[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4551589B2 - Variable displacement vane pump - Google Patents

Variable displacement vane pump Download PDF

Info

Publication number
JP4551589B2
JP4551589B2 JP2001222780A JP2001222780A JP4551589B2 JP 4551589 B2 JP4551589 B2 JP 4551589B2 JP 2001222780 A JP2001222780 A JP 2001222780A JP 2001222780 A JP2001222780 A JP 2001222780A JP 4551589 B2 JP4551589 B2 JP 4551589B2
Authority
JP
Japan
Prior art keywords
pump
cam ring
chamber
pressure
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001222780A
Other languages
Japanese (ja)
Other versions
JP2003035279A (en
Inventor
新司 矢加部
精一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2001222780A priority Critical patent/JP4551589B2/en
Publication of JP2003035279A publication Critical patent/JP2003035279A/en
Application granted granted Critical
Publication of JP4551589B2 publication Critical patent/JP4551589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • F04C14/223Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
    • F04C14/226Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam by pivoting the cam around an eccentric axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、車両のパワーステアリング装置などに用いられる、可変容量形ベーンポンプの改良に関する。
【0002】
【従来の技術】
従来の可変容量形ベーンポンプとして、駆動軸と一体に回転するロータと、ロータから摺動自由に突出する複数のベーンと、ロータとの間でベーンに仕切られるポンプ室を画成するカムリングと、カムリングをポンプ押しのけ容積の増減方向へ変位可能に収容するアダプタリングと、ポンプ吐出通路に介装される制御オリフィスと、制御オリフィスの前後の圧力差に応じてカムリングをポンプ押しのけ容積の増減方向へ変位させる手段と、を備えるものがある(特開2000−161249号、参照)。
【0003】
特開2000−161249号には、ポンプ室の予圧縮量(および予減圧量)を適正に調整するため、制御オリフィスの前後の圧力差に応じてカムリングをポンプ押しのけ容積の増減方向へ変位させる手段を備える一方、カムリングの外周に導かれるポンプ吐出圧がこれに対抗するスプリングの付勢力を超えると、カムリングが吸込ポートと吐出ポートとの間を均等に分割する仮想平面に対する略直交方向の吸込側へ変位するように構成したものが開示される。
【0004】
これにより、ポンプ押しのけ容積の変化に応じてポンプ室の予圧縮量(および予減圧量)が適正に維持可能となり、ポンプの振動や騒音の低減が図れるのである。
【0005】
【発明が解決しようとする課題】
このような従来例においては、ポンプ吐出圧に対抗してカムリングを初期位置に付勢するスプリングに大きな設定荷重が要求され、スプリングが大型化するため、カムリングの外周にスプリングを組み付けることが難しい、という不具合があった。
【0006】
この発明は、このような不具合を改善するための有効な対策手段の提供を目的とする。
【0007】
【課題を解決するための手段】
第1の発明は、駆動軸と一体に回転するロータと、ロータから摺動自由に突出する複数のベーンと、ロータとの間でベーンに仕切られるポンプ室を画成するカムリングと、カムリングをポンプ押しのけ容積の増減方向へ変位可能に収容するアダプタリングと、ポンプ吐出通路に介装される制御オリフィスと、制御オリフィスの前後の圧力差に応じてカムリングをポンプ押しのけ容積の増減方向へ変位させる手段と、を備える可変容量形ベーンポンプにおいて、吸込ポートと吐出ポートとの間を均等に分割する仮想平面に対する略直交方向へカムリングを変位させる手段としてアダプタリングの外周にこれを制御オリフィス上流のポンプ吐出圧に応じて弾性変形させる圧力室を設けたことを特徴とする。
【0008】
第2の発明は、第1の発明におけるアダプタリングは、外形に切り欠きを持つC型に形成したことを特徴とする。
【0009】
第3の発明は、第1の発明におけるアダプタリングは、外形の一部を薄肉化する溝を形成したことを特徴とする。
【0010】
【発明の効果】
第1の発明〜第3の発明においては、ポンプ吐出圧に応じてアダプタリングが弾性変形し、これに応じてカムリングが吸込ポートと吐出ポートとの間を均等に分割する仮想平面に対する略直交方向へ変位するので、ポンプ吐出圧に応じてポンプ室の予圧縮量(および予減圧量)を適正に維持可能となる。この場合、カムリングの変位にアダプタリングの弾性変形を利用するので、ポンプ吐出圧に対抗する従来のスプリング(カムリングを初期位置に付勢する)が不要化され、ポンプの小型化を促進できる。
【0011】
【発明の実施の形態】
以下、この発明の実施形態を添付の図面に基づいて説明する。添付の図面は、車両のパワーステアリング装置に用いられる、可変容量形ベーンポンプへの適用例を表すものである。
【0012】
図1において、可変容量形ベーンポンプは、駆動軸1と一体に回転するロータ2と、ロータ2から摺動自由に突出する複数のベーン3と、これらベーン3の突出端部を摺接させてポンプ室4を画成するカムリング5と、が備えられる。駆動軸1と一体にロータ2が図中の反時計方向へ回転すると、駆動軸1に対するカムリング5の偏心量に基づいて、ロータ2の回転に伴って拡張するポンプ室4に吸込ポート6から作動油が吸い込まれる一方、ロータ2の回転に伴って収縮するポンプ室4から吐出ポート7に作動油が吐き出される。
【0013】
カムリング5を収容するアダプタリング8が設けられ、カムリング5はアダプタリング8にピン9を介して駆動軸1の左右へ揺動可能に支持される。カムリング5がスプリング10の付勢力により、図示の最大偏心位置(アダプタリング8の左側内面に押し付けられる状態)にあるときは、ポンプ押しのけ容積が最大となる。この状態からカムリング5がピン9を支点に右側(スプリング10の圧縮方向)へ揺動すると、カムリング5の偏心量が小さくなり、ポンプ押しのけ容積が減少する。スプリング10の付勢力は、プランジャ11およびフィードバックピン12を介してカムリング5に伝えられる。
【0014】
カムリング5とアダプタリング8との間は、カムリング5の左側に第1流体室14、同じく右側に第2流体室15、がピン9およびシール16により仕切られる。カムリング5は、第1流体室14の圧力と、第2流体室15の圧力と、スプリング10の付勢力と、の釣り合う揺動位置に保持される。吐出ポート7の作動油は、通路17aから制御オリフィス13に導かれ、さらに通路17bからパワーステアリング装置へ供給される。吸込ポート6の作動油は、タンク20から通路18および制御バルブ21を介して導かれる。
【0015】
制御バルブ21は、シリンダ形のバルブ室21aと、その内部を軸方向へ摺動自由なスプール21bと、が備えられる。スプール21bは、バルブ室21aの一端側に第1室22aを画成するランド部23aと、バルブ室21aの他端側に第2室22bを画成するランド部23bと、が設けられる。バルブ室21aの中間部(ランド部22a,22bの間)は、タンク20側を吸込ポート6側に中継する環状室22c(第3室)に形成され、第2室22bにスプール21bをバルブ室21aの左端に押し付けるスプリング24が収装される。
【0016】
制御バルブ21の第1室22aには、制御オリフィス13の上流圧が通路19を介して導かれる一方、制御バルブ21の第2室22bには、制御オリフィス13の下流圧が絞り17cを介して導かれる。図示の状態(制御オリフィス13の前後の圧力差が所定値以下のとき)において、カムリング5の第2流体室15は、制御バルブ21のランド部23bに通路が閉塞され、通路17aから絞り17dを介して導かれる制御オリフィス13の上流圧に保持される一方、カムリング5の第1流体室14は、制御バルブ21の環状室22cからタンク圧がランド部23aのスリット(図示せず)および環状溝25を介して導かれる。これにより、カムリング5は、スプリング10の付勢力に押され、最大偏芯位置(ポンプ押しのけ容積が最大となる)に保持される。
【0017】
制御オリフィス13の前後の差圧が所定値を超えると、制御バルブ21のスプール21bがスプリング24に抗して変位する。カムリング5の第1流体室14には、制御バルブ21の第1室22aからスプール21bの変位量に応じて制御オリフィス13の上流圧が絞り19aを介して導かれる一方、カムリング5の第2流体室15に制御バルブ21の環状室22cからスプール21bの変位量に応じてタンク圧がノッチ26を介して導かれる。これにより、第1流体室14の圧力が上昇する一方、第2流体室15の圧力が低下し、これらの圧力差がスプリング10の付勢力に打ち勝つと、カムリング5が右側(ポンプ押しのけ容積の減少方向)へ揺動する。カムリング5の動きは、フィードバックピン12を介してプランジャ11に伝えられ、所定量以上に後退するプランジャ11により、制御オリフィス13の開口面積が縮小される。18aは制御バルブ21に第2流体室15を継ぐ通路である。
【0018】
ポンプ吐出流量は、ポンプ回転数が所定値へ上昇するまでの間は、カムリング5が最大偏心位置に保持されるので、ポンプ回転数の上昇に連れて増加する一方、ポンプ回転が所定値を超えると、カムリング5がポンプ押しのけ容積を減少させる方向へ揺動するため、ポンプ回転数が上昇しても、略一定に保たれるのであり、さらにポンプ回転数が上昇すると、制御オリフィス13の開口面積がプランジャ11によって縮小されるため、ポンプ回転数の上昇に連れて減少する。
【0019】
ポンプ吐出圧に応じてポンプ室4の予圧縮量を適正に維持するため、アダプタリング8の外周に圧力室30が設けられる。圧力室30はシール30a,30bで仕切られ、制御オリフィス13上流からポンプ吐出圧が導かれる。アダプタリング8は、所定の弾性変形を生じやすく、外形の肉厚が調整される。
【0020】
圧力室30のポンプ吐出圧に第1流体室14および第2流体室15の圧力が対抗するので、圧力室30のポンプ吐出圧がアダプタリング8に作用する面積と、第1流体室14および第2流体室15の圧力が圧力室30のポンプ吐出圧に対抗してアダプタリング8に作用する面積と、の間に差が設定される。そして、この面積差とアダプタリング8の弾性定数との関係から、ポンプ吐出圧の上昇に伴いアダプタリング8が内側へ弾性変形を生じ、吸込ポート6と吐出ポート7との間を均等に分割する仮想平面Saと略直交方向へカムリング5を変位させるようになっている。
【0021】
カムリング5は、ポンプ回転数が所定値へ上昇するまでの間は、最大偏心位置に保持され、ポンプ回転数が所定値を超えると、ポンプ押しのけ容積を減少させる方向へ揺動するのである。仮想平面Saと略直交方向への変位がない場合、ポンプ吐出圧の変化に伴って予圧縮量(および予減圧量)に過不足が生じ、吸込行程から吐出行程(および吐出行程から吸込行程)へ移る過程において、ポンプ室4の圧力が滑らかに変化せず、ポンプの振動騒音を増大させかねないが、この例においては、ポンプ吐出圧に応じてアダプタリング8が弾性変形し、これに押されてカムリング5がシール16を圧縮しながら、吸込ポート6と吐出ポート7との間を均等に分割する仮想平面Saに対する略直交方向へ変位するので、ポンプ吐出圧の変化に応じてポンプ室4の予圧縮量(および予減圧量)が適正に維持される。
【0022】
ポンプ室4の予圧縮量(および予減圧量)は、カムリング5が仮想平面Saに対する略直交方向の吸込側へ変位すると大きくなり、仮想平面Saに対する略直交方向の吐出側へ変位すると小さくなるのである。図示の場合、カムリング5の仮想平面Saに対する略直交方向への変位にアダプタリング8の弾性変形を利用するので、ポンプ吐出圧に対抗する従来のスプリング(カムリング5を初期位置に付勢する)が不要化され、ポンプの小型化を促進できる、という効果が得られる。
【0023】
アダプタリング8は、所定の弾性変形を生じやすく、図2のように外形の一部を薄肉化する溝31を形成したり、図3のように外形の一部を割れ目32に切り欠くC型に形成したり、工夫することが考えられる。なお、図2および図3において、図1と同じ部品に同じ符号を付ける。
【図面の簡単な説明】
【図1】この発明の実施形態を表す可変容量形ベーンポンプの断面図である。
【図2】同じく別の実施形態を表す可変容量形ベーンポンプの断面図である。
【図3】同じく別の実施形態を表す可変容量形ベーンポンプの断面図である。
【符号の説明】
1 駆動軸
2 ロータ
3 ベーン
4 ポンプ室
5 カムリング
6 吸込ポート
7 吐出ポート
8 アダプタリング
9 ピン
13 制御オリフィス
14 第1流体室
15 第2流体室
21 制御バルブ
30 圧力室
31 溝
32 割れ目
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a variable displacement vane pump used for a power steering device of a vehicle.
[0002]
[Prior art]
As a conventional variable displacement vane pump, a rotor that rotates integrally with a drive shaft, a plurality of vanes that slidably protrude from the rotor, a cam ring that defines a pump chamber partitioned by the vane between the rotor, and a cam ring An adapter ring that accommodates the pump displacement volume in the direction of increase or decrease of the pump displacement, a control orifice interposed in the pump discharge passage, and the cam ring is displaced in the direction of increase or decrease of the pump displacement volume according to the pressure difference before and after the control orifice Means (see JP 2000-161249 A).
[0003]
Japanese Patent Laid-Open No. 2000-161249 discloses means for displacing the cam ring in the direction of increase or decrease of the pump displacement volume in accordance with the pressure difference before and after the control orifice in order to properly adjust the precompression amount (and predepressurization amount) of the pump chamber. On the other hand, when the pump discharge pressure guided to the outer periphery of the cam ring exceeds the urging force of the spring against it, the cam ring draws the suction port and the discharge port evenly, and the suction side in a direction substantially orthogonal to the virtual plane What is comprised so that it may displace to is disclosed.
[0004]
As a result, the pre-compression amount (and the pre-decompression amount) of the pump chamber can be appropriately maintained in accordance with the change in the displacement of the pump, and the vibration and noise of the pump can be reduced.
[0005]
[Problems to be solved by the invention]
In such a conventional example, a large set load is required for the spring that biases the cam ring to the initial position against the pump discharge pressure, and since the spring is enlarged, it is difficult to assemble the spring on the outer periphery of the cam ring. There was a problem that.
[0006]
An object of the present invention is to provide effective countermeasure means for improving such problems.
[0007]
[Means for Solving the Problems]
A first invention includes a rotor that rotates integrally with a drive shaft, a plurality of vanes that freely slide from the rotor, a cam ring that defines a pump chamber partitioned by the vanes between the rotor, and a pump for the cam ring. An adapter ring that is slidably accommodated in the direction of increase / decrease of the displacement, a control orifice interposed in the pump discharge passage, and a means for displacing the cam ring in the direction of increase / decrease of the pump displacement according to the pressure difference before and after the control orifice; As a means for displacing the cam ring in a direction substantially orthogonal to a virtual plane that equally divides the suction port and the discharge port, this is used as the pump discharge pressure upstream of the control orifice. A pressure chamber that is elastically deformed accordingly is provided.
[0008]
The second invention is characterized in that the adapter ring in the first invention is formed in a C shape having a notch in the outer shape.
[0009]
According to a third invention, the adapter ring according to the first invention is characterized in that a groove for thinning a part of the outer shape is formed.
[0010]
【The invention's effect】
In the first to third aspects of the invention, the adapter ring is elastically deformed according to the pump discharge pressure, and the cam ring is substantially perpendicular to the virtual plane that equally divides between the suction port and the discharge port accordingly. Therefore, the precompression amount (and the predepressurization amount) of the pump chamber can be appropriately maintained according to the pump discharge pressure. In this case, since the elastic deformation of the adapter ring is used for the displacement of the cam ring, the conventional spring (which biases the cam ring to the initial position) that opposes the pump discharge pressure is unnecessary, and the downsizing of the pump can be promoted.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. The accompanying drawings show an application example to a variable displacement vane pump used in a power steering device of a vehicle.
[0012]
In FIG. 1, the variable displacement vane pump is a pump in which a rotor 2 that rotates integrally with a drive shaft 1, a plurality of vanes 3 that protrude freely from the rotor 2, and sliding ends of these vanes 3 are brought into sliding contact. And a cam ring 5 that defines the chamber 4. When the rotor 2 rotates integrally with the drive shaft 1 in the counterclockwise direction in the figure, the pump chamber 4 that expands as the rotor 2 rotates is operated from the suction port 6 based on the eccentric amount of the cam ring 5 with respect to the drive shaft 1. While the oil is sucked in, the hydraulic oil is discharged from the pump chamber 4 that contracts with the rotation of the rotor 2 to the discharge port 7.
[0013]
An adapter ring 8 that accommodates the cam ring 5 is provided, and the cam ring 5 is supported by the adapter ring 8 via a pin 9 so as to be swingable to the left and right of the drive shaft 1. When the cam ring 5 is in the illustrated maximum eccentric position (a state pressed against the left inner surface of the adapter ring 8) by the biasing force of the spring 10, the displacement of the pump is maximized. From this state, when the cam ring 5 swings to the right (in the compression direction of the spring 10) with the pin 9 as a fulcrum, the eccentric amount of the cam ring 5 is reduced and the displacement of the pump is reduced. The urging force of the spring 10 is transmitted to the cam ring 5 through the plunger 11 and the feedback pin 12.
[0014]
Between the cam ring 5 and the adapter ring 8, a first fluid chamber 14 is partitioned on the left side of the cam ring 5 and a second fluid chamber 15 is partitioned on the right side by a pin 9 and a seal 16. The cam ring 5 is held at a swing position in which the pressure of the first fluid chamber 14, the pressure of the second fluid chamber 15, and the biasing force of the spring 10 are balanced. The hydraulic oil in the discharge port 7 is guided from the passage 17a to the control orifice 13, and is further supplied from the passage 17b to the power steering apparatus. The hydraulic fluid in the suction port 6 is guided from the tank 20 through the passage 18 and the control valve 21.
[0015]
The control valve 21 includes a cylinder-shaped valve chamber 21a and a spool 21b that can freely slide in the axial direction. The spool 21b is provided with a land portion 23a that defines a first chamber 22a on one end side of the valve chamber 21a, and a land portion 23b that defines a second chamber 22b on the other end side of the valve chamber 21a. An intermediate portion (between the land portions 22a and 22b) of the valve chamber 21a is formed in an annular chamber 22c (third chamber) that relays the tank 20 side to the suction port 6 side, and the spool 21b is connected to the second chamber 22b. A spring 24 that presses against the left end of 21a is received.
[0016]
The upstream pressure of the control orifice 13 is guided to the first chamber 22a of the control valve 21 via the passage 19, while the downstream pressure of the control orifice 13 is passed to the second chamber 22b of the control valve 21 via the throttle 17c. Led. In the state shown in the figure (when the pressure difference across the control orifice 13 is equal to or smaller than a predetermined value), the second fluid chamber 15 of the cam ring 5 is blocked by the land portion 23b of the control valve 21, and the throttle 17d is closed from the passage 17a. On the other hand, the first fluid chamber 14 of the cam ring 5 is maintained at the upstream pressure of the control orifice 13 guided through the tank, the tank pressure from the annular chamber 22c of the control valve 21 and the slit (not shown) and the annular groove of the land portion 23a. 25. As a result, the cam ring 5 is pushed by the urging force of the spring 10 and is held at the maximum eccentric position (the pump displacement volume is maximized).
[0017]
When the differential pressure across the control orifice 13 exceeds a predetermined value, the spool 21b of the control valve 21 is displaced against the spring 24. The upstream pressure of the control orifice 13 is guided to the first fluid chamber 14 of the cam ring 5 from the first chamber 22a of the control valve 21 according to the displacement amount of the spool 21b through the throttle 19a, while the second fluid of the cam ring 5 is The tank pressure is guided to the chamber 15 through the notch 26 from the annular chamber 22c of the control valve 21 in accordance with the displacement amount of the spool 21b. As a result, the pressure in the first fluid chamber 14 increases while the pressure in the second fluid chamber 15 decreases, and when these pressure differences overcome the urging force of the spring 10, the cam ring 5 moves to the right side (decrease in pump displacement volume). Swings in the direction). The movement of the cam ring 5 is transmitted to the plunger 11 via the feedback pin 12, and the opening area of the control orifice 13 is reduced by the plunger 11 that moves backward by a predetermined amount or more. 18 a is a passage that connects the second fluid chamber 15 to the control valve 21.
[0018]
Since the cam ring 5 is held at the maximum eccentric position until the pump rotational speed increases to a predetermined value, the pump discharge flow rate increases as the pump rotational speed increases, while the pump rotation exceeds the predetermined value. Since the cam ring 5 swings in the direction of decreasing the displacement of the pump, even if the pump speed increases, the cam ring 5 is kept substantially constant. When the pump speed further increases, the opening area of the control orifice 13 increases. Is reduced by the plunger 11, and decreases as the pump rotational speed increases.
[0019]
In order to appropriately maintain the precompression amount of the pump chamber 4 according to the pump discharge pressure, a pressure chamber 30 is provided on the outer periphery of the adapter ring 8. The pressure chamber 30 is partitioned by seals 30 a and 30 b, and the pump discharge pressure is guided from the upstream of the control orifice 13. The adapter ring 8 is likely to undergo predetermined elastic deformation, and the outer wall thickness is adjusted.
[0020]
Since the pressure of the first fluid chamber 14 and the second fluid chamber 15 opposes the pump discharge pressure of the pressure chamber 30, the area where the pump discharge pressure of the pressure chamber 30 acts on the adapter ring 8, the first fluid chamber 14 and the first fluid chamber 14 A difference is set between the area where the pressure of the two fluid chambers 15 acts on the adapter ring 8 against the pump discharge pressure of the pressure chamber 30. Then, from the relationship between the area difference and the elastic constant of the adapter ring 8, the adapter ring 8 is elastically deformed inward as the pump discharge pressure rises, and the suction port 6 and the discharge port 7 are evenly divided. The cam ring 5 is displaced in a direction substantially orthogonal to the virtual plane Sa.
[0021]
The cam ring 5 is held at the maximum eccentric position until the pump rotational speed rises to a predetermined value. When the pump rotational speed exceeds the predetermined value, the cam ring 5 swings in a direction to reduce the pump displacement. When there is no displacement in the direction substantially perpendicular to the virtual plane Sa, the pre-compression amount (and pre-decompression amount) becomes excessive and insufficient as the pump discharge pressure changes, and the suction stroke to the discharge stroke (and the discharge stroke to the suction stroke). In this process, the pressure in the pump chamber 4 does not change smoothly, which may increase the vibration noise of the pump. In this example, however, the adapter ring 8 is elastically deformed according to the pump discharge pressure, and this is pushed. Since the cam ring 5 compresses the seal 16 and is displaced in a direction substantially orthogonal to the virtual plane Sa that equally divides the suction port 6 and the discharge port 7, the pump chamber 4 is changed according to the change in the pump discharge pressure. The amount of pre-compression (and the amount of pre-decompression) is properly maintained.
[0022]
The precompression amount (and the predepressurization amount) of the pump chamber 4 increases when the cam ring 5 is displaced to the suction side in a direction substantially orthogonal to the virtual plane Sa, and decreases when the cam ring 5 is displaced to the discharge side in a direction substantially orthogonal to the virtual plane Sa. is there. In the case shown in the figure, since the elastic deformation of the adapter ring 8 is used for the displacement of the cam ring 5 in the direction substantially orthogonal to the virtual plane Sa, a conventional spring that opposes the pump discharge pressure (biasing the cam ring 5 to the initial position) is provided. There is an effect that it is unnecessary and the miniaturization of the pump can be promoted.
[0023]
The adapter ring 8 is likely to be subjected to predetermined elastic deformation, and is formed with a groove 31 for thinning a part of the outer shape as shown in FIG. 2, or a C-shaped part in which a part of the outer shape is notched into a crack 32 as shown in FIG. It may be possible to form or devise. 2 and 3, the same reference numerals are given to the same components as those in FIG.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a variable displacement vane pump representing an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a variable displacement vane pump that also represents another embodiment.
FIG. 3 is a cross-sectional view of a variable displacement vane pump that also represents another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Drive shaft 2 Rotor 3 Vane 4 Pump chamber 5 Cam ring 6 Suction port 7 Discharge port 8 Adapter ring 9 Pin 13 Control orifice 14 First fluid chamber 15 Second fluid chamber 21 Control valve 30 Pressure chamber 31 Groove 32 Crack

Claims (3)

駆動軸と一体に回転するロータと、ロータから摺動自由に突出する複数のベーンと、ロータとの間でベーンに仕切られるポンプ室を画成するカムリングと、カムリングをポンプ押しのけ容積の増減方向へ変位可能に収容するアダプタリングと、ポンプ吐出通路に介装される制御オリフィスと、制御オリフィスの前後の圧力差に応じてカムリングをポンプ押しのけ容積の増減方向へ変位させる手段と、を備える可変容量形ベーンポンプにおいて、吸込ポートと吐出ポートとの間を均等に分割する仮想平面に対する略直交方向へカムリングを変位させる手段としてアダプタリングの外周にこれを制御オリフィス上流のポンプ吐出圧に応じて弾性変形させる圧力室を設けたことを特徴とする可変容量形ベーンポンプ。A rotor that rotates integrally with the drive shaft, a plurality of vanes that freely slide out of the rotor, a cam ring that defines a pump chamber partitioned by the vane from the rotor, and a direction in which the cam ring is increased or decreased in pump displacement A variable capacity type comprising: an adapter ring that is housed in a displaceable manner; a control orifice interposed in the pump discharge passage; and a means for displacing the cam ring in the direction of increase or decrease of the pump displacement volume in accordance with a pressure difference before and after the control orifice. In a vane pump, as a means for displacing the cam ring in a direction substantially orthogonal to a virtual plane that equally divides the suction port and the discharge port, the pressure that elastically deforms the cam ring on the outer periphery of the adapter ring according to the pump discharge pressure upstream of the control orifice A variable displacement vane pump characterized by having a chamber. アダプタリングは、外形に切り欠きを持つC型に形成したことを特徴とする請求項1に記載の可変容量形ベーンポンプ。2. The variable displacement vane pump according to claim 1, wherein the adapter ring is formed in a C shape having a notch in the outer shape. アダプタリングは、外形の一部を薄肉化する溝を形成したことを特徴とする請求項1に記載の可変容量形ベーンポンプ。The variable capacity vane pump according to claim 1, wherein the adapter ring is formed with a groove for thinning a part of the outer shape.
JP2001222780A 2001-07-24 2001-07-24 Variable displacement vane pump Expired - Fee Related JP4551589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222780A JP4551589B2 (en) 2001-07-24 2001-07-24 Variable displacement vane pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222780A JP4551589B2 (en) 2001-07-24 2001-07-24 Variable displacement vane pump

Publications (2)

Publication Number Publication Date
JP2003035279A JP2003035279A (en) 2003-02-07
JP4551589B2 true JP4551589B2 (en) 2010-09-29

Family

ID=19056207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222780A Expired - Fee Related JP4551589B2 (en) 2001-07-24 2001-07-24 Variable displacement vane pump

Country Status (1)

Country Link
JP (1) JP4551589B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006025532B4 (en) * 2006-06-01 2013-03-07 Zf Lenksysteme Gmbh Adjustable positive displacement pump
CN104675698B (en) * 2013-11-28 2016-07-13 王光明 Piston hinge formula variable displacement vane pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07259750A (en) * 1994-03-23 1995-10-09 Toyoda Mach Works Ltd Vane pump
JP2000120560A (en) * 1998-10-13 2000-04-25 Kayaba Ind Co Ltd Vane pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07259750A (en) * 1994-03-23 1995-10-09 Toyoda Mach Works Ltd Vane pump
JP2000120560A (en) * 1998-10-13 2000-04-25 Kayaba Ind Co Ltd Vane pump

Also Published As

Publication number Publication date
JP2003035279A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
JP5116546B2 (en) Variable displacement vane pump
JP6329775B2 (en) Vane pump
JP6182821B2 (en) Variable displacement vane pump
JP2005042674A (en) Variable displacement pump
WO2016084804A1 (en) Variable capacity vane pump
JP2008115706A (en) Variable displacement type vane pump and its manufacturing method
US6503068B2 (en) Variable capacity type pump
US20130034460A1 (en) Variable Displacement Vane Pump
JP2002115673A (en) Variable displacement pump
JP4551589B2 (en) Variable displacement vane pump
JP3836673B2 (en) Variable displacement pump
JP2011140918A (en) Variable displacement vane pump
KR101582615B1 (en) Variable Vane Pump
JP4267768B2 (en) Variable displacement pump
KR100278186B1 (en) Flow control device for hydraulic pump
KR101548432B1 (en) Variable Vane Pump
JP5583492B2 (en) Variable displacement vane pump
JP2009275537A (en) Variable displacement vane pump
JP2599964Y2 (en) Vane pump
JP2007285160A (en) Swash plate type variable displacement piston pump
JP2007032517A (en) Variable displacement vane pump
WO2019155758A1 (en) Pump device
JPH07119648A (en) Variable displacement type vane pump
JP4009455B2 (en) Variable displacement vane pump
JP2001263270A (en) Variable displacement pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R151 Written notification of patent or utility model registration

Ref document number: 4551589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees