20 parts by weight, filler (zirconium silicate) 10 parts by weight, electroless plating catalyst (palladium chloride resin mixture, Hitachi Chemical Co., Ltd. Product Name: PEC-8) 4 parts by weight, were weighed and methyl ethyl ketone 200 parts by weight, to obtain a varnish and stirred.
[0021]
This varnish was applied to a release film (polyethylene terephthalate film, manufactured by Toray, trade name: PUREX A-63, 50 μm thick) so as to be 50 μm after drying, and dried at 100 ° C. for 15 minutes. An insulating film was obtained.
This insulating film was laminated on a glass cloth epoxy laminate (Hitachi Chemical Industry Co., Ltd., trade name: LE-168) using a press at 150 ° C., 2 MPa for 2 minutes, and the release film was peeled off at 160 ° C. Dry and cure for 60 minutes.
Furthermore, a resist for plating (trade name: Hitachi Chemical Co., Ltd .: SR-3000) was laminated, exposed to ultraviolet rays through a photomask for circuit formation, and developed.
Next, the adhesive was immersed in a roughening solution composed of a chromic acid-concentrated sulfuric acid-sodium fluoride mixture (chromic acid 40 g / l, concentrated sulfuric acid 300 ml / l, sodium fluoride 10 g / l) at 40 ° C. for 5 minutes. Only the exposed portion was selectively chemically roughened, then neutralized and washed with water.
Furthermore, it is put into an electroless copper plating solution (manufactured by Hitachi Chemical Co., Ltd., trade name: CC-41 solution) to deposit 35 μm of plated copper, and then annealed at 160 ° C. for 60 minutes to produce an additive method print. A wiring board was produced. The resulting additive-processed printed wiring board had good solder heat resistance at 288 ° C. without swelling for 180 seconds or more, and the peel strength of the plated copper was 2.0 kN / m.
[0022]
Example 2
40 parts by weight of bisphenol A type epoxy resin (Epicoat 828), 10 parts by weight of cresol novolac type epoxy resin (ESCN-190-3), 2 parts by weight of dicyandiamide, 0.5 part by weight of 2-ethyl-4-methylimidazole, core crosslinking Butadiene-shell cross-linked polymethyl methacrylate core-shell structure cross-linked rubber (Paraloid EXL2655) 40 parts by weight, acrylonitrile butadiene rubber (Nippon Zeon Co., Ltd., trade name Nipol 1031) 20 parts by weight, filler (zirconium silicate) 10 parts by weight, An additive printed wiring board was produced in the same manner as in Example 1 except that 4 parts by weight of electroless plating catalyst (PEC-8) and 200 parts by weight of methyl ethyl ketone were used.
[0023]
The resulting additive printed wiring board had good solder heat resistance at 288 ° C. without causing swelling or the like for 180 seconds or more, and the copper peel strength was 2.1 kN / m.
[0024]
Example 3
40 parts by weight of bisphenol A type epoxy resin (Epicoat 828), 10 parts by weight of cresol novolak type epoxy resin (ESCN-190-3), phenol novolak resin (Hitachi Chemical Co., Ltd., trade name HP-850N, phenolic hydroxyl group equivalent 106) 30 Parts by weight, 0.5 parts by weight of 2-ethyl-4-methylimidazole, 20 parts by weight of core-shell structure crosslinked rubber (paraloid EXL2655) of core crosslinked butadiene-shell crosslinked polymethyl methacrylate, 10 parts by weight of filler (zirconium silicate) An additive printed wiring board was produced in the same manner as in Example 1 except that 200 parts by weight of methyl ethyl ketone was used.
[0025]
The obtained 288 ° C. solder heat resistance of the obtained double-sided copper-plated insulating resin cured product was good without causing swelling or the like for 180 seconds or more, and the copper peel strength was 1.9 kN / m. .
[0026]
Comparative Example An additive printed wiring board was produced in the same manner as in Example 1 except that the core-shell structure crosslinked rubber was not added. As for the solder heat resistance of the resulting additive printed wiring board at 288 ° C., swelling occurred in 125 seconds, and the copper peel strength was 1.5 kN / m.
[0027]
【The invention's effect】
As described above, by using a core-shell structure cross-linked rubber in an insulating resin composition, an insulating film for an additive method printed wiring board capable of improving the adhesive strength with plated copper without impairing insulation and heat resistance is provided. be able to.

Claims (3)

絶縁基板に接着性を有する絶縁フィルムをラミネートし、当該絶縁フィルム表面を化学的に粗化し、必要な箇所のみ無電解めっきによって回路形成するアディティブ法によって得られるプリント配線板を作製するための接着性を有する絶縁フィルムであって、当該絶縁フィルムが、エポキシ樹脂、エポキシ樹脂硬化剤、硬化促進剤、及びコア層が架橋ポリブタジエンであり、シェル層が架橋アクリル樹脂であるコアシェル型架橋ゴムを含有することを特徴とするアディティブ法プリント配線板用絶縁フィルム。 Adhesiveness for producing printed wiring boards obtained by the additive method of laminating an insulating film with adhesive properties on an insulating substrate, chemically roughening the surface of the insulating film , and forming a circuit only by electroless plating at the required location The insulating film contains an epoxy resin, an epoxy resin curing agent, a curing accelerator , and a core- shell type crosslinked rubber in which the core layer is a crosslinked polybutadiene and the shell layer is a crosslinked acrylic resin. Additive method insulation film for printed wiring boards. 前記コアシェル型架橋ゴムが、前記絶縁フィルム組成中の樹脂分総量に対して0.5〜50重量%含有することを特徴とする請求項1に記載のアディティブ法プリント配線板用絶縁フィルム。 The insulating film for an additive method printed wiring board according to claim 1, wherein the core-shell type crosslinked rubber is contained in an amount of 0.5 to 50% by weight based on the total resin content in the insulating film composition. 前記コアシェル構造架橋ゴムのシェル層の架橋アクリル樹脂が、架橋ポリメタクリル酸メチルである請求項1または2に記載のアディティブ法プリント配線板用絶縁フィルム。 The insulating film for an additive method printed wiring board according to claim 1 or 2, wherein the crosslinked acrylic resin of the shell layer of the core-shell structured crosslinked rubber is crosslinked polymethyl methacrylate .
JP30545499A 1999-10-27 1999-10-27 Additive insulation film for printed wiring boards Expired - Lifetime JP4556260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30545499A JP4556260B2 (en) 1999-10-27 1999-10-27 Additive insulation film for printed wiring boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30545499A JP4556260B2 (en) 1999-10-27 1999-10-27 Additive insulation film for printed wiring boards

Publications (2)

Publication Number Publication Date
JP2001123143A JP2001123143A (en) 2001-05-08
JP4556260B2 true JP4556260B2 (en) 2010-10-06

Family

ID=17945350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30545499A Expired - Lifetime JP4556260B2 (en) 1999-10-27 1999-10-27 Additive insulation film for printed wiring boards

Country Status (1)

Country Link
JP (1) JP4556260B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100509982C (en) * 2001-11-16 2009-07-08 日立化成工业株式会社 Adhisive for circuit connection
CN100509981C (en) * 2001-11-16 2009-07-08 日立化成工业株式会社 Adhesive for circuit connection
CN100509983C (en) * 2001-11-16 2009-07-08 日立化成工业株式会社 Adhesive for circuit connection
CN100513507C (en) * 2001-11-16 2009-07-15 日立化成工业株式会社 Adhesive for circuit connection
CN100509984C (en) * 2001-11-16 2009-07-08 日立化成工业株式会社 Film-shaped adhesive for circuit connection
CN1532256B (en) * 2001-11-16 2010-04-14 日立化成工业株式会社 Adhesive for circuit connection
JP2009096851A (en) * 2007-10-15 2009-05-07 Three M Innovative Properties Co Nonconductive adhesive composition, nonconductive adhesive film, and methods for production and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710967B2 (en) * 1985-02-04 1995-02-08 日立化成工業株式会社 Adhesive for printed wiring board
JPH10178065A (en) * 1996-10-15 1998-06-30 Toray Ind Inc Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JPH10178251A (en) * 1996-10-15 1998-06-30 Toray Ind Inc Board for connecting semiconductor integrated circuit, parts constituting it, and semiconductor device
JPH11148059A (en) * 1997-09-11 1999-06-02 Hitachi Chem Co Ltd Adhesive and electronic parts
JP2000017148A (en) * 1998-07-01 2000-01-18 Ajinomoto Co Inc Thermosetting resin composition and interlaminar adhesive film for printed wiring board using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710967B2 (en) * 1985-02-04 1995-02-08 日立化成工業株式会社 Adhesive for printed wiring board
JPH10178065A (en) * 1996-10-15 1998-06-30 Toray Ind Inc Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JPH10178251A (en) * 1996-10-15 1998-06-30 Toray Ind Inc Board for connecting semiconductor integrated circuit, parts constituting it, and semiconductor device
JPH11148059A (en) * 1997-09-11 1999-06-02 Hitachi Chem Co Ltd Adhesive and electronic parts
JP2000017148A (en) * 1998-07-01 2000-01-18 Ajinomoto Co Inc Thermosetting resin composition and interlaminar adhesive film for printed wiring board using the same

Also Published As

Publication number Publication date
JP2001123143A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP4556260B2 (en) Additive insulation film for printed wiring boards
KR101612974B1 (en) Heat-hardened resin composition and printed wiring board
JPS6259681A (en) Adhesive for additive printed circuit board
JP4556261B2 (en) Additive adhesive for printed wiring boards
JP2001123044A (en) Insulaing resin composition for printed wiring board
JP5776134B2 (en) Resin composition
JPH0818239A (en) Method for manufacturing multi-layer printing wiring board
JP3975984B2 (en) Insulating substrate in adhesive state with copper
JP3637613B2 (en) Manufacturing method of multilayer wiring board
JP3697726B2 (en) Manufacturing method of multilayer wiring board
JP3517996B2 (en) Additive adhesive for printed circuit boards
JPH07193373A (en) Multilayer printed wiring board and adhering sheet
JP2650158B2 (en) Adhesive composition for flexible printed circuit board
JP3775824B2 (en) Additive adhesive for printed wiring board, adhesive sheet and multilayer printed wiring board
JP3536937B2 (en) Additive method adhesive for printed wiring board and method for manufacturing wiring board using the adhesive
JP4189699B2 (en) Additive adhesive for printed wiring board and printed wiring board using the same
JP2004137478A (en) Adhesive
JPH0553628B2 (en)
JPH1060403A (en) Adhesive composition and production of multilayer printed-circuit board by using the same
JP4051587B2 (en) Method for producing multilayer wiring board using resin composition curable by heat or light
JPH10265752A (en) Adhesive for additive-type printed circuit board
JP3329917B2 (en) Adhesive for printed wiring board and method for manufacturing printed wiring board using this adhesive
JP2001127430A (en) Method for producing multilayer copper clad laminate having inner circuit
JPH10270857A (en) Manufacture of multilayered wiring board
JPH11279414A (en) Insulation resin for build up, and production of insulation resin film for build up and multlayer printed circuit board by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R151 Written notification of patent or utility model registration

Ref document number: 4556260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term