JP4555429B2 - Predistortion type nonlinear distortion compensation circuit and digital transmitter using the same - Google Patents
Predistortion type nonlinear distortion compensation circuit and digital transmitter using the same Download PDFInfo
- Publication number
- JP4555429B2 JP4555429B2 JP2000101436A JP2000101436A JP4555429B2 JP 4555429 B2 JP4555429 B2 JP 4555429B2 JP 2000101436 A JP2000101436 A JP 2000101436A JP 2000101436 A JP2000101436 A JP 2000101436A JP 4555429 B2 JP4555429 B2 JP 4555429B2
- Authority
- JP
- Japan
- Prior art keywords
- distortion compensation
- distortion
- input signal
- compensation value
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Amplifiers (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、概してデジタル送信機に関し、特に、デジタル送信機の電力増幅器で発生する非線形歪みをプリディストーションにより補償する装置に関する。
【0002】
【従来の技術】
一般に、電力増幅器では電力効率を向上させるため飽和点に近い動作点が設定されるため、入力振幅/出力振幅非線形(AM/AM)や入力振幅/出力位相非線形(AM/PM)などの特性を持つようになり、非線形歪みが発生する。このため、デジタル送信機などでは、電力増幅器のAM/AM特性およびAM/PM特性を基に、可能性のある入力シンボルの各振幅値に対する同相成分と直交成分の補償値の対を予め計算し、メモリに記憶しておく。そして、各入力シンボルをその振幅に対応する補償値の対で補償するようにしている。
しかし、電力増幅器のAM/AM特性およびAM/PM特性は、経年変化する可能性があるので、入力シンボルと電力増幅器の出力から得られる信号との誤差に応じて補償値を計算し、補償値を更新して歪み補償動作に適応性を持たせている。一般にこのような歪み補償回路をプリディストーション型歪み補償回路と称する。
【0003】
【発明が解決しようとする課題】
補償値を更新する場合、べースバンド帯の元信号あるいはべースバンド帯の歪補償信号、べースバンド帯の復調信号の位相を求め、その位相情報を用いて歪補償更新値を求めている。しかしながら、このように従来の歪補償値を更新する方法では、信号(I,Q)の位相θを求めるために逆正接関数θ=tan-1(Q/I)を用いる必要がある。FPLA(現地でプログラム可能な論理アレイField Programmable Logic Array)などで逆正接関数を計算する回路は、回路規模も大きくなり、演算時間も増えてしまうという問題点があった。
したがって、本発明は、信号の位相情報を用いることなく、即ち、逆正接関数計算回路を用いることなく更新歪補償値を計算する歪補償値の更新技術を提供することを1つの目的とする。
上述の補償値更新のために電力増幅器の出力から得る信号は、電力増幅器における利得や位相回転を相殺するように減衰器で調整した上で、歪み補償部の更新部分に入力する。この入力される信号を仮に「帰還信号」と呼び、また電力増幅器の出力から更新部分に至る経路を「帰還路」と呼ぶことにする。しかし、減衰器での振幅・位相の調整が正しく行われずに、前記の帰還信号に振幅、位相またはその両方の線形変動が加わると、入力信号との間に誤差が生じることになる。このため、歪補償値が幾ら適切で、電力増幅器の歪みが正しく補償されていても、その誤差のために正しい歪み補償値までも更新することになる。
したがって、本発明は、帰還路において発生する振幅・位相の線形変動に起因する歪補償値の更新を行わずに済む歪補償値の更新技術を提供することを1つの目的とする。
また、従来のプリディストーション型歪み補償回路では、補償値の更新を繰り返し行うことで、歪補償値が徐々に正しいものに近づいていく。このため更新回数が少ない間は歪補償効果が低いので、十分な効果を得るには更新を何回か行う必要がある。このような従来の歪補償値の更新手段が記載された文献としては、例えば特開平5−30147号公報などがある。
本発明は、比較的少ない更新回数で歪補償値を正しい値に設定できる歪補償値更新技術を提供することを更なる目的とする。
【0004】
【課題を解決するための手段】
以上の目的を達成するため、請求項1記載のプリディストーション型非線形歪み補償回路は、歪み特性を有する要素を含む回路の前段に配置され、入力信号の振幅に応じた歪み補償値で前記入力信号を歪ませた補償信号を前記回路に与えるプリディストーション型非線形歪み補償回路であり、予測される入力信号の振幅とこれに対応する歪み補償値とを関係付けて収容するテーブル手段と、本補償回路を制御する制御手段と、前記入力信号の受信に応じて前記制御手段から渡される歪み補償値を用いて前記入力信号を歪み補償する補償手段と、前記歪み特性を有する要素を含む回路の出力から帰還用の信号を取り出して前記入力信号に匹敵する帰還信号を出力する帰還手段と、前記帰還信号、前記入力信号および前記入力信号の歪み補償に用いた歪み補償値を基に前記帰還信号に対する新たな歪み補償値(以降、更新歪み補償値と称する)を逆三角関数を含まない計算式を用いて算出する算出手段と、前記テーブル手段の対応する歪み補償値を前記更新歪み補償値で更新する、前記制御手段に含まれる更新手段とを備え、前記計算式は、前記帰還手段が歪み特性を持たないものと仮定し、且つ前記更新歪み補償値による補償特性行列が前記歪み特性を有する要素を含む回路の伝達行列の逆行列に等しいと仮定して、前記入力信号と前記帰還信号との関係を表す関係式から導出され、前記算出手段が、前記算出に先立ち、前記入力信号と前記帰還信号の誤差を求め、前記誤差が許容範囲内である場合、前記算出をせず、この旨を前記制御手段に伝える手段を含むことを特徴とする。
請求項2記載の歪み補償回路は、歪み特性を有する要素を含む回路の前段に配置され、入力信号の振幅に応じた歪み補償値で前記入力信号を歪ませた補償信号を前記回路に与えるプリディストーション型非線形歪み補償回路であり、予測される入力信号の振幅とこれに対応する歪み補償値とを関係付けて収容するテーブル手段と、本補償回路を制御する制御手段と、前記入力信号の受信に応じて前記制御手段から渡される歪み補償値を用いて前記入力信号を歪み補償する補償手段と、前記歪み特性を有する要素を含む回路の出力から帰還用の信号を取り出して前記入力信号に匹敵する帰還信号を出力する帰還手段と、前記帰還信号、前記入力信号および前記入力信号の歪み補償に用いた歪み補償値を基に前記帰還信号に対する新たな歪み補償値(以降、更新歪み補償値と称する)を逆三角関数を含まない計算式を用いて算出する算出手段と、前記テーブル手段の対応する歪み補償値を前記更新歪み補償値で更新する、前記制御手段に含まれる更新手段とを備え、前記計算式は、前記帰還手段が歪み特性を持たないものと仮定し、且つ前記更新歪み補償値による補償特性行列が前記歪み特性を有する要素を含む回路の伝達行列の逆行列に等しいと仮定して、前記入力信号と前記帰還信号との関係を表す関係式から導出され、前記更新手段は、前記の対応する歪み補償値として、前記テーブル手段における前記帰還信号の振幅値に対応する歪み補償値を更新することを特徴とする。
請求項3記載の歪み補償回路は、歪み特性を有する要素を含む回路の前段に配置され、入力信号の振幅に応じた歪み補償値で前記入力信号を歪ませた補償信号を前記回路に与えるプリディストーション型非線形歪み補償回路であり、予測される入力信号の振幅とこれに対応する歪み補償値とを関係付けて収容するテーブル手段と、本補償回路を制御する制御手段と、前記入力信号の受信に応じて前記制御手段から渡される歪み補償値を用いて前記入力信号を歪み補償する補償手段と、前記歪み特性を有する要素を含む回路の出力から帰還用の信号を取り出して前記入力信号に匹敵する帰還信号を出力する帰還手段と、前記帰還信号、前記入力信号および前記入力信号の歪み補償に用いた歪み補償値を基に前記帰還信号に対する新たな歪み補償値(以降、更新歪み補償値と称する)を逆三角関数を含まない計算式を用いて算出する算出手段と、前記テーブル手段の対応する歪み補償値を前記更新歪み補償値で更新する、前記制御手段に含まれる更新手段とを備え、前記計算式は、前記帰還手段が歪み特性を持たないものと仮定し、且つ前記更新歪み補償値による補償特性行列が前記歪み特性を有する要素を含む回路の伝達行列の逆行列に等しいと仮定して、前記入力信号と前記帰還信号との関係を表す関係式から導出され、前記更新手段は、前記の対応する歪み補償値として、前記テーブル手段において前記入力信号の振幅値に対応する歪み補償値を更新することを特徴とする。
【0005】
請求項4記載のプリディストーション型非線形歪み補償回路は、歪み特性を有する要素を含む回路の前段に配置され、入力信号の振幅に応じた歪み補償値で前記入力信号を歪ませた補償信号を前記回路に与えるプリディストーション型非線形歪み補償回路であり、予測される入力信号の振幅とこれに対応する歪み補償値とを関係付けて収容するテーブル手段と、本補償回路を制御する制御手段と、前記入力信号の受信に応じて前記制御手段から渡される歪み補償値を用いて前記入力信号を歪み補償する補償手段と、前記歪み特性を有する要素を含む回路の出力から帰還用の信号を取り出して前記入力信号に匹敵する帰還信号を出力する帰還手段と、前記帰還信号、前記入力信号および前記入力信号の歪み補償に用いた歪み補償値を基に前記帰還信号に対する新たな歪み補償値(以降、更新歪み補償値と称する)を逆三角関数を含まない計算式を用いて算出する算出手段と、前記テーブル手段の対応する歪み補償値を前記更新歪み補償値で更新する、前記制御手段に含まれる更新手段とを備え、前記計算式は、前記帰還手段が歪み特性を持たないものと仮定し、且つ前記更新歪み補償値による補償特性行列が前記歪み特性を有する要素を含む回路の伝達行列の逆行列に等しいと仮定して、前記入力信号と前記帰還信号との関係を表す関係式から導出され、前記帰還手段は、前記の帰還用の信号を取り出した以降の経路で発生する振幅・位相の変動を補償する手段を該帰還手段の出力端に備えることを特徴とする。
【0006】
請求項5記載のプリディストーション型非線形歪み補償回路は、請求項1乃至4の何れかに記載の歪み補償回路において、前記制御手段が、前記帰還信号の元の前記入力信号の振幅値が前記の予測される入力信号の中の最大値である場合、前記テーブル手段において前記帰還信号の前記振幅値より大きい振幅値に対応する歪み補償値をすべて前記更新歪み補償値で更新する同一値更新手段を含むことを特徴とする。
請求項6記載の歪み補償回路は、請求項5記載の歪み補償回路において、前記制御手段が、前記帰還信号の元の前記入力信号の振幅値が前記の予測される入力信号の中の最大値である場合、前記テーブル手段において前記帰還信号の前記振幅値より大きい振幅値に対応する全ての歪み補償値を前記更新歪み補償値を含む既に更新された歪み補償値に基づいて外挿する外挿更新手段を、前記同一値更新手段の代わりに含むことを特徴とする。
請求項7記載の歪み補償回路は、請求項6記載の歪み補償回路において、前記外挿更新手段が、前記更新歪み補償値とこれと空間的に最も近い歪み補償値とを用いて比例計算により外挿することを特徴とする。
請求項8記載の歪み補償回路は、請求項5乃至7の何れか記載の歪み補償回路において、前記制御手段が、更新の回数が所定回数に達した場合、前記テーブル手段の更新されていない歪み補償値を更新済みの歪み補償値に基づいて全て補完する手段を含むことを特徴とする。
【0007】
請求項9記載のディジタル送信機は、非線形歪み特性を有する電力増幅器とこれによる非線形歪みを補償する歪み補償手段を備えたディジタル送信機であり、前記歪み補償手段が、予測される入力信号の振幅とこれに対応する歪み補償値とを関係付けて収容するテーブル手段と、前記歪み補償手段を制御する制御手段と、前記入力信号の受信に応じて前記制御手段から渡される歪み補償値を用いて前記入力信号を予め歪ませる手段と、前記電力増幅器の出力から帰還用の信号を取り出して前記入力信号に匹敵する帰還信号を出力する帰還手段と、前記帰還信号、前記入力信号および前記入力信号の歪み補償に用いた歪み補償値を基に前記帰還信号に対する新たな歪み補償値(以降、更新歪み補償値と称する)を逆三角関数を含まない計算式を用いて算出する算出手段と、前記テーブル手段に於いて対応する歪み補償値を前記更新歪み補償値で更新する、前記制御手段に含まれる更新手段とを備え、前記計算式は、前記帰還手段が歪み特性を持たないものと仮定し、且つ前記更新歪み補償値による補償特性行列が前記非線形歪み特性を有する電力増幅器の伝達行列の逆行列に等しいと仮定して、前記入力信号と前記帰還信号との関係を表す関係式から導出され、前記算出手段が、前記算出に先立ち、前記入力信号と前記帰還信号の誤差を求め、前記誤差が許容範囲内である場合、前記算出をせず、この旨を前記制御手段に伝える手段を含むことを特徴とする。
請求項10記載のディジタル送信機は、非線形歪み特性を有する電力増幅器とこれによる非線形歪みを補償する歪み補償手段を備えたディジタル送信機であり、前記歪み補償手段が、予測される入力信号の振幅とこれに対応する歪み補償値とを関係付けて収容するテーブル手段と、前記歪み補償手段を制御する制御手段と、前記入力信号の受信に応じて前記制御手段から渡される歪み補償値を用いて前記入力信号を予め歪ませる手段と、前記電力増幅器の出力から帰還用の信号を取り出して前記入力信号に匹敵する帰還信号を出力する帰還手段と、前記帰還信号、前記入力信号および前記入力信号の歪み補償に用いた歪み補償値を基に前記帰還信号に対する新たな歪み補償値(以降、更新歪み補償値と称する)を逆三角関数を含まない計算式を用いて算出する算出手段と、前記テーブル手段に於いて対応する歪み補償値を前記更新歪み補償値で更新する、前記制御手段に含まれる更新手段とを備え、前記計算式は、前記帰還手段が歪み特性を持たないものと仮定し、且つ前記更新歪み補償値による補償特性行列が前記非線形歪み特性を有する電力増幅器の伝達行列の逆行列に等しいと仮定して、前記入力信号と前記帰還信号との関係を表す関係式から導出され、前記制御手段が、前記帰還信号の元の前記入力信号の振幅値が前記の予測される入力信号の中の最大値である場合、前記テーブル手段において前記帰還信号の前記振幅値より大きい振幅値に対応する歪み補償値をすべて前記更新歪み補償値で更新する同一値更新手段を含むことを特徴とする。
請求項11記載のディジタル送信機は、請求項9又は10記載のディジタル送信機において、前記帰還手段が、前記の帰還用の信号を取り出した以降の経路で発生する振幅・位相の変動を補償する手段を出力端に備えることにより、前記帰還手段における前記の振幅・位相の変動に起因する不要な歪み補償値更新動作を避けることを特徴とする。
請求項12記載のディジタル送信機は、請求項10記載のディジタル送信機において、前記制御手段が、前記帰還信号の元の前記入力信号の振幅値が前記の予測される入力信号の中の最大値である場合、前記テーブル手段において前記帰還信号の前記振幅値より大きい振幅値に対応する全ての歪み補償値を前記更新歪み補償値を含む既に更新された歪み補償値に基づいて外挿する外挿更新手段を、前記同一値更新手段の代わりに含むことを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態例と添付図面により本発明を詳細に説明する。
なお、複数の図面に同じ要素を示す場合には同一の参照符号を付ける。
図1は、本発明の一実施形態によるプリディストーション型非線形歪み補償器を備えたデジタル無線送信機の一部を示す略ブロック図である。図1に於いて、デジタル無線送信機1の入力端Ti、Tqには、送信するべき情報シンボルを供給する情報源(図示せず)が接続されているものとする。図示しない情報源から供給される各シンボルは、同相成分Siと直交成分SqからなるベクトルSと考え、(Si,Sq)(=S)と表す。20より大きい要素番号を付けた要素が、本発明のプリディストーション型非線形歪み補償器を構成する。送信機1は、基本的には、送信すべきデジタル信号SiおよびSqをそれぞれアナログ信号に変換する2つのデジタル/アナログ(D/A)変換器11、局部発振器12、局部発振器からの発振信号を用いて各D/A変換器11の出力を直交変調する直交変調器13、直交変調器13の出力を電力増幅する電力増幅器14および電力増幅器14の出力を電波として送信するアンテナ15からなる。
前述の図示しない情報源からの入力シンボルを受信する端子TiおよびTqと2つのD/A変換器11との間には、本発明による歪み補償器100の補償値乗算器40が挿入され、電力増幅器14とアンテナ15の間には、電力増幅器14の出力を取り出すカプラ51が挿入される。歪み補償器100は、さらに受信端子TiおよびTqから入力される信号(Si、Sq)の振幅Xを計算する振幅計算器20、および振幅Xに対応する歪み補償値を歪み補償乗算器40に供給する歪み補償制御部30を備える。カプラ51の結合出力には、減衰器53、直交復調器55および一対のアナログ/ディジタル(A/D)変換器57が直列に接続され、電力増幅器14の出力信号の帰還路を形成する。さらに、歪み補償器100は、歪み補償制御部30から渡される入力信号に基づきA/D変換器57の出力(Di′,Dq′)の振幅・位相を補償した信号(Di,Dq)を出力する線形補償器60、線形補償器60の出力およびこれに対応する歪み補償制御部30からの歪み補償値(Ci,Cq)および入力信号を基にひずみ補償値の更新値を計算する歪み補償値計算器70、および信号(Di′,Dq′)の振幅yを計算する振幅計算器80を備える。
【0009】
歪み補償制御部30は、例えばプログラムを格納した読出し専用記憶(図示せず)およびランダムアクセスメモリ(図示せず)などを備えた周知のマイクロコンピュータで構成する。歪み補償制御部30には、歪み補償に使用する補償値(Ci,Cq)を予測される入力信号の振幅Xに関係付けて記憶した補償値テーブル31を書き換え可能なメモリに格納している。入力信号(Si、Sq)の振幅Xは、正規化により最大でも1を超えないように表現されているものとする。補償値テーブル31には、電力増幅器14のAM/AM特性およびAM/PM特性から予め求めた標準的な初期値を設定するか、または振幅Xの値に関わり無く、例えばSi=1、Sq=0と一律に設定しておき、徐々に学習させるようにしてもよい。
さらに、歪み補償制御部30は、入力信号Sとその歪み補償に用いた歪み補償値Cを処理に必要な期間だけ保存するためのデータバッファ32領域を図示しないランダムアクセスメモリに確保している。図2にこのデータバッファの構造を示す。このバッファ32は、先入れ先出し(FIFO)方式で書き込み読み出しを行う循環型である。図2に示した例では、入力信号と歪み補償値が次のように保存されている。
ただし、n<mである。バッファ32中の最新のデータ(この例では、Sm-1とCm-1)と最古のデータ(SnとCn)のアドレスはそれぞれ専用のポインタで管理されている。この場合は、これから入力する信号はSmである。また、後述のように、線形補償器60がこれから使用する信号はSnであり、補償値計算器70がこれから使用する入力信号と歪み補償値はそれぞれSnとCnである。
【0010】
実際の送信動作において、ある時点nにおけるベースバンド帯の入力信号を列ベクトルSn={Sni、Snq}(nは入力シンボルに付けた自然数で時間と共に増加するとする)とすると、振幅計算器20は、次式に従って振幅値Xnを計算する。
【数1】
(以降の説明において、{A,B}はA、Bを要素とする列ベクトルを表すものとする。)
歪み補償制御部30は、この振幅値Xnに対応する補償値(Ci,Cq)を補償値テーブル31から取り出して歪み補償乗算器40に渡す。これに応じて、歪み補償乗算器40は、次式に従って、歪み補償された信号Ln={Lni,Lnq}を計算し出力する。
【数2】
なお、この時、歪み補償制御部30は、入力信号Snと歪み補償に用いた補償値とを後で歪み補償値の更新値の計算に使用できるように、図示しないメモリ内のバッファ領域32に格納する。
信号Lnは、以降、D/A変換器11、直交変調器13および電力増幅器14で周知のように処理されて送信信号Tnとなり、アンテナ15から送信される。
電力増幅器14における利得・位相の変移を次式の行列Pで表す。
【数3】
一方、電力増幅器14の出力に設けられたカプラ51で取り出された信号も、周知のように減衰器53、直交復調器55およびD/A変換器57からなる帰還路を通って帰還する。この時の帰還路における利得・位相の変移を次式の行列Δで表す。
【数4】
入力信号SnのA/D変換器57の出力、即ち、線形補償器60への入力を列ベクトルDn´={Dni´,Dnq´}とすると、
【数5】
となる。
【0011】
*線形補償器60の補償動作
このような帰還信号Dn´に対し、線形補償器60は、帰還路の利得・位相の変移を補償するように動作する。ここで、電力増幅器14の入力信号C・Sn(=Ln)が小さい場合、電力増幅器14を線形と見なせば、帰還信号Dn´は次のように書くことができる。
【数6】
したがって、帰還路の振幅・位相変動の逆行列Δ-1をDn´に掛ければ、振幅・位相変動を補正することができる。ここで逆行列は、
【数7】
で求めることができる。ここで、
【数8】
である。そして振幅・位相補正をした信号Dn={Dni,Dnq}は、
【数9】
と計算できる。したがって、線形補償器60は、式(3)を用いて式(4)を計算してDnを求めて出力する。
このように、本発明によれば、線形補償器60により、帰還路で発生しうる振幅・位相の線形変動がほぼ除去されるので、これに起因する歪み補償値計算器70の不要な更新値計算動作を避けることができる。
なお、電力増幅器14の入力信号C・Snが小さいときには、入力ベースバンド信号Sも小さいと考えられるので、Cの項も省いて計算しても良い。
【0012】
*歪み補償値の更新
図3は、図1の歪み補償値計算器70が帰還信号Dnを受け取る度に行う動作の例を示すフローチャートである。前段のように線形補償された帰還信号(ベースバンド復調信号)Dnを受け取ると、歪み補償値計算器70は、図3の処理を開始する。まずデータバッファ32に格納されている最も古いデータ、即ちDnに対応する元の信号Snとその歪み補償に用いられた歪み補償値Cnを入手し(ステップ101)、元の信号Snと帰還信号Dnとの誤差eを計算する(ステップ102)。次に、誤差eが所定の許容範囲以内かどうか判断する(ステップ103)。誤差eが所定の許容範囲以内ならば、補正値Cnは適切な値であると判断し、この判断が歪み補償制御部30に伝わるようにし(ステップ105)て帰還信号Dnに対する処理を終了する。この判断を伝える方法としては、例えば専用のフラグを用いたり、後述の歪み補償値の更新値(RCi,RCq)としてあり得ない所定の値を設定するなど種々考えられる。ステップ103において、誤差eが許容範囲を超える場合、誤差eが0となるように、帰還信号Dn、元の信号Snおよび歪み補償値Cnを用いて歪み補償値の更新値(RCi,RCq)を算出し(104)、帰還信号Dnに対する処理を終了する。
以下、本発明による歪み補償値の更新値(RCi,RCq)の算出方法を説明する。
【0013】
まず、更新値行列RCを次式で定義する。
【数10】
ここで、帰還路において発生する振幅・位相の変動が線形補償器60の線形補償作用により十分補償されているものとすれば、歪み補償乗算器40の入力Snと線形補償器60の出力Dnの関係を表す式は、式(3)および(4)から、
Dn=P・C・Sn ・・・(6)
と書くことができる。
誤差eが0でない場合、Sn≠Dn、且つC≠P-1であるから、(数10)の更新値行列がRC=P-1となるように更新値(RCi,RCq)を算出する。
換言すれば、本発明によれば、歪み補償値の更新値(RCi,RCq)による伝達行列RCは電力増幅器14の伝達行列の逆行列に等しいと仮定して、即ち、RC=P-1として式(6)からRCを算出する。
ここで、P・C=Rとおくと、
【数11】
ここで、RC=P-1とすれば、
となる。Rを求めるため、式(6)を行列Rを用いて表すと、
となる。行列Rを
【数12】
と定義すると、式(8)は、次のように表せる。
【数13】
式(9)から得られる2元連立方程式をRi、Rqについて解くことにより、行列Rは、次のように表される。
【数14】
したがって、更新値(RCi、RCq)は、式(7)および(10)から次のように計算される。
【数15】
…(11)
ただし、式(11)において、SiとSq、DiとDqは、n番目の入力信号SnおよびこのSnの帰還(または復調)信号であり、添字nを省略したものである。
このように、歪み補償値の更新値(RC1,RCq)をべースバンドの入力信号(Sni,Snq)、べースバンド復調信号(Dni,Dnq)および歪補償値(Ci,Cq)から求めることができる。
【0014】
式(11)から分かるように、本発明の補償値計算器70によれば、逆正接関数θ=tan-1(Q/I)を用いることなく、歪補償値の更新値(RCi,RCq)を算出することができる。
このとき更新歪補償値(RCi,RCq)に対応する振幅は、帰還信号Dnの振幅Y=(Dni2+Dnq2)1/2とする。したがって、歪み補償制御部30は、歪み補償値テーブル31のXの値が振幅(Y)計算器80の出力値Yに等しいレコードの歪み補償値(Ci,Cq)を補償値計算器70から得た更新歪み補償値(RCi,RCq)で置き換える。
このように歪み補償値テーブル31を必要に応じて更新することにより適応的な動作が可能となる。しかし、動作開始後、歪み補償値テーブル31が適切な値に設定されるまで、ある程度時間を要する。この間、歪みの補償は適切に行われない可能性がある。そこで、本発明の歪み補償制御部30は、比較的少ない更新回数で歪み補償値テーブル31に適切な値が設定できるよう、次のような特徴的動作を行う。即ち、振幅Xnが歪み補償値テーブル31の振幅(X)欄の最大値に等しい場合、振幅欄が振幅(Y)計算器80の出力値(即ち、Dnの振幅)Yに等しいレコードの歪み補償値(Ci,Cq)を更新歪み補償値(RCi,RCq)で更新したのち、それより大きい全ての振幅値Xに対する歪み補償値を、少なくとも最後に更新した歪み補償値に基づいて得られる値で全て更新する(図5(b))。それ以外は、普通に振幅値Yに等しいレコードの歪み補償値(Ci,Cq)を更新歪み補償値(RCi,RCq)で更新する。
【0015】
図5は、歪み補償値テーブル31を更新するようすを示す図である。同図に示すように、元の信号の振幅Xと帰還信号の振幅Yを比較すると、電力増幅器の歪によりYの方が小さい場合がある。このような状況下では、振幅値Xが最大値Xmax(=1)の場合、この時の振幅値YをYmaxとすると、YmaxはXmaxより小さいため、歪み補償値テーブル31の振幅欄(即ち、Xフィールド)がYmaxより大きいレコードの歪補償値は更新することができない。
そこで、図5(b)に示すように、信号Snの振幅XがXmax、即ち1に等しい場合(振幅Yを観察するだけでは、そのYが最大値であるかどうかは分からない)、振幅Yに対応する歪み補償値を更新歪み補償値(図の例では、I4とQ4)で更新し、振幅X欄がYより大きいレコードの歪み補償値を、少なくとも最後に更新した歪み補償値(図5(b)の例では(I4,Q4))に基づいて得られる値で全て更新する。
振幅欄がYより大きいレコードの更新方法としては、例えば、振幅Yに対する更新値(図の例では(I4,Q4))で以降の歪み補償値を置換する方法が最も簡単である。
一般に、変数xと相関を持つ(が、xの関数として容易に表すことができないような)量yがあるとき、x1およびx2(x1<x2)に対する量y1およびy2が既知である場合、これらの値を基にx1<X<x2なる値Xに対するyを求めることは、内挿として知られる補間法の1つである。これを拡張して、X<x1<x2またはx1<x2<Xであるような値Xに対応するyの値を求めることを外挿と称する。
そこで、振幅X欄がYより大きいレコードの歪み補償値を、それまで更新した更新値を用いて外挿してもよい。種々の外挿方法が知られているが、最も簡単なのは、振幅Yに対する更新値(図の例では(I4,Q4))とこれに最も近い更新値(図の例では(I2,Q2))を用いて比例計算を行うことである。
【0016】
比例計算の場合、一般に、Xmaxに対応するYの値をYmax、Ymaxに対する更新値を(Imax、Qmax)、後続の更新値を(Imax+j、Qmax+j)(ただし、j=1,2,..)、Ymaxに空間的に最も近い更新値を(Ima,Qma)、その間の隔たりをDレコードとすると、
Imax+j=Imax + j・(Imax−Ima)/D
Qmax+j=Qmax + j・(Qmax−Qma)/D
が成立する。これを図5(b)に適用すると、
Imax+j=I4+j・(I4−I2)/2
Qmax+j=Q4+j・(Q4−Q2)/2
となる。ただし、j=1、2、3である。
また、更新回数をある程度重ねても一度も更新されない補償値が残る場合も考えられる。このため、更新回数が所定の回数(例えば10回)に達した場合、一度も更新されていない歪み補償値を補間により更新する。このため、更新済みか否かを判断できるように、歪み補償値テーブル31には、歪み補償値の他に、更新済みかどうかを示す更新フラグのフィールドを設けることが好ましい。
以上の歪み補償値更新原理を実現する歪み補償制御部30の動作を説明する。
動作説明に先立ち、本発明のディジタル送信装置1は、電源投入時の初期設定において、次の設定を行うものとする。即ち、歪み補償値テーブル31の更新フラグのクリア、データバッファ32の最新のデータと最古のデータを指し示すポインタ(図示せず)の初期設定、および更新動作の回数を数える更新カウンタ(図示せず)の初期設定である。
【0017】
図6は、本発明の一実施例による歪み補償制御部30が歪み補償値テーブル31を更新する動作を表すフローチャートである。帰還値Dnに対する更新歪み補償値RC=(RCi,RCq)の算出が終了した旨の知らせを歪み補償値計算器70から、例えば割り込み信号などで受け取ると、歪み補償制御部30は、これに応じて図6の処理を開始する。まず、ステップ111において、歪み補償値計算器70による所定の動作(フラグを立てる、または更新歪み補償値RCに特殊な値を設定するなど)に基づき更新が必要か否か判断する。不要な場合、ステップ112において、データバッファ32の最古のデータを指し示すポインタ(図示せず)の値を1単位進める。必要な場合、ステップ113において、振幅Yに対応する歪み補償値を更新歪み補償値(RCi,RCq)で更新し、対応する更新フラグをセットする。次に、判断ステップ115において、歪み補償値テーブル31の歪み補償値はすべて一度は更新したかどうかを判断する。すべて更新済みならば、前記の112に進み前述の動作を行う。
ステップ115において、更新していない歪み補償値がある場合、ステップ117において、更新カウンタ(図示せず)をインクリメントする。次に、判断ステップ119において、更新カウンタの値が所定の値に達したかどうか判断する。達していない場合、ステップ121において、データバッファ32の最古のデータの振幅値Xが最大値、即ち1であるかどうか判断する。1でない場合、前述のステップ112に進み、前述の処理を行う。1の場合、ステップ123において、すでに述べたように歪み補償値テーブル31において、振幅X欄が振幅Yより大きいレコードの歪み補償値を、少なくとも最後に更新した歪み補償値を基に得られる値で全て更新し、更新したレコードの更新フラグをセットする。ここでの更新は、段落番号15または16で説明した方法で行う。このステップ終了後は、上述のステップ112に進み上述の動作を行う。なお、判断ステップ119において、更新カウンタの値が所定の値に達した場合、ステップ125において、更新していない歪み補償値をすべて補完する。この場合、内挿できるものは内挿し、できないものは外挿する。その後、ステップ112に進み上述の動作を行って、更新処理を終了する。
【0018】
このようにして、比較的少ない更新回数で歪み補償値テーブル31の初期更新を行うことができる。参考までに、ステップ123の外挿を行わない場合、最大振幅Ymaxに対する更新歪み補償値で外挿した場合、比例計算で外挿した場合の入・出力特性を表すグラフを図7〜9に示す。図7〜9において、各グラフに描かれた5本の曲線A〜C及びD1、D2、D3は、次のとおりである。何れの場合も、横軸は正規化された入力信号レベルを示す。
A:電力増幅器14の入・出力特性を表す曲線
B:理想的な電力増幅器の入・出力特性を表す直線
C:電力増幅器と歪み補償回路の全体の特性を直線Bとするために歪み補償回路が持つべき入・出力特性を表す曲線
D1:歪み補償回路の歪み補償値テーブルを1回更新した後の歪み補償回路の入・出力特性を表す曲線
D2:歪み補償回路の歪み補償値テーブルを4回更新した後の歪み補償回路の入・出力特性を表す曲線
D3:歪み補償回路の歪み補償値テーブルを2回更新した後の歪み補償回路の入・出力特性を表す曲線
前段の説明から、曲線AとCは直線Bに関して対称な関係になることが分かる。
しかし、実際の個々の電力増幅器がどのような入・出力特性を持つかを常に正確に把握することはできないので、即ち曲線Aが不明なので、歪み補償値テーブルの初期値として、歪み補償回路の特性が直線Bとなるように設定する。これは、歪み補償回路が無補償の状態となることを意味する。
この状態で動作させると、曲線Aと直線Bとの差に相当する誤差が生じるので、この誤差に応じて、1回目の歪み補償値テーブルの更新が行われる。この時の歪み補償回路の入・出力特性がD1である。しかし、依然として理想的な補償特性である曲線Cとは一致していないので、誤差が生じる。この誤差に基づいて補償値の更新を4回繰り返した場合の、歪み補償回路の入・出力特性がD2である。
図7は、図6のステップ123の動作を行わないので、4回の更新の後も理想的な特性(曲線C)と離れている。これに対し、図8および9では、図7に比べて曲線Cへの近づき方が早くなっている。即ち、少ない更新回数で曲線Cに近づくことが分かる
なお、上述の実施の形態では、帰還信号Dnの振幅Yに対応する歪み補正値を更新したが、バッファ32の最古のデータに含まれる振幅値Xn(即ち、元の入力信号Snの振幅X)に対応する歪み補正値を更新するようにしてもよい。
以上は、本発明の説明のために実施の形態の例を掲げたに過ぎない。したがって、本発明の技術思想または原理に沿って上述の実施の形態に種々の変更、修正または追加を行うことは、当業者には容易である。故に、本発明は、以上述べた実施の形態に捕らわれることなく、ただ特許請求の範囲の記載に従って解釈するべきである。
【0019】
【発明の効果】
本発明によれば、帰還路の歪み補償部の手前に線形補償器を挿入することにより、帰還路で発生しうる振幅・位相の線形変動がほぼ除去されるので、これに起因する歪み補償値計算器の不要な更新値計算動作を避けることができる。
歪み補正値の更新値の計算に逆三角関数を用いないので、回路が簡単になり且つ動作時間も短縮できる。
また、歪み補償値テーブルにおいて、入力信号の最大振幅値(=1)に相当する帰還信号の振幅に対応する歪み補償値を更新した場合、少なくともその時の更新値に基ずく値で後続の歪み補償値をすべて外挿することにより、比較的少ない更新回数で歪み補償値テーブルを適切な値に近付けることができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態によるプリディストーション型非線形歪み補償器を備えたデジタル無線送信機の一部を示す略ブロック図である。
【図2】 図1の歪み補償制御部30の書き換え可能なメモリ(図示せず)に設けられるデータバッファのデータ構成例を示す図である。
【図3】 図1の歪み補償値計算器70が帰還信号Dnを受け取る度に行う動作の例を示すフローチャートである。
【図4】 図2のデータバッファに代わる更に好ましいバッファのデータ構成例を示す図である。
【図5】 本発明により歪み補償値テーブル31を更新するようすを示す図である。
【図6】 本発明の一実施例による歪み補償制御部30が歪み補償値テーブル31を更新する動作を表すフローチャートである。
【図7】 図6のステップ123に示した外挿を行わない場合の入・出力特性を示すグラフである。
【図8】 図6のステップ123において最大振幅Ymaxに対する更新歪み補償値で一律に外挿した場合の入・出力特性を示すグラフである。
【図9】 図6のステップ123において比例計算で外挿した場合の入・出力特性を示すグラフである。
【符号の説明】
1 本発明のデジタル無線送信機
11 D/A変換器
12 局部発振器
13 直交変調器
51 カプラ
15 アンテナ
20 振幅計算器
30 歪み補償制御部
31 歪み補償値テーブル
32 バッファ
40 歪み補償乗算器
53 減衰器
55 直交復調器
57 A/D変換器
60 線形補償器
70 歪み補償値計算器
80 振幅計算器
100 本発明のプリディストーション型非線形歪み補償器[0001]
BACKGROUND OF THE INVENTION
The present invention relates generally to digital transmitters, and more particularly to an apparatus for compensating for non-linear distortion generated in a power amplifier of a digital transmitter by predistortion.
[0002]
[Prior art]
In general, since an operating point close to a saturation point is set in order to improve power efficiency in a power amplifier, characteristics such as input amplitude / output amplitude nonlinearity (AM / AM) and input amplitude / output phase nonlinearity (AM / PM) are obtained. As a result, nonlinear distortion occurs. For this reason, in a digital transmitter or the like, based on the AM / AM characteristics and AM / PM characteristics of the power amplifier, a pair of in-phase component and quadrature component compensation values for each amplitude value of a possible input symbol is calculated in advance. Store in memory. Each input symbol is compensated with a pair of compensation values corresponding to its amplitude.
However, since the AM / AM characteristic and AM / PM characteristic of the power amplifier may change over time, the compensation value is calculated according to the error between the input symbol and the signal obtained from the output of the power amplifier. To make the distortion compensation operation adaptable. Such a distortion compensation circuit is generally called a predistortion type distortion compensation circuit.
[0003]
[Problems to be solved by the invention]
When the compensation value is updated, the phase of the baseband original signal or the baseband distortion compensation signal and the baseband demodulation signal is obtained, and the distortion compensation update value is obtained using the phase information. However, in the conventional method of updating the distortion compensation value as described above, the arctangent function θ = tan is used in order to obtain the phase θ of the signal (I, Q).-1(Q / I) must be used. A circuit that calculates an arc tangent function using an FPLA (Field Programmable Logic Array) has a problem that the circuit scale increases and the calculation time also increases.
Accordingly, an object of the present invention is to provide a distortion compensation value updating technique for calculating an updated distortion compensation value without using signal phase information, that is, without using an arctangent function calculation circuit.
A signal obtained from the output of the power amplifier for updating the compensation value is adjusted by an attenuator so as to cancel the gain and phase rotation in the power amplifier, and then input to the update portion of the distortion compensation unit. This input signal is temporarily called a “feedback signal”, and a path from the output of the power amplifier to the update portion is called a “feedback path”. However, if the amplitude and / or phase are not adjusted correctly in the attenuator and linear fluctuations in amplitude and / or phase are added to the feedback signal, an error occurs between the input signal and the input signal. Therefore, even if the distortion compensation value is appropriate and the distortion of the power amplifier is correctly compensated, the distortion compensation value is updated due to the error.
Accordingly, an object of the present invention is to provide a distortion compensation value updating technique that does not require updating of a distortion compensation value caused by a linear variation in amplitude and phase that occurs in a feedback path.
In the conventional predistortion type distortion compensation circuit, the distortion compensation value gradually approaches the correct one by repeatedly updating the compensation value. For this reason, since the distortion compensation effect is low while the number of updates is small, it is necessary to perform several updates to obtain a sufficient effect. As a document describing such a conventional means for updating a distortion compensation value, there is, for example, JP-A-5-30147.
It is a further object of the present invention to provide a distortion compensation value update technique capable of setting a distortion compensation value to a correct value with a relatively small number of updates.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, a predistortion type nonlinear distortion compensation circuit according to
Claim2The distortion compensation circuit described isA predistortion type non-linear distortion compensation circuit that is arranged in front of a circuit including an element having a distortion characteristic, and that gives a compensation signal obtained by distorting the input signal with a distortion compensation value corresponding to the amplitude of the input signal to the circuit. Table means for storing the amplitude of the input signal and the distortion compensation value corresponding to the amplitude, control means for controlling the compensation circuit, and distortion passed from the control means in response to reception of the input signal Compensation means for compensating for distortion of the input signal using a compensation value; feedback means for extracting a feedback signal from an output of a circuit including an element having the distortion characteristics and outputting a feedback signal comparable to the input signal; A new distortion compensation value for the feedback signal (hereinafter referred to as an updated distortion compensation value) based on the feedback signal, the input signal, and a distortion compensation value used for distortion compensation of the input signal. ) Using a calculation formula that does not include an inverse trigonometric function, and an update means included in the control means for updating the corresponding distortion compensation value of the table means with the updated distortion compensation value, The calculation formula assumes that the feedback means does not have a distortion characteristic, and assumes that the compensation characteristic matrix by the updated distortion compensation value is equal to the inverse matrix of the transfer matrix of the circuit including the element having the distortion characteristic. And derived from a relational expression representing the relation between the input signal and the feedback signal,The updating means updates the distortion compensation value corresponding to the amplitude value of the feedback signal in the table means as the corresponding distortion compensation value.
Claim3The distortion compensation circuit described isA predistortion type non-linear distortion compensation circuit that is arranged in front of a circuit including an element having a distortion characteristic, and that gives a compensation signal obtained by distorting the input signal with a distortion compensation value corresponding to the amplitude of the input signal to the circuit. Table means for storing the amplitude of the input signal and the distortion compensation value corresponding to the amplitude, control means for controlling the compensation circuit, and distortion passed from the control means in response to reception of the input signal Compensation means for compensating for distortion of the input signal using a compensation value; feedback means for extracting a feedback signal from an output of a circuit including an element having the distortion characteristics and outputting a feedback signal comparable to the input signal; A new distortion compensation value for the feedback signal (hereinafter referred to as an updated distortion compensation value) based on the feedback signal, the input signal, and a distortion compensation value used for distortion compensation of the input signal. ) Using a calculation formula that does not include an inverse trigonometric function, and an update means included in the control means for updating the corresponding distortion compensation value of the table means with the updated distortion compensation value, The calculation formula assumes that the feedback means does not have a distortion characteristic, and assumes that the compensation characteristic matrix by the updated distortion compensation value is equal to the inverse matrix of the transfer matrix of the circuit including the element having the distortion characteristic. And derived from a relational expression representing the relation between the input signal and the feedback signal,The updating means updates the distortion compensation value corresponding to the amplitude value of the input signal in the table means as the corresponding distortion compensation value.
[0005]
Claim4The predistortion type nonlinear distortion compensation circuit described isA predistortion type non-linear distortion compensation circuit that is arranged in front of a circuit including an element having a distortion characteristic, and that gives a compensation signal obtained by distorting the input signal with a distortion compensation value corresponding to the amplitude of the input signal to the circuit. Table means for storing the amplitude of the input signal and the distortion compensation value corresponding to the amplitude, control means for controlling the compensation circuit, and distortion passed from the control means in response to reception of the input signal Compensation means for compensating for distortion of the input signal using a compensation value; feedback means for extracting a feedback signal from an output of a circuit including an element having the distortion characteristics and outputting a feedback signal comparable to the input signal; A new distortion compensation value for the feedback signal (hereinafter referred to as an updated distortion compensation value) based on the feedback signal, the input signal, and a distortion compensation value used for distortion compensation of the input signal. ) Using a calculation formula that does not include an inverse trigonometric function, and an update means included in the control means for updating the corresponding distortion compensation value of the table means with the updated distortion compensation value, The calculation formula assumes that the feedback means does not have a distortion characteristic, and assumes that the compensation characteristic matrix by the updated distortion compensation value is equal to the inverse matrix of the transfer matrix of the circuit including the element having the distortion characteristic. And derived from a relational expression representing the relation between the input signal and the feedback signal,The feedback means is characterized in that means for compensating for fluctuations in amplitude and phase generated in a path after the feedback signal is taken out is provided at the output terminal of the feedback means.
[0006]
Claim5The predistortion type non-linear distortion compensation circuit according to any one of
Claim6The distortion compensation circuit according to claim5In the distortion compensation circuit described above, when the amplitude value of the original input signal of the feedback signal is the maximum value among the predicted input signals, the control unit is configured to output the feedback signal in the table unit. Extrapolation updating means for extrapolating all distortion compensation values corresponding to amplitude values larger than the amplitude value based on already updated distortion compensation values including the updated distortion compensation value is included instead of the same value updating means. It is characterized by that.
Claim7The distortion compensation circuit according to claim6In the distortion compensation circuit described above, the extrapolation updating means extrapolates by proportional calculation using the updated distortion compensation value and the distortion compensation value spatially closest thereto.
Claim8The distortion compensation circuit according to claim5Thru7In any one of the distortion compensation circuits described above, when the number of updates reaches a predetermined number, the control means complements all the distortion compensation values not updated in the table means based on the updated distortion compensation values. Means.
[0007]
Claim9The digital transmitter described is a digital transmitter including a power amplifier having nonlinear distortion characteristics and distortion compensation means for compensating for nonlinear distortion caused by the power amplifier. Table means for storing corresponding distortion compensation values in association with each other, control means for controlling the distortion compensation means, and the input signal using the distortion compensation value passed from the control means in response to reception of the input signal Predistortion means, feedback means for extracting a feedback signal from the output of the power amplifier and outputting a feedback signal comparable to the input signal, distortion compensation for the feedback signal, the input signal, and the input signal Based on the distortion compensation value used, a new distortion compensation value for the feedback signal (hereinafter referred to as an updated distortion compensation value) is calculated using a calculation formula that does not include an inverse trigonometric function. Calculating means for updating, and updating means included in the control means for updating a corresponding distortion compensation value in the table means with the updated distortion compensation value, wherein the feedback means has a distortion characteristic. A power amplifier that has a nonlinear distortion characteristic in which the compensation characteristic matrix based on the updated distortion compensation value is assumed to have no nonlinear distortion characteristicThe legend ofIt is derived from the relational expression representing the relationship between the input signal and the feedback signal, assuming that it is equal to the inverse of the arrival matrix.,in frontThe calculation means includes means for obtaining an error between the input signal and the feedback signal prior to the calculation, and notifying the control means when the error is within an allowable range, and notifying the control means of the fact. It is characterized by.
Claim10The digital transmitter described isA digital transmitter comprising a power amplifier having nonlinear distortion characteristics and distortion compensation means for compensating for the nonlinear distortion caused by the power amplifier, wherein the distortion compensation means calculates an amplitude of a predicted input signal and a distortion compensation value corresponding thereto. Table means for storing in association; control means for controlling the distortion compensation means; means for predistorting the input signal using a distortion compensation value passed from the control means in response to reception of the input signal; A feedback means for extracting a feedback signal from the output of the power amplifier and outputting a feedback signal comparable to the input signal; and the distortion compensation value used for distortion compensation of the feedback signal, the input signal, and the input signal. A calculation means for calculating a new distortion compensation value (hereinafter referred to as an updated distortion compensation value) for the feedback signal using a calculation formula not including an inverse trigonometric function; Update means included in the control means for updating the corresponding distortion compensation value with the updated distortion compensation value in the control means, and the calculation formula assumes that the feedback means does not have distortion characteristics. Assuming that the compensation characteristic matrix by the updated distortion compensation value is equal to the inverse matrix of the transfer matrix of the power amplifier having the nonlinear distortion characteristic, it is derived from the relational expression representing the relation between the input signal and the feedback signal. ,When the amplitude value of the original input signal of the feedback signal is the maximum value among the predicted input signals, the control means sets the amplitude value to be larger than the amplitude value of the feedback signal in the table means. It includes the same value updating means for updating all the corresponding distortion compensation values with the updated distortion compensation value.
Claim11The described digital transmitter is claimed.9 or 10In the digital transmitter described above, the feedback means includes, on an output end, means for compensating for fluctuations in amplitude and phase generated in a path after the feedback signal is extracted, so that the feedback means It is characterized by avoiding an unnecessary distortion compensation value update operation caused by fluctuations in amplitude and phase.
Claim12The described digital transmitter is claimed.10In the digital transmitter according to
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments of the present invention and the accompanying drawings.
In addition, when showing the same element in several drawing, the same referential mark is attached | subjected.
FIG. 1 is a schematic block diagram illustrating a part of a digital radio transmitter including a predistortion type nonlinear distortion compensator according to an embodiment of the present invention. In FIG. 1, it is assumed that information sources (not shown) for supplying information symbols to be transmitted are connected to the input ends Ti and Tq of the
A
[0009]
The distortion
Further, the distortion
However, n <m. The latest data in the buffer 32 (in this example, Sm-1And Cm-1) And the addresses of the oldest data (Sn and Cn) are managed by dedicated pointers. In this case, the signal to be input is Sm. Further, as will be described later, the signal that the
[0010]
In an actual transmission operation, if an input signal in a baseband at a certain time point n is a column vector Sn = {Sni, Snq} (n is a natural number attached to an input symbol and increases with time), the
[Expression 1]
(In the following description, {A, B} represents a column vector having A and B as elements.)
The distortion
[Expression 2]
At this time, the distortion
Thereafter, the signal Ln is processed in a known manner by the D /
The gain / phase shift in the
[Equation 3]
On the other hand, the signal taken out by the coupler 51 provided at the output of the
[Expression 4]
If the output of the input signal Sn from the A /
[Equation 5]
It becomes.
[0011]
* Compensation operation of
For such a feedback signal Dn ′, the
[Formula 6]
Therefore, the inverse matrix Δ of the amplitude and phase variation of the feedback path-1Is multiplied by Dn ′, amplitude and phase fluctuations can be corrected. Where the inverse matrix is
[Expression 7]
Can be obtained. here,
[Equation 8]
It is. And the signal Dn = {Dni, Dnq} subjected to amplitude / phase correction is
[Equation 9]
Can be calculated. Accordingly, the
As described above, according to the present invention, the
Note that when the input signal C · Sn of the
[0012]
* Update of distortion compensation value
FIG. 3 is a flowchart showing an example of an operation performed each time the distortion
Hereinafter, a method for calculating the update value (RCi, RCq) of the distortion compensation value according to the present invention will be described.
[0013]
First, the update value matrix RC is defined by the following equation.
[Expression 10]
Here, if the amplitude and phase fluctuations generated in the feedback path are sufficiently compensated by the linear compensation function of the
Dn = P · C · Sn (6)
Can be written.
When the error e is not 0, Sn ≠ Dn and C ≠ P-1So (number10) Update value matrix is RC = P-1Update values (RCi, RCq) are calculated so that
In other words, according to the present invention, it is assumed that the transfer matrix RC with the updated distortion compensation values (RCi, RCq) is equal to the inverse matrix of the transfer matrix of the
Here, if P · C = R,
## EQU11 ##
Where RC = P-1given that,
It becomes. In order to obtain R, when Expression (6) is expressed using a matrix R,
It becomes. Matrix R
[Expression 12]
Equation (8) can be expressed as follows.
[Formula 13]
By solving the binary simultaneous equations obtained from Equation (9) for Ri and Rq, the matrix R is expressed as follows.
[Expression 14]
Therefore, the update value (RCi, RCq) is calculated from the equations (7) and (10) as follows.
[Expression 15]
... (11)
In Equation (11), Si and Sq, Di and Dq are the nth input signal Sn and the feedback (or demodulated) signal of this Sn, and the subscript n is omitted.
As described above, the update value (RC1, RCq) of the distortion compensation value can be obtained from the baseband input signal (Sni, Snq), the baseband demodulation signal (Dni, Dnq), and the distortion compensation value (Ci, Cq). .
[0014]
As can be seen from equation (11), according to the
At this time, the amplitude corresponding to the update distortion compensation value (RCi, RCq) is set to the amplitude Y of the feedback signal Dn = (Dni2 + Dnq2) 1/2. Therefore, the distortion
In this way, an adaptive operation can be performed by updating the distortion compensation value table 31 as necessary. However, it takes some time until the distortion compensation value table 31 is set to an appropriate value after the operation starts. During this time, distortion compensation may not be performed properly. Therefore, the distortion
[0015]
FIG. 5 is a diagram showing how the distortion compensation value table 31 is updated. As shown in the figure, when comparing the amplitude X of the original signal and the amplitude Y of the feedback signal, Y may be smaller due to distortion of the power amplifier. Under such circumstances, when the amplitude value X is the maximum value Xmax (= 1), if the amplitude value Y at this time is Ymax, since Ymax is smaller than Xmax, the amplitude column of the distortion compensation value table 31 (that is, The distortion compensation value of the record whose X field) is larger than Ymax cannot be updated.
Therefore, as shown in FIG. 5 (b), when the amplitude X of the signal Sn is equal to Xmax, that is, 1 (when only the amplitude Y is observed, it is not known whether Y is the maximum value), the amplitude Y Is updated with updated distortion compensation values (I4 and Q4 in the example in the figure), and the distortion compensation value of the record whose amplitude X column is larger than Y is at least the distortion compensation value updated last (FIG. 5). In the example of (b), all the values obtained based on (I4, Q4)) are updated.
The simplest method for updating a record whose amplitude column is larger than Y is, for example, a method of replacing a subsequent distortion compensation value with an update value for amplitude Y ((I4, Q4 in the example in the figure)).
In general, when there are quantities y that are correlated with the variable x (but cannot be easily expressed as a function of x), the quantities y1 and y2 for x1 and x2 (x1 <x2) are known Obtaining y for a value X such that x1 <X <x2 based on the value of is one of interpolation methods known as interpolation. Extending this and obtaining a value of y corresponding to a value X such that X <x1 <x2 or x1 <x2 <X is referred to as extrapolation.
Therefore, the distortion compensation value of the record whose amplitude X column is larger than Y may be extrapolated using the updated value updated so far. Various extrapolation methods are known, but the simplest is the update value for the amplitude Y ((I4, Q4) in the example in the figure) and the update value closest to this ((I2, Q2) in the example in the figure) Is to perform a proportional calculation using.
[0016]
In the case of proportional calculation, generally, the value of Y corresponding to Xmax is Ymax, the update value for Ymax is (Imax, Qmax), and the subsequent update value is (Imax + j, Qmax + j) (where j = 1, 2,...). , Ymax is an update value spatially closest to (Ima, Qma), and a gap between them is a D record.
Imax + j = Imax + j · (Imax−Ima) / D
Qmax + j = Qmax + j · (Qmax−Qma) / D
Is established. When this is applied to FIG.
Imax + j = I4 + j · (I4-I2) / 2
Qmax + j = Q4 + j · (Q4-Q2) / 2
It becomes. However, j = 1, 2, and 3.
In addition, there may be a case where a compensation value that has not been updated remains even if the number of updates is repeated to some extent. For this reason, when the number of updates reaches a predetermined number (for example, 10 times), a distortion compensation value that has never been updated is updated by interpolation. For this reason, it is preferable to provide an update flag field indicating whether or not updated in the distortion compensation value table 31 in addition to the distortion compensation value so that it can be determined whether or not it has been updated.
An operation of the distortion
Prior to the description of the operation, the
[0017]
FIG. 6 is a flowchart showing an operation of updating the distortion compensation value table 31 by the distortion
If there is a distortion compensation value that has not been updated in
[0018]
Thus, the initial update of the distortion compensation value table 31 can be performed with a relatively small number of updates. For reference, FIGS. 7 to 9 are graphs showing input / output characteristics when the extrapolation at
A: Curve representing input / output characteristics of the
B: A straight line representing the input / output characteristics of an ideal power amplifier
C: a curve representing the input / output characteristics that the distortion compensation circuit should have in order to make the entire characteristic of the power amplifier and the distortion compensation circuit a straight line B
D1: Curve representing the input / output characteristics of the distortion compensation circuit after updating the distortion compensation value table of the distortion compensation circuit once
D2: a curve representing the input / output characteristics of the distortion compensation circuit after the distortion compensation value table of the distortion compensation circuit has been updated four times
D3: a curve representing the input / output characteristics of the distortion compensation circuit after updating the distortion compensation value table of the distortion compensation circuit twice
From the explanation of the previous stage, it can be seen that the curves A and C are symmetrical with respect to the straight line B.
However, since it is not always possible to accurately grasp what input / output characteristics each actual power amplifier has, that is, since the curve A is unknown, the initial value of the distortion compensation value table is used as the initial value of the distortion compensation circuit. The characteristic is set to be a straight line B. This is because the distortion compensation circuitUncompensatedIt means that it becomes the state of.
When operated in this state, an error corresponding to the difference between the curve A and the straight line B occurs, and the first distortion compensation value table is updated according to this error. The input / output characteristic of the distortion compensation circuit at this time is D1. However, since it still does not match the curve C, which is an ideal compensation characteristic, an error occurs. The input / output characteristic of the distortion compensation circuit when the update of the compensation value is repeated four times based on this error is D2.
Since FIG. 7 does not perform the operation of
In the above-described embodiment, the distortion correction value corresponding to the amplitude Y of the feedback signal Dn is updated. However, the amplitude value Xn (that is, the amplitude X of the original input signal Sn) included in the oldest data in the
The above is merely an example of an embodiment for explaining the present invention. Accordingly, it is easy for those skilled in the art to make various changes, modifications, or additions to the above-described embodiments in accordance with the technical idea or principle of the present invention. Therefore, the present invention should not be construed as the embodiments described above, but should be construed according to the description of the claims.
[0019]
【The invention's effect】
According to the present invention, by inserting a linear compensator in front of the distortion compensation unit in the feedback path, linear variations in amplitude and phase that can occur in the feedback path are almost eliminated. An unnecessary update value calculation operation of the calculator can be avoided.
Since the inverse trigonometric function is not used to calculate the update value of the distortion correction value, the circuit becomes simple and the operation time can be shortened.
Further, in the distortion compensation value table, when the distortion compensation value corresponding to the amplitude of the feedback signal corresponding to the maximum amplitude value (= 1) of the input signal is updated, the subsequent distortion compensation is performed with a value based on the updated value at that time. By extrapolating all the values, the distortion compensation value table can be brought close to an appropriate value with a relatively small number of updates.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram illustrating a part of a digital radio transmitter including a predistortion type nonlinear distortion compensator according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a data configuration example of a data buffer provided in a rewritable memory (not shown) of the distortion
FIG. 3 is a flowchart showing an example of an operation performed each time the distortion
FIG. 4 is a diagram showing an example of a data structure of a more preferable buffer instead of the data buffer of FIG. 2;
FIG. 5 is a diagram showing how a distortion compensation value table 31 is updated according to the present invention.
FIG. 6 is a flowchart illustrating an operation in which the distortion
7 is a graph showing input / output characteristics when the extrapolation shown in
8 is a graph showing input / output characteristics when the extrapolated distortion compensation value for the maximum amplitude Ymax is uniformly extrapolated in
9 is a graph showing input / output characteristics when extrapolated by proportional calculation in
[Explanation of symbols]
1 Digital wireless transmitter of the present invention
11 D / A converter
12 Local oscillator
13 Quadrature modulator
51 Coupler
15 Antenna
20 Amplitude calculator
30 Distortion compensation controller
31 Distortion compensation value table
32 buffers
40 Distortion compensation multiplier
53 Attenuator
55 Quadrature demodulator
57 A / D converter
60 linear compensator
70 Distortion compensation value calculator
80 Amplitude calculator
100 Predistortion type nonlinear distortion compensator of the present invention
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000101436A JP4555429B2 (en) | 2000-04-03 | 2000-04-03 | Predistortion type nonlinear distortion compensation circuit and digital transmitter using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000101436A JP4555429B2 (en) | 2000-04-03 | 2000-04-03 | Predistortion type nonlinear distortion compensation circuit and digital transmitter using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001284980A JP2001284980A (en) | 2001-10-12 |
JP4555429B2 true JP4555429B2 (en) | 2010-09-29 |
Family
ID=18615486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000101436A Expired - Lifetime JP4555429B2 (en) | 2000-04-03 | 2000-04-03 | Predistortion type nonlinear distortion compensation circuit and digital transmitter using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4555429B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100417413B1 (en) * | 2001-10-31 | 2004-02-05 | 엘지전자 주식회사 | Digital linear apparatus |
KR100429981B1 (en) * | 2001-12-26 | 2004-05-03 | 엘지전자 주식회사 | Aqm error compensation apparatus and method |
JP3707549B2 (en) | 2002-03-22 | 2005-10-19 | 日本電気株式会社 | Transmitter |
DE60238508D1 (en) | 2002-05-31 | 2011-01-13 | Fujitsu Ltd | DISTORTION COMPENSATION DEVICE |
JP2006270638A (en) * | 2005-03-24 | 2006-10-05 | Shimada Phys & Chem Ind Co Ltd | Nonlinear distortion compensation apparatus |
WO2009096040A1 (en) * | 2008-01-30 | 2009-08-06 | Fujitsu Limited | Distortion compensation device |
JP4973532B2 (en) * | 2008-02-12 | 2012-07-11 | 住友電気工業株式会社 | Amplifier circuit, wireless communication apparatus and computer program having the same |
JP5234279B2 (en) * | 2008-12-27 | 2013-07-10 | 住友電気工業株式会社 | Distortion compensation circuit and radio base station |
CN102265508B (en) | 2008-12-27 | 2014-04-16 | 住友电气工业株式会社 | Distortion compensating circuit and radio base station |
US8737523B2 (en) * | 2009-06-04 | 2014-05-27 | Xilinx, Inc. | Apparatus and method for predictive over-drive detection |
JP5497552B2 (en) * | 2010-06-28 | 2014-05-21 | 京セラ株式会社 | Communication apparatus and distortion correction method |
US8837633B2 (en) | 2011-10-21 | 2014-09-16 | Xilinx, Inc. | Systems and methods for digital processing based on active signal channels of a communication system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63232530A (en) * | 1987-03-19 | 1988-09-28 | Fujitsu Ltd | Amplification distortion compensating and controlling system |
JPH06268703A (en) * | 1993-03-16 | 1994-09-22 | Mitsubishi Electric Corp | Device and method for modulation |
JPH0969733A (en) * | 1995-08-31 | 1997-03-11 | Fujitsu Ltd | Amplifier having distortion compensation function |
JPH11136302A (en) * | 1997-10-29 | 1999-05-21 | Fujitsu Ltd | Distortion compensation circuit |
JP2001057578A (en) * | 1999-08-17 | 2001-02-27 | Matsushita Electric Ind Co Ltd | Linear compensation circuit |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61214843A (en) * | 1985-03-20 | 1986-09-24 | Nec Corp | Modulator |
JPH03270306A (en) * | 1990-03-20 | 1991-12-02 | Fujitsu Ltd | Cartesian feedback type nonlinear distortion compensator |
JP3145015B2 (en) * | 1995-09-01 | 2001-03-12 | 富士通テン株式会社 | Transmission device |
JP3378424B2 (en) * | 1996-02-21 | 2003-02-17 | 富士通株式会社 | Wireless device |
FR2752313B1 (en) * | 1996-08-07 | 1998-11-13 | Alcatel Telspace | METHOD AND DEVICE FOR MODELING THE AM / AM AND AM / PM CHARACTERISTICS OF AN AMPLIFIER, AND CORRESPONDING PREDISTORSION METHOD |
JPH10136048A (en) * | 1996-10-29 | 1998-05-22 | Hitachi Denshi Ltd | Negative feedback amplifier |
-
2000
- 2000-04-03 JP JP2000101436A patent/JP4555429B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63232530A (en) * | 1987-03-19 | 1988-09-28 | Fujitsu Ltd | Amplification distortion compensating and controlling system |
JPH06268703A (en) * | 1993-03-16 | 1994-09-22 | Mitsubishi Electric Corp | Device and method for modulation |
JPH0969733A (en) * | 1995-08-31 | 1997-03-11 | Fujitsu Ltd | Amplifier having distortion compensation function |
JPH11136302A (en) * | 1997-10-29 | 1999-05-21 | Fujitsu Ltd | Distortion compensation circuit |
JP2001057578A (en) * | 1999-08-17 | 2001-02-27 | Matsushita Electric Ind Co Ltd | Linear compensation circuit |
Also Published As
Publication number | Publication date |
---|---|
JP2001284980A (en) | 2001-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11159129B2 (en) | Power amplifier time-delay invariant predistortion methods and apparatus | |
US7349490B2 (en) | Additive digital predistortion system employing parallel path coordinate conversion | |
Cavers | The effect of quadrature modulator and demodulator errors on adaptive digital predistorters for amplifier linearization | |
JP4555429B2 (en) | Predistortion type nonlinear distortion compensation circuit and digital transmitter using the same | |
US5923712A (en) | Method and apparatus for linear transmission by direct inverse modeling | |
JP3076592B2 (en) | Predistortion device for digital transmission system | |
JP3076593B2 (en) | Predistortion device for digital transmission system | |
TWI430562B (en) | Transmitter, method for lowering signal distortion, and method for generating predistortion parameters used to lower signal distortion | |
US20130177105A1 (en) | Method and system for estimating and compensating non-linear distortion in a transmitter using calibration | |
WO2003103167A1 (en) | Table reference predistortor | |
CN103856428A (en) | Transmitter with pre-distortion module and operation method thereof | |
JP2001111438A (en) | Transmitter and distortion compensation method to be used for the transmitter | |
JP2002135349A (en) | Pre-distortion type distortion compensation circuit | |
JP2004254175A (en) | Nonlinear distortion compensatory circuit, nonlinear distortion compensating method, and transmitting circuit | |
CN103997301B (en) | The pre-distortion method and device of power amplifier time-delay invariant | |
US9548703B2 (en) | Distortion compensation apparatus, transmission apparatus, and distortion compensation method | |
US20060109930A1 (en) | Method and device for deriving a predistorted signal | |
JP2004165900A (en) | Communication device | |
JP3867583B2 (en) | Nonlinear distortion compensation apparatus, method and program thereof | |
WO2007036990A1 (en) | Distortion compensating device | |
JP2004048502A (en) | Variable gain circuit and distortion compensating device | |
CN116455709A (en) | Digital predistortion method, device, electronic equipment and storage medium | |
KR100581078B1 (en) | Fast Look Up TableLUT Predistorting Apparatus and Method Thereof | |
JPWO2019234925A1 (en) | Distortion compensation circuit and wireless transmitter | |
JP2009200654A (en) | Distortion compensation circuit, transmitter, communication system, and distortion compensation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20051003 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090915 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100622 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100716 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4555429 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |