[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4553468B2 - Non-aqueous secondary battery and charging method thereof - Google Patents

Non-aqueous secondary battery and charging method thereof Download PDF

Info

Publication number
JP4553468B2
JP4553468B2 JP2000275769A JP2000275769A JP4553468B2 JP 4553468 B2 JP4553468 B2 JP 4553468B2 JP 2000275769 A JP2000275769 A JP 2000275769A JP 2000275769 A JP2000275769 A JP 2000275769A JP 4553468 B2 JP4553468 B2 JP 4553468B2
Authority
JP
Japan
Prior art keywords
positive electrode
peak
secondary battery
negative electrode
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000275769A
Other languages
Japanese (ja)
Other versions
JP2002093405A (en
Inventor
房次 喜多
英郎 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2000275769A priority Critical patent/JP4553468B2/en
Publication of JP2002093405A publication Critical patent/JP2002093405A/en
Application granted granted Critical
Publication of JP4553468B2 publication Critical patent/JP4553468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水二次電池およびその充電方法に関するものであり、さらに詳しくは、高容量で、かつ貯蔵特性が優れた非水二次電池およびそれを用いる際の充電方法に関するものである。
【0002】
【従来の技術】
リチウムイオン二次電池に代表される非水二次電池は、容量が大きく、かつ高電圧、高エネルギー密度、高出力であることから、ますます需要が増える傾向にある。しかし、この非水二次電池に対してもさらなる高容量化や高電圧化が要望されており、それに応えるためには電池を充電する際に充電電力量を増加させることが必要になる。
【0003】
【発明が解決しようとする課題】
そこで、高容量化および高電圧化を進めるべく、電池の充電電力量を増加させていくと、貯蔵特性が劣化してしまうことが判明した。例えば、電極積層体の単位体積当たりの充電電力量が0.59Wh/cm3 以上になる条件下では、貯蔵特性の確保が非常に難しくなることが判明した。これは、電極積層体の単位体積当たりの充電電力量が大きくなればなるほど正極の温度上昇が大きくなり、正極が高電位に保持されることと相まって、電解液(液状電解質)の一部が分解し、正極表面が劣化するからである。ここで電極積層体の体積とは、電池内で正極、負極、セパレータを積層または巻回したものが占める嵩体積であって、後者の巻回したものにあっては巻き軸に基づいて形成された孔などは体積として含まない。要するに、電池内で正極、負極、セパレータが占める嵩体積を合計したものである。
【0004】
そのため、本発明者らは、正極の表面に着目し、正極表面での電解液との反応を低減することによって上記のような貯蔵特性の劣化を解消させる方法を検討した。つまり、正極に用いられる4V級の活物質すなわちLiCoO2 、LiNiO2 などのリチウム複合酸化物や、5V級の活物質すなわちLiMn2 4 、LiMn1.5 Ni0.5 4 など、おおよそ4.5〜5.5Vの電位を有し得るリチウム複合酸化物は一種の触媒でもあり、電解液との反応を抑制するためには、その触媒能を低減させる必要がある。そこで、本発明者らは、正極表面に高耐電圧で安定性の高い保護被膜を形成し、その保護被膜によって、正極と電解液との反応を抑制することが貯蔵特性の劣化を抑制するにあたって有効であると考えた。
【0005】
そこで、本発明者らは、上記方針に基づいて種々検討を重ねた結果、上記保護被膜として有機イオウ化物またはフルオロアルキル基を有する化合物または有機窒化物のいずれかを含んだ被膜を形成することが貯蔵特性の劣化を抑制するのに有効であることを見出した。
【0006】
しかしながら、上記のような保護被膜は充放電を阻害する要因になるため、高容量化と優れた貯蔵特性を両立させるためには、上記保護被膜は厚みをできるだけ薄くし、かつイオン伝導度を有することが望ましい。すなわち、上記保護被膜を薄くし、かつイオン伝導度を有するようにすれば、充放電時にリチウムイオンの出入りがスムーズになり、充放電反応が阻害されることがなくなって、高容量化と優れた貯蔵特性とが両立できるものと考えられる。
【0007】
本発明は、上記のような考えに基づき、例えば、電極積層体の単位体積当たりの充電電力量が0.59Wh/cm3 以上となる条件下で利用されるような高容量の非水二次電池においても貯蔵特性を向上させ、高容量で、かつ貯蔵特性が優れた非水二次電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の第一は、リチウム複合酸化物を正極活物質として用いた正極、負極および非水電解質を有する非水二次電池において、正極合剤中および/または負極合剤中に、炭素数8以上の炭化水素鎖を有するエステル化合物またはエーテル化合物と、有機リチウム塩とを含有し、かつ正極合剤および/または負極合剤の含有する前記有機リチウム塩の濃度が、非水電解質中よりも高く、正極表面のXPS分析で、168〜170eVの間にイオウに基づくピーク、291〜295eVの間に炭素に基づくピーク、および399〜401eVの間に窒素に基づくピークを有し、かつそれぞれのピークより求められる正極表面での各元素の原子比は、イオウが1%以上、炭素が3%以上、窒素が0.3%以上のいずれかの値になることを特徴とする非水二次電池である。
【0009】
また、本発明の第二は、上記構成からなる非水二次電池に対し、正極電位がリチウム基準で4.3V以上、好ましくは4.4V以上となる条件で充電を行うことを特徴とする非水二次電池の充電方法である。
【0010】
本発明において、上記XPS分析に基づくイオウ、炭素、窒素の量を示す%は、原子比に基づくものであるから、原子%である。
【0011】
そして、上記のような168〜170eVの間のイオウ(硫黄)に基づくピークは有機イオウ化物に対応するピークであり、291〜295eVの間の炭素に基づきピークはフルオロアルキル基を有する化合物に対応するピークであり、399〜401eVの間の窒素に基づくピークは有機窒化物に対応するピークである。これらが正極表面の保護被膜中に含まれることにより貯蔵特性を向上させる作用を発揮する。
【0012】
【発明の実施の形態】
本発明において、上記被膜を正極表面に形成するための手段としては、例えば、化学式LiN(Rf1 SO2 )(Rf2 SO2 )で表されるフルオロアルキル基を含むイミド系リチウム塩や化学式LiN(Rf3 OSO2 )(Rf4 OSO2 )で表されるイミドエステル系リチウム塩などを電解液に添加する方法が挙げられる。ここでRf1 、Rf2 、Rf3 、Rf4 はフルオロアルキル基を含む置換基であり、それらの中でも、特にイミドエステル系リチウム塩が好ましい。上記のようなイミド系リチウム塩やイミドエステル系リチウム塩を含む非水二次電池に対し、正極が高い電位を有するように充電を行うと正極の表面に所望の保護被膜が形成される。すなわち、リチウム基準で4.3V以上になるように充電を行うと貯蔵特性の向上にあたって良好な作用を有する保護被膜が形成される。さらに電位が4.4V以上、さらに4.5V以上と高くなるに従い貯蔵特性の向上にあたってより良好な作用を有する保護被膜が得られ、4.6V以上では貯蔵特性の向上にあたってさらに良好な作用を有する保護被膜が得られるようになる。
一方、4.3V未満の充電では、正極表面の保護被膜が形成されてはいるものの、薄すぎたり、不均一であったりして、貯蔵特性の向上効果が得られにくい。ここで、負極に黒鉛などの炭素材料を用いた電池に対しては、リチウム基準で正極の電位が4.3V以上になる充電とは、電池に印加される電圧に換算するとおおよそ4.2V以上に相当し、リチウム基準で正極の電位が4.4V以上になる充電とは、電池に印加される電圧に換算するとおおよそ4.3V以上に相当する。
【0013】
また、充電する電力量によっても形成される保護被膜の厚さや組成が変化する。電極積層体単位体積当たり0.59Wh/cm3 以上の充電電力量で充電される場合は良好な保護被膜が形成されやすい。さらに電極積層体単位体積当たり0.6Wh/cm3 以上の充電電力量で充電される場合はより良好な保護被膜が形成されやすく、電極積層体単位体積当たり0.63Wh/cm3 以上の充電電力量で充電される場合はさらに良好な保護被膜が形成されやすい。なお、この電極積層体単位体積当たりの充電電力量は3Vまで0.1Cで放電後0.1Cで満充電まで充電した場合の電圧と電気量の積分値から計算することによって求められる。
【0014】
本発明では、XPS分析で得られたピークをピーク分割し、正極表面に存在する各元素の原子比を算出したときに、イオウは1%以上、炭素は3%以上、窒素は0.3%以上のいずれかの値になることが必要であり、それぞれ、イオウは2%以上、炭素は5%以上、窒素は1%以上がより好ましい。ただし、それぞれの元素の比率が高くなりすぎるとリチウムイオンの移動を抑制する傾向があるので、イオウは10%以下が好ましく、5%以下がより好ましく、炭素は20%以下が好ましく、10%以下がより好ましく、窒素は10%以下が好ましく、2.5%以下がより好ましい。また、イオウに基づくピーク、炭素に基づくピーク、窒素に基づくピークの2つ以上のピークを有することが好ましく、3つのピークのすべてを有することがより好ましい。なお、XPS分析にあたっては、電池を0.1C相当で放電した後、不活性雰囲気中で電池を分解して正極を取り出し、メチルエチルカーボネートで洗浄後、真空乾燥を24時間行い、XPS分析用試料とする。そして、XPS分析は、VG社のEsca lab mark2(商品名)で12kV−10mAでMg−kα線を用いて測定し、ピーク分割を行って各ピークの原子比を算出する。また、時代の変遷により、上記分析機器がなくなった場合には、それに相当する分析機器および条件でもかまわない。
【0015】
また、正極表面に形成された保護被膜にフルオロアルキル基を有する化合物が含まれている場合は、ピーク分割した後の前記炭素に基づくピーク強度をIaとし、同じく他の炭素(フルオロアルキル基以外のものに基づく炭素)に基づくピーク強度の合計をIcとしたときに、Ia/Ic≧0.2であればより貯蔵特性を向上させることができる。
【0016】
さらに、この保護被膜の厚さは充放電を阻害しない程度に薄い方が好ましく、また、正極表面のアルゴンスパッタエッチング(加速電圧3kV、イオン電流30μA)を2分間行い、正極表面から少し内部に入った部分でのXPS分析を行った場合、そのピーク強度が上記アルゴンスパッタエッチング前の正極表面のピーク強度より小さくなることが好ましい。例えば、正極表面でのピーク強度を100とした場合に、上記アルゴンスパッタエッチング後のピーク強度が90以下になることが好ましく、より好ましくは80以下、さらに好ましくは76以下である。ただし、被膜が薄すぎる場合は、貯蔵特性の向上効果が得られにくくなるため、ピーク強度は1以上であることが好ましく、10以上であることがより好ましい。
【0017】
また、前記したように、正極表面の保護被膜がイオン伝導性を有するとさらに好ましい。そのためには、電解質塩としてフルオロアルキル基を含むイミド系リチウム塩やイミドエステル系リチウム塩とともに、LiPF6 が共存していることが好ましい。従来、LiPF6 系電解液はLiFを生成することが報告されていて、正極表面もLiFで覆われているという報告があるが、そのようなLiFではイオン伝導性を向上させることができない。正極表面の保護被膜のイオン伝導性を向上させるためには、正極表面の保護被膜内にLiPF6 またはリンを含むフッ素化物が存在することが好ましい。すなわち、XPS分析で135〜138eVの間にリンに基づくピークが存在し、かつ685〜689eVの間にフッ素に基づくピークが存在することが好ましい。そして、正極の表面に存在する135〜138eVの間のリンに基づくピークは原子比換算で1.0%以上が好ましく、2%以上がより好ましい。また、5%以下が好ましく、3%以下がより好ましい。
【0018】
本発明において、正極合剤中および/または負極合剤中に含有させる炭素数8以上の炭化水素鎖を有するエステル化合物としては、例えば、CH3 (CH2 7 CH=CH(CH2 7 COOC4 9 、CH3 (CH2 7 CH=CH(CH2 7 COOC2 5 、CH3 (CH2 7 CH=CH(CH2 7 COOCH3 などのC=C不飽和結合を有するオレイン酸エステル、C1735COOC2 5 などのステアリン酸エステル、CH3 (CH2 14COOC2 5 などのパルミチン酸エステル、CH3 (CH2 12COOC2 5 ミリスチン酸エステル、C1123COOC2 5 などのラウリン酸エステル、C1123COO(CH2 CH2 O)n Hなどのエステル化合物が挙げられる。また、その炭素系のエステルのCOO部分をSO2 やSO3 で置換したイオウ系エステルでもよいし、さらに、(RO)(R′O)(R′′O)P=O、(R、R′、R′′は炭素1以上の炭化水素鎖で少なくとも1つ以上は炭素数8以上のものを含む)でもよい。
【0019】
また、正極合剤中および/または負極合剤中に含有させる炭素数8以上の炭化水素鎖を有するエーテル化合物としては、例えば、C1123O(CH2 CH2 O)n などのエーテル、Cn 2n+1−C6 4 −O(CH2 CH2 O)m Hなどの芳香族環を含むエーテルなどが挙げられる。
【0020】
上記エステル化合物やエーテル化合物は、それぞれにおいて単独で用いてもよいし、また、エステル化合物中やエーテル化合物中のそれぞれにおいて2種以上併用してもよいし、さらには、エステル化合物とエーテル化合物を併用してもよい。そして、この炭素数8以上の炭化水素鎖を有するエステル化合物またはエーテル化合物は正極合剤または負極合剤のいずれかのみに含有させてもよいし、また、正極合剤および負極合剤の両方に含有させてもよい。
【0021】
本発明において、この正極合剤中および/または負極合剤中に含有させるエステル化合物またはエーテル化合物について、炭素数8以上の炭化水素鎖を有することを要件にしているのは、電極の濡れ性を高め、電池反応を均一に進行させやすくするためにはある程度の炭化水素鎖の長さが必要であり、炭素数8以上のものであれば必要な程度の濡れ性を確保できるからである。そして、その炭化水素鎖としては、炭素数12以上のものが好ましく、炭素数15以上のものがより好ましく、炭素数17のものがさらに好ましい。ただし、炭素数が大きくなりすぎると電極の均一性が確保し難くなる傾向にあるため炭素数50以下のものが好ましい。また、炭化水素鎖中にC=C不飽和結合を有する場合には電極の反応の均一性がさらに良くなるので好ましい。特に非共鳴タイプのC=C不飽和結合を有する場合が好ましい。このようなエステル化合物またはエーテル化合物のうち好適なものを構造式で示すと、Cn m XRであり、その式中のnは8以上、mは15以上、XはCOO、SO3 またはSO4 であり、Rはフッ素を有するアルキル基またはポリエチレンオキサイド基である。
【0022】
この炭素数8以上の炭化水素鎖を有するエステル化合物またはエーテル化合物の正極合剤中の含有量としては、正極活物質に対して0.001重量%(正極活物質100重量部に対して上記エステル化合物またはエーテル化合物が0.001重量部)以上が好ましく、0.05重量%以上がより好ましく、0.01重量%以上がさらに好ましく、また、3重量%以下が好ましく、0.5重量%以下がより好ましく、0.2重量%以下がさらに好ましい。つまり、炭素数8以上の炭化水素鎖を有するエステル化合物またはエーテル化合物の正極合剤中の含有量を正極活物質に対して0.001重量%以上にすることにより、正極が電解液に濡れやすくなり、均一に反応が起こりやすくなる。また、炭素数8以上の炭化水素鎖を有するエステル化合物またはエーテル化合物の正極合剤中の含有量を正極活物質に対して2重量%以下にすることによって、電池のインピーダンスの増加を許容し得る範囲内に抑制することができる。
【0023】
また、上記炭素数8以上の炭化水素鎖を有するエステル化合物またはエーテル化合物を負極合剤中に含有させる場合は、負極活物質に対して0.001重量%(負極活物質100重量部に対して上記エステル化合物またはエーテル化合物が0.001重量部)以上が好ましく、0.1重量%以上がより好ましく、0.4重量%以上がさらに好ましく、また、5重量%以下が好ましく、3重量%以下がより好ましく、1重量%以下がさらに好ましい。つまり、炭素数8以上の炭化水素鎖を有するエステル化合物またはエーテル化合物の負極合剤中の含有量を負極活物質に対して0.001重量%以上にすることにより、負極が電解液に濡れやすくなり、均一に反応が起こりやすくなる。また、炭素数8以上の炭化水素鎖を有するエステル化合物またはエーテル化合物の負極合剤中の含有量を負極活物質に対して5重量%以下にすることによって、電池のインピーダンスの増加を許容し得る範囲内に抑制することができる。
【0024】
また、正極合剤中または負極合剤中には、あらかじめ有機リチウム塩を存在させておく。上記エステル化合物またはエーテル化合物が有機リチウム塩と併存することでイオン伝導性を有するようになり、電極の反応の均一性がさらに向上し、貯蔵特性がより高められる。この有機リチウム塩としては、例えば、CSOLi、C17SOLi、(CSONLi、(CFSO)(CSO)NLi、(CFSOCLi、CSOLi、C1735COOLiなどが熱安定性や安全性が高いことから好ましく、イオン解離性を考慮した場合、含フッ素有機リチウム塩が特に好ましい。
【0025】
この有機リチウム塩を正極合剤中に含有させる場合、有機リチウム塩の含有量としては、正極活物質に対して0.01重量%(正極活物質100重量部に対して有機リチウム塩が0.01重量部)以上が好ましく、0.05重量%以上がより好ましく、0.1重量%以上がさらに好ましく、また、5重量%以下が好ましく、3重量%以下がより好ましく、1重量%以下がさらに好ましい。また、この有機リチウム塩を負極合剤中に含有させる場合、有機リチウム塩の含有量としては、負極活物質に対して0.01重量%(負極活物質100重量部に対して有機リチウム塩が0.01重量部)以上が好ましく、0.05重量%以上がより好ましく、0.1重量%以上がさらに好ましく、また、5重量%以下が好ましく、3重量%以下がより好ましく、1重量%以下がさらに好ましい。
【0026】
そして、この有機リチウム塩の正極合剤中または負極合剤中の含有量は、非水電解質中より高濃度である。これは、電極内でのイオン移動がしやすくなり、電池特性上から好ましいからである。
【0027】
本発明では、上記の正極、負極および非水電解質(この電解質の中には、液状電解質である電解液も含む)を組み合わせて非水二次電池を構成する。
【0028】
正極の活物質としては、例えば、充電時の開路電圧がLi基準で4V以上を示すLiCoO2 、LiMn2 4 、LiNiO2 などのリチウム複合酸化物が用いられる。これらのリチウム複合酸化物からなる活物質が充電時にLi基準で4.4V以上の電位を少なくとも1回以上有することにより、前記被膜が形成されて電池の貯蔵特性が向上する。また、前記活物質は、Co、Mn、Niの一部あるいは大部分がそれぞれ別の元素で置換されていてもよく、とりわけ、Al、Fe、Ge、Ti、Ta、Mg、Nb、Cr、Y、Zr、YbおよびMoよりなる群から選ばれる少なくとも一種の元素を含有させることにより、貯蔵特性の向上に際してより好ましい結果が得られ、それらの元素の中でも、特にGe、Ti、Ta、Nb、Ybが好ましい。そのようなリチウム複合酸化物の例としては、例えば、LiCo0.97Al0.032 、LiCo0.97Al0.025 Ge0.005 2 、LiNi0.7 Co0.2 Al0.1 2 などが挙げられる。また、X線回折でLiCoO2 構造を示すLiCoO2 系化合物を用いる場合、通常、正極合剤層の密度は3.2g/cm3 程度だが、本発明の炭素数8以上の炭化水素鎖を有するエステル化合物またはエーテル化合物を正極合剤中に含有させる場合には、正極合剤層の密度が3.3〜3.5g/cm3 程度の高密度であっても、良好な電解液の濡れ性を確保でき、高容量化と貯蔵特性の向上を達成できる。
【0029】
そして、正極は、例えば、上記リチウム複合酸化物などからなる正極活物質に、必要に応じて、例えば黒鉛、アセチレンブラック、カーボンブラックなどの導電助剤、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンプロピレンゴムなどのバインダーや、炭素数8以上の炭化水素鎖を有するエステル化合物またはエーテル化合物、有機リチウム塩などを適宜添加し、溶剤でペースト状にし(バインダーはあらかじめ溶剤に溶解させておいてから正極活物質などと混合してもよい)、得られた正極合剤含有ペーストを金属箔などからなる正極集電材に塗布し、乾燥して正極合剤層を形成し、必要に応じてプレスして調厚することによって作製される。ただし、正極の作製方法は、上記例示のものに限られることはなく、他の方法によってもよい。
【0030】
上記正極集電材としては、例えばアルミニウムを主成分とする箔が好適に用いられ、その純度は98重量%以上、99.9重量%以下が好ましい。従来のリチウムイオン二次電池では純度が99.9重量%以上のアルミニウム箔が通常用いられているが、本発明においては正極集電材として15μm以下の金属箔を多用するので、ある程度の強度を確保するために純度が99.9重量%未満のものであることが好ましい。特に含有元素として好ましいのは、鉄とシリコンである。
鉄の含有量としては0.5重量%以上が好ましく、さらに好ましくは0.7重量%以上であり、また、2重量%以下が好ましく、より好ましくは1.3重量%以下である。シリコンの含有量としては0.1重量%以上が好ましく、より好ましくは0.2重量%以上であり、また、1.0重量%以下が好ましく、より好ましくは0.3重量%以下である。正極集電材の引っ張り強度としては150N/mm2 以上が好ましく、180N/mm2 以上がより好ましい。また、正極集電材の破断伸びとしては2%以上が好ましく、3%以上がより好ましい。
【0031】
正極集電材の引っ張り強度や破断伸びが大きい方が好ましいのは、電極積層体の単位体積当たりの充電電力量が大きくなるにつれて正極の充電時の膨張が大きくなり、それに伴って正極集電材が切れやすくなる傾向があることに基づきものであり、その切断を抑制するためには正極集電材の引っ張り強度や破断伸びが大きい方が適しているからである。
【0032】
負極における負極合剤中の主要材料は、リチウムイオンをドープ、脱ドープできるものであればよく、本発明においては、これを負極活物質と呼ぶが、この負極活物質としては、例えば、天然黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素質材料が挙げられる。また、Si、Sn、Inなどの合金またはLiに近い低電圧で充放電できる酸化物や窒化物などの化合物も負極活物質として用いることができる。
【0033】
負極に炭素質材料を用いる場合、下記の特性を持つものが好ましい。すなわち、その(002)面の面間距離(d002 )に関しては、0.35nm以下が好ましく、より好ましくは0.345nm以下、さらに好ましくは0.34nm以下である。また、c軸方向の結晶子の大きさ(Lc)に関しては、3nm以上が好ましく、より好ましくは8nm以上、さらに好ましくは25nm以上である。そして、平均粒径は8〜20μm、特に10〜15μmが好ましく、純度は99.9重量%以上が好ましい。また、前記炭素質材料を用いる場合は、負極密度を1.45g/cm3 以上にするのが高容量化のために好ましく、より好ましくは1.5g/cm3 以上である。通常、負極合剤層を高密度にすると、高容量は得られやすくなるが、負極が均一に反応し難くなり、貯蔵特性が低下する傾向がある。しかし、本発明では、負極合剤中炭素数8以上の炭化水素鎖を有するエステル化合物またはエーテル化合物を含有させることによって、負極合剤層を1.5g/cm3 以上の高密度にする場合でも良好な貯蔵特性を得ることができ、高容量化と貯蔵特性の向上を達成することができる。
【0034】
負極は、例えば、上記負極活物質に、必要に応じて、バインダー、炭素数8以上の炭化水素鎖を有するエステル化合物またはエーテル化合物、リチウム塩などを適宜添加し、溶剤を用いてペースト状にし(バインダーはあらかじめ溶剤に溶解させておいてから負極活物質などと混合してもよい)、得られた負極合剤含有ペーストを負極集電材に塗布し、乾燥して負極合剤層を形成し、必要に応じプレスして調厚することによって作製される。ただし、負極の作製方法は、上記例示のものに限られることはなく、他の方法によってもよい。
【0035】
上記バインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンプロピレンジエンゴム、フッ素ゴム、スチレンブタジエンゴム、セルロース系樹脂、ポリアクリル酸などを単独または2種以上の混合物として用いることができる。また、負極集電材としては、一般に銅箔などの金属箔が用いられ、特に表面を粗面化した電解銅箔が好適に用いられる。
【0036】
非水電解質としては、非水系の液状電解質、ゲル状ポリマー電解質、固体電解質のいずれも用いることができるが、本発明においては、通常、電解液と呼ばれる液状電解質が用いられる。電解液は、有機溶剤を主材とする非水溶媒にリチウム塩などの電解質塩を溶解させることによって調製されるが、その溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチルなどの鎖状のCOO−結合を有する鎖状アルキルエステル、リン酸トリメチルなどの鎖状リン酸トリエステル、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどを用いることができる。そのほか、アミンイミド系有機溶媒やスルホランなどのイオウ系有機溶媒なども用いることができる。
【0037】
さらにその他の溶媒成分としては誘電率が高いエステル(誘電率30以上)が好適に使用され、そのような誘電率が高いエステルの具体例としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマーブチロラクトンなどが挙げられ、また、エチレングリコールサルファイトなどのイオウ系エステルも用いることができる。さらに、環状構造のエステルが好ましく、特にエチレンカーボネートのような環状カーボネートが好ましい。
【0038】
上記誘電率が高いエステルは安全性の点から電解液の全溶媒成分中の80体積%未満が好ましく、より好ましくは50体積%以下、さらに好ましくは30体積%以下で、放電特性の点からは1体積%以上が好ましい。
【0039】
電解液の調製にあたっては上記溶媒に溶解させる電解質塩としては、例えば、LiClO4 、LiPF6 、LiBF4 、LiAsF6 、LiSbF6 、LiCF3 SO3 、LiC4 9 SO3 、LiCF3 CO2 、Li2 2 4 (SO3 2 、LiN(Rf1 SO2 )(Rf2 SO2 )〔ここで、Rf1 、Rf2 はフルオロアルキル基を含む置換基である〕、LiN(Rf3 OSO2 )(Rf4 OSO2 )〔ここで、Rf3 、Rf4 はフルオロアルキル基である〕、LiCn 2n+1SO3 (n≧2)、LiC(Rf5 SO2 3 、LiN(Rf6 OSO2 2 〔ここで、Rf5 、Rf6 はフルオロアルキル基である〕、ポリマータイプイミドリチウム塩などが単独でまたは2種以上混合して用いられる。これらが正極表面の保護被膜中に取り込まれると、保護被膜にイオン伝導性を付与することができ、特にLiPF6 はその効果が大きいので好ましい。電解液中における電解質塩の濃度は、特に限定されるものではないが、濃度を0.3mol/l以上、特に0.4mol/l以上にするのが好ましく、また、1.7mol/l以下、特に1.5mol/l以下にするのが好ましい。
【0040】
ゲル状ポリマー電解質は、電解液をゲル化剤によってゲル化したものに相当するが、そのゲル化にあたっては、例えば、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリアクリロニトリルなどの直鎖状ポリマーまたはそれらのコポリマー、紫外線や電子線などの活性光線の照射によりポリマー化する多官能モノマー(例えば、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレートなどの四官能以上のアクリレートおよび上記アクリレートと同様の四官能以上のメタクリレートなど)などが用いられる。ただし、モノマーの場合、モノマーそのものが電解液をゲル化させるのではなく、上記モノマーをポリマー化したポリマーがゲル化剤として作用する。
【0041】
上記のように多官能モノマーを用いて電解液をゲル化させる場合、必要であれば、重合開始剤として、例えば、ベンゾイル類、ベンゾインアルキルエーテル類、ベンゾフェノン類、ベンゾイルフェニルフォスフィンオキサイド類、アセトフェノン類、チオキサントン類、アントラキノン類などを使用することができ、さらに重合開始剤の増感剤としてアルキルアミン類、アミノエステル類なども使用することもできる。
【0042】
セパレータとしては、通常、ポリエチレン製、ポリプロピレン製、またはエチレンとプロピレンとのコポリマー製の微孔性フィルムが用いられる。このセパレータの厚みとしては、30μm以下が好ましく、特に20μm以下が好ましい。
薄いセパレータは、エネルギー密度向上に寄与するものの、高電圧では電解液の分解に伴って劣化を起こしやすいという事情があるが、本発明では、正極表面に保護被膜が形成されるので、電解液の分解が生じにくく、薄いセパレータを用いても劣化が起こりにくく、また、それに伴う電解液不足も生じにくい。また、このセパレータは、透気度が100sec以上800sec以下であることが好ましく、200sec以上700sec以下であることがより好ましい。そして、突刺強度は直径1mmのピンが貫通するまでの重量であるが、このセパレータの突刺強度としては200g以上が好ましく、300g以上がより好ましく、500g以上がさらに好ましい。また、セパレータの105℃での熱収縮は小さい方が好ましく、特に幅方向の熱収縮率は5%以下が好ましく、3%以下がより好ましく、1%以下がさらに好ましい。
【0043】
電池は、例えば、上記のような正極と負極との間にセパレータを介在させて渦巻状に巻回して作製した渦巻状電極体などの巻回構造の電極積層体を、ニッケルメッキを施した鉄やステンレス鋼製の電池ケース内に挿入し、封口する工程を経て作製される。また、上記電池には、通常、電池内部に発生したガスをある一定圧力まで上昇した段階で電池外部に排出して、電池の高圧下での破裂を防止するための防爆機構が設けられる。
【0044】
【実施例】
つぎに、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。本発明においてXPS分析にあたって用いた測定機器はVG社製のESCA lab mark2(商品名)であり、X線出力は12kV−10mAで、Mg−Kα線を用いて測定を行った。
【0045】
実施例1
エチレンカーボネートとメチルエチルカーボネートとを体積比33:67で混合し、この混合溶媒にLiPF6 を1.2mol/lと〔(CF3 2 CHOSO2 2 NLiを0.1mol/l溶解させて、組成が1.2mol/l LiPF6 +0.1mol/l〔(CF3 2 CHOSO2 2 NLi/EC:MEC(33:67体積比)で示される電解液を調製した。上記電解液におけるECはエチレンカーボネートの略称であり、MECはメチルエチルカーボネートの略称である。
【0046】
これとは別に、正極活物質としてのLiCo0.97Al0.025 Ge0.005 2 に導電助剤としてのカーボン、有機リチウム塩としての(C2 5 SO2 2 NLiを重量比100:3:0.1で加えて混合し、この混合物とポリフッ化ビニリデンをあらかじめN−メチル−2−ピロリドンに溶解させておいた溶液とを混合し、さらにCH3 (CH2 7 CH=CH(CH2 7 COOC2 5 をLiCo0.97Al0.025 Ge0.005 2 に対して0.1重量%加え混合して正極合剤含有ペーストを調製した。得られた正極合剤含有ペーストを70メッシュの網を通過させて大きなものを取り除いた後、厚さ15μmのアルミニウム箔からなる正極集電材の両面に塗布量が24.6mg/cm2 (乾燥後の正極合剤重量)となるように一部を除いて均一に塗布し乾燥して正極合剤層を形成後、ローラープレス機によりプレスした後、切断し、リード体を正極集電材の露出部分に溶接して、帯状の正極を作製した。この正極の正極合剤層の密度は3.3g/cm3 であった。ここで用いたアルミニウム箔からなる正極集電材は鉄を1%、シリコンが0.15%含んでおり、純度は98%以上であり、この正極集電材の引っ張り強度は185N/mm2 で、ぬれ性は38dyne/cm、破断伸びは3%であった。
【0047】
つぎに、コークス系黒鉛をピッチでコートし3000℃で焼成した黒鉛系炭素質材料〔ただし、(002)面の面間距離d002 =0.336nm、c軸方向の結晶子の大きさLc=100nm以上、平均粒径16μm、純度99.5重量%以上という特性を持つ炭素質材料〕と(C2 5 SO2 2 NLiとCH3 (CH2 7 CH=CH(CH2 7 COOC2 5 を、ポリフッ化ビニリデンをあらかじめN−メチル−2−ピロリドンに溶解させておいた溶液と混合して負極合剤含有ペーストを調製した。上記(C2 5 SO2 2 NLiの負極合剤中の含有量は負極活物質の黒鉛系炭素質材料に対して0.1重量%であり、また、CH3 (CH2 7 CH=CH(CH2 7 COOC2 5 の負極合剤中の含有量は負極活物質の黒鉛系炭素質材料に対して1重量%であった。上記負極合剤含有ペーストを70メッシュの網を通過させて大きなものを取り除いた後、厚さ10μmの帯状の銅箔からなる負極集電材の両面に塗布量が12.0mg/cm2 (乾燥後の負極合剤重量)となるように一部を除いて均一に塗布し、乾燥して負極合剤層を形成した後、ローラープレス機によりプレスし、切断後、リード体を負極集電材の露出部分に溶接して、帯状の負極を作製した。なお、この負極の負極合剤部分の密度は1.5g/cm3 であった。
【0048】
前記帯状正極を厚さ20μmの微孔性ポリエチレンフィルムからなるセパレータを介して上記帯状負極に重ね、渦巻状に巻回して渦巻状巻回構造の電極積層体とした。このセパレータの透気度は600secで、突刺強度は570g、空孔率は38%で、105℃で測定した長さ方向の熱収縮率は3%、幅方向の熱収縮率は1%であった。この電極積層体の体積は11.4cm3 であった。その後、この電極積層体を外径18mmの有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った。
【0049】
つぎに電解液を電池ケース内に注入し、電解液がセパレータなどに充分に浸透した後、封口し、予備充電、エイジングを行い、図1の模式図に示すような構造の筒形の非水二次電池を作製した。
【0050】
ここで、図1に示す電池について説明すると、1は前記の正極で、2は前記の負極である。ただし、図1では、繁雑化を避けるため、正極1や負極2の作製にあたって使用した集電材などは図示していない。そして、これらの正極1と負極2はセパレータ3を介して渦巻状に巻回され、渦巻状巻回構造の電極積層体として上記特定の非水系電解液から非水電解質4と共に電池ケース5内に収容されている。
【0051】
電池ケース5はステンレス鋼製で、その底部には上記電極積層体の挿入に先立って、ポリプロピレンからなる絶縁体6が配置されている。封口板7は、アルミニウム製で円板状をしていて、その中央部に薄肉部7aを設け、かつ上記薄肉部7aの周囲に電池内圧を防爆弁9に作用させるための圧力導入口7bとしての孔が設けられている。そして、この薄肉部7aの上面に防爆弁9の突出部9aが溶接され、溶接部分11を構成している。なお、上記の封口板7に設けた薄肉部7aや防爆弁9の突出部9aなどは、図面上での理解がしやすいように、切断面のみを図示しており、切断面後方の輪郭は図示を省略している。また、封口板7の薄肉部7aと防爆弁9の突出部9aの溶接部分11も、図面上での理解が容易なように、実際よりは誇張した状態に図示している。
【0052】
端子板8は、圧延鋼製で表面にニッケルメッキが施され、周縁部が鍔状になった帽子状をしており、この端子板8にはガス排出口8aが設けられている。防爆弁9は、アルミニウム製で円板状をしており、その中央部には発電要素側(図1では、下側)に先端部を有する突出部9aが設けられ、かつ薄肉部9bが設けられ、上記突出部9aの下面が、前記したように、封口板7の薄肉部7aの上面に溶接され、溶接部分11を構成している。絶縁パッキング10は、ポリプロピレン製で環状をしており、封口板7の周縁部の上部に配置され、その上部に防爆弁9が配置していて、封口板7と防爆弁9とを絶縁するとともに、両者の間から液状の電解質が漏れないように両者の間隙を封止している。環状ガスケット12はポリプロピレン製で、リード体13はアルミニウム製で、前記封口板7と正極1とを接続し、電極積層体の上部には絶縁体14が配置され、負極2と電池ケース5の底部とはニッケル製のリード体15で接続されている。
【0053】
この電池においては、封口板7の薄肉部7aと防爆弁9の突出部9aとが溶接部分11で接触し、防爆弁9の周縁部と端子板8の周縁部とが接触し、正極1と封口板7とは正極側のリード体13で接続されているので、通常の状態では、正極1と端子板8とはリード体13、封口板7、防爆弁9およびそれらの溶接部分11によって電気的接続が得られ、電路として正常に機能する。
【0054】
そして、電池が高温にさらされるなど、電池に異常事態が起こり、電池内部にガスが発生して電池の内圧が上昇した場合には、その内圧上昇により、防爆弁9の中央部が内圧方向(図1では、上側の方向)に変形し、それに伴って溶接部分11で一体化されている封口板の薄肉部7aに剪断力が働いて該薄肉部7aが破断するか、または防爆弁9の突出部9aと封口板7の薄肉部7aとの溶接部分11が剥離した後、この防爆弁9に設けられている薄肉部9bが開裂してガスを端子板8のガス排出口8aから電池外部に排出させて電池の破裂を防止することができるように設計されている。
【0055】
この電池を0.2Aの電流値で電池電圧が4.4Vに達するまで定電流充電し、さらに4.4Vの定電圧充電を行って充電開始から12時間経過した時点で充電を終了した。ついで0.2Aで3Vまで放電し、放電後の電池の正極の表面状態について、前記の条件でXPS分析を行ったところ、168〜170eVの間にイオウに基づくピーク、291〜295eVの間に炭素に基づくピークおよび399〜401eVの間に窒素に基づくピークが検出され、ピーク分割によって求められたイオウの原子比は2.1%、炭素の原子比は5.0%で、窒素の原子比は1.0%であった。さらに、前記のアルゴンスパッタエッチングを行ったところ、イオウのピーク強度はアルゴンスパッタエッチング前の69%に低下し、炭素のピーク強度はアルゴンスパッタエッチング前の71%に低下し、窒素のピーク強度はアルゴンスパッタエッチング前の69%に低下していた。また、XPS分析でリンに基づく137eVのピークおよびフッ素に基づく688eVのピークも検出され、ピーク分割によって求められたリンの原子比は2.0%で、フッ素の原子比は33%であった。また、充電時の正極電位はリチウム基準でおおよそ4.5Vであった。さらに、ピーク分割した後の炭素に基づくピーク強度をIaとし、同じく他の炭素(フルオロアルキル基以外のものに基づく炭素)に基づくピーク強度の合計をIcとしたときに、Ia/Ic=0.23であった。
【0056】
実施例2
実施例1において電解液の調製にあたって使用した〔(CF3 2 CHOSO2 2 NLiを(CF3 CF2 SO2 2 NLiに変更した以外は、実施例1と同様にして非水二次電池を作製した。
【0057】
この電池を0.2Aの電流値で電池電圧が4.4Vに達するまで定電流充電し、さらに4.4Vの定電圧充電を行って充電開始後12時間経過時点で充電を終了した。ついで0.2Aで3Vまで放電し、放電後の電池の正極の表面状態について、前述の条件でXPS分析を行ったところ、168〜170eVの位置に基づくピーク、291〜295eVの間に炭素に基づくピークおよび399〜401eVの位置に窒素に基づくピークが検出され、ピーク分割によって求められたイオウの原子比は1.3%、炭素の原子比は3.1%、窒素の原子比は0.7%であった。さらに、前記のアルゴンスパッタエッチングを行ったところ、イオウのピーク強度はアルゴンスパッタエッチング前の70%に低下し、炭素のピーク強度はアルゴンスパッタエッチング前の75%に低下し、窒素のピーク強度はアルゴンスパッタエッチング前の72%に低下した。また、XPS分析でリンに基づく137eVのピークおよびフッ素に基づく688eVのピークも検出され、ピーク分割によって求められたリンの原子比は2.0%で、フッ素の原子比は32%であった。また、充電時の正極電位はリチウム基準でおよそ4.5Vであった。
【0058】
実施例3
実施例2において正極合剤中および負極合剤中に含有させるために使用したCH3 (CH2 7 CH=CH(CH2 7 COOC2 5 をC1735COOC2 5 に変更した以外は、実施例2と同様に非水二次電池を作製した。
【0059】
この電池を0.2Aの電流値で電池電圧が4.4Vに達するまで定電流充電し、さらに4.4Vの定電圧充電を行って充電開始から12時間経過した時点で充電を終了した。ついで0.2Aで3Vまで放電し、放電後の電池の正極の表面状態について、前記の条件でXPS分析を行ったところ、168〜170eVの間にイオウに基づくピーク、291〜295eVの間に炭素に基づくピークおよび399〜401eVの間に窒素に基づくピークが検出され、ピーク分割によって求められたイオウの原子比は1.4%、炭素の原子比は3.0%で、窒素の原子比は0.8%であった。さらに、前記のアルゴンスパッタエッチングを行ったところ、イオウのピーク強度はアルゴンスパッタエッチング前の72%に低下し、炭素のピーク強度はアルゴンスパッタエッチング前の77%に低下し、窒素のピーク強度はアルゴンスパッタエッチング前の74%に低下した。また、XPS分析でリンに基づく137eVのピークおよびフッ素に基づく688eVのピークも検出され、ピーク分割によって求められたリンの原子比は2.0%で、フッ素の原子比は33%であった。また、充電時の正極電位はリチウム基準でおおよそ4.5Vであった。
【0060】
実施例4
実施例2において正極合剤中および負極合剤中に含有させるために使用したCH3 (CH2 7 CH=CH(CH2 7 COOC2 5 をC1123COOC2 5 に変更した以外は、実施例2と同様に非水二次電池を作製した。
【0061】
この電池を0.2Aの電流値で電池電圧が4.4Vに達するまで定電流充電し、さらに4.4Vの定電圧充電を行って充電開始から12時間経過した時点で充電を終了した。ついで0.2Aで3Vまで放電し、放電後の電池の正極の表面状態について、前記の条件でXPS分析を行ったところ、168〜170eVの間にイオウに基づくピーク、291〜295eVの間に炭素に基づくピークおよび399〜401eVの間に窒素に基づくピークが検出され、ピーク分割によって求められたイオウの原子比は1.1%、炭素の原子比は3.0%で、窒素の原子比は0.8%であった。さらに、前記のアルゴンスパッタエッチングを行ったところ、イオウのピーク強度はアルゴンスパッタエッチング前の71%に低下し、炭素のピーク強度はアルゴンスパッタエッチング前の76%に低下し、窒素のピーク強度はアルゴンスパッタエッチング前の71%に低下した。また、XPS分析でリンに基づく137eVのピークおよびフッ素に基づく688eVのピークも検出され、ピーク分割によって求められたリンの原子比は2.0%で、フッ素の原子比は33%であった。また、充電時の正極電位はリチウム基準でおおよそ4.5Vであった。
【0062】
比較例1
正極合剤および負極合剤中にCH3 (CH2 7 CH=CH(CH2 7 COOC2 5 と(C2 5 SO2 2 NLiを添加せず、電解液中に〔(CF3 2 CHOSO2 2 NLiを添加しなかった以外は、実施例1と同様に非水二次電池を作製した。
【0063】
この電池を0.2Aの電流値で電池電圧が4.4Vに達するまで定電流充電し、さらに4.4Vの定電圧充電を行って充電開始から12時間経過した時点で充電を終了した。ついで0.2Aで3Vまで放電し、放電後の電池の正極の表面状態について、前記の条件でXPS分析を行ったところ、168〜170eVの間のイオウのピークや399〜401eVの間の窒素に基づくピークは検出されなかった。また、291〜295eVの間の炭素に基づくピークは1.6%しか検出されなかった。さらに、前記のアルゴンスパッタエッチングを行ったところ、ピーク強度は減少しなかった。XPSでリンに基づく137eVのピークおよび688eVのフッ素に基づくピークも検出され、ピーク分割によって求められたリンの原子比は2.0%で、フッ素の原子比は31%であった。また、充電時の正極電位はリチウム基準でおおよそ4.5Vであった。さらに、ピーク分割した後の炭素に基づくピーク強度をIaとし、同じく他の炭素(フルオロアルキル基以外のものに基づく炭素)に基づくピーク強度の合計をIcとしたときのIa/Icは0.05にすぎなかった。
【0064】
上記実施例1〜4および比較例1の電池を、室温で0.2Aで3.0Vまで放電させ、0.2Aで4.4VCCCV(0.2Aの定電流で4.4Vまで充電し、その後、4.4Vで定電圧充電を行う定電流定電圧充電)で12時間充電後、0.2Aで3.0Vまで放電させて放電容量を測定した。このときの放電容量を貯蔵前放電容量とする。その後、60℃で20日間貯蔵し、貯蔵後、0.2Aで4.4VCCCVで12時間充電を行い、続いて0.2Aで3.0Vまで放電させて放電容量を測定した。このときの放電容量を貯蔵後放電容量とする。
【0065】
上記のようにして得られた貯蔵前放電容量と貯蔵後放電容量とから下記の式により劣化率を求めた。その結果を電極積層体の単位体積当りの充電電力量と共に表1に示す。なお、充電電力量は、上記0.2Aで4.4VCCCVしたときの充電カーブの面積から求めている。
劣化率(%)=〔1−(貯蔵後放電容量)/(貯蔵前放電容量〕)×100
【0066】
【表1】

Figure 0004553468
【0067】
表1に示すように、実施例1〜4の電池は、比較例1の電池に比べて、貯蔵による劣化率が小さかった。すなわち、60℃という高温で20日間貯蔵した場合、比較例1の電池は上記貯蔵による劣化率が42%であったのに対し、実施例1〜4の電池は貯蔵による劣化率が19〜27%と抑制されていた。
【0068】
【発明の効果】
以上説明したように、本発明では、高容量の非水二次電池において、貯蔵特性が向上させることができ、高容量で、かつ貯蔵特性が優れた非水二次電池を提供することができた。
【図面の簡単な説明】
【図1】本発明に係る非水二次電池の一例を模式的に示す断面図である。
【符号の説明】
1 正極
2 負極
3 セパレータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery and a charging method thereof, and more particularly to a non-aqueous secondary battery having a high capacity and excellent storage characteristics and a charging method when using the non-aqueous secondary battery.
[0002]
[Prior art]
Non-aqueous secondary batteries typified by lithium ion secondary batteries have a large capacity, high voltage, high energy density, and high output, and therefore there is an increasing demand. However, higher capacity and higher voltage are also demanded for this non-aqueous secondary battery, and in order to meet this demand, it is necessary to increase the amount of charge power when charging the battery.
[0003]
[Problems to be solved by the invention]
Thus, it has been found that if the battery charge power is increased in order to increase the capacity and voltage, the storage characteristics deteriorate. For example, the charge power amount per unit volume of the electrode laminate is 0.59 Wh / cm. Three Under the above conditions, it has been found that it is very difficult to ensure storage characteristics. This is because the higher the charging power per unit volume of the electrode stack, the greater the temperature rise of the positive electrode, and the positive electrode is held at a high potential, and part of the electrolyte (liquid electrolyte) is decomposed. This is because the surface of the positive electrode deteriorates. Here, the volume of the electrode laminate is the bulk volume occupied by the laminated or wound positive electrode, negative electrode, and separator in the battery, and the latter is formed based on the winding axis. Holes are not included as a volume. In short, the total volume occupied by the positive electrode, the negative electrode, and the separator in the battery is summed up.
[0004]
Therefore, the present inventors have focused on the surface of the positive electrode and studied a method for eliminating the above-described deterioration in storage characteristics by reducing the reaction with the electrolyte solution on the positive electrode surface. That is, a 4V class active material used for the positive electrode, that is, LiCoO. 2 , LiNiO 2 Lithium composite oxide such as 5V grade active material, ie LiMn 2 O Four , LiMn 1.5 Ni 0.5 O Four The lithium composite oxide that can have a potential of approximately 4.5 to 5.5 V is also a kind of catalyst, and in order to suppress the reaction with the electrolyte, it is necessary to reduce its catalytic ability. Therefore, the present inventors formed a protective film with high withstand voltage and high stability on the surface of the positive electrode, and suppressing the reaction between the positive electrode and the electrolytic solution with the protective film suppresses deterioration of storage characteristics. I thought it was effective.
[0005]
Therefore, as a result of various studies based on the above policy, the present inventors can form a film containing either an organic sulfur compound, a compound having a fluoroalkyl group, or an organic nitride as the protective film. It was found to be effective in suppressing the deterioration of storage characteristics.
[0006]
However, since the protective coating as described above becomes a factor that inhibits charge and discharge, in order to achieve both high capacity and excellent storage characteristics, the protective coating is made as thin as possible and has ionic conductivity. It is desirable. That is, if the protective film is made thin and has ionic conductivity, lithium ions can flow in and out smoothly during charge and discharge, and the charge and discharge reaction is not hindered. It is considered that the storage characteristics can be compatible.
[0007]
The present invention is based on the above idea, for example, the charge power amount per unit volume of the electrode laminate is 0.59 Wh / cm. Three The purpose of the present invention is to provide a non-aqueous secondary battery that improves storage characteristics even in a high-capacity non-aqueous secondary battery that is used under the above conditions, and has a high capacity and excellent storage characteristics. .
[0008]
[Means for Solving the Problems]
A first aspect of the present invention is a nonaqueous secondary battery having a positive electrode, a negative electrode, and a nonaqueous electrolyte using a lithium composite oxide as a positive electrode active material, wherein the carbon number is 8 in the positive electrode mixture and / or the negative electrode mixture. The concentration of the organic lithium salt containing the ester compound or ether compound having the above hydrocarbon chain and the organic lithium salt and contained in the positive electrode mixture and / or the negative electrode mixture is higher than that in the nonaqueous electrolyte. In the XPS analysis of the positive electrode surface, it has a peak based on sulfur between 168 and 170 eV, a peak based on carbon between 291 and 295 eV, and a peak based on nitrogen between 399 and 401 eV, and The required atomic ratio of each element on the surface of the positive electrode is characterized in that sulfur is 1% or more, carbon is 3% or more, and nitrogen is 0.3% or more. Water is a secondary battery.
[0009]
The second aspect of the present invention is characterized in that the non-aqueous secondary battery having the above-described configuration is charged under the condition that the positive electrode potential is 4.3 V or higher, preferably 4.4 V or higher with respect to lithium. This is a method for charging a non-aqueous secondary battery.
[0010]
In the present invention,% indicating the amount of sulfur, carbon, and nitrogen based on the XPS analysis is based on the atomic ratio, and thus is atomic%.
[0011]
And the peak based on sulfur (sulfur) between 168-170 eV as described above is a peak corresponding to an organic sulfide, and the peak based on carbon between 291-295 eV corresponds to a compound having a fluoroalkyl group. A peak based on nitrogen between 399 and 401 eV is a peak corresponding to organic nitride. When these are contained in the protective film on the surface of the positive electrode, the effect of improving the storage characteristics is exhibited.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as a means for forming the coating film on the positive electrode surface, for example, the chemical formula LiN (Rf 1 SO 2 ) (Rf 2 SO 2 Imide type lithium salt containing a fluoroalkyl group represented by the formula or LiN (Rf Three OSO 2 ) (Rf Four OSO 2 The method of adding the imide ester type lithium salt etc. which are represented to electrolyte solution is mentioned. Where Rf 1 , Rf 2 , Rf Three , Rf Four Is a substituent containing a fluoroalkyl group, and among them, an imide ester lithium salt is particularly preferable. When a nonaqueous secondary battery containing the imide lithium salt or imide ester lithium salt as described above is charged such that the positive electrode has a high potential, a desired protective film is formed on the surface of the positive electrode. That is, when charging is performed so that the voltage becomes 4.3 V or more on the basis of lithium, a protective film having a good function in improving storage characteristics is formed. Further, as the potential is increased to 4.4 V or higher, and further to 4.5 V or higher, a protective film having a better action for improving the storage characteristics is obtained, and for 4.6 V or higher, the protective characteristics are further improved for improving the storage characteristics. A protective coating is obtained.
On the other hand, when the charge is less than 4.3 V, the protective film on the surface of the positive electrode is formed, but it is too thin or non-uniform, and it is difficult to obtain the effect of improving the storage characteristics. Here, for a battery using a carbon material such as graphite for the negative electrode, charging with a positive electrode potential of 4.3 V or higher on the basis of lithium means approximately 4.2 V or higher when converted to a voltage applied to the battery. The charge at which the positive electrode potential is 4.4 V or higher with respect to lithium corresponds to approximately 4.3 V or higher when converted to the voltage applied to the battery.
[0013]
Moreover, the thickness and composition of the protective film formed also change with the electric energy to charge. 0.59 Wh / cm per unit volume of electrode laminate Three When charging with the above charging power amount, a good protective film is easily formed. Furthermore, 0.6 Wh / cm per electrode laminate unit volume Three When charging with the above charging power amount, a better protective film is easily formed, and the electrode laminate unit volume is 0.63 Wh / cm. Three When the battery is charged with the above charging power amount, a better protective film is likely to be formed. In addition, this charging electric energy per unit volume of electrode laminated body is calculated | required by calculating from the integrated value of the voltage and the electric quantity at the time of charging to 0.1V to 3V and discharging to 0.1C to full charge.
[0014]
In the present invention, when the peak obtained by XPS analysis is divided into peaks and the atomic ratio of each element present on the positive electrode surface is calculated, sulfur is 1% or more, carbon is 3% or more, and nitrogen is 0.3%. Any one of the above values is required. Sulfur is preferably 2% or more, carbon is 5% or more, and nitrogen is more preferably 1% or more. However, if the ratio of each element becomes too high, there is a tendency to suppress migration of lithium ions, so sulfur is preferably 10% or less, more preferably 5% or less, and carbon is preferably 20% or less, preferably 10% or less. More preferably, nitrogen is preferably 10% or less, more preferably 2.5% or less. Moreover, it is preferable to have two or more peaks, a peak based on sulfur, a peak based on carbon, and a peak based on nitrogen, and more preferably all three peaks. In the XPS analysis, the battery was discharged at a temperature equivalent to 0.1 C, then the battery was disassembled in an inert atmosphere, the positive electrode was taken out, washed with methyl ethyl carbonate, vacuum dried for 24 hours, and a sample for XPS analysis. And The XPS analysis is performed by using an Esca lab mark2 (trade name) manufactured by VG at 12 kV-10 mA using Mg-kα rays, and performing peak division to calculate an atomic ratio of each peak. In addition, when the above analytical instruments disappear due to changes in the times, the corresponding analytical instruments and conditions may be used.
[0015]
In addition, when the protective coating formed on the positive electrode surface contains a compound having a fluoroalkyl group, the peak intensity based on the carbon after the peak splitting is defined as Ia, and other carbons (other than the fluoroalkyl group) When the sum of peak intensities based on carbon is Ic, storage characteristics can be further improved if Ia / Ic ≧ 0.2.
[0016]
Furthermore, it is preferable that the thickness of the protective film is thin enough not to inhibit charging / discharging. Further, argon sputter etching (acceleration voltage: 3 kV, ion current: 30 μA) of the positive electrode surface is performed for 2 minutes, and a slight amount enters the inside from the positive electrode surface. When the XPS analysis is performed on the portion, the peak intensity is preferably smaller than the peak intensity on the positive electrode surface before the argon sputter etching. For example, when the peak intensity on the positive electrode surface is 100, the peak intensity after the argon sputter etching is preferably 90 or less, more preferably 80 or less, and still more preferably 76 or less. However, when the film is too thin, it is difficult to obtain the effect of improving the storage characteristics. Therefore, the peak intensity is preferably 1 or more, and more preferably 10 or more.
[0017]
Further, as described above, it is more preferable that the protective film on the positive electrode surface has ionic conductivity. For that purpose, LiPF is used together with an imide lithium salt or imide ester lithium salt containing a fluoroalkyl group as an electrolyte salt. 6 Are preferably present together. Conventionally, LiPF 6 It is reported that the system electrolyte generates LiF, and there is a report that the surface of the positive electrode is also covered with LiF. However, such LiF cannot improve ion conductivity. In order to improve the ion conductivity of the protective coating on the positive electrode surface, LiPF is included in the protective coating on the positive electrode surface. 6 Or it is preferable that the fluoride containing phosphorus exists. That is, it is preferable that a peak based on phosphorus exists between 135 and 138 eV in the XPS analysis, and a peak based on fluorine exists between 685 and 689 eV. And the peak based on phosphorus between 135-138 eV which exists in the surface of a positive electrode is 1.0% or more in conversion of atomic ratio, and 2% or more is more preferable. Moreover, 5% or less is preferable and 3% or less is more preferable.
[0018]
In the present invention, as an ester compound having a hydrocarbon chain having 8 or more carbon atoms to be contained in the positive electrode mixture and / or the negative electrode mixture, for example, CH Three (CH 2 ) 7 CH = CH (CH 2 ) 7 COOC Four H 9 , CH Three (CH 2 ) 7 CH = CH (CH 2 ) 7 COOC 2 H Five , CH Three (CH 2 ) 7 CH = CH (CH 2 ) 7 COOCH Three An oleate having a C = C unsaturated bond, such as C 17 H 35 COOC 2 H Five Stearates such as CH Three (CH 2 ) 14 COOC 2 H Five Palmitic acid esters such as CH Three (CH 2 ) 12 COOC 2 H Five Myristic acid ester, C 11 H twenty three COOC 2 H Five Lauric acid esters such as C 11 H twenty three COO (CH 2 CH 2 O) n An ester compound such as H may be mentioned. In addition, the COO portion of the carbon-based ester is replaced with SO. 2 And SO Three Or (RO) (R′O) (R ″ O) P═O, where (R, R ′, R ″) is a hydrocarbon chain of 1 or more carbon atoms and at least 1 One or more may include those having 8 or more carbon atoms.
[0019]
Examples of the ether compound having a hydrocarbon chain having 8 or more carbon atoms to be contained in the positive electrode mixture and / or the negative electrode mixture include, for example, C 11 H twenty three O (CH 2 CH 2 O) n Ether such as C n H 2n + 1 -C 6 H Four -O (CH 2 CH 2 O) m And ethers containing an aromatic ring such as H.
[0020]
Each of the above ester compounds and ether compounds may be used alone, or two or more of them may be used in combination in the ester compound or in the ether compound. May be. The ester compound or ether compound having a hydrocarbon chain having 8 or more carbon atoms may be contained only in either the positive electrode mixture or the negative electrode mixture, or in both the positive electrode mixture and the negative electrode mixture. You may make it contain.
[0021]
In the present invention, the ester compound or ether compound contained in the positive electrode mixture and / or the negative electrode mixture is required to have a hydrocarbon chain having 8 or more carbon atoms. This is because a certain length of the hydrocarbon chain is necessary to increase the cell reaction and facilitate the battery reaction uniformly, and a necessary degree of wettability can be ensured if it has 8 or more carbon atoms. The hydrocarbon chain preferably has 12 or more carbon atoms, more preferably has 15 or more carbon atoms, and still more preferably has 17 carbon atoms. However, when the carbon number becomes too large, it tends to be difficult to ensure the uniformity of the electrode. In addition, it is preferable to have a C═C unsaturated bond in the hydrocarbon chain because the uniformity of the electrode reaction is further improved. Particularly preferred is a case having a non-resonant type C═C unsaturated bond. Of these ester compounds or ether compounds, the preferred ones are represented by the structural formula: C n H m XR, wherein n is 8 or more, m is 15 or more, X is COO, SO Three Or SO Four And R is a fluorine-containing alkyl group or polyethylene oxide group.
[0022]
The content of the ester compound or ether compound having a hydrocarbon chain of 8 or more carbon atoms in the positive electrode mixture is 0.001% by weight with respect to the positive electrode active material (the above ester with respect to 100 parts by weight of the positive electrode active material). Compound or ether compound is preferably 0.001 part by weight) or more, more preferably 0.05% by weight or more, further preferably 0.01% by weight or more, and preferably 3% by weight or less, 0.5% by weight or less. Is more preferable, and 0.2% by weight or less is more preferable. That is, by making the content of the ester compound or ether compound having a hydrocarbon chain of 8 or more carbon atoms in the positive electrode mixture 0.001% by weight or more with respect to the positive electrode active material, the positive electrode is easily wetted with the electrolytic solution. And uniform reaction is likely to occur. Further, by setting the content of the ester compound or ether compound having a hydrocarbon chain of 8 or more carbon atoms in the positive electrode mixture to 2% by weight or less with respect to the positive electrode active material, an increase in battery impedance can be allowed. It can be suppressed within the range.
[0023]
When the ester compound or ether compound having a hydrocarbon chain having 8 or more carbon atoms is contained in the negative electrode mixture, 0.001% by weight with respect to the negative electrode active material (based on 100 parts by weight of the negative electrode active material) The above ester compound or ether compound is preferably 0.001 part by weight or more, more preferably 0.1% by weight or more, further preferably 0.4% by weight or more, and preferably 5% by weight or less, and 3% by weight or less. Is more preferable, and 1% by weight or less is more preferable. That is, by making the content of the ester compound or ether compound having a hydrocarbon chain of 8 or more carbon atoms in the negative electrode mixture 0.001% by weight or more with respect to the negative electrode active material, the negative electrode is easily wetted with the electrolytic solution. And uniform reaction is likely to occur. Further, by setting the content of the ester compound or ether compound having a hydrocarbon chain of 8 or more carbon atoms in the negative electrode mixture to 5% by weight or less with respect to the negative electrode active material, an increase in battery impedance can be allowed. It can be suppressed within the range.
[0024]
In addition, an organic lithium salt is present in advance in the positive electrode mixture or the negative electrode mixture. When the ester compound or the ether compound coexists with the organic lithium salt, it has ionic conductivity, the uniformity of the electrode reaction is further improved, and the storage characteristics are further improved. Examples of the organic lithium salt include C 4 F 9 SO 3 Li, C 8 F 17 SO 3 Li, (C 2 F 5 SO 2 ) 2 NLi, (CF 3 SO 2 ) (C 4 F 9 SO 2 ) NLi, (CF 3 SO 2 ) 3 CLi, C 6 H 5 SO 3 Li, C 17 H 35 COOLi and the like are preferable because of their high thermal stability and safety, and in view of ion dissociation properties, fluorine-containing organic lithium salts are particularly preferable.
[0025]
When the organic lithium salt is contained in the positive electrode mixture, the content of the organic lithium salt is 0.01% by weight with respect to the positive electrode active material (the organic lithium salt is 0.1% with respect to 100 parts by weight of the positive electrode active material). 01% by weight) or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more, more preferably 5% by weight or less, more preferably 3% by weight or less, and more preferably 1% by weight or less. Further preferred. When the organic lithium salt is contained in the negative electrode mixture, the content of the organic lithium salt is 0.01% by weight with respect to the negative electrode active material (the organic lithium salt is 100% by weight of the negative electrode active material). 0.01% by weight) or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more, further preferably 5% by weight or less, more preferably 3% by weight or less, and 1% by weight. The following is more preferable.
[0026]
The content of the organic lithium salt in the positive electrode mixture or the negative electrode mixture is higher than that in the nonaqueous electrolyte. This is because ion movement in the electrode is facilitated, which is preferable in terms of battery characteristics.
[0027]
In the present invention, a non-aqueous secondary battery is configured by combining the positive electrode, the negative electrode, and the non-aqueous electrolyte (this electrolyte includes an electrolytic solution that is a liquid electrolyte).
[0028]
As the active material of the positive electrode, for example, LiCoO whose open circuit voltage during charging is 4 V or more on the basis of Li 2 , LiMn 2 O Four , LiNiO 2 Lithium composite oxide such as is used. When the active material composed of these lithium composite oxides has a potential of 4.4 V or higher on the basis of Li at the time of charging at least once, the coating film is formed and the storage characteristics of the battery are improved. In the active material, a part or most of Co, Mn, and Ni may be substituted with different elements, respectively. Al, Fe, Ge, Ti, Ta, Mg, Nb, Cr, Y By containing at least one element selected from the group consisting of Zr, Yr, and Mo, more preferable results can be obtained in improving storage characteristics. Among these elements, Ge, Ti, Ta, Nb, Yb are particularly preferable. Is preferred. Examples of such lithium composite oxides include, for example, LiCo 0.97 Al 0.03 O 2 LiCo 0.97 Al 0.025 Ge 0.005 O 2 , LiNi 0.7 Co 0.2 Al 0.1 O 2 Etc. In addition, LiCoO by X-ray diffraction 2 LiCoO showing the structure 2 When using a system compound, the density of the positive electrode mixture layer is usually 3.2 g / cm. Three However, when the ester compound or ether compound having a hydrocarbon chain of 8 or more carbon atoms of the present invention is contained in the positive electrode mixture, the density of the positive electrode mixture layer is 3.3 to 3.5 g / cm. Three Even when the density is as high as possible, good wettability of the electrolyte can be secured, and higher capacity and improved storage characteristics can be achieved.
[0029]
The positive electrode is, for example, a positive electrode active material composed of the above lithium composite oxide or the like, and, if necessary, a conductive additive such as graphite, acetylene black, or carbon black, such as polyvinylidene fluoride, polytetrafluoroethylene, or ethylene. A binder such as propylene rubber, an ester compound or an ether compound having a hydrocarbon chain of 8 or more carbon atoms, an organic lithium salt, etc. are added as appropriate and made into a paste with a solvent (the binder is dissolved in the solvent in advance and then the positive electrode The positive electrode mixture-containing paste obtained may be applied to a positive electrode current collector made of a metal foil or the like, dried to form a positive electrode mixture layer, and pressed as necessary It is produced by adjusting the thickness. However, the method for manufacturing the positive electrode is not limited to the above-described examples, and other methods may be used.
[0030]
As the positive electrode current collector, for example, a foil containing aluminum as a main component is preferably used, and its purity is preferably 98% by weight or more and 99.9% by weight or less. In conventional lithium ion secondary batteries, an aluminum foil having a purity of 99.9% by weight or more is usually used. However, in the present invention, a metal foil of 15 μm or less is frequently used as a positive electrode current collector, so that a certain degree of strength is ensured. Therefore, the purity is preferably less than 99.9% by weight. Particularly preferred as contained elements are iron and silicon.
The iron content is preferably 0.5% by weight or more, more preferably 0.7% by weight or more, and preferably 2% by weight or less, more preferably 1.3% by weight or less. The silicon content is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and preferably 1.0% by weight or less, more preferably 0.3% by weight or less. The tensile strength of the positive electrode current collector is 150 N / mm 2 Or more, preferably 180 N / mm 2 The above is more preferable. Further, the breaking elongation of the positive electrode current collector is preferably 2% or more, and more preferably 3% or more.
[0031]
It is preferable that the positive electrode current collector has a larger tensile strength and elongation at break. The larger the charging power per unit volume of the electrode laminate, the larger the expansion during charging of the positive electrode. This is based on the tendency to become easy, and in order to suppress the cutting, it is appropriate that the positive electrode current collector has a higher tensile strength and elongation at break.
[0032]
The main material in the negative electrode mixture in the negative electrode may be any material that can be doped and dedoped with lithium ions. In the present invention, this is called a negative electrode active material. Examples of the negative electrode active material include natural graphite. And carbonaceous materials such as pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers and activated carbon. In addition, an alloy such as Si, Sn, or In or a compound such as an oxide or nitride that can be charged and discharged at a low voltage close to Li can be used as the negative electrode active material.
[0033]
When using a carbonaceous material for a negative electrode, what has the following characteristic is preferable. That is, the distance between the (002) planes (d 002 ) Is preferably 0.35 nm or less, more preferably 0.345 nm or less, and still more preferably 0.34 nm or less. The crystallite size (Lc) in the c-axis direction is preferably 3 nm or more, more preferably 8 nm or more, and further preferably 25 nm or more. The average particle size is preferably 8 to 20 μm, particularly preferably 10 to 15 μm, and the purity is preferably 99.9% by weight or more. When the carbonaceous material is used, the negative electrode density is 1.45 g / cm. Three The above is preferable for increasing the capacity, and more preferably 1.5 g / cm. Three That's it. Usually, when the negative electrode mixture layer has a high density, a high capacity is easily obtained, but the negative electrode is difficult to react uniformly, and the storage characteristics tend to deteriorate. However, in the present invention, the negative electrode mixture layer is reduced to 1.5 g / cm by including an ester compound or an ether compound having a hydrocarbon chain having 8 or more carbon atoms in the negative electrode mixture. Three Even when the density is increased as described above, good storage characteristics can be obtained, and higher capacity and improved storage characteristics can be achieved.
[0034]
For example, a negative electrode is appropriately added with a binder, an ester compound or an ether compound having a hydrocarbon chain having 8 or more carbon atoms, a lithium salt, or the like, if necessary, into a paste using a solvent ( The binder may be dissolved in a solvent in advance and then mixed with the negative electrode active material, etc.), and the obtained negative electrode mixture-containing paste is applied to the negative electrode current collector and dried to form a negative electrode mixture layer. It is manufactured by pressing and adjusting the thickness as necessary. However, the manufacturing method of the negative electrode is not limited to the above-described examples, and other methods may be used.
[0035]
As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, fluorine rubber, styrene butadiene rubber, cellulose resin, polyacrylic acid, or the like can be used alone or as a mixture of two or more. As the negative electrode current collector, a metal foil such as a copper foil is generally used, and in particular, an electrolytic copper foil having a roughened surface is preferably used.
[0036]
As the non-aqueous electrolyte, any of a non-aqueous liquid electrolyte, a gel polymer electrolyte, and a solid electrolyte can be used. In the present invention, a liquid electrolyte called an electrolytic solution is usually used. The electrolyte is prepared by dissolving an electrolyte salt such as a lithium salt in a non-aqueous solvent mainly composed of an organic solvent. Examples of the solvent include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and propionic acid. Chain alkyl ester having chain COO- bond such as methyl, chain phosphate triester such as trimethyl phosphate, 1,2-dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, diethyl Ether or the like can be used. In addition, amine organic solvents, sulfur organic solvents such as sulfolane, and the like can also be used.
[0037]
Furthermore, as other solvent components, esters having a high dielectric constant (dielectric constant of 30 or more) are preferably used. Specific examples of such high dielectric constant esters include, for example, ethylene carbonate, propylene carbonate, butylene carbonate, gamma Examples include butyrolactone, and sulfur-based esters such as ethylene glycol sulfite can also be used. Furthermore, cyclic structure esters are preferred, and cyclic carbonates such as ethylene carbonate are particularly preferred.
[0038]
From the viewpoint of safety, the ester having a high dielectric constant is preferably less than 80% by volume, more preferably 50% by volume or less, and further preferably 30% by volume or less, in terms of discharge characteristics. 1 volume% or more is preferable.
[0039]
In preparing the electrolytic solution, examples of the electrolyte salt dissolved in the solvent include LiClO. Four , LiPF 6 , LiBF Four , LiAsF 6 , LiSbF 6 , LiCF Three SO Three , LiC Four F 9 SO Three , LiCF Three CO 2 , Li 2 C 2 F Four (SO Three ) 2 , LiN (Rf 1 SO 2 ) (Rf 2 SO 2 [Where Rf 1 , Rf 2 Is a substituent containing a fluoroalkyl group], LiN (Rf Three OSO 2 ) (Rf Four OSO 2 [Where Rf Three , Rf Four Is a fluoroalkyl group], LiC n F 2n + 1 SO Three (N ≧ 2), LiC (Rf Five SO 2 ) Three , LiN (Rf 6 OSO 2 ) 2 [Where Rf Five , Rf 6 Are fluoroalkyl groups], polymer type imidolithium salts and the like are used alone or in admixture of two or more. When these are incorporated into the protective coating on the positive electrode surface, ion conductivity can be imparted to the protective coating, particularly LiPF. 6 Is preferable because of its great effect. The concentration of the electrolyte salt in the electrolytic solution is not particularly limited, but the concentration is preferably 0.3 mol / l or more, particularly preferably 0.4 mol / l or more, and 1.7 mol / l or less, In particular, it is preferably 1.5 mol / l or less.
[0040]
The gel polymer electrolyte corresponds to an electrolyte solution gelled by a gelling agent. For the gelation, for example, a linear polymer such as polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or a copolymer thereof, Polyfunctional monomers that polymerize upon irradiation with actinic rays such as ultraviolet rays and electron beams (for example, pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, dipentaerythritol hydroxypentaacrylate, dipentaerythritol hexaacrylate Tetrafunctional or higher acrylates and the like, and tetrafunctional or higher acrylates similar to the above acrylates). However, in the case of a monomer, the monomer itself does not gel the electrolyte solution, but a polymer obtained by polymerizing the monomer acts as a gelling agent.
[0041]
When gelling an electrolyte solution using a polyfunctional monomer as described above, if necessary, as a polymerization initiator, for example, benzoyls, benzoin alkyl ethers, benzophenones, benzoylphenylphosphine oxides, acetophenones Further, thioxanthones, anthraquinones, and the like can be used, and alkylamines, aminoesters, and the like can also be used as a sensitizer for the polymerization initiator.
[0042]
As the separator, a microporous film made of polyethylene, polypropylene, or a copolymer of ethylene and propylene is usually used. The thickness of this separator is preferably 30 μm or less, and particularly preferably 20 μm or less.
Although a thin separator contributes to an improvement in energy density, there is a situation where deterioration is likely to occur with the decomposition of the electrolytic solution at a high voltage. Decomposition is unlikely to occur, and even when a thin separator is used, deterioration is unlikely to occur, and an electrolyte shortage associated therewith is unlikely to occur. The separator preferably has an air permeability of 100 sec to 800 sec, more preferably 200 sec to 700 sec. The puncture strength is a weight until a pin having a diameter of 1 mm penetrates. The puncture strength of this separator is preferably 200 g or more, more preferably 300 g or more, and further preferably 500 g or more. Further, the thermal shrinkage of the separator at 105 ° C. is preferably small, and the thermal shrinkage rate in the width direction is preferably 5% or less, more preferably 3% or less, and further preferably 1% or less.
[0043]
For example, a battery is a nickel-plated iron laminate having a spiral structure such as a spiral electrode body manufactured by winding a separator between a positive electrode and a negative electrode as described above. It is manufactured through a process of inserting and sealing in a battery case made of stainless steel. The battery is usually provided with an explosion-proof mechanism for discharging gas generated inside the battery to a certain pressure and discharging it to the outside of the battery to prevent the battery from bursting under high pressure.
[0044]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, this invention is not limited only to those Examples. In the present invention, the measuring instrument used for XPS analysis was ESCA lab mark2 (trade name) manufactured by VG, the X-ray output was 12 kV-10 mA, and the measurement was performed using Mg-Kα rays.
[0045]
Example 1
Ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 33:67, and this mixed solvent was mixed with LiPF. 6 1.2 mol / l and [(CF Three ) 2 CHOSO 2 ] 2 NLi is dissolved at 0.1 mol / l, and the composition is 1.2 mol / l LiPF. 6 +0.1 mol / l [(CF Three ) 2 CHOSO 2 ] 2 An electrolyte solution represented by NLi / EC: MEC (33:67 volume ratio) was prepared. EC in the electrolytic solution is an abbreviation for ethylene carbonate, and MEC is an abbreviation for methyl ethyl carbonate.
[0046]
Apart from this, LiCo as positive electrode active material 0.97 Al 0.025 Ge 0.005 O 2 In addition, carbon as a conductive aid, (C as an organic lithium salt 2 F Five SO 2 ) 2 NLi was added at a weight ratio of 100: 3: 0.1 and mixed, and this mixture was mixed with a solution in which polyvinylidene fluoride was previously dissolved in N-methyl-2-pyrrolidone. Three (CH 2 ) 7 CH = CH (CH 2 ) 7 COOC 2 H Five LiCo 0.97 Al 0.025 Ge 0.005 O 2 A positive electrode mixture-containing paste was prepared by adding 0.1% by weight to the mixture. The obtained positive electrode mixture-containing paste was passed through a 70-mesh net to remove a large one, and then the coating amount was 24.6 mg / cm on both surfaces of a positive electrode current collector made of 15 μm thick aluminum foil. 2 (Partial weight of the positive electrode mixture after drying) is uniformly applied except for a part and dried to form a positive electrode mixture layer, then pressed by a roller press machine, cut, and the lead body is positive electrode current collector A belt-like positive electrode was produced by welding to the exposed portion of the film. The density of the positive electrode mixture layer of this positive electrode is 3.3 g / cm. Three Met. The positive electrode current collector made of aluminum foil used here contains 1% of iron and 0.15% of silicon, and the purity is 98% or more. The tensile strength of the positive electrode current collector is 185 N / mm. 2 The wettability was 38 dyne / cm, and the elongation at break was 3%.
[0047]
Next, a graphite-based carbonaceous material coated with coke-based graphite at a pitch and fired at 3000 ° C. [however, the distance d between (002) planes d 002 = 0.336 nm, C-axis direction crystallite size Lc = 100 nm or more, average particle diameter 16 μm, purity 99.5 wt% or more of carbonaceous material] and (C 2 F Five SO 2 ) 2 NLi and CH Three (CH 2 ) 7 CH = CH (CH 2 ) 7 COOC 2 H Five Was mixed with a solution in which polyvinylidene fluoride was previously dissolved in N-methyl-2-pyrrolidone to prepare a negative electrode mixture-containing paste. Above (C 2 F Five SO 2 ) 2 The content of NLi in the negative electrode mixture is 0.1% by weight with respect to the graphite-based carbonaceous material of the negative electrode active material, and CH Three (CH 2 ) 7 CH = CH (CH 2 ) 7 COOC 2 H Five The content of in the negative electrode mixture was 1% by weight with respect to the graphite-based carbonaceous material of the negative electrode active material. The negative electrode mixture-containing paste was passed through a 70-mesh net to remove a large one, and then the coating amount was 12.0 mg / cm on both sides of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm. 2 (Partial weight of the negative electrode mixture after drying) was applied uniformly except for a part, dried to form a negative electrode mixture layer, then pressed with a roller press, and after cutting, the lead body was collected into the negative electrode A strip-shaped negative electrode was prepared by welding to the exposed portion of the electric material. The density of the negative electrode mixture part of this negative electrode is 1.5 g / cm. Three Met.
[0048]
The belt-like positive electrode was stacked on the belt-like negative electrode through a separator made of a microporous polyethylene film having a thickness of 20 μm and wound in a spiral shape to obtain an electrode laminate having a spiral winding structure. The separator had an air permeability of 600 sec, a puncture strength of 570 g, a porosity of 38%, a thermal shrinkage in the length direction measured at 105 ° C. of 3%, and a thermal shrinkage in the width direction of 1%. It was. The volume of this electrode laminate is 11.4 cm Three Met. Thereafter, the electrode laminate was filled in a bottomed cylindrical battery case having an outer diameter of 18 mm, and the positive and negative lead bodies were welded.
[0049]
Next, the electrolytic solution is poured into the battery case, and after the electrolytic solution has sufficiently penetrated into the separator and the like, sealing is performed, precharging and aging are performed, and the cylindrical non-aqueous water having a structure as shown in the schematic diagram of FIG. A secondary battery was produced.
[0050]
Here, the battery shown in FIG. 1 will be described. 1 is the positive electrode and 2 is the negative electrode. However, in FIG. 1, in order to avoid complication, the current collector used for manufacturing the positive electrode 1 and the negative electrode 2 is not illustrated. Then, the positive electrode 1 and the negative electrode 2 are spirally wound through the separator 3, and the electrode stack having a spirally wound structure is put into the battery case 5 together with the nonaqueous electrolyte 4 from the specific nonaqueous electrolyte solution. Contained.
[0051]
The battery case 5 is made of stainless steel, and an insulator 6 made of polypropylene is disposed at the bottom of the battery case 5 prior to the insertion of the electrode laminate. The sealing plate 7 is made of aluminum and has a disk shape. The sealing plate 7 is provided with a thin portion 7a at the center thereof, and serves as a pressure inlet 7b for allowing the battery internal pressure to act on the explosion-proof valve 9 around the thin portion 7a. Holes are provided. And the protrusion part 9a of the explosion-proof valve 9 is welded to the upper surface of this thin part 7a, and the welding part 11 is comprised. It should be noted that the thin-walled portion 7a provided on the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 are shown only on the cut surface for easy understanding on the drawing, and the contour behind the cut surface is The illustration is omitted. In addition, the welded portion 11 of the thin-walled portion 7a of the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 is also illustrated in an exaggerated state so as to facilitate understanding on the drawing.
[0052]
The terminal plate 8 is made of rolled steel, has a nickel plating on the surface, and has a hat shape with a peripheral edge portion having a hook shape. The terminal plate 8 is provided with a gas discharge port 8a. The explosion-proof valve 9 is made of aluminum and has a disk shape, and a central portion is provided with a protruding portion 9a having a tip portion on the power generation element side (lower side in FIG. 1) and a thin portion 9b. As described above, the lower surface of the protruding portion 9a is welded to the upper surface of the thin portion 7a of the sealing plate 7 to constitute the welded portion 11. The insulating packing 10 is made of polypropylene and has an annular shape. The insulating packing 10 is arranged at the upper part of the peripheral edge of the sealing plate 7. The explosion-proof valve 9 is arranged on the upper part, and the sealing plate 7 and the explosion-proof valve 9 are insulated. The gap between the two is sealed so that the liquid electrolyte does not leak between the two. The annular gasket 12 is made of polypropylene, the lead body 13 is made of aluminum, connects the sealing plate 7 and the positive electrode 1, an insulator 14 is disposed on the upper part of the electrode laminate, and the bottom of the negative electrode 2 and the battery case 5. Are connected by a lead body 15 made of nickel.
[0053]
In this battery, the thin-walled portion 7a of the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 are in contact with each other at the welded portion 11, the peripheral portion of the explosion-proof valve 9 and the peripheral portion of the terminal plate 8 are in contact with each other. Since the positive electrode 1 and the terminal plate 8 are connected to the sealing plate 7 by the positive lead 13, the positive electrode 1 and the terminal plate 8 are electrically connected by the lead 13, the sealing plate 7, the explosion-proof valve 9, and their welded portions 11. Connection is obtained and functions normally as an electrical circuit.
[0054]
When the battery is exposed to a high temperature and an abnormal situation occurs, gas is generated inside the battery and the internal pressure of the battery rises, the internal pressure increases, so that the central portion of the explosion-proof valve 9 moves in the internal pressure direction ( In FIG. 1, the thin-walled portion 7 a is deformed in the upper direction), and the thin-walled portion 7 a of the sealing plate integrated with the welded portion 11 is broken accordingly, or the thin-walled portion 7 a is broken, or the explosion-proof valve 9 After the welded portion 11 between the protruding portion 9a and the thin portion 7a of the sealing plate 7 is peeled off, the thin portion 9b provided on the explosion-proof valve 9 is cleaved, and gas is discharged from the gas discharge port 8a of the terminal plate 8 to the outside of the battery. The battery is designed to be discharged to prevent battery explosion.
[0055]
This battery was charged with a constant current at a current value of 0.2 A until the battery voltage reached 4.4 V, and further charged with 4.4 V at a constant voltage, and charging was terminated when 12 hours had elapsed from the start of charging. Next, the battery was discharged at 0.2 A to 3 V, and the surface state of the positive electrode of the battery after discharge was subjected to XPS analysis under the above conditions. As a result, a peak based on sulfur between 168 and 170 eV, And a nitrogen-based peak between 399 and 401 eV were detected, the atomic ratio of sulfur determined by peak splitting was 2.1%, the atomic ratio of carbon was 5.0%, and the atomic ratio of nitrogen was 1.0%. Further, when the argon sputter etching was performed, the peak intensity of sulfur decreased to 69% before the argon sputter etching, the peak intensity of carbon decreased to 71% before the argon sputter etching, and the peak intensity of nitrogen decreased to argon. It decreased to 69% before the sputter etching. Further, a peak of 137 eV based on phosphorus and a peak of 688 eV based on fluorine were detected by XPS analysis, and the atomic ratio of phosphorus determined by peak splitting was 2.0%, and the atomic ratio of fluorine was 33%. Further, the positive electrode potential during charging was approximately 4.5 V on the basis of lithium. Furthermore, when the peak intensity based on carbon after peak splitting is Ia, and the total peak intensity based on other carbons (carbons based on other than the fluoroalkyl group) is Ic, Ia / Ic = 0. 23.
[0056]
Example 2
Used in the preparation of the electrolytic solution in Example 1 [(CF Three ) 2 CHOSO 2 ] 2 NLi (CF Three CF 2 SO 2 ) 2 A non-aqueous secondary battery was produced in the same manner as in Example 1 except that it was changed to NLi.
[0057]
This battery was charged with a constant current at a current value of 0.2 A until the battery voltage reached 4.4 V, and further charged with a constant voltage of 4.4 V, and charging was terminated when 12 hours had elapsed after the start of charging. Next, the battery was discharged at 0.2 A to 3 V, and the surface state of the positive electrode of the battery after discharge was subjected to XPS analysis under the above-mentioned conditions. A peak based on nitrogen was detected at a peak and a position of 399 to 401 eV, the atomic ratio of sulfur determined by peak splitting was 1.3%, the atomic ratio of carbon was 3.1%, and the atomic ratio of nitrogen was 0.7 %Met. Furthermore, when the above argon sputter etching was performed, the peak intensity of sulfur decreased to 70% before argon sputter etching, the peak intensity of carbon decreased to 75% before argon sputter etching, and the peak intensity of nitrogen decreased to argon. It decreased to 72% before sputter etching. In addition, a XPS analysis also detected a phosphorus-based peak of 137 eV and a fluorine-based peak of 688 eV. The phosphorus atomic ratio determined by peak splitting was 2.0%, and the fluorine atomic ratio was 32%. Further, the positive electrode potential during charging was approximately 4.5 V based on lithium.
[0058]
Example 3
CH used for inclusion in the positive electrode mixture and the negative electrode mixture in Example 2 Three (CH 2 ) 7 CH = CH (CH 2 ) 7 COOC 2 H Five C 17 H 35 COOC 2 H Five A non-aqueous secondary battery was produced in the same manner as in Example 2 except that the change was made.
[0059]
This battery was charged with a constant current at a current value of 0.2 A until the battery voltage reached 4.4 V, and further charged with 4.4 V at a constant voltage, and charging was terminated when 12 hours had elapsed from the start of charging. Next, the battery was discharged at 0.2 A to 3 V, and the surface state of the positive electrode of the battery after discharge was subjected to XPS analysis under the above conditions. As a result, a peak based on sulfur between 168 and 170 eV, And a nitrogen-based peak between 399 and 401 eV were detected, the atomic ratio of sulfur determined by peak splitting was 1.4%, the atomic ratio of carbon was 3.0%, and the atomic ratio of nitrogen was It was 0.8%. Further, when the argon sputter etching was performed, the peak intensity of sulfur decreased to 72% before the argon sputter etching, the peak intensity of carbon decreased to 77% before the argon sputter etching, and the peak intensity of nitrogen decreased to argon. It decreased to 74% before sputter etching. Further, a peak of 137 eV based on phosphorus and a peak of 688 eV based on fluorine were detected by XPS analysis, and the atomic ratio of phosphorus determined by peak splitting was 2.0%, and the atomic ratio of fluorine was 33%. Further, the positive electrode potential during charging was approximately 4.5 V on the basis of lithium.
[0060]
Example 4
CH used for inclusion in the positive electrode mixture and the negative electrode mixture in Example 2 Three (CH 2 ) 7 CH = CH (CH 2 ) 7 COOC 2 H Five C 11 H twenty three COOC 2 H Five A non-aqueous secondary battery was produced in the same manner as in Example 2 except that the change was made.
[0061]
This battery was charged with a constant current at a current value of 0.2 A until the battery voltage reached 4.4 V, and further charged with 4.4 V at a constant voltage, and charging was terminated when 12 hours had elapsed from the start of charging. Next, the battery was discharged at 0.2 A to 3 V, and the surface state of the positive electrode of the battery after discharge was subjected to XPS analysis under the above conditions. As a result, a peak based on sulfur between 168 and 170 eV, And a nitrogen-based peak between 399 and 401 eV were detected, the atomic ratio of sulfur determined by peak splitting was 1.1%, the atomic ratio of carbon was 3.0%, and the atomic ratio of nitrogen was It was 0.8%. Furthermore, when the argon sputter etching was performed, the peak intensity of sulfur decreased to 71% before the argon sputter etching, the peak intensity of carbon decreased to 76% before the argon sputter etching, and the peak intensity of nitrogen decreased to argon. It decreased to 71% before the sputter etching. Further, a peak of 137 eV based on phosphorus and a peak of 688 eV based on fluorine were detected by XPS analysis, and the atomic ratio of phosphorus determined by peak splitting was 2.0%, and the atomic ratio of fluorine was 33%. Further, the positive electrode potential during charging was approximately 4.5 V on the basis of lithium.
[0062]
Comparative Example 1
CH in the positive electrode mixture and negative electrode mixture Three (CH 2 ) 7 CH = CH (CH 2 ) 7 COOC 2 H Five And (C 2 F Five SO 2 ) 2 Without adding NLi, [(CF Three ) 2 CHOSO 2 ] 2 A non-aqueous secondary battery was produced in the same manner as in Example 1 except that NLi was not added.
[0063]
This battery was charged with a constant current at a current value of 0.2 A until the battery voltage reached 4.4 V, and further charged with 4.4 V at a constant voltage, and charging was terminated when 12 hours had elapsed from the start of charging. Next, the battery was discharged at 0.2 A to 3 V, and the surface state of the positive electrode of the battery after discharge was subjected to XPS analysis under the above-mentioned conditions. No based peak was detected. In addition, only 1.6% of a peak based on carbon between 291 and 295 eV was detected. Furthermore, when the argon sputter etching was performed, the peak intensity did not decrease. XPS also detected a phosphorus-based peak at 137 eV and a peak at 688 eV based on fluorine, the atomic ratio of phosphorus determined by peak splitting was 2.0%, and the atomic ratio of fluorine was 31%. Further, the positive electrode potential during charging was approximately 4.5 V on the basis of lithium. Further, Ia / Ic is 0.05 when the peak intensity based on carbon after peak splitting is Ia and the sum of peak intensities based on other carbons (carbons based on other than fluoroalkyl groups) is Ic. It was only.
[0064]
The batteries of Examples 1 to 4 and Comparative Example 1 were discharged at room temperature at 0.2 A to 3.0 V, charged at 0.2 A to 4.4 VCCCV (0.2 A constant current to 4.4 V, and then The battery was charged for 12 hours at a constant current and a constant voltage charge with a constant voltage charge of 4.4V), and then discharged to 3.0V at 0.2A to measure the discharge capacity. The discharge capacity at this time is defined as the discharge capacity before storage. Thereafter, the battery was stored at 60 ° C. for 20 days. After storage, the battery was charged with 4.4 VCCCV at 0.2 A for 12 hours, and then discharged to 3.0 V at 0.2 A to measure the discharge capacity. The discharge capacity at this time is defined as a discharge capacity after storage.
[0065]
From the pre-storage discharge capacity and the post-storage discharge capacity obtained as described above, the deterioration rate was determined by the following equation. The results are shown in Table 1 together with the amount of charging power per unit volume of the electrode laminate. In addition, the amount of charging electric power is calculated | required from the area of the charging curve when 4.4VCCCV is carried out by said 0.2A.
Degradation rate (%) = [1− (discharge capacity after storage) / (discharge capacity before storage]) × 100
[0066]
[Table 1]
Figure 0004553468
[0067]
As shown in Table 1, the batteries of Examples 1 to 4 had a lower deterioration rate due to storage than the battery of Comparative Example 1. That is, when stored at a high temperature of 60 ° C. for 20 days, the battery of Comparative Example 1 had a deterioration rate of 42% due to the above storage, whereas the batteries of Examples 1 to 4 had a deterioration rate of 19 to 27 by storage. % Was suppressed.
[0068]
【The invention's effect】
As described above, according to the present invention, in a high-capacity non-aqueous secondary battery, storage characteristics can be improved, and a high-capacity non-aqueous secondary battery having excellent storage characteristics can be provided. It was.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an example of a non-aqueous secondary battery according to the present invention.
[Explanation of symbols]
1 Positive electrode
2 Negative electrode
3 Separator

Claims (9)

リチウム複合酸化物を正極活物質として用いた正極、負極および非水電解質を有する非水二次電池において、
正極合剤中および/または負極合剤中に炭素数8以上の炭化水素鎖を有するエステル化合物またはエーテル化合物と、有機リチウム塩とを含有し、かつ正極合剤および/または負極合剤の含有する前記有機リチウム塩の濃度が、非水電解質中よりも高く、
正極表面のXPS分析で、168〜170eVの間にイオウに基づくピーク、291〜295eVの間に炭素に基づくピーク、および399〜401eVの間に窒素に基づくピーク有し、かつそれぞれのピークより求められる正極表面での各元素の原子比は、イオウが1%以上、炭素が3%以上、窒素が0.3%以上のいずれかの値になることを特徴とする非水二次電池。
In a non-aqueous secondary battery having a positive electrode, a negative electrode and a non-aqueous electrolyte using a lithium composite oxide as a positive electrode active material,
During during and / or negative electrode material mixture electrode mixture, an ester compound or an ether compound having 8 or more hydrocarbon chain carbon, containing an organic lithium salt, and the content of positive electrode mixture and / or the negative electrode mixture The concentration of the organic lithium salt is higher than in the non-aqueous electrolyte,
In XPS analysis of the positive electrode surface, a peak based on sulfur during 168~170EV, has a peak based on nitrogen during peak and 399~401eV based on the carbon between the 291~295EV, and determined from the respective peak The non-aqueous secondary battery is characterized in that the atomic ratio of each element on the surface of the positive electrode is any one of sulfur 1% or more, carbon 3% or more, and nitrogen 0.3% or more.
正極合剤および/または負極合剤の含有する有機リチウム塩は、C SO Li、C 17 SO Li、(C SO NLi、(CF SO )(C SO )NLi、(CF SO CLi、C SO Li、またはC 17 35 COOLiであることを特徴とする請求項1記載の非水二次電池。 The organic lithium salt contained in the positive electrode mixture and / or the negative electrode mixture is C 4 F 9 SO 3 Li, C 8 F 17 SO 3 Li, (C 2 F 5 SO 2 ) 2 NLi, (CF 3 SO 2 ). (C 4 F 9 SO 2) NLi, (CF 3 SO 2) 3 CLi, C 6 H 5 SO 3 Li or a non-aqueous secondary battery according to claim 1, characterized in that the C 17 H 35 COOLi, . ピーク分割した後の前記炭素に基づくピーク強度をIaとし、同じく他の炭素に基づくピーク強度の合計をIcとしたときに、Ia/Ic≧0.2になることを特徴とする請求項1または2記載の非水二次電池。The peak intensity based on the carbon after the peak splitting is Ia, and the total peak intensity based on other carbons is Ic, so that Ia / Ic ≧ 0.2. 2. The non-aqueous secondary battery according to 2. 前記イオウまたは炭素または窒素に基づくピークは、正極内部での強度が正極表面での強度より小さくなることを特徴とする請求項1〜3のいずれかに記載の非水二次電池。4. The non-aqueous secondary battery according to claim 1, wherein the peak based on sulfur, carbon, or nitrogen has an intensity inside the positive electrode smaller than an intensity on the surface of the positive electrode. 正極表面のXPS分析で、135〜138eVの間にリンに基づくピークを有し、かつ685〜689eVの間にフッ素に基づくピークを有することを特徴とする請求項1〜4のいずれかに記載の非水二次電池。The XPS analysis of the positive electrode surface has a peak based on phosphorus between 135 and 138 eV, and a peak based on fluorine between 685 and 689 eV, according to claim 1. Non-aqueous secondary battery. 正極合剤層の密度が3.3g/cm3 以上であることを特徴とする請求項1〜5のいずれかに記載の非水二次電池。The nonaqueous secondary battery according to claim 1, wherein the density of the positive electrode mixture layer is 3.3 g / cm 3 or more. 負極合剤層の密度が1.5g/cm3 以上であることを特徴とする請求項1〜6のいずれかに記載の非水二次電池。The nonaqueous secondary battery according to claim 1, wherein the density of the negative electrode mixture layer is 1.5 g / cm 3 or more. 請求項1〜7のいずれかに記載の非水二次電池に対し、正極電位がリチウム基準で4.3V以上になる条件で充電を行うことを特徴とする非水二次電池の製造方法。A method for producing a non-aqueous secondary battery, comprising charging the non-aqueous secondary battery according to any one of claims 1 to 7 under a condition that a positive electrode potential is 4.3 V or more based on lithium. 請求項1〜7のいずれかに記載の非水二次電池に対し、正極電位がリチウム基準で4.4V以上になる条件で充電を行うことを特徴とする非水二次電池の充電方法。A charging method for a non-aqueous secondary battery, wherein the non-aqueous secondary battery according to claim 1 is charged under a condition that a positive electrode potential is 4.4 V or more based on lithium.
JP2000275769A 2000-09-12 2000-09-12 Non-aqueous secondary battery and charging method thereof Expired - Lifetime JP4553468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000275769A JP4553468B2 (en) 2000-09-12 2000-09-12 Non-aqueous secondary battery and charging method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000275769A JP4553468B2 (en) 2000-09-12 2000-09-12 Non-aqueous secondary battery and charging method thereof

Publications (2)

Publication Number Publication Date
JP2002093405A JP2002093405A (en) 2002-03-29
JP4553468B2 true JP4553468B2 (en) 2010-09-29

Family

ID=18761335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000275769A Expired - Lifetime JP4553468B2 (en) 2000-09-12 2000-09-12 Non-aqueous secondary battery and charging method thereof

Country Status (1)

Country Link
JP (1) JP4553468B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630908A (en) * 2017-03-22 2018-10-09 株式会社东芝 Electrode, nonaqueous electrolyte battery, battery pack and vehicle

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095383A (en) * 2002-08-30 2004-03-25 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2005029613A1 (en) 2003-09-16 2005-03-31 Nec Corporation Nonaqueous electrolyte secondary battery
JP4697382B2 (en) * 2003-11-11 2011-06-08 日本電気株式会社 Nonaqueous electrolyte secondary battery
JP4811697B2 (en) * 2003-12-26 2011-11-09 株式会社Gsユアサ Lithium secondary battery and initial activation method thereof
EP1739768A4 (en) * 2004-03-30 2007-05-09 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and charge/discharge controlling system thereof
JPWO2006025601A1 (en) * 2004-09-03 2008-05-08 株式会社日本触媒 Positive electrode material composition for lithium secondary battery
JP5073161B2 (en) * 2004-10-13 2012-11-14 三星エスディアイ株式会社 Non-aqueous electrolyte for lithium secondary battery, lithium secondary battery and secondary battery system
JP2006302756A (en) * 2005-04-22 2006-11-02 Sony Corp Battery
JP2011070773A (en) * 2009-03-19 2011-04-07 Equos Research Co Ltd Electrode for lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174810A (en) * 1991-12-18 1993-07-13 Sanyo Electric Co Ltd Battery electrode and battery
JPH097635A (en) * 1995-06-23 1997-01-10 Asahi Glass Co Ltd Nonaqueous electrolytic secondary battery
JPH10189045A (en) * 1996-11-01 1998-07-21 Sanyo Electric Co Ltd Lithium secondary battery
JPH1197024A (en) * 1997-09-24 1999-04-09 Denso Corp Electrode for nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174810A (en) * 1991-12-18 1993-07-13 Sanyo Electric Co Ltd Battery electrode and battery
JPH097635A (en) * 1995-06-23 1997-01-10 Asahi Glass Co Ltd Nonaqueous electrolytic secondary battery
JPH10189045A (en) * 1996-11-01 1998-07-21 Sanyo Electric Co Ltd Lithium secondary battery
JPH1197024A (en) * 1997-09-24 1999-04-09 Denso Corp Electrode for nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630908A (en) * 2017-03-22 2018-10-09 株式会社东芝 Electrode, nonaqueous electrolyte battery, battery pack and vehicle
CN108630908B (en) * 2017-03-22 2021-08-06 株式会社东芝 Electrode, nonaqueous electrolyte battery, battery pack, and vehicle

Also Published As

Publication number Publication date
JP2002093405A (en) 2002-03-29

Similar Documents

Publication Publication Date Title
CN113644317B (en) Lithium ion battery
US11658294B2 (en) Secondary battery and battery module, battery pack and apparatus comprising the secondary battery
US20090155694A1 (en) Cathode and lithium battery using the same
EP3614462A1 (en) Negative electrode plate and secondary battery
KR20160110380A (en) Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
JP2000123867A (en) Nonaqueous secondary battery
EP3742532B1 (en) Non-aqueous electrolyte secondary battery
CN109786832B (en) Electrolyte additive, electrolyte and lithium ion secondary battery
JP4553468B2 (en) Non-aqueous secondary battery and charging method thereof
CN111430801B (en) Electrolyte of lithium ion secondary battery and application thereof
JP3916116B2 (en) Non-aqueous secondary battery
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP5219303B2 (en) Non-aqueous secondary battery
JP2002087807A (en) Multilayer graphite, manufacturing method thereof and non-aqueous electrolyte secondary battery
JP6224382B2 (en) Lithium secondary battery
JP4439070B2 (en) Non-aqueous secondary battery and charging method thereof
JP3327468B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP2005032632A (en) Manufacturing method of non-aqueous secondary battery
JP4711319B2 (en) Non-aqueous secondary battery
JP2003007303A (en) Nonaqueous electrolyte secondary battery
JP4974404B2 (en) Non-aqueous secondary battery
JP5447176B2 (en) Nonaqueous electrolyte secondary battery charging method and manufacturing method
JP3969551B2 (en) Non-aqueous secondary battery
JP2000123869A (en) Nonaqueous secondary battery
JP2007087963A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4553468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term