[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4555366B2 - Gas supply valve and parts transfer device - Google Patents

Gas supply valve and parts transfer device Download PDF

Info

Publication number
JP4555366B2
JP4555366B2 JP2008155345A JP2008155345A JP4555366B2 JP 4555366 B2 JP4555366 B2 JP 4555366B2 JP 2008155345 A JP2008155345 A JP 2008155345A JP 2008155345 A JP2008155345 A JP 2008155345A JP 4555366 B2 JP4555366 B2 JP 4555366B2
Authority
JP
Japan
Prior art keywords
valve
gas
opening
gas supply
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008155345A
Other languages
Japanese (ja)
Other versions
JP2009299799A (en
Inventor
順一 原
祐二 神戸
和紀 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Co Ltd
Original Assignee
Daiichi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Co Ltd filed Critical Daiichi Co Ltd
Priority to JP2008155345A priority Critical patent/JP4555366B2/en
Priority to KR1020090041556A priority patent/KR20090129941A/en
Priority to CNA2009101453258A priority patent/CN101603611A/en
Priority to SG200903923-1A priority patent/SG158028A1/en
Priority to TW098119672A priority patent/TW201009225A/en
Publication of JP2009299799A publication Critical patent/JP2009299799A/en
Application granted granted Critical
Publication of JP4555366B2 publication Critical patent/JP4555366B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/363Sorting apparatus characterised by the means used for distribution by means of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/54Arrangements for modifying the way in which the rate of flow varies during the actuation of the valve

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Sorting Of Articles (AREA)

Description

本発明は気体供給弁及び部品搬送装置に係り、特に、搬送部品の選別を行うための気体の吹き付けを選択的に行うために気体の供給状態を制御する場合に好適な気体供給弁の構造に関する。   The present invention relates to a gas supply valve and a component conveying device, and more particularly, to a structure of a gas supply valve suitable for controlling a gas supply state in order to selectively blow a gas for selecting a conveying component. .

一般に、パーツフィーダなどの部品搬送装置(部品供給装置)では、多数の部品を高速かつ制御された姿勢で搬送することが要求されるが、このような部品搬送装置においては、構造上の不良部品や正規の姿勢でない部品を部品搬送路上から排除するために、或いは、正規の姿勢でない部品を正規の姿勢に変換するために、部品搬送路上の部品に選択的に気体を吹き付けることが行われている。   In general, a parts transporting device (part feeding device) such as a parts feeder requires a large number of parts to be transported at a high speed and in a controlled posture. In order to eliminate parts that are not in a normal posture or parts that are not in a normal posture, or in order to convert a part that is not in a normal posture into a normal posture, gas is selectively blown onto the parts on the part conveyance path. Yes.

上記のような部品搬送装置における部品選別部に気体を供給する場合には、気体の供給・停止を行うために高速に動作する気体供給弁が必要とされるため、たとえば、弁体を圧電アクチュエータで駆動するように構成した弁構造が提案されている(例えば、以下の特許文献1参照)。
特開2003−10790号公報
When supplying gas to the component sorting unit in the component conveying apparatus as described above, a gas supply valve that operates at high speed is required to supply and stop the gas. Has been proposed (see, for example, Patent Document 1 below).
JP 2003-10790 A

しかしながら、前述の圧電アクチュエータで駆動される気体供給弁においては、部品搬送路上に迅速に気体を供給しようとすると弁の入口9から弁体の開閉部分を介して弁の出口10へ高速に気流を流す必要があるため、圧電アクチュエータの動作ストロークや弁の内部空間を大きくして流通断面積を確保するか、或いは、気体の供給側圧力を高くして弁の内部空間を通過する気流の高速化を図る必要がある。ところが、圧電アクチュエータの動作ストロークや弁の内部空間の断面積を大きくすると弁構造自体が大型化し、また、供給側圧力を増大させると弁の内部空間(弁の開放時における導入開口と導出開口の間の空間)に負圧が発生して圧電アクチュエータの駆動負荷が大きくなるため、いずれにしても気体供給弁の大型化と消費電力の増大を招くとともに、弁の内部空間の残圧によって部品搬送路上における気流吹き付けの開始及び停止に遅れが生じやすくなるという問題点がある。   However, in the gas supply valve driven by the piezoelectric actuator described above, if an attempt is made to quickly supply gas onto the component conveyance path, an air flow is generated at high speed from the valve inlet 9 to the valve outlet 10 through the opening / closing portion of the valve body. Since it is necessary to flow, the operation stroke of the piezoelectric actuator and the internal space of the valve are increased to ensure the flow cross-sectional area, or the gas supply side pressure is increased to increase the speed of the airflow passing through the internal space of the valve It is necessary to plan. However, when the operating stroke of the piezoelectric actuator and the cross-sectional area of the internal space of the valve are increased, the valve structure itself increases in size, and when the supply side pressure is increased, the internal space of the valve (the introduction opening and the outlet opening when the valve is opened) is increased. Since the negative pressure is generated in the space between the actuators and the driving load of the piezoelectric actuator increases, in any case, the gas supply valve increases in size and power consumption. There is a problem that a delay tends to occur in the start and stop of the airflow spray on the road.

そこで、本発明は上記問題点を解決するものであり、その課題は、気体供給弁の小型化を図るとともに、気流吹き付けの開始タイミングの遅れを低減することにある。   Therefore, the present invention solves the above-mentioned problems, and the problem is to reduce the delay in the start timing of airflow blowing while reducing the size of the gas supply valve.

斯かる実情に鑑み、本発明の気体供給弁は、気体を導入する気体導入路と、該気体導入路の導入開口が内部に臨む弁シリンダと、該弁シリンダの内部において前記導入開口を開閉可能に構成する閉塞部を備えた弁体と、前記弁シリンダの内部に臨む導出開口を備えた気体導出路と、前記弁体を駆動して前記導入開口の開閉動作を行う圧電アクチュエータと、を具備する気体供給弁において、弁の開放時において前記導入開口と前記導出開口の間の内部空間を外部に連通させる通気経路が前記気体導入路及び前記気体導出路とは別に設けられることを特徴とする。   In view of such circumstances, the gas supply valve of the present invention includes a gas introduction path for introducing gas, a valve cylinder in which the introduction opening of the gas introduction path faces, and the introduction opening can be opened and closed inside the valve cylinder. A valve body having a closing portion configured in the above, a gas lead-out path having a lead-out opening facing the inside of the valve cylinder, and a piezoelectric actuator that drives the valve body to open and close the introduction opening. In the gas supply valve, a ventilation path that communicates the internal space between the introduction opening and the outlet opening to the outside when the valve is opened is provided separately from the gas introduction path and the gas outlet path. .

この発明によれば、弁の開放時において内部空間が通気経路を介して外部と連通するので、圧電アクチュエータの動作ストロークが小さくても、或いは、内部空間を通過する気流の速度が高くても、弁の内部空間における負圧の発生が抑制されて圧電アクチュエータの駆動負荷を低減できるため、気体供給弁の大型化や消費電力の増大を回避できるとともに、内部空間における通気抵抗が低減されるため、弁の開放時において供給先における気体供給の開始の遅れを低減することができる。また、気体供給弁を用いて部品搬送装置の部品選別部に気流を供給する場合には、弁の小型化により気流を吹き付ける部品選別部の近くに配置することが可能になるため、気流の吹き付けの開始及び停止の遅れを低減することができる。   According to this invention, when the valve is opened, the internal space communicates with the outside through the ventilation path, so even if the operation stroke of the piezoelectric actuator is small or the velocity of the airflow passing through the internal space is high, Since the generation of negative pressure in the internal space of the valve is suppressed and the driving load of the piezoelectric actuator can be reduced, it is possible to avoid an increase in the size of the gas supply valve and an increase in power consumption, and the ventilation resistance in the internal space is reduced. When the valve is opened, the delay in starting the gas supply at the supply destination can be reduced. In addition, when supplying airflow to the component sorting unit of the component transport device using a gas supply valve, it is possible to arrange the airflow near the component sorting unit that blows the airflow by downsizing the valve. The delay in starting and stopping can be reduced.

本発明の一の態様においては、前記通気経路は弁の開閉状態に拘わらず前記内部空間を外部に連通させる。これによれば、通気経路が弁の開閉状態に拘わらず内部空間を外部に連通させることで、弁の閉鎖時において内部空間の残圧が通気経路を介して外部へ逃げるため、供給先における気体供給の停止の遅れを低減することができる。   In one aspect of the present invention, the ventilation path allows the internal space to communicate with the outside regardless of whether the valve is open or closed. According to this, since the internal space communicates with the outside regardless of the open / closed state of the valve, the residual pressure in the internal space escapes to the outside through the vent path when the valve is closed. It is possible to reduce the delay in the supply stop.

本発明の他の態様においては、前記弁シリンダ内においては、前記導入開口に向けて前記弁シリンダの周囲内面との間に間隔を有する態様で前記閉塞部が突出し、前記通気経路は前記間隔内に開口している。これによれば、弁体の閉塞部が弁シリンダの周囲内面の少なくとも一部との間に間隔を有して導入開口に向けて突出し、この間隔内に前記通気経路が開口することで、弁の開放時において上記間隔が内部空間に連通するので、導入開口と閉塞部の間の隙間が小さくても内部空間の容積が実質的に拡大されるとともに上記間隔を介して通気経路から外気が導入されるので、内部空間に発生する負圧が通気経路によって効果的に抑制される。また、上記間隔内に通気経路が開口することで、閉塞部の側から外気が内部空間へ向けて導入されるので、上記負圧に起因して弁体に加わる吸引力の軽減効果を高めることができる。したがって、圧電アクチュエータの動作ストロークが小さくても駆動負荷をさらに低減することができ、気体供給弁の大型化や消費電力の増大を容易に回避できる In another aspect of the present invention, in the valve cylinder, the closing portion protrudes in a form having a space from the inner peripheral surface of the valve cylinder toward the introduction opening, and the ventilation path is within the space. Is open. According to this, the closed portion of the valve body protrudes toward the introduction opening with a gap between at least a part of the inner peripheral surface of the valve cylinder, and the vent path opens within this gap, thereby Since the interval communicates with the internal space when the air gap is opened, the volume of the internal space is substantially enlarged even when the gap between the introduction opening and the closed portion is small, and outside air is introduced from the ventilation path via the interval. Therefore, the negative pressure generated in the internal space is effectively suppressed by the ventilation path. Moreover, since the outside air is introduced from the closed portion side toward the internal space by opening the ventilation path within the interval, the effect of reducing the suction force applied to the valve body due to the negative pressure is enhanced. Can do. Therefore, even if the operation stroke of the piezoelectric actuator is small, the driving load can be further reduced, and the enlargement of the gas supply valve and the increase in power consumption can be easily avoided .

この場合に、前記導入開口を先端に備えた気体導入部が前記弁シリンダの周囲内面との間に間隔を有する態様で前記弁体に向けて突出するとともに、前記気体導入部の先端が先細状に構成されることが好ましい。これによれば、気体導入部と閉塞部の対向面積を小さくすることができることから内部空間における負圧の発生が抑制されるため、圧電アクチュエータの動作ストロークが小さくても駆動負荷をさらに低減することができる。したがって、気体供給弁の大型化や消費電力の増大をさらに容易に回避できる。   In this case, the gas introduction part provided with the introduction opening at the tip protrudes toward the valve body in a mode having a space between the valve cylinder and the inner peripheral surface, and the tip of the gas introduction part is tapered. Preferably it is comprised. According to this, since the opposing area between the gas introduction part and the closing part can be reduced, the generation of negative pressure in the internal space is suppressed, so that the driving load can be further reduced even if the operation stroke of the piezoelectric actuator is small. Can do. Therefore, an increase in the size of the gas supply valve and an increase in power consumption can be avoided more easily.

本発明の別の態様においては、前記導出開口の前記内部空間に対する開口位置は、前記導入開口の開口位置に対し前記閉塞部の移動方向と直交する方向に配置される。これによれば、導出開口の内部空間に対する開口位置が導入開口の開口位置に対し閉塞部の移動方向と直交する方向に配置されるので、弁の開放時における導入開口に対する閉塞部の移動ストロークが小さくても、導入開口から導出開口まで閉塞部等に遮られることなく直接に気体が流通できるようになるので、通気抵抗が低減され、気体の供給速度を高めることができる。 In another aspect of the present invention, an opening position relative to the inner space of the derived opening, compared open position of the inlet opening Ru is arranged in the direction perpendicular to the moving direction of the occlusion. According to this, since the opening position of the lead-out opening with respect to the internal space is arranged in a direction orthogonal to the moving direction of the closing portion with respect to the opening position of the introducing opening, the movement stroke of the closing portion with respect to the introducing opening when the valve is opened is Even if it is small, the gas can flow directly from the introduction opening to the outlet opening without being blocked by the blocking portion or the like, so that the ventilation resistance is reduced and the gas supply rate can be increased.

本発明の異なる態様においては、前記弁シリンダを収容するハウジングをさらに具備し、前記通気経路は、前記弁シリンダに形成され、内外を連通させる内側貫通孔と、前記弁シリンダの外面若しくは前記ハウジングの内面に形成され、前記内側貫通孔に連通する中間凹溝と、前記ハウジングに形成され、内外を連通させるとともに前記中間凹溝に連通する外側貫通孔とを含む。これによれば、通気経路が内側貫通孔、中間凹溝及び外側貫通孔を含む態様とされることで、組立の容易性や構造の自由度を高めても通気経路を確実に確保することができる。また、内側貫通孔と外側貫通孔の位置関係を変更することで、通気経路の通気抵抗を容易に調整することが可能になる。この場合、後述する実施態様のように、弁シリンダの外面と、ハウジングの内面を共に円筒面で構成し、上記中間凹溝を軸線周りに延長された形状の凹溝(例えば、環状溝)とすることで、弁シリンダをハウジング内において任意の角度で収容することが可能となるため、内側貫通孔を備えた弁シリンダの軸線周りの角度姿勢を外側貫通孔を備えたハウジング内で変更することで、通気経路の長さを変更して通気抵抗を調整することが更に容易になる。   In a different aspect of the present invention, the apparatus further comprises a housing that accommodates the valve cylinder, and the ventilation path is formed in the valve cylinder, and an inner through hole that communicates the inside and the outside, the outer surface of the valve cylinder, or the housing An intermediate concave groove formed on the inner surface and communicating with the inner through hole, and an outer through hole formed in the housing and communicating between the inside and the outside and communicating with the intermediate concave groove. According to this, since the ventilation path includes the inner through hole, the intermediate concave groove, and the outer through hole, the ventilation path can be reliably secured even if the ease of assembly and the degree of freedom of the structure are increased. it can. Further, by changing the positional relationship between the inner through hole and the outer through hole, it is possible to easily adjust the ventilation resistance of the ventilation path. In this case, as in an embodiment to be described later, both the outer surface of the valve cylinder and the inner surface of the housing are formed of a cylindrical surface, and the intermediate groove is formed into a groove (for example, an annular groove) extending around the axis. Thus, the valve cylinder can be accommodated at an arbitrary angle in the housing, so that the angle posture around the axis of the valve cylinder having the inner through hole is changed in the housing having the outer through hole. Thus, it becomes easier to adjust the ventilation resistance by changing the length of the ventilation path.

本発明においては、圧電アクチュエータの動作のみにより閉塞部の開閉を行うようにしてもよいが、例えば、閉塞部が導入開口を閉塞する方向に弁体を付勢する付勢手段をさらに具備する場合がある。この場合には、付勢手段の付勢作用を少なくとも一部に用いて弁が閉鎖されるので、供給側圧力が高くても圧電アクチュエータへの負荷を低減できる。また、閉塞部が導入開口を開放する方向に弁体を付勢する付勢手段をさらに具備する場合もある。この場合には、付勢手段の付勢作用を少なくとも一部に用いて弁が開放されるので、弁を迅速に開放することができ、供給先への気体供給の開始の遅れをさらに低減できる。   In the present invention, the closing portion may be opened and closed only by the operation of the piezoelectric actuator. For example, when the closing portion further includes a biasing means that biases the valve body in a direction to close the introduction opening. There is. In this case, since the valve is closed using at least a part of the biasing action of the biasing means, the load on the piezoelectric actuator can be reduced even if the supply side pressure is high. Further, there may be a case where the urging means for urging the valve body in the direction in which the closing portion opens the introduction opening is further provided. In this case, since the valve is opened using at least a part of the urging action of the urging means, the valve can be opened quickly, and the delay in starting the gas supply to the supply destination can be further reduced. .

本発明において、前記閉塞部が前記導入開口から離間する方向の前記弁体の移動限界を設定する弁体規制手段を有することが好ましい。この弁体規制手段を設けることで、弁体の開放動作時の移動限界が設けられるため、付勢手段の付勢作用や供給側圧力等によって弁体が過度に動作して圧電アクチュエータが破損するといったことが防止される。 In this invention, it is preferable to have a valve body control means which sets the movement limit of the said valve body in the direction in which the said obstruction | occlusion part leaves | separates from the said introduction opening. By providing this valve body restricting means, the movement limit at the time of the opening operation of the valve body is provided, so the valve body is excessively operated by the urging action of the urging means, the supply side pressure, etc., and the piezoelectric actuator is damaged. Is prevented.

次に、本発明の部品搬送装置は、上記のいずれかに記載の気体供給弁と、該気体供給弁を介して供給された気体を選択的に部品に吹き付けて選別を行う部品選別部と、該部品選別部を通過する部品搬送路と、を具備することを特徴とする。これによれば、気体供給弁の大型化や消費電力の増大を回避できるとともに、内部空間における通気抵抗が低減されるため、部品選別部における気体供給の開始の遅れを低減することができる。特に、通気経路が弁の開閉状態に拘わらず内部空間を外部に連通させる場合には、弁の閉鎖時において内部空間の残圧が通気経路を介して外部へ逃げるため、部品選別部における気体供給の停止の遅れを低減することができる。   Next, the component transport device of the present invention includes a gas supply valve according to any one of the above, a component selection unit that performs selection by selectively blowing the gas supplied through the gas supply valve to the component, And a parts conveyance path that passes through the parts selection unit. According to this, the enlargement of the gas supply valve and the increase in power consumption can be avoided, and the ventilation resistance in the internal space is reduced, so that the delay in starting the gas supply in the component selection unit can be reduced. In particular, if the internal space communicates with the outside regardless of whether the ventilation path is open or closed, the residual pressure in the internal space escapes to the outside via the ventilation path when the valve is closed. The delay in stopping can be reduced.

以下、本発明の実施の形態を図示例と共に説明する。図1は本発明に係る気体供給弁の第1実施形態の内部構造を示す概略縦断面図、図2は第1実施形態の図1とは直交する断面を示す概略縦断面図(図1のII−II線断面矢視図)、図3は第1実施形態の概略横断面図(図1のIII−III線断面矢視図)である。   Hereinafter, embodiments of the present invention will be described together with illustrated examples. FIG. 1 is a schematic longitudinal sectional view showing the internal structure of the first embodiment of the gas supply valve according to the present invention. FIG. 2 is a schematic longitudinal sectional view showing a cross section perpendicular to FIG. 1 of the first embodiment (of FIG. FIG. 3 is a schematic cross-sectional view of the first embodiment (a cross-sectional view taken along line III-III in FIG. 1).

気体供給弁10は、金属、合成樹脂等により構成されたハウジング11を有し、このハウジング11には、円柱状の凹穴11aを内部に備えた主構造部11Aと、この主構造部11Aから側方へ直線状に伸びる梁状に構成され、先端部に後述する圧電アクチュエータを固定する固定部位11bを備えた延長部11Bとが設けられる。主構造部11Aの底部には上記凹穴11aに連通する気体導入路11cが形成される。この気体導入路11cは、凹穴11aの底面より図示上方へ突出する気体導入部11dの内部を通過し、気体導入部11dの先端(図示上端)に開口する導入開口11eを備えている。気体導入部11dの先端は先細状(テーパ状)に形成される。気体導入部11dは図示例では円柱状(先端は円錐若しくは円錐台状)とされるが、特に限定されるものではなく、例えば角柱状など任意の形状とすることができる。   The gas supply valve 10 includes a housing 11 made of metal, synthetic resin, or the like. The housing 11 includes a main structure portion 11A having a cylindrical recessed hole 11a therein, and the main structure portion 11A. An extension portion 11B having a fixing portion 11b configured to fix a piezoelectric actuator (to be described later) to a distal end portion is provided. A gas introduction path 11c communicating with the recessed hole 11a is formed at the bottom of the main structure 11A. The gas introduction path 11c includes an introduction opening 11e that passes through the inside of the gas introduction portion 11d that protrudes upward from the bottom surface of the concave hole 11a and opens at the tip (upper end in the drawing) of the gas introduction portion 11d. The tip of the gas introduction part 11d is formed in a tapered shape (tapered shape). In the illustrated example, the gas introduction part 11d has a columnar shape (the tip is a cone or a truncated cone shape), but is not particularly limited, and may have an arbitrary shape such as a prismatic shape.

凹穴11a内には図示垂直方向に貫通する軸孔12aを有する円筒状の弁シリンダ12が収容され、当該弁シリンダ12はその上部環状溝に収容されたOリング等のシール材13によって主構造部11Aとの間が気密に構成される。なお、弁シリンダ12の外面には凹部(或いは凹溝)12bが設けられ、主構造部11Aの側部に貫通形成される側ネジ孔11fに螺入される止ねじ14によって主構造部11Aに対し保持固定される。弁シリンダ12の軸孔12aの下端は上記気体導入部11dを余裕を持って受け入れ、これによって気体導入部11dと軸孔12aの周囲内面との間には全周に亘る間隔が設けられる。   A cylindrical valve cylinder 12 having a shaft hole 12a penetrating in the vertical direction in the figure is accommodated in the recessed hole 11a, and the valve cylinder 12 has a main structure by a sealing material 13 such as an O-ring accommodated in the upper annular groove. The space between the portions 11A is airtight. In addition, a concave portion (or a concave groove) 12b is provided on the outer surface of the valve cylinder 12, and the main structure portion 11A is inserted into the main structure portion 11A by a set screw 14 screwed into a side screw hole 11f formed through the side portion of the main structure portion 11A. It is held and fixed against. The lower end of the shaft hole 12a of the valve cylinder 12 accepts the gas introduction part 11d with a margin, whereby a space over the entire circumference is provided between the gas introduction part 11d and the inner peripheral surface of the shaft hole 12a.

また、弁シリンダ12には、軸孔12aに連通し、内外に貫通する横孔12cが設けられ、この横孔12cは主構造部11Aに設けられた気体導出孔11gと連通し、これらによって気体導出路が構成される。この気体導出路の導出開口12dは弁シリンダ12の上記横孔12cの内部開口で構成される。   Further, the valve cylinder 12 is provided with a lateral hole 12c that communicates with the shaft hole 12a and penetrates inside and outside, and this lateral hole 12c communicates with the gas outlet hole 11g provided in the main structure portion 11A, and thereby the gas A lead-out path is configured. The lead-out opening 12 d of the gas lead-out path is configured by an internal opening of the lateral hole 12 c of the valve cylinder 12.

この導出開口12dは、導入開口11eの開口位置に対し閉塞部15aの移動方向(弁シリンダ12の軸線方向)と直交する方向にある位置において開口する。図示例の場合、導入開口11eの上記移動方向に見た開口位置と、導出開口12dの上記移動方向に見た外縁位置とが一致している(図1の点線参照、図3も同様。)が、上記移動方向に見た導入開口11eの位置が同移動方向に見た導出開口12dの開口範囲内にあればよい。これによれば、導出開口の内部空間に対する開口位置が導入開口の開口位置に対し閉塞部の移動方向と直交する方向に配置されるので、弁の開放時における導入開口に対する閉塞部の移動ストロークが小さくても、導入開口から導出開口まで閉塞部等に遮られることなく直接に気体が流通できるようになるので、通気抵抗が低減され、気体の供給開始タイミングを早めることができる。 The lead-out opening 12d opens at a position in a direction perpendicular to the moving direction of the closing portion 15a (the axial direction of the valve cylinder 12) with respect to the opening position of the introduction opening 11e. In the case of the illustrated example, the opening position of the introduction opening 11e seen in the movement direction and the outer edge position of the lead-out opening 12d seen in the movement direction coincide (refer to the dotted line in FIG. 1 and FIG. 3 also). However, it suffices if the position of the introduction opening 11e seen in the moving direction is within the opening range of the lead-out opening 12d seen in the moving direction. According to this, since the opening position of the lead-out opening with respect to the internal space is arranged in a direction orthogonal to the moving direction of the closing portion with respect to the opening position of the introducing opening, the movement stroke of the closing portion with respect to the introducing opening when the valve is opened is Even if it is small, the gas can flow directly from the introduction opening to the outlet opening without being blocked by the blocking portion or the like, so that the ventilation resistance is reduced and the gas supply start timing can be advanced.

軸孔12a内には弁体15が挿入され、この弁体15は、軸孔12a内において弁シリンダ12との間で気密性を確保した状態で摺動自在に配置される。弁体15の内端部には図示例では弁体15の本体に軟質樹脂材料等よりなるシート材15xが固定されている。この内端部は、上記導入開口11eに当接することで弁を閉鎖状態とする閉塞部15aを構成する。弁体15は、弁シリンダ12の軸孔12aと密接し、気密性を確保した状態で摺動可能に配置されているが、その内端の閉塞部15aは縮径して軸孔12aとの間に間隔を有する態様で導入開口11eに向けて突出するように構成される。図示例の場合、閉塞部15aは全周に亘り弁シリンダ12の軸孔12aの周囲内面との間に間隔を有している。   A valve body 15 is inserted into the shaft hole 12a, and the valve body 15 is slidably disposed in the shaft hole 12a while ensuring airtightness with the valve cylinder 12. In the illustrated example, a sheet material 15 x made of a soft resin material or the like is fixed to the inner end portion of the valve body 15 in the main body of the valve body 15 in the illustrated example. The inner end portion constitutes a closing portion 15a that closes the valve by contacting the introduction opening 11e. The valve body 15 is disposed so as to be slidable in close contact with the shaft hole 12a of the valve cylinder 12 and ensuring airtightness. However, the closed portion 15a at the inner end thereof is reduced in diameter to be connected to the shaft hole 12a. It is comprised so that it may protrude toward the introduction opening 11e in the aspect which has a space | interval. In the case of the illustrated example, the closing portion 15a is spaced from the inner peripheral surface of the shaft hole 12a of the valve cylinder 12 over the entire circumference.

上述の弁構造において、導入開口11eと導出開口12dの間に形成される内部空間は、気体導入部11dと弁シリンダ12の軸孔12aの周囲内面との間隔と、弁体15の閉塞部15aと弁シリンダ12の軸孔12aの周囲内面との間隔が相互に連通して構成される。この内部空間の容積は弁の開閉によって増減するが、当該空間自体は弁の開閉とは無関係に常に存在する。   In the above-described valve structure, the internal space formed between the introduction opening 11e and the lead-out opening 12d is the distance between the gas introduction part 11d and the inner peripheral surface of the shaft hole 12a of the valve cylinder 12, and the closing part 15a of the valve body 15. And the space between the inner periphery of the shaft hole 12a of the valve cylinder 12 and the inner surface of the valve cylinder 12 are in communication with each other. The volume of the internal space increases or decreases depending on the opening / closing of the valve, but the space itself always exists regardless of the opening / closing of the valve.

弁シリンダ12には、軸孔12aを外側に連通させる内側貫通孔12eが形成され、その外周には、内側貫通孔12eが開口する中間凹溝12fが形成されている。この中間凹溝12fは図示例では外周面を軸線周りに一周する環状凹溝とされている。また、主構造部11Aには、凹穴11aの内外を連通させる外側貫通孔11j(図2参照)が形成され、この外側貫通孔11jは上記中間凹溝12fに連通する。これによって、上記内部空間は、上記内側貫通孔12e、中間凹溝12f及び外側貫通孔11jよりなる通気経路を介して外部に連通している。なお、当該通気経路を構成するに際しては、弁シリンダ12に形成された中間凹溝12fの代わりに、内側貫通孔12eに連通する別の中間凹溝を凹孔11aの内面上に形成してもよい。   The valve cylinder 12 is formed with an inner through hole 12e that allows the shaft hole 12a to communicate with the outside, and an outer circumferential groove 12f that opens the inner through hole 12e is formed on the outer periphery thereof. In the illustrated example, the intermediate concave groove 12f is an annular concave groove that makes one round of the outer peripheral surface around the axis. The main structure portion 11A is formed with an outer through hole 11j (see FIG. 2) that communicates the inside and outside of the recessed hole 11a. The outer through hole 11j communicates with the intermediate recessed groove 12f. Thus, the internal space communicates with the outside through a ventilation path including the inner through hole 12e, the intermediate concave groove 12f, and the outer through hole 11j. In configuring the ventilation path, instead of the intermediate concave groove 12f formed in the valve cylinder 12, another intermediate concave groove communicating with the inner through hole 12e may be formed on the inner surface of the concave hole 11a. Good.

ここで、内側貫通孔12eは、上記閉塞部15aと弁シリンダ12の周囲内面との間に設けられた間隔内に開口している。したがって、当該間隔に開口した上記通気経路を介して上記内部空間が外部と連通していることとなる。 Here, the inner through-hole 12e is opened within a space provided between the blocking portion 15a and the inner peripheral surface of the valve cylinder 12. Therefore, the internal space communicates with the outside through the ventilation path opened at the interval.

弁体15は弁シリンダ12内から図示上方へ伸び、その中間部位に外側に張り出してなる保持部16が設けられている。この保持部16は特に限定されないが、図示例では止め輪等の別部材を取り付けることで形成される。また、主構造部11Aの上部には側方から凹穴11a内に張り出した張出部17(図示例では別体の張出部材)が設けられ、上記保持部16と張出部17の間にコイルバネ等の弾性部材18が配置される。この弾性部材18は弁体15を弁が閉鎖する方向(図示下方、すなわち、上記閉塞部15aが導入開口11eを閉鎖する方向)に付勢する付勢手段である。弁体15の外端部15bは張出部17に設けられた開口部17aを通過して上方へ突出する。外端部15bには側方より延出した圧電アクチュエータ19の駆動部19aが係合している。 The valve body 15 extends upward in the figure from the inside of the valve cylinder 12, and a holding portion 16 is provided at an intermediate portion so as to project outward. The holding portion 16 is not particularly limited, but is formed by attaching another member such as a retaining ring in the illustrated example. In addition, an overhanging portion 17 (a separate overhanging member in the illustrated example) projecting from the side into the recessed hole 11a is provided on the upper portion of the main structure portion 11A, and between the holding portion 16 and the overhanging portion 17. An elastic member 18 such as a coil spring is disposed on the surface. The elastic member 18 is a biasing means that biases the valve body 15 in a direction in which the valve closes (downward in the drawing, that is, a direction in which the closing portion 15a closes the introduction opening 11e). The outer end portion 15 b of the valve body 15 passes through an opening portion 17 a provided in the overhang portion 17 and protrudes upward. A driving portion 19a of a piezoelectric actuator 19 extending from the side is engaged with the outer end portion 15b.

圧電アクチュエータ19は、金属等よりなる弾性板19Aと、この弾性板19Aの表裏面に接合された圧電体層19B、19Cとを含み、圧電体層19B、19Cは図示しない表裏の電極に電圧を印加することで弾性板19Aとともに図示上下方向に撓みを生ずるように構成される。図示例では圧電アクチュエータ19はバイモルフ型の板状構造を有するが、圧電体層19Bと19Cのいずれか一方のみを有するユニモルフ型の板状構造としてもよく、さらには、圧電体層と電極層とを交互に積層させた積層型の構造を有するものとしてもよい。   The piezoelectric actuator 19 includes an elastic plate 19A made of metal or the like and piezoelectric layers 19B and 19C joined to the front and back surfaces of the elastic plate 19A. The piezoelectric layers 19B and 19C apply a voltage to front and back electrodes (not shown). When applied, the elastic plate 19A and the elastic plate 19A are configured to bend in the vertical direction in the figure. In the illustrated example, the piezoelectric actuator 19 has a bimorph type plate-like structure. However, the piezoelectric actuator 19 may have a unimorph type plate-like structure having only one of the piezoelectric layers 19B and 19C, and further includes a piezoelectric layer and an electrode layer. It is good also as what has the laminated type structure which laminated | stacked alternately.

圧電アクチュエータ19の基端部19bは、延長部11Bの固定部位11bに取付けられた固定部材21上に固定される。図示例では固定部材21はボルト22により固定部位11bに固定される。固定部材21は、固定部位11bに対する取り付け部分から固定部位11bの表面に形成された凹部11h上に張り出す態様で固定され、当該凹溝11h上に張り出した部分において取付部材23との間で上記基端部19bを挟持している。固定部材21と取付部材23はボルト24によって基端部19bを挟圧し、固定する。固定部位11bには上記凹溝11hに連通する貫通ネジ孔11iを有し、この貫通ネジ孔11iに止めネジ25が螺入され、止めネジ25の先端が上記固定部材21を下方より(凹部11b内に突出して)当接支持している。そして、止めネジ25の位置を調整することで、上記凹溝11h上において固定部材21の上下位置が調整可能となっており、したがって圧電アクチュエータ19の上下方向の取付位置(正確には上下方向の取付位置及び取付角度)を調整できるように構成される。   The base end portion 19b of the piezoelectric actuator 19 is fixed on the fixing member 21 attached to the fixing portion 11b of the extension portion 11B. In the illustrated example, the fixing member 21 is fixed to the fixing portion 11 b by a bolt 22. The fixing member 21 is fixed in such a manner that the fixing member 21 protrudes from the attachment portion with respect to the fixing portion 11b onto the concave portion 11h formed on the surface of the fixing portion 11b, and between the attachment member 23 at the portion protruding on the concave groove 11h. The proximal end portion 19b is sandwiched. The fixing member 21 and the attachment member 23 are clamped by the bolt 24 and fixed. The fixing portion 11b has a through screw hole 11i communicating with the concave groove 11h. A set screw 25 is screwed into the through screw hole 11i, and the tip of the set screw 25 pushes the fixing member 21 downward (recess 11b). It protrudes inward and supports it. By adjusting the position of the set screw 25, the vertical position of the fixing member 21 can be adjusted on the concave groove 11h. Therefore, the vertical mounting position of the piezoelectric actuator 19 (precisely, the vertical direction) The mounting position and the mounting angle) can be adjusted.

圧電アクチュエータ19は、基端部19bが固定部位11bに固定された状態で、先端の駆動部19aが弁体15に接続され、駆動部19aと基端部19bの間が撓み変形することで、弁体15をその軸線方向に駆動できるように構成される。   The piezoelectric actuator 19 has a proximal end portion 19b fixed to the fixed portion 11b, the distal end drive portion 19a is connected to the valve body 15, and the drive portion 19a and the proximal end portion 19b are bent and deformed. It is comprised so that the valve body 15 can be driven to the axial direction.

以上のように構成された本実施形態においては、圧電アクチュエータ19が動作しない状態(通電されていない状態)では、弁体15が弾性部材18の弾性力で下方に移動し、閉塞部15aが導入開口11eを閉鎖するため、弁が閉鎖状態となる。一方、圧電アクチュエータ19が動作して(通電されて)上方へ撓むことで、弁体15が弾性部材18の弾性力に抗して上方へ移動し、弁は開放状態となる。したがって上記気体導入路11cに圧縮空気などの加圧された気体を供給することで、弁が開放状態になると気体導出孔11g(すなわち気体導出路)から加圧された気体を放出することができる。   In the present embodiment configured as described above, in a state where the piezoelectric actuator 19 does not operate (a state where current is not energized), the valve body 15 moves downward by the elastic force of the elastic member 18, and the closing portion 15a is introduced. In order to close the opening 11e, the valve is closed. On the other hand, when the piezoelectric actuator 19 operates (energized) and bends upward, the valve body 15 moves upward against the elastic force of the elastic member 18 and the valve is opened. Therefore, by supplying pressurized gas such as compressed air to the gas introduction path 11c, the pressurized gas can be discharged from the gas outlet hole 11g (that is, the gas outlet path) when the valve is opened. .

ところで、弁体15が上方へ移動して弁が開放状態となっている場合、導入開口11eから流入した気体が内部空間を通って導出開口12dから出て行くことになるが、内部空間における気流の速度が高くなると負圧が発生するので、弁体15が下方に吸引され、圧電アクチュエータ19に負荷がかかる可能性がある。しかしながら、本実施形態では、弁の開放状態において上記通気経路を介して内部空間が外部と連通しているので、内部空間に生ずる負圧が通気経路を通して流入する外気によって緩和され、圧電アクチュエータ19にかかる負荷を軽減することができる。したがって、弁から放出される気体の量を増加させるために供給側圧力を高めた場合でも、上記負圧による供給不良、或いは、圧電アクチュエータ19の破損などを防止することができる。   By the way, when the valve body 15 moves upward and the valve is in an open state, the gas flowing in from the introduction opening 11e goes out from the outlet opening 12d through the internal space, but the airflow in the internal space Since the negative pressure is generated when the speed increases, the valve body 15 is attracted downward, and a load may be applied to the piezoelectric actuator 19. However, in this embodiment, since the internal space communicates with the outside through the ventilation path in the open state of the valve, the negative pressure generated in the internal space is relieved by the outside air flowing in through the ventilation path, and the piezoelectric actuator 19 Such a load can be reduced. Therefore, even when the supply side pressure is increased to increase the amount of gas released from the valve, it is possible to prevent supply failure due to the negative pressure or damage to the piezoelectric actuator 19.

また、上記の負圧が緩和されることで圧電アクチュエータの負荷が軽減されるので圧電アクチュエータの大型化を回避でき、また、弁から放出される気体の量を増加させるために内部空間における気体の流通断面を大きくすることで弁構造が大型化することも回避できるので、気体供給弁の小型化を図ることができ、その結果、気体の供給先により近い位置に弁を配置することが可能になるので、気体供給の開始及び停止のタイミングの遅れを低減できる。   In addition, since the negative pressure is reduced, the load on the piezoelectric actuator is reduced, so that the piezoelectric actuator can be prevented from being enlarged, and the amount of gas released from the valve can be increased. Since it is possible to avoid an increase in the valve structure by enlarging the flow cross section, the gas supply valve can be reduced in size, and as a result, the valve can be arranged at a position closer to the gas supply destination. As a result, the delay in starting and stopping the gas supply can be reduced.

本実施形態では特に、弾性部材18の弾性力で弁体15の閉塞部15aを導入開口11eに当接させて弁を閉鎖状態としているので、供給側圧力を高くしても圧電アクチュエータ19に負荷が加わらず、圧電アクチュエータ19の損傷を防止でき、圧電アクチュエータ19の大型化も回避できる。   In the present embodiment, in particular, the closing portion 15a of the valve body 15 is brought into contact with the introduction opening 11e by the elastic force of the elastic member 18 so that the valve is closed. Therefore, damage to the piezoelectric actuator 19 can be prevented, and an increase in size of the piezoelectric actuator 19 can be avoided.

また、本実施形態では、弁の開閉状態に拘らず上記通気経路は常に内部空間を外部に連通させるように構成されている。これにより、上記のように弁が開放状態にあるときに内部空間の負圧を緩和でき、しかも気体供給の開始を迅速化できるだけでなく、弁の閉鎖時に内部空間及び導出開口12d側の圧力を通気経路を介して外部に逃がすことができるため、気体供給の停止もさらに迅速に行うことができる。   In the present embodiment, the ventilation path is configured to always communicate the internal space with the outside regardless of whether the valve is open or closed. As a result, the negative pressure in the internal space can be relieved when the valve is in the open state as described above, and not only the start of gas supply can be accelerated, but also the pressure on the internal space and the outlet opening 12d side can be reduced when the valve is closed. Since the gas can be released to the outside through the ventilation path, the gas supply can be stopped more quickly.

さらに、本実施形態では、通気経路が弁体15の閉塞部15aと弁シリンダ12の周囲内面との間の間隔に開口していることにより、弁の開閉状態に拘わらず常に通気経路を介して弁内部が外部と連通する。また、弁の開放時において導入開口11eと導出開口12dとの間に形成される内部空間に負圧が発生した場合、この内部空間には閉塞部15aの側(周囲)から外気が供給されるので、当該負圧に起因する弁体15の吸引力を効果的に軽減できるという利点がある。   Further, in this embodiment, the ventilation path is opened at a distance between the closed portion 15a of the valve body 15 and the inner peripheral surface of the valve cylinder 12, so that the ventilation path is always routed through the ventilation path regardless of the open / closed state of the valve. The inside of the valve communicates with the outside. Further, when a negative pressure is generated in the internal space formed between the inlet opening 11e and the outlet opening 12d when the valve is opened, outside air is supplied to the inner space from the side of the closed portion 15a (around). Therefore, there is an advantage that the suction force of the valve body 15 due to the negative pressure can be effectively reduced.

なお、本実施形態では、弾性部材18が弁体15を弁が閉鎖状態となる方向に付勢することで、圧電アクチュエータ19が動作しないときには閉鎖状態となるように、すなわちノーマリークローズ型の弁となるように構成されている。これは、通常の使用態様では初期状態が閉鎖状態となることが好ましいからであるとともに、上述のように供給側圧力を弾性部材18の弾性力で押えることで圧電アクチュエータ19への負荷を軽減できるからでもある。また、ノーマリークローズ型とすることで、弁が閉鎖状態となる際に弾性部材18の弾性力で迅速に弁体を動作させることができるため、気体供給の停止の応答性をきわめて高くすることができるという利点もある。ただし、種々の不利な点を甘受するのであれば、圧電アクチュエータ19の初期位置(非通電時の位置)を弾性部材18の弾性力に抗して弁が開放状態となるように設定し、通電時に弁が閉鎖状態となるように構成することで、ノーマリーオープン型の弁となるようにすることも不可能ではない。   In the present embodiment, the elastic member 18 biases the valve body 15 in the direction in which the valve is closed, so that the piezoelectric actuator 19 is closed when it does not operate, that is, a normally closed type valve. It is comprised so that. This is because the initial state is preferably the closed state in a normal use mode, and the load on the piezoelectric actuator 19 can be reduced by pressing the supply side pressure with the elastic force of the elastic member 18 as described above. It is also from. Further, by adopting the normally closed type, the valve body can be quickly operated by the elastic force of the elastic member 18 when the valve is in a closed state, so that the responsiveness of stopping the gas supply is made extremely high. There is also an advantage of being able to. However, if various disadvantages are acceptable, the initial position of the piezoelectric actuator 19 (the position when not energized) is set so that the valve is opened against the elastic force of the elastic member 18, and energization is performed. It is not impossible to make it a normally open valve by sometimes configuring the valve to be closed.

なお、本実施形態では特に意図していないが、主構造部11Aと弁シリンダ12との軸線周りの角度を変えることができるように構成することも可能である。この場合、内側貫通孔12eの外側開口と、外側貫通孔11jの内側開口との間の凹溝12fに沿った距離が変化して通気経路の経路長が変化するので、通気抵抗を容易に調整できる。ここで、凹部12bを凹溝状とすることなどにより、止めネジ14で弁シリンダ12を任意の角度位置で固定することができる。   Although not particularly intended in the present embodiment, it is also possible to configure the angle around the axis between the main structure portion 11A and the valve cylinder 12 to be changed. In this case, since the distance along the concave groove 12f between the outer opening of the inner through hole 12e and the inner opening of the outer through hole 11j changes and the path length of the ventilation path changes, the ventilation resistance can be easily adjusted. it can. Here, the valve cylinder 12 can be fixed at an arbitrary angular position by the set screw 14 by making the concave portion 12b into a concave groove shape or the like.

次に、図4及び図5を参照して本発明に係る第2実施形態の気体供給弁10′について説明する。図4は第2実施形態の内部構造を示す概略縦断面図、図5は第2実施形態の図4とは直交する断面を示す概略縦断面図(図4のV−V線断面矢視図)である。なお、第2実施形態の概略横断面図は図3とほぼ共通である。また、第2実施形態において第1実施形態と共通の部分には同一符号を付し、それらの説明は省略する。   Next, a gas supply valve 10 'according to a second embodiment of the present invention will be described with reference to FIGS. 4 is a schematic longitudinal sectional view showing the internal structure of the second embodiment, and FIG. 5 is a schematic longitudinal sectional view showing a cross section orthogonal to FIG. 4 of the second embodiment (a cross-sectional view taken along line VV in FIG. 4). ). The schematic cross-sectional view of the second embodiment is substantially the same as FIG. Moreover, in 2nd Embodiment, the same code | symbol is attached | subjected to the part which is common in 1st Embodiment, and those description is abbreviate | omitted.

この第2実施形態の気体供給弁10′では、第1実施形態の弾性部材18の代わりに、弁体15′を弁の開放状態となる方向に付勢する付勢手段である弾性部材18′を設けている。この弾性部材18′は、主構造部11Aの凹穴11aの底部と弁体15′の閉塞部15a′との間に配置され、弁体15′を図示上方へ向けて押し上げるように作用する。したがって、この第2実施形態は、圧電アクチュエータ19が動作しない場合に弾性部材18′の弾性力で弁体15′が押し上げられて弁は開放状態となるため、ノーマリーオープン型の弁となる。この実施形態では、圧電アクチュエータ19の動作によって弾性部材18′の弾性力に抗して弁が閉鎖状態とされるが、弁が開放状態となる際には弾性部材18′の弾性力により迅速に気体の供給が開始されるので、気体供給の開始時の応答速度をきわめて高くすることができるという利点がある。 In the gas supply valve 10 'according to the second embodiment, instead of the elastic member 18 according to the first embodiment, an elastic member 18' that is an urging means that urges the valve body 15 'in a direction in which the valve is opened. Is provided. This elastic member 18 'is disposed between the bottom of the concave hole 11a of the main structure portion 11A and the closing portion 15a' of the valve body 15 ', and acts to push the valve body 15' upward in the figure. Therefore, in the second embodiment, when the piezoelectric actuator 19 is not operated, the valve body 15 'is pushed up by the elastic force of the elastic member 18' and the valve is opened, so that the valve is normally open. In this embodiment, the valve is closed against the elastic force of the elastic member 18 ′ by the operation of the piezoelectric actuator 19. However, when the valve is opened, the valve is quickly turned on by the elastic force of the elastic member 18 ′. Since the gas supply is started, there is an advantage that the response speed at the start of the gas supply can be made extremely high.

また、この第2実施形態では、弁体15′の外端部15b′の端面(図示上面)に圧電アクチュエータ19の駆動部19aを当接させている。本実施形態では上述のように弾性部材18′により弁体15′が弁が開放状態とされる方向に付勢されているので、圧電アクチュエータ19の駆動部19aが弁体15′により図示上方へ常に応力を受ける状態とすることで、駆動部19aを弁体15′に固定する必要がないからである。ただし、駆動部19aを接着等により弁体15′に固定してもよい。このように駆動部19aを単に弁体15′に対して当接するだけとすることで、圧電アクチュエータ19に弁体15よりその軸線方向以外の他の方向の応力を及ぼすことを防止できる。   In the second embodiment, the drive portion 19a of the piezoelectric actuator 19 is brought into contact with the end surface (upper surface in the drawing) of the outer end portion 15b ′ of the valve body 15 ′. In the present embodiment, as described above, the valve member 15 'is urged by the elastic member 18' in the direction in which the valve is opened, so that the driving portion 19a of the piezoelectric actuator 19 is moved upward in the figure by the valve member 15 '. It is because it is not necessary to fix the drive part 19a to the valve body 15 'by setting it as the state which always receives stress. However, the drive part 19a may be fixed to the valve body 15 'by adhesion or the like. In this way, by simply abutting the driving portion 19a against the valve body 15 ', it is possible to prevent the piezoelectric actuator 19 from being subjected to stress in a direction other than the axial direction from the valve body 15.

なお、本実施形態では、弁体規制手段である規制部(図示例では規制部材)16′が弁体15′の外周に張り出している。この規制部16′は、弁体15′が必要以上に図示上方へ突出し、圧電アクチュエータ19に損傷を与えることを防止するためのものである。   In the present embodiment, a restricting portion (a restricting member in the illustrated example) 16 'that is a valve element restricting means projects over the outer periphery of the valve element 15'. The restricting portion 16 ′ is for preventing the valve body 15 ′ from projecting upward in the drawing more than necessary and damaging the piezoelectric actuator 19.

上記各実施形態では、弁体15をその移動方向(弁の開閉方向)に付勢する弾性部材(ばね)を設けているが、当該弾性部材を設けずに構成することも可能である。例えば、第1実施形態において、弾性部材18を省略し、その代わりに、弁の閉鎖時には圧電アクチュエータ19の動作部19aが下方に弁体を押圧するように構成してもよい。この場合、例えば、圧電アクチュエータ19を非駆動状態において動作部19aが弁体15を下方に押圧して弁が閉鎖されるように構成することができ、また、圧電アクチュエータ19に通電してその駆動力で動作部19aが弁体15を押圧するように構成することもできる。いずれの場合でも、上記弁体15に対する押圧状態を解除することで弁体15は気体の供給圧によって移動し、弁が開放状態となる。このとき、圧電アクチュエータ19の駆動力で動作部19aを開弁方向に変形させて弁を開放することで、より高速の気体供給が可能になり、気体の供給開始タイミングを早めることができる。   In each of the above embodiments, an elastic member (spring) that biases the valve body 15 in its moving direction (valve opening / closing direction) is provided, but it is also possible to configure without providing the elastic member. For example, in the first embodiment, the elastic member 18 may be omitted, and instead, the operation unit 19a of the piezoelectric actuator 19 may press the valve body downward when the valve is closed. In this case, for example, the operation unit 19a can press the valve body 15 downward to close the valve when the piezoelectric actuator 19 is not driven, and the piezoelectric actuator 19 is energized to drive it. It can also comprise so that the action | operation part 19a may press the valve body 15 with force. In any case, by releasing the pressure state on the valve body 15, the valve body 15 is moved by the gas supply pressure, and the valve is opened. At this time, the operating portion 19a is deformed in the valve opening direction by the driving force of the piezoelectric actuator 19 to open the valve, so that higher-speed gas supply is possible and the gas supply start timing can be advanced.

次に、上記各実施形態を部品搬送装置の部品選別部に用いる例について説明する。図6は、上記各実施形態の気体供給弁10、10′を含む部品搬送装置1の概略部分説明図である。この部品搬送装置1においては、加振機構2上に固定された振動体3に部品搬送路4aを備えた搬送体4が固定される。加振機構2としては、電磁ソレノイドを用いた電磁振動機や圧電アクチュエータを用いた圧電振動機など、搬送方向(図6の紙面と直交する方向)に所定周波数(電子部品などの小さな搬送物を搬送する場合には、通常50〜300Hz程度)の往復振動を発生するものであれば特に限定されない。   Next, an example in which each of the above embodiments is used for a component sorting unit of a component transport apparatus will be described. FIG. 6 is a schematic partial explanatory view of the component conveying apparatus 1 including the gas supply valves 10 and 10 ′ of the above embodiments. In the component conveying apparatus 1, the conveying body 4 including the component conveying path 4 a is fixed to the vibrating body 3 fixed on the vibration mechanism 2. As the vibration mechanism 2, an electromagnetic vibrator using an electromagnetic solenoid, a piezoelectric vibrator using a piezoelectric actuator, or the like, a small frequency object (such as an electronic component) is used in a conveying direction (a direction perpendicular to the paper surface of FIG. 6). In the case of carrying, it is not particularly limited as long as it generates reciprocal vibrations (generally about 50 to 300 Hz).

部品選別部4Xには、部品搬送路4a上の部品Pの有無、良否、姿勢等を判別するためのセンサ(光検出器など)4cが設置され、このセンサ4cの検出信号に基づいて判別を行う判別部4dが設けられている。判別部4dは、部品選別部4Xにおいて部品搬送路4a上の部品Pに気流を吹き付けるか否か、吹き付けタイミングの是非等を判別して上記の気体供給弁10、10′を制御する。具体的には、当該制御の内容としては、上述の圧電アクチュエータ19に駆動信号を送るか否か、或いは、どのような駆動信号を送るかを決めるものとなる。この気流の吹き付けは、部品Pを部品搬送路4a上から排除する、部品搬送路4a上の部品Pを反転させて姿勢を変える、或いは、部品搬送路4a上の部品Pを別の搬送路上に移動させるなどの目的で行われる。   A sensor (such as a photodetector) 4c for determining the presence / absence, quality, posture, etc. of the component P on the component transport path 4a is installed in the component selection unit 4X, and the determination is made based on the detection signal of the sensor 4c. A determination unit 4d to perform is provided. The discriminating unit 4d controls the gas supply valves 10, 10 ′ by discriminating whether or not the air flow is blown to the component P on the component conveying path 4a in the component selecting unit 4X and whether or not the blowing timing is appropriate. Specifically, the contents of the control determine whether or not to send a drive signal to the above-described piezoelectric actuator 19 or what kind of drive signal to send. The blowing of the air current can be performed by removing the component P from the component conveyance path 4a, inverting the component P on the component conveyance path 4a to change the posture, or placing the component P on the component conveyance path 4a on another conveyance path. This is done for the purpose of moving.

部品搬送装置1には、コンプレッサ5等より給気管6を介して圧縮空気が供給され、これは流量調整器7を介して上記の気体供給弁10、10′の気体導入部に供給される。そして、気体供給弁10、10′の気体導出部は給気管8を介して上記搬送体4に設けられた給気経路4bに接続される。給気経路4bは上記部品搬送路4aが通過する部品選別部4Xにおいて部品搬送路4aの搬送面の一部に開口している。そして、気体供給弁10、10′を開放状態とすることで、部品搬送路4a上を搬送されてきた部品Pに気流を吹き付けることができる。   The component conveying device 1 is supplied with compressed air from the compressor 5 or the like via the air supply pipe 6, and this is supplied to the gas introduction part of the gas supply valves 10 and 10 ′ via the flow rate regulator 7. The gas outlets of the gas supply valves 10 and 10 ′ are connected to an air supply path 4 b provided in the carrier 4 through an air supply pipe 8. The air supply path 4b opens at a part of the conveying surface of the component conveying path 4a in the component sorting section 4X through which the component conveying path 4a passes. Then, by opening the gas supply valves 10 and 10 ', an air flow can be blown onto the component P that has been transported on the component transport path 4a.

部品搬送路4a上では、部品搬送を高速に行う場合、多数の部品Pが連なって搬送されてくるので、部品選別部4Xでは上記の気流の吹き付けの開始及び停止を高速に、しかも、高い応答速度で行う必要がある。たとえば、気流の吹き付けの開始が遅れると特定の部品Pに気流を吹き付けることができなくなり、気流の吹き付けの停止が遅れると特定の部品P以外の他の部品Pにも気流を吹き付けてしまうこととなり、部品の選別精度が悪化して部品供給に致命的な支障を与えるほか、搬送効率も低下してしまう。   When parts are transported at a high speed on the parts transport path 4a, a large number of parts P are transported in a row, so the parts sorting unit 4X starts and stops the above-mentioned air flow at a high speed and has a high response. Need to do at speed. For example, if the start of the airflow is delayed, the airflow cannot be sprayed on the specific part P, and if the stop of the airflow is stopped, the airflow is also sprayed on other parts P other than the specific part P. In addition to the deterioration of parts sorting accuracy, it will cause a fatal hindrance to the parts supply, and the transport efficiency will also be reduced.

上記各実施形態の気体供給弁10、10′では、気体供給弁10、10′自体の構造として、弁の開放状態において内部空間が通気経路を通して外部と連通していることで、内部空間の負圧の発生を緩和でき、気体供給の効率化を図ることができ、弁構造の小型化を図るとともに気流の吹き付けの開始を迅速に行うことができる。したがって、弁構造の小型化により部品選別部4Xに近い場所に設置することが可能になるとともに弁機能の向上が図られることで、部品搬送路4a上における気流の吹き付けの開始及び停止の遅れを低減でき、部品Pの選別に対する高い応答性を確保できる。   In the gas supply valves 10, 10 ′ of the above embodiments, as the structure of the gas supply valves 10, 10 ′ itself, the internal space communicates with the outside through the ventilation path in the open state of the valve. Generation of pressure can be mitigated, gas supply efficiency can be improved, the valve structure can be miniaturized, and air flow can be started quickly. Therefore, the valve structure can be reduced in size and can be installed in a location close to the component sorting unit 4X, and the valve function can be improved, so that the start and stop of the air flow blowing on the component conveying path 4a can be delayed. It can be reduced and high responsiveness to the selection of the parts P can be secured.

本発明においては、圧電アクチュエータを用いることで従来の電磁バルブ等に対し十分の一以下(数msec或いはそれ以下)の高速応答が可能になるとともに、通気経路を有する弁構造に基づいて気体の供給開始及び供給停止の遅れを低減できるため、気体の供給切替時において著しく高い実質的な応答性を実現でき、部品搬送装置の部品選別部に気体を供給する気体供給弁としてきわめて好適である。   In the present invention, by using a piezoelectric actuator, a high-speed response of one-tenth or less (several msec or less) can be achieved with respect to a conventional electromagnetic valve and the like, and gas is supplied based on a valve structure having a ventilation path. Since delays in starting and stopping of supply can be reduced, a remarkably high substantial response can be realized at the time of gas supply switching, and it is extremely suitable as a gas supply valve for supplying gas to the component sorting unit of the component conveying apparatus.

尚、本発明の気体供給弁及び部品搬送装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。たとえば、上記の圧電アクチュエータ19は板状構造を有してその延在方向に撓み変形して先端の駆動部19aにより弁体15を軸線方向に駆動するように構成されるが、圧電アクチュエータとしては、上記のような構造に限らず、ブロック状の圧電体を厚み方向に変形させて弁体15を軸線方向に押圧する構造としてもよいなど、種々の構造を採用することができる。   In addition, the gas supply valve and the component conveying apparatus of the present invention are not limited to the above-described illustrated examples, and various changes can be made without departing from the scope of the present invention. For example, the piezoelectric actuator 19 has a plate-like structure and is configured to bend and deform in the extending direction and drive the valve body 15 in the axial direction by the driving portion 19a at the tip. Not limited to the above structure, various structures may be employed such as a structure in which the block-shaped piezoelectric body is deformed in the thickness direction and the valve body 15 is pressed in the axial direction.

気体供給弁の第1実施形態の概略縦断面図。The schematic longitudinal cross-sectional view of 1st Embodiment of a gas supply valve. 第1実施形態における図1のII−II線に沿った概略断面矢視図。FIG. 2 is a schematic cross-sectional arrow view taken along line II-II in FIG. 1 in the first embodiment. 第1実施形態における図1のIII−III線に沿った概略断面矢視図。FIG. 3 is a schematic cross-sectional arrow view taken along line III-III in FIG. 1 in the first embodiment. 気体供給弁の第2実施形態の概略縦断面図。The schematic longitudinal cross-sectional view of 2nd Embodiment of a gas supply valve. 第2実施形態における図4のV−V線に沿った概略断面矢視図。The schematic sectional arrow directional view along the VV line | wire of FIG. 4 in 2nd Embodiment. 部品搬送装置の構成を模式的に示す概略構成説明図。Schematic structure explanatory drawing which shows the structure of a components conveying apparatus typically.

1…部品搬送装置、2…加振機構、3…振動体、4…搬送体、4a…部品搬送路、4b…給気経路、4c…センサ、4d…判別部、4X…部品選別部、5…コンプレッサ、6、8…給気管、7…流量調整器、10、10′…気体供給弁、11…ハウジング、11A…主構造部、11B…延長部、11a…凹穴、11b…固定部位、11c…気体導入路、11d…気体導入部、11e…導入開口、11j…外側貫通孔、12…弁シリンダ、12a…軸孔、12d…導出開口、12e…内側貫通孔、12f…中間凹溝、15…弁体、15a…閉塞部、18…弾性部材、19…圧電アクチュエータ、19a…駆動部、19b…基端部、19A…弾性板、19B、19C…圧電体層、21…固定部材、23…取付部材、P…部品 DESCRIPTION OF SYMBOLS 1 ... Component conveyance apparatus, 2 ... Excitation mechanism, 3 ... Vibrating body, 4 ... Conveyance body, 4a ... Component conveyance path, 4b ... Air supply path, 4c ... Sensor, 4d ... Discriminating part, 4X ... Component selection part, 5 DESCRIPTION OF SYMBOLS Compressor 6, 8 ... Supply pipe, 7 ... Flow regulator 10, 10 '... Gas supply valve, 11 ... Housing, 11A ... Main structure part, 11B ... Extension part, 11a ... Recessed hole, 11b ... Fixed part, 11c ... Gas introduction path, 11d ... Gas introduction part, 11e ... Introduction opening, 11j ... Outer through hole, 12 ... Valve cylinder, 12a ... Shaft hole, 12d ... Outlet opening, 12e ... Inner through hole, 12f ... Intermediate concave groove, DESCRIPTION OF SYMBOLS 15 ... Valve body, 15a ... Closure part, 18 ... Elastic member, 19 ... Piezoelectric actuator, 19a ... Drive part, 19b ... Base end part, 19A ... Elastic plate, 19B, 19C ... Piezoelectric layer, 21 ... Fixing member, 23 ... Mounting member, P ... Part

Claims (6)

気体を導入する気体導入路と、該気体導入路の導入開口が内部に臨む弁シリンダと、該弁シリンダの内部において前記導入開口を開閉可能に構成する閉塞部を備えた弁体と、前記弁シリンダの内部に臨む導出開口を備えた気体導出路と、前記弁体を駆動して前記導入開口の開閉動作を行う圧電アクチュエータと、を具備する気体供給弁において、
弁の開放時において前記導入開口と前記導出開口の間の内部空間を外部に連通させる通気経路が前記気体導入路及び前記気体導出路とは別に設けられることを特徴とする気体供給弁。
A gas introduction path for introducing gas; a valve cylinder in which an introduction opening of the gas introduction path faces; a valve body including a closing portion configured to open and close the introduction opening inside the valve cylinder; and the valve In a gas supply valve comprising a gas lead-out path having a lead-out opening facing the inside of a cylinder, and a piezoelectric actuator that drives the valve body to open and close the introduction opening,
A gas supply valve, wherein a vent path that communicates the internal space between the inlet opening and the outlet opening to the outside when the valve is opened is provided separately from the gas inlet path and the gas outlet path.
前記弁シリンダ内においては、前記導入開口に向けて前記弁シリンダの周囲内面との間に間隔を有する態様で前記閉塞部が突出し、前記通気経路は前記間隔内に開口していることを特徴とする請求項1に記載の気体供給弁。   In the valve cylinder, the closing portion protrudes in a form having a space between the valve cylinder and an inner surface surrounding the valve cylinder toward the introduction opening, and the ventilation path opens in the space. The gas supply valve according to claim 1. 前記導入開口を先端に備えた気体導入部が前記弁シリンダの周囲内面との間に間隔を有する態様で前記弁体に向けて突出するとともに、前記気体導入部の先端が先細状に構成されることを特徴とする請求項2に記載の気体供給弁。   The gas introduction part provided with the introduction opening at the tip protrudes toward the valve body in a manner having a space between the valve cylinder and the inner peripheral surface, and the tip of the gas introduction part is tapered. The gas supply valve according to claim 2. 前記導出開口の前記内部空間に対する開口位置は、前記導入開口の開口位置に対し前記閉塞部の移動方向と直交する方向に配置されることを特徴とする請求項1乃至3のいずれか一項に記載の気体供給弁。 4. The opening position of the lead-out opening with respect to the internal space is arranged in a direction perpendicular to the moving direction of the closing portion with respect to the opening position of the introduction opening. 5. The gas supply valve described. 前記閉塞部が前記導入開口から離間する方向の前記弁体の移動限界を設定する弁体規制手段を有することを特徴とする請求項1乃至4のいずれか一項に記載の気体供給弁。 5. The gas supply valve according to claim 1, further comprising a valve body regulating unit that sets a movement limit of the valve body in a direction in which the closing portion is separated from the introduction opening. 6. 請求項1乃至5のいずれか一項に記載の気体供給弁と、該気体供給弁を介して供給された気体を選択的に部品に吹き付けて選別を行う部品選別部と、該部品選別部を通過する部品搬送路と、を具備することを特徴とする部品搬送装置。   A gas supply valve according to any one of claims 1 to 5, a component selection unit that performs selection by selectively blowing a gas supplied through the gas supply valve to the component, and the component selection unit. A component conveying apparatus comprising: a component conveying path that passes therethrough.
JP2008155345A 2008-06-13 2008-06-13 Gas supply valve and parts transfer device Expired - Fee Related JP4555366B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008155345A JP4555366B2 (en) 2008-06-13 2008-06-13 Gas supply valve and parts transfer device
KR1020090041556A KR20090129941A (en) 2008-06-13 2009-05-13 Gas supply valve and part conveying apparatus
CNA2009101453258A CN101603611A (en) 2008-06-13 2009-06-03 Air supply valve and component conveying apparatus
SG200903923-1A SG158028A1 (en) 2008-06-13 2009-06-09 Gas supply valve and part conveying apparatus
TW098119672A TW201009225A (en) 2008-06-13 2009-06-12 Gas supply valve and part conveying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008155345A JP4555366B2 (en) 2008-06-13 2008-06-13 Gas supply valve and parts transfer device

Publications (2)

Publication Number Publication Date
JP2009299799A JP2009299799A (en) 2009-12-24
JP4555366B2 true JP4555366B2 (en) 2010-09-29

Family

ID=41469457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008155345A Expired - Fee Related JP4555366B2 (en) 2008-06-13 2008-06-13 Gas supply valve and parts transfer device

Country Status (5)

Country Link
JP (1) JP4555366B2 (en)
KR (1) KR20090129941A (en)
CN (1) CN101603611A (en)
SG (1) SG158028A1 (en)
TW (1) TW201009225A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4938900B1 (en) * 2011-04-28 2012-05-23 株式会社ダイシン Pneumatic pressure switching mechanism and work transfer device equipped with the same
TWI427227B (en) * 2011-08-01 2014-02-21 Koge Electronics Co Ltd Proportional valve
ITCO20110072A1 (en) * 2011-12-22 2013-06-23 Nuovo Pignone Spa VALVES WITH VALVE VALVE END CONNECTED TO THE ACTUAL COUNTERS AND RELATIVE METHODS
DE102013111025A1 (en) * 2013-10-04 2015-04-09 Krones Ag Valve device for the controlled introduction of a blowing medium
DE102016108811A1 (en) * 2016-05-12 2017-11-16 Marco Systemanalyse Und Entwicklung Gmbh Piezoelectric actuator
CN106304830B (en) * 2016-10-19 2021-12-24 深圳市路远智能装备有限公司 Mounting head convergence structure and intelligent chip mounter
CN109454428B (en) * 2019-01-15 2024-07-26 苏州托克斯冲压设备有限公司 Shaft retainer ring mounting device
CN111112111B (en) * 2019-12-31 2023-10-27 上海宝嵩机器人有限公司 Multi-station ball valve gas testing equipment and working method thereof
CN114509033B (en) * 2022-01-16 2023-08-04 贵州德科纳精密设备制造有限公司 Automatic detection device for valve conical surface runout and total length of rod
DE102022105390A1 (en) 2022-03-08 2023-09-14 Festo Se & Co. Kg Sorting device
CN114619422B (en) * 2022-03-22 2024-05-31 苏州宛弘智能装备有限公司 Rectangular coordinate robot with three-axis modularized combination

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104585U (en) * 1990-02-13 1991-10-30
JPH08113931A (en) * 1994-10-17 1996-05-07 Dengiyoushiya Kikai Seisakusho:Kk Effluent valve
JPH1151207A (en) * 1997-07-30 1999-02-26 Kubota Corp Gate valve provided with intake or exhaust function
JP2003010790A (en) * 2001-06-28 2003-01-14 Ntn Corp Apparatus for supplying part
JP2006250221A (en) * 2005-03-10 2006-09-21 Daishin:Kk Flow passage changeover unit, suction retention unit and pressure operation unit
JP2008232202A (en) * 2007-03-19 2008-10-02 Shinko Electric Co Ltd Piezoelectric valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104585U (en) * 1990-02-13 1991-10-30
JPH08113931A (en) * 1994-10-17 1996-05-07 Dengiyoushiya Kikai Seisakusho:Kk Effluent valve
JPH1151207A (en) * 1997-07-30 1999-02-26 Kubota Corp Gate valve provided with intake or exhaust function
JP2003010790A (en) * 2001-06-28 2003-01-14 Ntn Corp Apparatus for supplying part
JP2006250221A (en) * 2005-03-10 2006-09-21 Daishin:Kk Flow passage changeover unit, suction retention unit and pressure operation unit
JP2008232202A (en) * 2007-03-19 2008-10-02 Shinko Electric Co Ltd Piezoelectric valve

Also Published As

Publication number Publication date
JP2009299799A (en) 2009-12-24
TW201009225A (en) 2010-03-01
SG158028A1 (en) 2010-01-29
CN101603611A (en) 2009-12-16
KR20090129941A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP4555366B2 (en) Gas supply valve and parts transfer device
JP2002195438A (en) Solenoid valve
JP5502240B2 (en) solenoid valve
JP6588950B2 (en) Gripping tool, gripping system, and gripping tool control method
JPWO2006137404A1 (en) Flow control valve
DE60328064D1 (en) valve assembly
US20040065858A1 (en) Unibody valve and techniques for making same for a purge control device
JP7175208B2 (en) Solenoid valve for gas
KR102304548B1 (en) Valve device and control method using the same, fluid control device and semiconductor manufacturing device
US6717332B2 (en) Apparatus having a support structure and actuator
JP4555159B2 (en) Vibrating parts conveyor
JP2010506084A (en) Electromagnetically driven valve with energy consumption monitor and control method thereof
CN113661322B (en) Capacity control valve
JPH05305593A (en) Article nipping device
CN114072607A (en) Piezoelectric valve and method for manufacturing the same
JPH11248010A (en) Valve
JP2539502Y2 (en) Electro-pneumatic regulator
JP2005315326A (en) Small-sized solenoid valve
JP2007113764A (en) Diaphragm type control valve
JP2955520B2 (en) solenoid valve
JP4567408B2 (en) Solenoid valve manifold
JP4938900B1 (en) Pneumatic pressure switching mechanism and work transfer device equipped with the same
JPH0356342B2 (en)
JP4555129B2 (en) Flow path switching unit, suction holding unit, atmospheric pressure operation unit, and parts transfer device
JP5208571B2 (en) Bellows device and dispensing device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100204

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100204

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees