[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4551446B2 - Natural gas liquefaction - Google Patents

Natural gas liquefaction Download PDF

Info

Publication number
JP4551446B2
JP4551446B2 JP2007510667A JP2007510667A JP4551446B2 JP 4551446 B2 JP4551446 B2 JP 4551446B2 JP 2007510667 A JP2007510667 A JP 2007510667A JP 2007510667 A JP2007510667 A JP 2007510667A JP 4551446 B2 JP4551446 B2 JP 4551446B2
Authority
JP
Japan
Prior art keywords
stream
condensed
natural gas
cooling
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007510667A
Other languages
Japanese (ja)
Other versions
JP2007534923A (en
Inventor
ウィルキンソン,ジョン・ディー
ハドソン,ハンク・エム
クエラー,カイル・ティー
Original Assignee
オートロフ・エンジニアーズ・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オートロフ・エンジニアーズ・リミテッド filed Critical オートロフ・エンジニアーズ・リミテッド
Publication of JP2007534923A publication Critical patent/JP2007534923A/en
Application granted granted Critical
Publication of JP4551446B2 publication Critical patent/JP4551446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0057Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/80Processes or apparatus using separation by rectification using integrated mass and heat exchange, i.e. non-adiabatic rectification in a reflux exchanger or dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/30Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

発明の背景Background of the Invention

本発明は、天然ガス又は他のメタンに富むガス流れを処理して、高いメタン純度を有する液化天然ガス(LNG)流れと、メタンよりも重い炭化水素を主として含有する液体流れとを生成するための方法に関する。   The present invention treats a gas stream rich in natural gas or other methane to produce a liquefied natural gas (LNG) stream having a high methane purity and a liquid stream mainly containing hydrocarbons heavier than methane. Concerning the method.

天然ガスは、典型的には、地下貯留層へ貫いた油井から回収される。それは大部分がメタンである。すなわち、メタンはガスの少なくとも50モル%を構成する。特定の地下貯留層に依れば、天然ガスは比較的少ない量の重質炭化水素、例えばエタン、プロパン、ブタン、ペンタン等、並びに水、水素、窒素、二酸化炭素、及び他のガスも含有する。   Natural gas is typically recovered from an oil well that has penetrated into an underground reservoir. It is mostly methane. That is, methane constitutes at least 50 mol% of the gas. Depending on the particular underground reservoir, natural gas also contains relatively small amounts of heavy hydrocarbons, such as ethane, propane, butane, pentane, and water, hydrogen, nitrogen, carbon dioxide, and other gases .

ほとんどの天然ガスはガス状の形態で取り扱われる。天然ガスを油井ヘッドからガス処理プラントに輸送するため、そしてそこから天然ガス消費者に輸送するための最も一般的な手段は、高圧ガス輸送パイプラインである。しかしながら、多くの状況において、輸送又は使用のいずれかのために天然ガスを液化することが必要であり、及び/又は、望ましいことが分かっている。例えば、遠隔地では、天然ガスの市場への便利な輸送を可能にするパイプラインインフラがないことがしばしばである。そのような場合、気体状態の天然ガスに対してLNGの比体積がはるかに小さいことは、運搬船及び輸送トラックを用いるLNGの配送が可能となり、輸送コストを大きく減じることができる。   Most natural gas is handled in gaseous form. The most common means for transporting natural gas from oil well heads to gas processing plants and from there to natural gas consumers is the high pressure gas transport pipeline. However, in many situations it has been found necessary and / or desirable to liquefy natural gas for either transportation or use. For example, in remote locations, there is often no pipeline infrastructure that allows convenient transportation of natural gas to the market. In such a case, when the specific volume of LNG is much smaller than that of natural gas in a gaseous state, it is possible to deliver LNG using a carrier ship and a transportation truck, and the transportation cost can be greatly reduced.

天然ガスの液化が好都合である別の状況は、自動車燃料として使用する場合である。大都市圏では、利用できる経済的なLNG源があるならば、LNGで動くことができるバス、タクシー及びトラック群がある。そのようなLNGを燃料とする輸送手段は、より高分子量の炭化水素を燃焼するガソリン及びディーゼルエンジンで動く類似の輸送手段と比較したとき、天然ガスの燃焼はクリーンであるため、大気汚染が著しく少ない。さらに、LNGが高純度(すなわち、95モル%以上のメタン純度)のものであるならば、生成される二酸化炭素(温室効果ガス)の量は、他のすべての炭化水素燃料と比較してメタンの炭素:水素比が低いためかなり少ない。   Another situation where natural gas liquefaction is advantageous is when used as a vehicle fuel. In metropolitan areas, there are buses, taxis and trucks that can run on LNG if there are economical LNG sources available. Such LNG fueled transportation means that natural gas combustion is cleaner when compared to similar transportation means running on gasoline and diesel engines that burn higher molecular weight hydrocarbons, resulting in significant air pollution. Few. Furthermore, if the LNG is of high purity (ie, methane purity of 95 mol% or higher), the amount of carbon dioxide (greenhouse gas) produced is methane compared to all other hydrocarbon fuels. The carbon: hydrogen ratio is low because of its low ratio.

本発明は一般に、例えば、エタン、プロパン、ブタン、及び重質炭化水素成分からなる天然ガス液(NGL)、プロパン、ブタン、及び重質炭化水素成分からなる液化石油ガス(LPG)、又は、ブタン及び重質炭化水素成分からなる縮合生成物といった、主として、メタンよりも重い炭化水素からなる液体流れを同時生成物として生成しながら、天然ガスを液化することに関する。同時生成物である液体流れを生成することには2つの重要な利点がある:生成されるLNGは高いメタン純度を有し、同時生成物である液体は、多くの他の目的に用いうる有用な生成物である。本発明にしたがって処理すべき天然ガス流れの典型的な分析は、およそのモル%で、メタンが84.2%、エタン及び他のC成分が7.9%、プロパン及び他のC成分が4.9%、イソ−ブタンが1.0%、n−ブタンが1.1%、ペンタンが0.8%、残りは窒素と二酸化炭素である。硫黄含有ガスも時々存在する。 The present invention generally relates to, for example, natural gas liquid (NGL) composed of ethane, propane, butane and heavy hydrocarbon components, liquefied petroleum gas (LPG) composed of propane, butane and heavy hydrocarbon components, or butane. And liquefying natural gas while producing as a co-product a liquid stream composed primarily of hydrocarbons heavier than methane, such as condensation products composed of heavy hydrocarbon components. There are two important advantages to producing a co-product liquid stream: the LNG produced has a high methane purity, and the co-product liquid is useful for many other purposes. Product. A typical analysis of a natural gas stream to be treated according to the present invention is approximately mole percent, 84.2% methane, 7.9% ethane and other C 2 components, propane and other C 3 components. Is 4.9%, iso-butane is 1.0%, n-butane is 1.1%, pentane is 0.8%, and the remainder is nitrogen and carbon dioxide. Sulfur containing gases are also sometimes present.

天然ガスを液化するための多くの方法が知られている。例えば、そのような数多くの方法を概観するために、Finn, Adrian J., Grant L. Johnson, and Terry R. Tomlinson, "LNG Technology for Offshore and Mid-Scale Plants", Proceedings of the Seventy-Ninth Annual Convention of the Gas Processors Association, pp. 429-450, Atlanta, Gerogia, March 13-15, 2000 及び Kikkawa, Yoshitsugi, Masaaki Ohishi, and Noriyoshi Nozawa, "Optimize the Power System of Baseload LNG Plant", Proceedings of the Eightieth Annual Convention of the Gas Processors Association, San Antonio, Texas, March 12-14を参照のこと。米国特許第4,445,917号;第4,525,185号;第4,545,795号;第4,755,200号;第5,291,736号;第5,363,655号;第5,365,740号;第5,600,969号;第5,615,561号;第5,651,269号;第5,755,114号;第5,893,274号;第6,014,869号;第6,062,041号;第6,119,479号;第6,125,653号;第6,250,105 B1号;第6,269,655 B1号;第6,272,882 B1号;第6,308,531 B1号;第6,324,867 B1号;第6,347,532 B1号;及び、2002年6月4日付で出願された本出願人の同時係属する米国特許出願第10/161,780号にも関連の方法が記載されている。これらの方法には一般に、天然ガスを精製(水や、二酸化炭素及び硫黄化合物のような問題となる化合物の除去による)、冷却、凝縮及び膨張する工程が含まれる。天然ガスの冷却及び凝縮は、多くの様々な方法で行うことができる。「カスケード冷却」は、連続的に低下する沸点を有する幾つかの冷媒、例えばプロパン、エタン及びメタンと、天然ガスとの熱交換を用いる。別の方法として、この熱交換は、幾つかの異なる圧力レベルで冷媒を蒸発することにより単一の冷媒を用いて行うことができる。「多成分冷却」は、多数の単一成分冷媒の代わりに、幾つかの冷媒成分からなる1種又はそれより多い冷媒流体と、天然ガスとの熱交換を用いる。天然ガスの膨張は等エンタルピー的(例えば、ジュール−トムソン膨張を用いる)及び等エントロピー的(例えば、仕事−膨張タービンを用いる)のいずれでも行うことができる。   Many methods for liquefying natural gas are known. For example, to review many such methods, Finn, Adrian J., Grant L. Johnson, and Terry R. Tomlinson, "LNG Technology for Offshore and Mid-Scale Plants", Proceedings of the Seventy-Ninth Annual Convention of the Gas Processors Association, pp. 429-450, Atlanta, Gerogia, March 13-15, 2000 and Kikkawa, Yoshitsugi, Masaaki Ohishi, and Noriyoshi Nozawa, "Optimize the Power System of Baseload LNG Plant", Proceedings of the Eightieth See Annual Convention of the Gas Processors Association, San Antonio, Texas, March 12-14. U.S. Pat. Nos. 4,445,917; 4,525,185; 4,545,795; 4,755,200; 5,291,736; 5,363,655; 5,365,740; 5,600,969; 5,615,561; 5,651,269; 5,755,114; 6,014,869; 6,062,041; 6,119,479; 6,125,653; 6,250,105 B1; 6,269,655 B1; 6,272,882 B1; 6,308,531 B1; 6,324,867 B1; 6,347,532 B1; and 2002 Applicant's co-pending US patent application Ser. No. 10 / 161,780, filed June 4, also describes a related method. These methods generally include the steps of refining (by removing problematic compounds such as water and carbon dioxide and sulfur compounds), cooling, condensing and expanding natural gas. Natural gas cooling and condensation can be accomplished in many different ways. “Cascade cooling” uses heat exchange between natural gas and several refrigerants having boiling points that decrease continuously, such as propane, ethane and methane. Alternatively, this heat exchange can be performed with a single refrigerant by evaporating the refrigerant at several different pressure levels. “Multi-component cooling” uses heat exchange between natural gas and one or more refrigerant fluids consisting of several refrigerant components instead of multiple single-component refrigerants. Natural gas expansion can be done either isenthalpy (eg, using Joule-Thomson expansion) or isentropic (eg, using a work-expansion turbine).

天然ガス流れを液化するために用いられる方法に関係なく、メタンに富む流れを液化する前に、メタンよりも重い炭化水素のかなりの部分を除去する必要があるのが一般的である。この炭化水素除去工程の理由には、LNG流れの発熱量及びこれらの重質炭化水素成分の生成物としての価値を調節する必要性を含めた多くの理由がある。あいにく、これまで炭化水素除去工程の効率についてはほとんど注目されてこなかった。   Regardless of the method used to liquefy the natural gas stream, it is generally necessary to remove a significant portion of the hydrocarbons heavier than methane before liquefying the methane-rich stream. There are many reasons for this hydrocarbon removal process, including the need to adjust the calorific value of the LNG stream and the product value of these heavy hydrocarbon components. Unfortunately, little attention has been paid to the efficiency of the hydrocarbon removal process so far.

本発明によれば、炭化水素除去工程をLNG液化プロセスに注意深く組み込むと、従来技術の方法よりもかなり少ない使用エネルギーで、LNG及び個々の重質炭化水素液体生成物の両方を生成できることを見出した。本発明は、より低圧で適用することができるが、供給材料ガスを400〜1500psia[2,758〜10,342kPa(a)]以上で処理するとき特に有利である。   In accordance with the present invention, it has been found that careful incorporation of the hydrocarbon removal step into the LNG liquefaction process can produce both LNG and individual heavy hydrocarbon liquid products with much less energy usage than prior art methods. . The present invention can be applied at lower pressures, but is particularly advantageous when the feed gas is processed at 400-1500 psia [2,758-10,342 kPa (a)] or higher.

本発明のよりよい理解のために、以下の実施例及び図面を参照する。
図に関する以下の説明において、表は代表的な方法条件について計算した流量の概要を示す。本明細書中に示す表において、流量の値(モル/時)は便宜上最も近い整数で表す。表に示す全体の流れの流量はすべての非炭化水素成分を含み、従って、炭化水素成分に対する流れの流量の合計よりも一般に大きい。表示温度は最も近い温度にまとめたおおよその値である。また、図に示したプロセスを比較するために行ったプロセス設計計算は、周囲からプロセスへの(又はプロセスから周囲への)熱漏れがないという仮定に基づくことに留意すべきである。商業的に入手しうる絶縁材料の質により、これは非常に妥当な仮定であり、かつ当業者によって典型的に行われるものである。
For a better understanding of the present invention, reference is made to the following examples and figures.
In the following description of the figure, the table gives an overview of the flow rates calculated for representative method conditions. In the table | surface shown in this specification, the value (mol / hour) of a flow rate is represented by the nearest integer for convenience. The overall flow rate shown in the table includes all non-hydrocarbon components and is therefore generally greater than the sum of the flow rates for the hydrocarbon components. The displayed temperature is an approximate value summarized to the nearest temperature. It should also be noted that the process design calculations performed to compare the processes shown in the figures are based on the assumption that there is no heat leak from ambient to process (or from process to ambient). Due to the quality of commercially available insulating materials, this is a very reasonable assumption and is typically done by those skilled in the art.

便宜上、プロセスパラメーターは伝統的な英国単位及び国際単位系(SI)の単位の両方で示す。表にあるモル流量はポンドモル/時又はkgモル/時のいずれかとして示す。馬力(HP)及び/又は1000英国熱単位/時(MBTU/Hr)として示されるエネルギー消費は、ポンドモル/時での記載のモル流量に相当する。キロワット(kW)として示されるエネルギー消費は、kgモル/時の記載のモル流量に相当する。ポンド/時(Lb/Hr)として示される生産量は、ポンドモル/時での記載のモル流量に相当する。kg/時(kg/Hr)として示される生産量は、kgモル/時での記載のモル流量に相当する。   For convenience, process parameters are shown in both traditional British units and International Unit System (SI) units. The molar flow rates in the table are shown as either pound moles / hour or kg moles / hour. Energy consumption, expressed as horsepower (HP) and / or 1000 British thermal units / hour (MBTU / Hr), corresponds to the stated molar flow rate in pound moles / hour. The energy consumption, expressed as kilowatts (kW), corresponds to the stated molar flow rate in kg mole / hour. Production expressed as lb / hr (Lb / Hr) corresponds to the stated molar flow rate in lbmol / hr. The production expressed as kg / hr (kg / Hr) corresponds to the stated molar flow rate in kg mol / hr.

本発明の説明
図1を参照する。天然ガス供給流れ中において大部分のプロパン及び重質成分を含有するLPG同時生成物を生産することが望ましい場合の本発明による方法をまず説明する。本発明のこのシミュレーションでは、入口ガスはプラントに90°F[32℃]及び1285psia[8,860kPa(a)]で流れ31として入る。入口ガスが、生成物流れが規格を満たす妨げとなるような濃度の二酸化炭素及び/又は硫黄化合物を含有する場合、これらの化合物は供給ガスの適切な前処理(図示せず)によって除去される。さらに、供給流れは、通常、極低温条件下での水和物(氷)形成を妨げるために脱水される。固体乾燥剤がこの目的に典型的に用いられている。
DESCRIPTION OF THE INVENTION Reference is made to FIG. The process according to the invention is first described when it is desirable to produce an LPG co-product containing the majority of propane and heavy components in a natural gas feed stream. In this simulation of the present invention, the inlet gas enters the plant as stream 31 at 90 ° F. [32 ° C.] and 1285 psia [8,860 kPa (a)]. If the inlet gas contains carbon dioxide and / or sulfur compounds at a concentration that prevents the product stream from meeting specifications, these compounds are removed by appropriate pretreatment (not shown) of the feed gas. . Furthermore, the feed stream is usually dehydrated to prevent hydrate (ice) formation under cryogenic conditions. Solid desiccants are typically used for this purpose.

供給流れ31は、14°F[−26℃]にて冷媒流れ及びフラッシュされた分離器液(流れ40a)との熱交換によって熱交換器10で冷却される。すべての場合において、熱交換器10は、多数の個々の熱交換器、又は単一のマルチパス熱交換器、あるいはそれらの組み合わせのいずれかに相当することに留意すべきである。(表示された冷却に1つ又はそれより多いの熱交換器を使用するかどうかの決定は、限定されないが、入口ガス流量、熱交換器サイズ、流れの温度等を含む多くの要因による。)冷却された流れ31aは分離器11へ23°F[−5℃]及び1278psia[8,812kPa(a)]で入り、そこで、蒸気(流れ32)は凝縮液(流れ33)から分離される。   The feed stream 31 is cooled in the heat exchanger 10 by heat exchange with the refrigerant stream and flushed separator liquid (stream 40a) at 14 ° F. [−26 ° C.]. It should be noted that in all cases, the heat exchanger 10 corresponds to either a number of individual heat exchangers, or a single multi-pass heat exchanger, or a combination thereof. (Determining whether to use one or more heat exchangers for the indicated cooling depends on many factors including, but not limited to, inlet gas flow rate, heat exchanger size, flow temperature, etc.) The cooled stream 31a enters the separator 11 at 23 ° F. [−5 ° C.] and 1278 psia [8,812 kPa (a)], where the vapor (stream 32) is separated from the condensate (stream 33).

分離器11からの蒸気(流れ32)は2つの流れ、34及び36に分割され、流れ34は蒸気全体の約42%を含む。状況によっては、流れ34と凝縮液のいくらかの部分を組合わせて流れ35を形成するのが好都合であるかもしれないが、このシミュレーションでは流れ39の流れはない。複合流れ35は、冷媒流れ71eとの熱交換関係にある熱交換器13を通過して、流れ35aは冷却されそして実質的に凝縮される。−90°F[−68℃]の実質的に凝縮された流れ35aは精留塔19の操作圧(約450psia[3,103kPa(a)])より少し上の圧力に適切な膨張装置、例えば膨張バルブ14によりフラッシュ膨張される。膨張の間、流れの一部は蒸発して、流れ全体を冷却する。図1に示す方法では、膨張バルブ14を出る膨張させた流れ35bは−123°F[−86℃]の温度に達する。膨張させた流れ35bは、精留塔19の分別段階から上昇する蒸気蒸留流37を冷却及び部分凝縮しながら、熱交換器21中で−78°F[−61℃]に温められ、さらに蒸発する。温めた流れ35cは次に、精留塔19の脱エタン区分19bの上部中央供給位置で供給される。   Vapor from separator 11 (stream 32) is divided into two streams, 34 and 36, which comprise about 42% of the total vapor. In some circumstances it may be convenient to combine stream 34 and some portion of condensate to form stream 35, but in this simulation there is no stream 39 stream. Composite stream 35 passes through heat exchanger 13 in heat exchange relationship with refrigerant stream 71e, and stream 35a is cooled and substantially condensed. A substantially condensed stream 35a of −90 ° F. [−68 ° C.] is suitable for an expansion device suitable for a pressure just above the operating pressure of the rectification column 19 (about 450 psia [3,103 kPa (a)]), for example Flash expansion is performed by the expansion valve 14. During expansion, part of the stream evaporates and cools the entire stream. In the method shown in FIG. 1, the expanded stream 35b exiting the expansion valve 14 reaches a temperature of -123 ° F [-86 ° C]. The expanded stream 35b is warmed to -78 ° F [-61 ° C] in the heat exchanger 21 while cooling and partially condensing the steam distillation stream 37 rising from the fractionation stage of the rectifying column 19, and further evaporating. To do. The warmed stream 35c is then fed at the upper central feed position of the deethanizer section 19b of the rectification column 19.

分離器11からの蒸気の残りの58%(流れ36)はワークエクスパンジョンマシーン15に入り、そこで、機械的エネルギーがこの部分の高圧供給流れから抽出される。マシーン15は蒸気を約1278psia[8,812kPa(a)]の圧力から塔操作圧に実質的に等エントロピー的に膨張させ、ワークエクスパンジョンは膨張させた流れ36aを約−57°F[−49℃]の温度に冷却する。一般に商業的に入手しうるエキスパンダーは、理想的等エントロピー膨張で理論的に利用可能な仕事の80〜85%程度を取り戻すことが可能である。回収された仕事は、例えば、塔オーバーヘッドガス(流れ49)の再圧縮に用いることができる遠心圧縮機(例えば部品16)を動かすのにしばしば用いられる。膨張されそして部分的に凝縮された流れ36aは、供給流れとして蒸留塔19へ下部中央塔供給ポイントで供給される。分離器液(流れ33)の残りの部分である流れ40は、膨張バルブ12によって脱エタン塔19の操作圧より少し上の圧力にフラッシュ膨張され、−14°F[−26℃]に冷却され(流れ40a)、上記のように入ってくる供給ガスを冷却する。原状では75°F[24℃]の流れ40bはその後、脱エタン塔19へ第2下部中央塔供給位置で入る。   The remaining 58% of vapor from the separator 11 (stream 36) enters the work expansion machine 15, where mechanical energy is extracted from this portion of the high pressure feed stream. Machine 15 expands steam substantially isentropically from a pressure of about 1278 psia [8,812 kPa (a)] to a tower operating pressure, and work expansion expands expanded stream 36 a to about −57 ° F. [− 49 ° C]. In general, commercially available expanders can recover as much as 80-85% of the theoretically available work with ideal isentropic expansion. The recovered work is often used, for example, to move a centrifugal compressor (eg, part 16) that can be used to recompress tower overhead gas (stream 49). Expanded and partially condensed stream 36a is fed as a feed stream to distillation column 19 at the lower central column feed point. The remaining portion of the separator liquid (stream 33), stream 40, is flash expanded by expansion valve 12 to a pressure slightly above the operating pressure of deethanizer 19 and cooled to -14 ° F [-26 ° C]. (Flow 40a), cooling the incoming gas as described above. Originally, the stream 40b at 75 ° F. [24 ° C.] then enters the deethanizer tower 19 at the second lower center tower feed position.

精留塔19中の脱エタン塔は、間隔を置いて垂直に配置された多数のトレー、1つ又はそれより多いの充填床、又はトレーと充填物とのいくつかの組み合わせを含む一般的な蒸留塔である。天然ガス処理プラントの場合しばしばそうであるように、精留塔は2つの区分からなりうる。上部区分19aは分離器であり、そこで、頂部供給材料はそれぞれの蒸気及び液体部分に分けられ、そして下部蒸留又は脱エタン区分19bから上昇する蒸気は頂部供給材料の蒸気部分(もしあるならば)と一緒になって塔の頂部から出る脱エタン塔オーバーヘッド蒸気(流れ37)を形成する。下部の脱エタン区分19bはトレー及び/又は充填物を含み、流れ下る冷液と上昇する蒸気との間の必要な接触を提供する。脱エタン区分はまた、塔を流れ下る液体部分を加熱及び蒸発させて塔の上方に流れるストリッピング蒸気を提供する1つ又はそれより多いのリボイラー(例えばリボイラー20)を含む。液体生成物流れ41は、底部生成物のモル基準で0.020:1のエタン対プロパンの一般的な規格に基づいて、塔の底部を213°F[101℃]で出る。   The deethanizer column in the rectifying column 19 is a general one comprising a number of spaced, vertically arranged trays, one or more packed beds, or some combination of trays and packings. It is a distillation tower. As is often the case with natural gas processing plants, the rectification column can consist of two sections. The upper section 19a is a separator where the top feed is divided into respective vapor and liquid portions and the vapor rising from the lower distillation or deethanization section 19b is the vapor portion of the top feed (if any). Together with the formation of deethanizer overhead vapor (stream 37) exiting from the top of the tower. The lower deethanization section 19b contains trays and / or packings and provides the necessary contact between the flowing cold liquid and the rising steam. The deethanizer section also includes one or more reboilers (eg, reboiler 20) that heat and evaporate the liquid portion flowing down the tower to provide stripping vapor that flows above the tower. The liquid product stream 41 exits the bottom of the column at 213 ° F. [101 ° C.] based on the general specification of ethane to propane of 0.020: 1 on a bottom product molar basis.

オーバーヘッド蒸留流れ37は脱エタン塔19を−73°F[−59℃]で出て、前記のように還流冷却器21中で冷却され、部分的に凝縮される。部分的に凝縮された流れ37aは還流ドラム22を−94°F[−70℃]で入り、そこで、凝縮液(流れ44)は非凝縮蒸気(流れ43)から分離される。凝縮液(流れ44)はポンプ23によって脱エタン塔19の頂部供給位置へ還流流れ44aとして送られる。   Overhead distillation stream 37 exits deethanizer 19 at -73 ° F [-59 ° C] and is cooled and partially condensed in reflux condenser 21 as described above. Partially condensed stream 37a enters reflux drum 22 at -94 ° F [-70 ° C], where condensate (stream 44) is separated from uncondensed vapor (stream 43). The condensate (stream 44) is sent by the pump 23 to the top feed position of the deethanizer 19 as reflux stream 44a.

脱エタン区分が精留塔の下部を形成するとき、還流冷却器21は図2に示すように塔19の上の塔内部に位置しうる。蒸留流れはその後、塔の分別段階より上の塔で冷却及び分離されるので、これによって還流ドラム22及び還流ポンプ23は必要なくなる。あるいは、図1の還流冷却器21の代わりにデフレグメーター(例えば、図3におけるデフレグメーター21)を用いると、還流ドラム及び還流ポンプは必要なくなり、これは脱エタン塔の上部区分におけるこれらに代わる同時分別段階も提供する。デフレグメーターをプラントにグレードレベルで置くならば、それは蒸気/液体分離器に接続され、分離器中で集められた液体は蒸留塔の頂部へ送られる。還流冷却器を塔の内部に含めるか、デフレグメーターを用いるかの決定は、プラントの大きさ及び必要とされる熱交換器表面による。   When the deethanizer section forms the lower part of the rectifying column, the reflux condenser 21 can be located inside the column above the column 19 as shown in FIG. The distillation stream is then cooled and separated in the column above the column fractionation stage, thereby eliminating the need for reflux drum 22 and reflux pump 23. Alternatively, if a dephlegmator (eg, dephlegmator 21 in FIG. 3) is used in place of the reflux cooler 21 of FIG. 1, the reflux drum and reflux pump are no longer needed, and this is in addition to those in the upper section of the deethanizer. An alternative simultaneous fractionation stage is also provided. If the dephlegmator is placed at a grade level in the plant, it is connected to a vapor / liquid separator and the liquid collected in the separator is sent to the top of the distillation column. The decision to include a reflux condenser inside the column or to use a dephlegmator depends on the size of the plant and the required heat exchanger surface.

還流ドラム22からの非凝縮蒸気(流れ43)は熱交換器24中で93°F[34℃]に温められ、一部(流れ48)はその後、取り出されて、プラント用の燃料ガスとして働く。(取り出さなければならない燃料ガスの量は、プラントのガス圧縮機、例えばこの例では冷媒圧縮機64、66及び68を動かすエンジン及び/又はタービンに必要な燃料によって決まる。)温められた蒸気の残り(流れ49)はエクスパンジョンマシーン15、61及び63により動く圧縮機16によって圧縮される。放出冷却器25で100F[38℃]に冷却された後、流れ49bは冷たい蒸気、流れ43との相互交換により熱交換器24中で−83°F[−64℃]にさらに冷却される。   The non-condensed vapor (stream 43) from the reflux drum 22 is warmed to 93 ° F. [34 ° C.] in the heat exchanger 24, and a portion (stream 48) is then withdrawn to serve as fuel gas for the plant. . (The amount of fuel gas that must be removed depends on the fuel required for the plant gas compressor, for example, the engine and / or turbine that runs the refrigerant compressors 64, 66, and 68 in this example.) The remainder of the warmed steam (Stream 49) is compressed by the compressor 16 which is driven by the expansion machines 15, 61 and 63. After being cooled to 100 F [38 ° C.] in discharge cooler 25, stream 49 b is further cooled to −83 ° F. [−64 ° C.] in heat exchanger 24 by exchange with cold steam, stream 43.

流れ49cはその後、熱交換器60へ入り、冷媒流71dにより−255°F[−160℃]にさらに冷却されて、凝縮され、二次冷却され、その後、ワークエクスパンジョンマシーン61に入り、そこで、機械的エネルギーが流れから抽出される。マシーン61は液体流49dを約593psia[4,085kPa(a)]から大気圧の少し上のLNG貯蔵圧(15.5psia[107kPa(a)]へ実質的に等エントロピー的に膨張させる。ワークエクスパンジョンは膨張された流れ49eを約−256°F[−160℃]の温度に冷却し、その後、流れはLNG生成物(流れ50)を収容するLNG貯蔵タンク62へ送られる。   Stream 49c then enters heat exchanger 60 and is further cooled to −255 ° F. [−160 ° C.] by refrigerant stream 71d, condensed and secondary cooled, then enters work expansion machine 61, There, mechanical energy is extracted from the flow. Machine 61 expands liquid stream 49d from approximately 593 psia [4,085 kPa (a)] to an LNG storage pressure (15.5 psia [107 kPa (a)], just above atmospheric pressure, substantially isentropically. The pan cools the expanded stream 49e to a temperature of about -256 ° F [-160 ° C], after which the stream is sent to the LNG storage tank 62 containing the LNG product (stream 50).

流れ35及び49cの冷却のすべては閉鎖サイクル冷却回路によって行われる。このサイクルのための作動流体は炭化水素と窒素の混合物であり、混合物の組成は必要に応じて調整されて、利用可能な冷却媒質を用い妥当な圧力で凝縮すると同時に、必要な冷媒温度を提供する。この場合、冷却水での凝縮とし、窒素、メタン、エタン、プロパン、及び重質炭化水素からなる冷媒混合物が図1の方法のシミュレーション用でいられる。おおよそのモル%での流れの組成は、8.7%窒素、31.7%メタン、47.0%エタン及び8.6%プロパン、そして残余の重質炭化水素である。   All cooling of streams 35 and 49c is performed by a closed cycle cooling circuit. The working fluid for this cycle is a mixture of hydrocarbon and nitrogen, and the composition of the mixture is adjusted as necessary to condense at a reasonable pressure using available cooling media while providing the required refrigerant temperature. To do. In this case, a refrigerant mixture consisting of nitrogen, methane, ethane, propane, and heavy hydrocarbons is used for the simulation of the method of FIG. The approximate mole percent stream composition is 8.7% nitrogen, 31.7% methane, 47.0% ethane and 8.6% propane, and the remaining heavy hydrocarbons.

冷媒流71は放出冷却器69を100°F[38℃]及び607psia[4,185kPa(a)]で出る。それは熱交換器10へ入り、部分的に温められた膨張冷媒流れ71fによって及び他の冷媒流れによって−34°F[−37℃]に冷却され、部分的に凝縮される。図1のシミュレーションでは、これら他の冷媒流れは3つの異なる温度及び圧力レベルにおける商業的品質のプロパン冷媒であるとした。部分的に凝縮された冷媒流れ71aは、部分的に温められ膨張された冷媒流れ71eによってさらに−90°F[−68℃]に冷却され、さらに凝縮されるために(流れ71b)熱交換器13に入る。冷媒は凝縮され、そして膨張された冷媒流れ71dによって熱交換器60で−255°F[−160℃]に二次冷却される。二次冷却された液体流れ71cはワークエクスパンジョンマシーン63に入り、そこで、約586psia[4,040kPa(a)]の圧力から約34psia[234kPa(a)]の圧力に実質的に等エントロピー的に膨張されるにつれて、機械的エネルギーがこの流れから抽出される。膨張の間、流れの一部は蒸発して、全体の流れを−264°F[−164℃]に冷却する(流れ71d)。膨張された流れ71dは次に熱交換器60、13及び10に入り、そこで、蒸発及び過熱されながら流れ49c、流れ35及び冷媒(流れ71、71a及び71b)を冷却する。   Refrigerant stream 71 exits discharge cooler 69 at 100 ° F. [38 ° C.] and 607 psia [4,185 kPa (a)]. It enters the heat exchanger 10 and is cooled to -34 ° F [-37 ° C] by the partially warmed expanded refrigerant stream 71f and by other refrigerant streams and partially condensed. In the simulation of FIG. 1, these other refrigerant streams were assumed to be commercial quality propane refrigerants at three different temperature and pressure levels. The partially condensed refrigerant stream 71a is further cooled to -90 ° F [-68 ° C] by the partially warmed and expanded refrigerant stream 71e and further condensed (stream 71b). Enter 13. The refrigerant is condensed and secondarily cooled to -255 ° F. [−160 ° C.] in the heat exchanger 60 by the expanded refrigerant stream 71d. The secondary cooled liquid stream 71c enters the work expansion machine 63 where it is substantially isentropic from a pressure of about 586 psia [4,040 kPa (a)] to a pressure of about 34 psia [234 kPa (a)]. As it is expanded, mechanical energy is extracted from this stream. During expansion, a portion of the stream evaporates and cools the entire stream to -264 ° F [-164 ° C] (stream 71d). Expanded stream 71d then enters heat exchangers 60, 13 and 10 where it cools stream 49c, stream 35 and refrigerant (streams 71, 71a and 71b) while being evaporated and superheated.

過熱された冷媒蒸気(流れ71g)は熱交換器10を90°F[32℃]で離れ、3段階で617psia[4,254kPa(a)]に圧縮される。3つの各圧縮段階(冷媒圧縮機64、66及び68)は補充電源で動き、圧縮熱を除く冷却器(放出冷却器65、67及び69)が後に続く。放出冷却器69からの圧縮された流れ71は熱交換器10へ戻ってサイクルが完了する。   The superheated refrigerant vapor (stream 71 g) leaves the heat exchanger 10 at 90 ° F. [32 ° C.] and is compressed to 617 psia [4,254 kPa (a)] in three stages. Each of the three compression stages (refrigerant compressors 64, 66, and 68) is powered by a supplemental power supply, followed by a cooler that removes the heat of compression (discharge coolers 65, 67, and 69). The compressed stream 71 from the discharge cooler 69 returns to the heat exchanger 10 to complete the cycle.

図1に示す方法の流れの流量とエネルギー消費の概要は次表に示す:     An overview of the flow rate and energy consumption of the method shown in Figure 1 is given in the following table:

Figure 0004551446
Figure 0004551446

Figure 0004551446
Figure 0004551446

LNG生産法の効率は必要とされる「比動力(電力)消費」を用いて一般に比較され、これは全冷却圧縮動力対全液体生成量の比率である。LNG生産の従来法の比動力(電力)消費について公表された情報は0.168HP−Hr/Lb[0.276kW−Hr/kg]〜0.182HP−Hr/Lb[0.300kW−Hr/kg]であり、これはLNG生産プラントの340日/年の循環時ファクターに基づくと考えられる。同じ基準で、本発明の図1態様の比動力(電力)消費は0.148HP−Hr/Lb[0.243kW−Hr/kg]であり、これは従来法を14〜23%越える効率の改善である。   The efficiency of the LNG production process is generally compared using the required “specific power (power) consumption”, which is the ratio of total cooling compression power to total liquid production. Information published on the specific power (electric power) consumption of the conventional method of LNG production is 0.168 HP-Hr / Lb [0.276 kW-Hr / kg] to 0.182 HP-Hr / Lb [0.300 kW-Hr / kg]. This is considered to be based on a 340 day / year circulation factor for the LNG production plant. On the same basis, the specific power (power) consumption of the FIG. 1 embodiment of the present invention is 0.148 HP-Hr / Lb [0.243 kW-Hr / kg], which is an efficiency improvement of 14-23% over the conventional method. It is.

本発明の効率の改善理由を説明する要因は主に2つある。第1の要因は、この実施例で考えられるような高圧ガス流を適用したときの液化プロセスの熱力学を調べることによって理解することができる。この流れの主成分はメタンであるため、メタンの熱力学的性質を用いて、従来法で用いられる液化サイクル対本発明で用いられるサイクルを比較することができる。図4はメタンの圧力−エンタルピー状態図である。たいていの従来法の液化サイクルでは、ガス流のすべての冷却は、流れが高圧にある(相A−B)間に行われ、その後、流れはLNG貯蔵容器の圧力(大気圧より少し上)に膨張される(相B−C)。この膨張工程はワークエクスパンジョンマシーンを用いてもよく、これは理想的等エントロピー膨張で理論的に利用できる75〜80%程度の仕事を回収することが一般的に可能である。簡略化のために、完全等エントロピー膨張を経路B−Cについて図4に示す。それでも、定エントロピーのラインが状態図の液体領域でほぼ垂直であるので、このワークエクスパンジョンによるエンタルピー減少は極めて小さい。   There are mainly two factors that explain the reason for improving the efficiency of the present invention. The first factor can be understood by examining the thermodynamics of the liquefaction process when applying a high pressure gas stream as contemplated in this example. Since the main component of this flow is methane, the thermodynamic properties of methane can be used to compare the liquefaction cycle used in the conventional method with the cycle used in the present invention. FIG. 4 is a pressure-enthalpy state diagram of methane. In most conventional liquefaction cycles, all cooling of the gas stream occurs while the stream is at high pressure (phase AB), after which the stream is brought to the pressure of the LNG storage vessel (slightly above atmospheric pressure). Inflated (Phase B-C). This expansion process may use a work expansion machine, which is generally capable of recovering as much as 75-80% of work that can theoretically be used with ideal isentropic expansion. For simplicity, the full isentropic expansion is shown in FIG. 4 for path BC. Nevertheless, since the constant entropy line is almost vertical in the liquid region of the phase diagram, the enthalpy reduction due to this work expansion is very small.

これを本発明の液化サイクルと対照する。高圧での部分冷却後(経路A−A’)、ガス流は中間圧にワークエクスパンドされる(経路A’−A”)。(さらにまた、完全等エントロピー膨張を簡略化のために示す。)残りの冷却は中間圧で行われ(経路A”−B’)、流れは次にLNG貯蔵容器の圧力に膨張される(経路B’−C)。定エントロピー勾配のラインは状態図の蒸気領域ではそれほど急ではないので、本発明の第1ワークエクスパンジョン工程(経路A’−A”)によってかなりより大きなエンタルピー減少が生じる。従って、本発明に必要な冷却の総量(経路A−A’及び経路A”−A”の合計)は従来法に必要な冷却(経路A−B)より少なく、ガス流の液化に必要な冷却(及び従って冷却圧縮)が少なくなる。   This is contrasted with the liquefaction cycle of the present invention. After partial cooling at high pressure (path AA ′), the gas stream is work expanded to intermediate pressure (path A′-A ″). (Also, full isentropic expansion is shown for simplicity.) The remaining cooling takes place at intermediate pressure (path A ″ -B ′) and the flow is then expanded to the pressure of the LNG storage vessel (path B′-C). Since the line of constant entropy gradient is not so steep in the vapor region of the phase diagram, the first work expansion process (path A′-A ″) of the present invention results in a much larger enthalpy reduction. The total amount of cooling required (sum of path AA ′ and path A ″ -A ″) is less than the cooling required for the conventional process (path AB), and the cooling required for liquefaction of the gas stream (and hence cooling compression). ) Less.

本発明の効率改善理由を説明する第2の要因は、より低い操作圧での炭化水素蒸留システムのすぐれた性能である。たいていの従来法における炭化水素除去工程は、冷炭化水素液を吸収剤流れとして用いて重質炭化水素を入口ガス流れから除去するスクラブ塔を一般に用い、高圧で行われる。高圧でのスクラブ塔の操作は、ガス流からのメタン及びエタンのかなりの部分を同時吸収することになり、吸収剤液からその後ストリップし、冷却してLNG生成物の一部にしなければならないので非常に非効率的である。本発明では炭化水素除去工程は中圧で行われ、そこでは、気液平衡がずっと有利であり、その結果、同時生成物液体流中の望ましい重質炭化水素が非常に効率的に回収される。   The second factor that explains the efficiency improvement reasons of the present invention is the superior performance of the hydrocarbon distillation system at lower operating pressures. Most conventional hydrocarbon removal steps are performed at high pressure, generally using a scrub column that removes heavy hydrocarbons from the inlet gas stream using a cold hydrocarbon liquid as the absorbent stream. The operation of the scrub column at high pressure will simultaneously absorb a significant portion of methane and ethane from the gas stream and must be subsequently stripped from the absorbent liquid and cooled to become part of the LNG product. It is very inefficient. In the present invention, the hydrocarbon removal step is carried out at medium pressure, where vapor-liquid equilibration is much more advantageous, so that the desired heavy hydrocarbons in the co-product liquid stream are recovered very efficiently. .

その他の態様
本発明があらゆる種類のLNG液化プラントに適合させて、NGL流れ、LPG流れ又は凝縮流れの同時生成を一定のプラント配置での求めにできるだけ合うようにすることが可能なことは当業者にとって明らかなことであろう。さらに、様々なプロセス形態を液体同時生成物流れの回収に用いうることも明らかであろう。本発明は、LPG同時生成物を前記のように生成するのではなく、供給ガス中に存在するC成分のかなりの部分を含むNGL流れを回収する、あるいは供給ガス中に存在するC成分及び重質成分のみを含有する凝縮流れを回収するのに適合させることができる。
Other Embodiments It will be appreciated by those skilled in the art that the present invention can be adapted to any type of LNG liquefaction plant so that the simultaneous generation of NGL, LPG or condensate streams can be met as much as possible in a given plant configuration It will be obvious to you. It will also be apparent that various process configurations can be used to recover the liquid coproduct stream. The present invention is not a LPG coproduct generate as above, C 4 components present in NGL is recovered flow, or feed gas containing a substantial portion of the C 2 components present in the feed gas And can be adapted to recover a condensed stream containing only heavy components.

図1は、表示処理条件に対する本発明の好ましい態様を示す。図5〜10は、個々の適用について考えられる本発明の代替的な態様を示す。供給ガス中の重質炭化水素の量及び供給ガス圧により、熱交換器10を出る冷却された供給流れ31aはいかなる液体も含まず(それはその露点より上であるため、あるいはそのクリコンデンバール(cricondenbar)より上であるため)、その結果、図1及び6〜10に示す分離器11は必要なく、そして冷却された供給流れは適切な膨張装置、例えばワークエクスパンジョンマシーン15に直接流れることができる。入口ガスがこれまで記載のものより豊富である場合、図5に示すような本発明の態様を用いうる。凝縮液流れ33は熱交換器18を通過し、2つの部分に分かれる。第1の部分(流れ40)は膨張バルブ12を通過し、そこで、圧力がほぼ蒸留塔19の圧力に減少しながら、フラッシュ蒸発のための膨張を行う。膨張バルブ12からの冷たい流れ40aは熱交換器18を通過し、そこで、前記のように流れ33の二次冷却に用いられながら、部分的に温められる。部分的に温められた流れ40bは熱交換器10でさらに温められ、精留塔19の下部中央供給位置へ流れる。依然として高圧の第2の液体部分(流れ39)は(1)分離器11からの蒸気流れの一部34と組み合わされるか、あるいは(2)実質的に縮合された流れ35aと組み合わされるか、あるいは(3)膨張バルブ17で膨張され、そしてその後、精留塔19へ上部中央供給位置で供給されるか、又は膨張された流れ35bと一緒になる。あるいは、流れ39の部分はこれまで記載された及び図5に示された流路のいずれか又はすべてをたどってもよい。   FIG. 1 illustrates a preferred embodiment of the present invention for display processing conditions. Figures 5 to 10 show alternative aspects of the invention that may be considered for individual applications. Depending on the amount of heavy hydrocarbons in the feed gas and the feed gas pressure, the cooled feed stream 31a exiting the heat exchanger 10 does not contain any liquid (because it is above its dew point or its cricon denbar ( As a result, the separator 11 shown in FIGS. 1 and 6-10 is not necessary, and the cooled feed stream flows directly to a suitable expansion device, for example the work expansion machine 15 Can do. If the inlet gas is richer than previously described, an embodiment of the invention as shown in FIG. 5 may be used. The condensate stream 33 passes through the heat exchanger 18 and is divided into two parts. The first part (stream 40) passes through the expansion valve 12 where it expands for flash evaporation while the pressure is reduced to approximately the pressure of the distillation column 19. The cold stream 40a from the expansion valve 12 passes through the heat exchanger 18 where it is partially warmed while being used for secondary cooling of the stream 33 as described above. The partially warmed stream 40 b is further warmed by the heat exchanger 10 and flows to the lower central feed position of the rectification column 19. The still high pressure second liquid portion (stream 39) is either (1) combined with a portion 34 of the vapor stream from the separator 11, or (2) combined with a substantially condensed stream 35a, or (3) Expanded with expansion valve 17 and then fed to rectification column 19 at the upper central feed position or combined with expanded stream 35b. Alternatively, the portion of flow 39 may follow any or all of the flow paths described so far and shown in FIG.

凝縮及び二次冷却のために熱交換器60へ供給される前、液体同時生成物流れ(図1及び6〜10の流れ43)の回収後に残ったガス流れの処置は多くの方法で行うことができる。図1の方法では、流れは加熱され、1つ又はそれより多いのワークエクスパンジョンマシーンから得られるエネルギーを用いてより高圧に圧縮され、放出冷却器で部分的に冷却され、そして源流との相互交換によってさらに冷却される。図6に示すように、いくつかの適用では、例えば外部電源によって動く補充圧縮機59を用いて、より高圧に流れを圧縮するのが適しているかもしれない。図1の点線の装置(熱交換器24及び放出冷却器25)で示すように、状況によっては熱交換器60に入る前に圧縮された流れ60の予備冷却を減じるか又はなくすことによって設備の資本コストを少なくするのが好ましいかもしれない(熱交換器60の冷却負荷の増加及び冷媒圧縮機64、66及び68の電力消費の増加を犠牲にして)。そのような場合、圧縮機を出る流れ49aは図7に示すように熱交換器24へ直接流れるか、あるいは図8に示すように熱交換器60へ直接流れる。ワークエクスパンジョンマシーンが高圧供給ガスのどの部分の膨張にも使用されないならば、外部電源で動く圧縮機、例えば図9に示す圧縮機59が圧縮機16の代わりに用いられてもよい。他の状況は流れのどのような圧縮もまったく正当化せず、そのため流れは図10に示すように、そして図1の点線の装置(熱交換器24、圧縮機16及び放出冷却器25)によって熱交換器60へ直接流れる。プラント燃料ガス(流れ48)が取り出される前に、流れを加熱する熱交換器24が含まれないならば、図8〜10に示すように必要な熱を供給するユーティリティ流又は他のプロセス流れを用いて消費前に燃料ガスを温める補充ヒーター58が必要であるかもしれない。ガス組成、プラントサイズ、望ましい同時生成物流回収レベル、及び利用可能な装置のような要件はすべて考慮しなければならないので、これらのような選択は適用ごとに一般に評価しなければならない。   Treatment of the remaining gas stream after recovery of the liquid coproduct stream (stream 43 in FIGS. 1 and 6-10) before being fed to heat exchanger 60 for condensation and secondary cooling should be done in a number of ways. Can do. In the method of FIG. 1, the stream is heated, compressed to a higher pressure using energy from one or more work expansion machines, partially cooled with a discharge cooler, and It is further cooled by mutual exchange. As shown in FIG. 6, in some applications it may be appropriate to compress the flow to a higher pressure, for example using a refill compressor 59 that is powered by an external power source. As indicated by the dotted line apparatus in FIG. 1 (heat exchanger 24 and discharge cooler 25), in some situations, the facility can be reduced by reducing or eliminating pre-cooling of the compressed stream 60 before entering the heat exchanger 60. It may be preferable to reduce capital costs (at the expense of increased cooling load of the heat exchanger 60 and increased power consumption of the refrigerant compressors 64, 66, and 68). In such a case, the flow 49a exiting the compressor flows directly to the heat exchanger 24 as shown in FIG. 7 or directly to the heat exchanger 60 as shown in FIG. If the work expansion machine is not used to expand any part of the high pressure feed gas, a compressor powered by an external power source, such as the compressor 59 shown in FIG. The other situation does not justify any compression of the flow, so the flow is as shown in FIG. 10 and by the dotted line device of FIG. 1 (heat exchanger 24, compressor 16 and discharge cooler 25). It flows directly to the heat exchanger 60. If the heat exchanger 24 that heats the stream is not included before the plant fuel gas (stream 48) is removed, a utility stream or other process stream that supplies the necessary heat as shown in FIGS. A replenisher heater 58 may be required to use and warm the fuel gas before consumption. Since such requirements as gas composition, plant size, desired co-product stream recovery level, and available equipment all have to be taken into account, such choices must generally be evaluated for each application.

本発明では、LNG生成区分への入口ガス流及び供給流は多くの方法で行いうる。図1及び5〜10の方法では、入口ガス流れ31は外部冷媒流及びフラッシュされた分離器液によって冷却及び凝縮される。しかしながら、冷たいプロセス流れを用いて高圧冷媒(流れ71a)への冷却のいくらかを供給することもできる。さらに、冷却される流れよりも冷たい温度のどのような流れも用いうる。例えば、精留塔19からの蒸気のサイドドローを引き出し、そして冷却に用いることができる。特定の熱交換用のプロセス流れ選択と同様に、プロセス熱交換用の塔液体及び/又は蒸気の使用及び分配、並びに入口ガス及び供給ガス冷却用熱交換器の個々の配置は、個々の適用ごとに評価しなければならない。冷却源の選択は、限定されないが、供給ガス組成及び状態、プラントサイズ、熱交換器サイズ、潜在的な冷却源温度等を含む多くの要素に基づく。上記の冷却源又は冷却法のどのような組み合わせも望ましい供給流れ温度を得るのに用いうることは、当業者とって明らかであろう。   In the present invention, the inlet gas stream and the feed stream to the LNG production section can be done in a number of ways. In the method of FIGS. 1 and 5-10, the inlet gas stream 31 is cooled and condensed by the external refrigerant stream and the flushed separator liquid. However, it is also possible to supply some of the cooling to the high pressure refrigerant (stream 71a) using a cold process stream. In addition, any flow that is cooler than the cooled flow can be used. For example, a side draw of steam from the rectification column 19 can be drawn and used for cooling. As with the process flow selection for a particular heat exchange, the use and distribution of tower liquids and / or steam for process heat exchange, and the individual arrangement of heat exchangers for cooling the inlet gas and feed gas can be tailored to the individual application. Must be evaluated. The choice of cooling source is based on many factors including, but not limited to, feed gas composition and condition, plant size, heat exchanger size, potential cooling source temperature, and the like. It will be apparent to those skilled in the art that any combination of the above cooling sources or cooling methods can be used to obtain the desired feed stream temperature.

さらに、入口ガス流れ及びLNG生成区分への供給流れへ供給される補充外部冷却も多くの様々な方法で行われる。図1及び6〜10では、高レベル外部冷却に沸騰単一成分冷媒が考えられ、低レベル外部冷却に気化多成分冷媒が考えられ、単一成分冷媒は多成分冷媒流の予備冷却に用いられる。あるいは、高レベル冷却及び低レベル冷却のいずれも、連続的に低くなる沸点を有する単一成分冷媒を用いて(すなわち、「カスケード冷却」)、あるいは連続的に低くなる蒸発圧で単一成分冷媒を用いて行うことができる。別の方法として、高レベル冷却及び低レベル冷却のいずれも、必要な冷却温度をもたらすように調整したそれぞれの組成を有する多成分冷媒流を用いて行うことができる。外部冷却法の選択は、限定されないが、供給ガス組成及び状態、プラントサイズ、圧縮機ドライバーサイズ、熱交換器サイズ、周囲冷却用放熱器温度等を含む多くの要素に基づく。上記の外部冷却法のどのような組み合わせも望ましい供給流温度を得るのに用いうることは、当業者とって明らかであろう。   In addition, supplemental external cooling supplied to the inlet gas stream and the feed stream to the LNG production section is also performed in many different ways. 1 and 6-10, boiling single-component refrigerant is considered for high-level external cooling, vaporized multi-component refrigerant is considered for low-level external cooling, and single-component refrigerant is used for pre-cooling the multi-component refrigerant flow. . Alternatively, both high level cooling and low level cooling use a single component refrigerant with a continuously decreasing boiling point (ie, “cascade cooling”) or with a continuously decreasing evaporation pressure. Can be used. Alternatively, both high level cooling and low level cooling can be performed using multi-component refrigerant streams having respective compositions adjusted to provide the required cooling temperature. The choice of external cooling method is based on a number of factors including, but not limited to, feed gas composition and condition, plant size, compressor driver size, heat exchanger size, ambient cooling radiator temperature, and the like. It will be apparent to those skilled in the art that any combination of the above external cooling methods can be used to obtain the desired feed stream temperature.

熱交換器60を出る凝縮された液体流れ(図1の流れ49d、図6の流れ49e、図7の流れ49c、図8及び9の流れ49b、並びに図10の流れ49a)の二次冷却は、LNG貯蔵タンク62の操作圧へ流れを膨張させる間に生じうるフラッシュ蒸気の量を減じるかあるいはなくす。これによって、フラッシュガス圧縮を不必要にすることによって、LNG生成のための比出力消費が一般に減少する。しかしながら、状況によっては熱交換器60の大きさを小さくすることによって、及びフラッシュガス圧縮又は生じうるフラッシュガスを処理する他の手段を用いることによって、設備の資本コストを減じることが好ましいかもしれない。   Secondary cooling of the condensed liquid stream exiting heat exchanger 60 (stream 49d in FIG. 1, stream 49e in FIG. 6, stream 49c in FIG. 7, streams 49b in FIGS. 8 and 9 and stream 49a in FIG. 10) Reduce or eliminate the amount of flash vapor that can be generated while expanding the flow to the operating pressure of the LNG storage tank 62. This generally reduces specific power consumption for LNG generation by eliminating the need for flash gas compression. However, in some circumstances it may be preferable to reduce the capital cost of the facility by reducing the size of the heat exchanger 60 and by using flash gas compression or other means of treating the flash gas that may occur. .

個々の流れの膨張は具体的な膨張装置で示されているが、適切ならば別の膨張手段を用いてもよい。例えば、条件が実質的に凝縮された供給流れ(図1及び5〜10の流れ35a)のワークエクスパンジョンを保証してもよい。さらに、等エンタルピー的フラッシュ膨張を、熱交換器60を出る二次冷却された液体流れ(図1の流れ49d、図6の流れ49e、図7の流れ49c、図8及び9の流れ49b、並びに図10の流れ49a)のワークエクスパンジョンの代わりに用いてもよいが、膨張時にフラッシュ蒸気が形成されるのを避けるために熱交換器60でさらに二次冷却するか、あるいはフラッシュ蒸気圧縮機又は生じるフラッシュ蒸気を処理する他の手段を加える必要がある。同様に、等エンタルピー的フラッシュ膨張を、熱交換器60を出る二次冷却された高圧冷媒流れ(図1及び6〜10の流れ71c)のワークエクスパンジョンの代わりに用いてもよく、冷媒を圧縮するための電力消費は増加する。   Individual flow expansions are shown with specific expansion devices, but other expansion means may be used if appropriate. For example, work expansion of the feed stream with conditions substantially condensed (stream 35a in FIGS. 1 and 5-10) may be ensured. In addition, an isenthalpy flash expansion may be applied to the secondary cooled liquid stream exiting heat exchanger 60 (stream 49d in FIG. 1, stream 49e in FIG. 6, stream 49c in FIG. 7, streams 49b in FIGS. 8 and 9; and 10 may be used in place of the work expansion of stream 49a), but is further subcooled in heat exchanger 60 to avoid the formation of flash steam during expansion, or a flash steam compressor. Or other means of treating the resulting flash vapor need to be added. Similarly, isenthalpy flash expansion may be used in place of work expansion of the secondary cooled high pressure refrigerant stream exiting heat exchanger 60 (stream 71c of FIGS. 1 and 6-10) The power consumption for compression increases.

本発明の好ましい態様と考えられるものについて説明してきたが、請求項に定めるような本発明の精神から逸脱することなく別に及びさらに変更しうること、例えば、本発明を様々な条件、供給流れの種類、又は他の要件に適合させうることは、当業者にとって明らかであろう。   Having described what is considered to be a preferred embodiment of the invention, it will be understood that other and further modifications may be made without departing from the spirit of the invention as defined in the claims, e.g. It will be apparent to those skilled in the art that the type or other requirements can be adapted.

図1は、本発明にしたがったLPGの同時生産に適合させた天然ガス液化プラントの流れ図である。FIG. 1 is a flow diagram of a natural gas liquefaction plant adapted for simultaneous production of LPG according to the present invention. 図2は、本発明の方法で用いうる代替的な分別系の流れ図である。FIG. 2 is a flow diagram of an alternative fractionation system that can be used in the method of the present invention. 図3は、本発明の方法で用いうる代替的な分別系の流れ図である。FIG. 3 is a flow diagram of an alternative fractionation system that can be used in the method of the present invention. 図4は、従来技術の方法を超える本発明の利点を説明するために用いるメタンの圧力−エンタルピー状態図である。FIG. 4 is a pressure-enthalpy phase diagram of methane used to illustrate the advantages of the present invention over prior art methods. 図5は、本発明にしたがった液体流れの同時生産に適合させた代替的な天然ガス液化プラントの流れ図である。FIG. 5 is a flow diagram of an alternative natural gas liquefaction plant adapted for simultaneous production of liquid streams in accordance with the present invention. 図6は、本発明にしたがった液体流れの同時生産に適合させた代替的な天然ガス液化プラントの流れ図である。FIG. 6 is a flow diagram of an alternative natural gas liquefaction plant adapted for simultaneous production of liquid streams in accordance with the present invention. 図7は、本発明にしたがった液体流れの同時生産に適合させた代替的な天然ガス液化プラントの流れ図である。FIG. 7 is a flow diagram of an alternative natural gas liquefaction plant adapted for simultaneous production of liquid streams in accordance with the present invention. 図8は、本発明にしたがった液体流れの同時生産に適合させた代替的な天然ガス液化プラントの流れ図である。FIG. 8 is a flow diagram of an alternative natural gas liquefaction plant adapted for simultaneous production of liquid streams in accordance with the present invention. 図9は、本発明にしたがった液体流れの同時生産に適合させた代替的な天然ガス液化プラントの流れ図である。FIG. 9 is a flow diagram of an alternative natural gas liquefaction plant adapted for simultaneous production of liquid streams according to the present invention. 図10は、本発明にしたがった液体流れの同時生産に適合させた代替的な天然ガス液化プラントの流れ図である。FIG. 10 is a flow diagram of an alternative natural gas liquefaction plant adapted for simultaneous production of liquid streams according to the present invention.

Claims (11)

メタン及びメタンより重質の炭化水素成分を含有する天然ガス流れを液化するための方法であって、
(a)前記天然ガス流れを加圧下で冷却して、少なくともその一部を凝縮させ、凝縮流れを形成し;そして
(b)前記凝縮流れを低圧まで膨張させて、液化天然ガス流れを形成する
前記方法において、
(1)前記天然ガス流れを1つ又はそれより多い冷却工程において処理し;
(2)前記冷却した天然ガス流れを少なくとも第1のガス状流れ及び第2のガス状流れに分割し;
(3)前記第1のガス状流れを冷却して実質的にそのすべてを凝縮させ、その後、中圧まで膨張させ、ここで、該中圧は蒸留塔の圧力であり
(4)前記実質的に凝縮させ膨張させた第1のガス状流れを、前記蒸留塔の分別段階から上昇する揮発性の高い蒸気蒸留流れとの熱交換に送り、それによって温め;
(5)前記第2のガス状流れを前記中圧まで膨張させ;
(6)前記膨張させ温めた第1のガス状流れ及び前記膨張させた第2のガス状流れを、前記蒸留塔に送り、そこで、これらの流れを、前記揮発性の高い蒸気蒸留流れと、前記メタンより重質の炭化水素成分の大部分を含有する比較的揮発性の低い留分とに分離し;
(7)前記揮発性の高い蒸気蒸留流れを、前記実質的に凝縮させ膨張させた第1のガス状流れによって充分に冷却して、部分的に凝縮させ、その後、分離して、前記メタンの大部分及び軽質成分を含有する揮発性残留ガス留分と、還流流れとを形成し;
(8)前記還流流れを頂部供給材料として前記蒸留塔へ送り;そして
(9)前記揮発性残留ガス留分を加圧下で冷却して、少なくともその一部を凝縮させ、それによって前記凝縮流れを形成する
という改良がなされた前記方法。
A method for liquefying a natural gas stream containing methane and a hydrocarbon component heavier than methane,
(A) cooling the natural gas stream under pressure to condense at least a portion thereof to form a condensed stream; and (b) expanding the condensed stream to a low pressure to form a liquefied natural gas stream. In said method,
(1) treating said natural gas stream in one or more cooling steps;
(2) dividing the cooled natural gas stream into at least a first gaseous stream and a second gaseous stream;
(3) cooling the first gaseous stream to condense substantially all of it and then expanding to medium pressure , where the medium pressure is the pressure of the distillation column ;
(4) said first gaseous stream substantially condensed thereby inflated, the feed to the heat exchange with the high vapor distillation stream volatile rising from fractionation stages of the distillation column, warmed by it;
(5) expanding the second gaseous stream to the medium pressure;
(6) sending said expanded and warmed first gaseous stream and said expanded second gaseous stream to said distillation column, where these streams are said highly volatile steam distillation stream; Separating into a relatively less volatile fraction containing the majority of the hydrocarbon components heavier than methane;
(7) The highly volatile vapor distillation stream is sufficiently cooled by the substantially condensed and expanded first gaseous stream, partially condensed, and then separated, Forming a volatile residual gas fraction containing most and light components and a reflux stream;
(8) sending the reflux stream as top feed to the distillation column; and (9) cooling the volatile residual gas fraction under pressure to condense at least a portion thereof, thereby An improved method of forming.
メタン及びメタンより重質の炭化水素成分を含有する天然ガス流れを液化するための方法であって、
(a)前記天然ガス流れを加圧下で冷却して、少なくともその一部を凝縮させ、凝縮流れを形成し;そして
(b)前記凝縮流れを低圧まで膨張させて、液化天然ガス流れを形成する
前記方法において、
(1)前記天然ガス流れを1つ又はそれより多い冷却工程において処理して部分的に凝縮させ;
(2)前記部分的に凝縮させた天然ガス流れを分離して、それによって蒸気流れと液体流れとを提供し;
(3)前記蒸気流れを少なくとも第1のガス状流れと第2のガス状流れとに分割し;
(4)前記第1のガス状流れを冷却して、実質的にそのすべてを凝縮させ、その後、中圧まで膨張させ、ここで、該中圧は蒸留塔の圧力であり
(5)前記実質的に凝縮させ膨張させた第1のガス状流れを、前記蒸留塔の分別段階から上昇する揮発性の高い蒸気蒸留流れとの熱交換に送り、それによって温め;
(6)前記第2のガス状流れを前記中圧まで膨張させ;
(7)前記液体流れを前記中圧まで膨張させ;
(8)前記膨張させ温めた第1のガス状流れと、前記膨張させた第2のガス状流れと、前記膨張させた液体流れとを前記蒸留塔に送り、そこで、これらの流れを、前記揮発性の高い蒸気蒸留流れと、前記メタンより重質の炭化水素成分の大部分を含有する比較的揮発性の低い留分とに分離し;
(9)前記揮発性の高い蒸気蒸留流れを、前記実質的に凝縮させ膨張させた第1のガス状流れによって充分に冷却して、部分的に凝縮させ、その後、分離して、前記メタンの大部分及び軽質成分を含有する揮発性残留ガス留分と、還流流れとを形成し;
(10)前記還流流れを頂部供給材料として前記蒸留塔へ送り;そして
(11)前記揮発性残留ガス留分を加圧下で冷却して、少なくともその一部を凝縮させ、それによって前記凝縮流れを形成する
という改良がなされた前記方法。
A method for liquefying a natural gas stream containing methane and a hydrocarbon component heavier than methane,
(A) cooling the natural gas stream under pressure to condense at least a portion thereof to form a condensed stream; and (b) expanding the condensed stream to a low pressure to form a liquefied natural gas stream. In said method,
(1) the natural gas stream is treated in one or more cooling steps to be partially condensed;
(2) separating the partially condensed natural gas stream, thereby providing a vapor stream and a liquid stream;
(3) dividing the vapor stream into at least a first gaseous stream and a second gaseous stream;
(4) cooling the first gaseous stream to condense substantially all of it and then expanding to medium pressure , where the medium pressure is the pressure of the distillation column ;
(5) said first gaseous stream substantially condensed thereby inflated, the feed to the heat exchange with the high vapor distillation stream volatile rising from fractionation stages of the distillation column, warmed by it;
(6) expanding the second gaseous stream to the medium pressure;
(7) expanding the liquid stream to the medium pressure;
(8) sending the expanded and warmed first gaseous stream, the expanded second gaseous stream and the expanded liquid stream to the distillation column, where these streams are Separating into a highly volatile steam distillation stream and a relatively less volatile fraction containing a majority of the hydrocarbon components heavier than the methane;
(9) The highly volatile steam distillation stream is sufficiently cooled by the substantially condensed and expanded first gaseous stream, partially condensed, and then separated to provide Forming a volatile residual gas fraction containing most and light components and a reflux stream;
(10) sending the reflux stream as top feed to the distillation column; and (11) cooling the volatile residual gas fraction under pressure to condense at least a portion thereof, thereby An improved method of forming.
メタン及びメタンより重質の炭化水素成分を含有する天然ガス流れを液化するための方法であって、
(a)前記天然ガス流れを加圧下で冷却して、少なくともその一部を凝縮させ、凝縮流れを形成し;そして
(b)前記凝縮流れを低圧まで膨張させて、液化天然ガス流れを形成する
前記方法において、
(1)前記天然ガス流れを1つ又はそれより多い冷却工程において処理して部分的に凝縮させ;
(2)前記部分的に凝縮させた天然ガス流れを分離して、それによって蒸気流れと液体流れとを提供し;
(3)前記蒸気流れを少なくとも第1のガス状流れと第2のガス状流れとに分割し;
(4)前記第1のガス状流れを前記液体流れの少なくとも一部と組合わせ、それによって複合流れを形成し;
(5)前記複合流れを冷却して、実質的にそのすべてを凝縮させ、その後、中圧まで膨張させ、ここで、該中圧は蒸留塔の圧力であり
(6)前記実質的に凝縮させ膨張させた複合流れを、前記蒸留塔の分別段階から上昇する揮発性の高い蒸気蒸留流れとの熱交換に送り、それによって温め;
(7)前記第2のガス状流れを前記中圧まで膨張させ;
(8)前記液体流れの残りのすべての部分を前記中圧まで膨張させ;
(9)前記膨張させ温めた複合流れと、前記膨張させた第2のガス状流れと、前記膨張させた液体流れの残りの部分とを前記蒸留塔に送り、そこで、これらの流れを前記揮発性の高い蒸気蒸留流れと、前記メタンより重質の炭化水素成分の大部分を含有する比較的揮発性の低い留分とに分離し;
(10)前記揮発性の高い蒸気蒸留流れを、前記実質的に凝縮させ膨張させた複合流れによって充分に冷却し、部分的に凝縮させ、その後、分離して、前記メタンの大部分及び
軽質成分を含有する揮発性残留ガス留分と、還流流れとを形成し;
(11)前記還流流れを頂部供給材料として前記蒸留塔へ送り;そして
(12)前記揮発性残留ガス留分を加圧下で冷却して、少なくともその一部を凝縮させ、それによって前記凝縮流れを形成する
という改良がなされた前記方法。
A method for liquefying a natural gas stream containing methane and a hydrocarbon component heavier than methane,
(A) cooling the natural gas stream under pressure to condense at least a portion thereof to form a condensed stream; and (b) expanding the condensed stream to a low pressure to form a liquefied natural gas stream. In said method,
(1) the natural gas stream is treated in one or more cooling steps to be partially condensed;
(2) separating the partially condensed natural gas stream, thereby providing a vapor stream and a liquid stream;
(3) dividing the vapor stream into at least a first gaseous stream and a second gaseous stream;
(4) combining the first gaseous stream with at least a portion of the liquid stream, thereby forming a composite stream;
(5) cooling the composite stream to condense substantially all of it and then expanding to medium pressure , where the medium pressure is the pressure of the distillation column ;
(6) the composite stream inflated said substantially condensed and sent to the heat exchange with the high vapor distillation stream volatile rising from fractionation stages of the distillation column, warmed by it;
(7) expanding the second gaseous stream to the medium pressure;
(8) inflating all remaining portions of the liquid stream to the medium pressure;
(9) sending the expanded and warmed composite stream, the expanded second gaseous stream and the remaining portion of the expanded liquid stream to the distillation column, where these streams are Separation into a high-efficiency steam distillation stream and a relatively less volatile fraction containing the majority of the hydrocarbon components heavier than the methane;
(10) The highly volatile steam distillation stream is sufficiently cooled by the substantially condensed and expanded composite stream, partially condensed and then separated to obtain a majority of the methane and light components. Forming a volatile residual gas fraction containing and a reflux stream;
(11) sending the reflux stream as top feed to the distillation column; and (12) cooling the volatile residual gas fraction under pressure to condense at least a portion thereof, thereby An improved method of forming.
メタン及びメタンより重質の炭化水素成分を含有する天然ガス流れを液化するための方法であって、
(a)前記天然ガス流れを加圧下で冷却して、少なくともその一部を凝縮させ、凝縮流れを形成し;そして
(b)前記凝縮流れを低圧まで膨張させて、液化天然ガス流れを形成する
前記方法において、
(1)前記天然ガス流れを1つ又はそれより多いの冷却工程において処理して、部分的に凝縮させ;
(2)前記部分的に凝縮させた天然ガス流れを分離して、それによって蒸気流れと液体流れとを提供し;
(3)前記蒸気流れを少なくとも第1のガス状流れと第2のガス状流れとに分割し;
(4)前記第1のガス状流れを冷却して、実質的にそのすべてを凝縮させ、その後、中圧まで膨張させ、ここで、該中圧は蒸留塔の圧力であり
(5)前記実質的に凝縮させ膨張させた第1のガス状流れを、前記蒸留塔の分別段階から上昇する揮発性の高い蒸気蒸留流れとの熱交換に送り、それによって温め;
(6)前記第2のガス状流れを前記中圧まで膨張させ;
(7)前記液体流れを冷却して、その後、少なくとも第1の部分と第2の部分とに分割し;
(8)前記第1の部分を前記中圧まで膨張させ、その後、温め;
(9)前記第2の部分を前記中圧まで膨張させ;
(10)前記膨張させ温めた第1のガス状流れと、前記膨張させた第2のガス状流れと、前記膨張させ温めた第1の部分と、前記膨張させた第2の部分とを前記蒸留塔に送り、そこで、これらの流れを前記揮発性の高い蒸気蒸留流れと、前記メタンより重質の炭化水素成分の大部分を含有する比較的揮発性の低い留分とに分離し;
(11)前記揮発性の高い蒸気蒸留流れを、前記実質的に凝縮させ膨張させた第1のガス状流れによって充分に冷却し、部分的に凝縮させ、その後、分離して、前記メタンの大部分及び軽質成分を含有する揮発性残留ガス留分と、還流流れとを形成し;
(12)前記還流流れを頂部供給材料として前記蒸留塔へ送り;そして
(13)前記揮発性残留ガス留分を加圧下で冷却して、少なくともその一部を凝縮させ、それによって前記凝縮流れを形成する
という改良がなされた前記方法。
A method for liquefying a natural gas stream containing methane and a hydrocarbon component heavier than methane,
(A) cooling the natural gas stream under pressure to condense at least a portion thereof to form a condensed stream; and (b) expanding the condensed stream to a low pressure to form a liquefied natural gas stream. In said method,
(1) the natural gas stream is treated in one or more cooling steps and partially condensed;
(2) separating the partially condensed natural gas stream, thereby providing a vapor stream and a liquid stream;
(3) dividing the vapor stream into at least a first gaseous stream and a second gaseous stream;
(4) cooling the first gaseous stream to condense substantially all of it and then expanding to medium pressure , where the medium pressure is the pressure of the distillation column ;
(5) sending the substantially condensed and expanded first gaseous stream to heat exchange with a highly volatile steam distillation stream rising from the fractionation stage of the distillation column and thereby warming;
(6) expanding the second gaseous stream to the medium pressure;
(7) cooling the liquid stream and then dividing it into at least a first part and a second part;
(8) inflating the first part to the medium pressure and then warming;
(9) inflating the second part to the medium pressure;
(10) The expanded and warmed first gaseous stream, the expanded second gaseous stream, the expanded and warmed first part, and the expanded second part are Sent to a distillation column where the streams are separated into the highly volatile steam distillation stream and the relatively less volatile fraction containing the majority of the hydrocarbon components heavier than the methane;
(11) The highly volatile vapor distillation stream is sufficiently cooled by the substantially condensed and expanded first gaseous stream, partially condensed, and then separated to obtain a large amount of methane. Forming a volatile residual gas fraction containing partial and light components and a reflux stream;
(12) sending the reflux stream as top feed to the distillation column; and (13) cooling the volatile residual gas fraction under pressure to condense at least a portion thereof, thereby An improved method of forming.
メタン及びメタンより重質の炭化水素成分を含有する天然ガス流れを液化するための方法であって、
(a)前記天然ガス流れを加圧下で冷却して、少なくともその一部を凝縮させ、凝縮流れを形成し;そして
(b)前記凝縮流れを低圧まで膨張させて、液化天然ガス流れを形成する
前記方法において、
(1)前記天然ガス流れを1つ又はそれより多い冷却工程において処理して、部分的に凝縮させ;
(2)前記部分的に凝縮させた天然ガス流れを分離して、それによって蒸気流れと液体流れとを提供し;
(3)前記蒸気流れを少なくとも第1のガス状流れと第2のガス状流れとに分割し;
(4)前記第1のガス状流れを冷却して、実質的にそのすべてを凝縮させ;
(5)前記液体流れを冷却し、その後、少なくとも第1の部分と第2の部分とに分割し;
(6)前記第1の部分を中圧まで膨張させ、その後、温め、ここで、該中圧は蒸留塔の圧力であり
(7)前記第2の部分を前記実質的に凝縮させた第1のガス状流れと組合わせ、それによって複合流れを形成し、その後、前記複合流れを前記中圧まで膨張させ;
(8)前記膨張させた複合流れを、前記蒸留塔の分別段階から上昇する揮発性の高い蒸気蒸留流れとの熱交換に送り、それによって温め;
(9)前記第2のガス状流れを前記中圧まで膨張させ;
(10)前記膨張させ温めた複合流れと、前記膨張させた第2のガス状流れと、前記膨張させ温めた第1の部分とを蒸留塔に送り、そこで、これらの流れを前記揮発性の高い蒸気蒸留流れと、前記メタンより重質の炭化水素成分の大部分を含有する比較的揮発性の低い留分とに分離し;
(11)前記揮発性の高い蒸気蒸留流れを、前記膨張させた複合流れによって充分に冷却して、部分的に凝縮させ、その後、分離して、前記メタンの大部分と軽質成分とを含有する揮発性残留ガス留分と、還流流れとを形成し;
(12)前記還流流れを頂部供給材料として前記蒸留塔へ送り;そして
(13)前記揮発性残留ガス留分を加圧下で冷却して、少なくともその一部を凝縮させ、それによって前記凝縮流れを形成する
という改良がなされた前記方法。
A method for liquefying a natural gas stream containing methane and a hydrocarbon component heavier than methane,
(A) cooling the natural gas stream under pressure to condense at least a portion thereof to form a condensed stream; and (b) expanding the condensed stream to a low pressure to form a liquefied natural gas stream. In said method,
(1) the natural gas stream is treated in one or more cooling steps and partially condensed;
(2) separating the partially condensed natural gas stream, thereby providing a vapor stream and a liquid stream;
(3) dividing the vapor stream into at least a first gaseous stream and a second gaseous stream;
(4) cooling the first gaseous stream to condense substantially all of it;
(5) cooling the liquid stream and then dividing it into at least a first part and a second part;
(6) expanding said first part to medium pressure and then warming , where said medium pressure is the pressure of the distillation column ;
(7) combining the second portion with the substantially condensed first gaseous flow, thereby forming a composite flow, and then expanding the composite flow to the medium pressure;
(8) the feed the composite stream that is expanded, to heat exchange with the high vapor distillation stream volatile rising from fractionation stages of the distillation column, warmed by it;
(9) expanding the second gaseous stream to the medium pressure;
(10) sending the expanded and warmed composite stream, the expanded second gaseous stream and the expanded and warmed first portion to a distillation column, where these streams are sent to the volatile Separating into a higher steam distillation stream and a relatively less volatile fraction containing the majority of the hydrocarbon components heavier than the methane;
(11) The highly volatile steam distillation stream is sufficiently cooled by the expanded composite stream, partially condensed, and then separated to contain the majority of the methane and light components. Forming a volatile residual gas fraction and a reflux stream;
(12) sending the reflux stream as top feed to the distillation column; and (13) cooling the volatile residual gas fraction under pressure to condense at least a portion thereof, thereby An improved method of forming.
蒸留塔が精留塔の下部区分にあり、揮発性の高い蒸気蒸留流れを、前記精留塔の前記蒸留塔より上の部分で充分に冷却して、部分的に凝縮させ、そして同時に分離して、揮発性残留ガス留分と、還流流れとを形成し、その後、前記還流流れが前記蒸留塔の頂部分別段階へ流れる、請求項1〜5のいずれか1項に記載の方法。  A distillation column is in the lower section of the rectification column, and the highly volatile vapor distillation stream is sufficiently cooled in the upper part of the rectification column above the distillation column, partially condensed and simultaneously separated. 6. A process according to any one of the preceding claims, wherein a volatile residual gas fraction and a reflux stream are formed, after which the reflux stream flows to the top part stage of the distillation column. 揮発性の高い蒸気蒸留流れを、デフレグメーター中で充分に冷却して、部分的に凝縮させ、そして同時に分離して、揮発性残留ガス留分と還流流れとを形成し、その後、前記還流流れが該デフレグメーターから蒸留塔の頂部分別段階へ流れる、請求項1〜5のいずれか1項に記載の方法。  The highly volatile steam distillation stream is sufficiently cooled in a dephlegmator, partially condensed and simultaneously separated to form a volatile residual gas fraction and a reflux stream, after which the reflux 6. A process according to any one of the preceding claims, wherein a stream flows from the dephlegmator to the top fractional stage of the distillation column. 揮発性残留ガス留分を圧縮し、その後、加圧下で冷却して、少なくともその一部を凝縮させ、それによって凝縮流れを形成する、請求項1〜7のいずれか1項に記載の方法。  8. A method according to any one of the preceding claims, wherein the volatile residual gas fraction is compressed and then cooled under pressure to condense at least a portion thereof, thereby forming a condensed stream. 揮発性残留ガス留分を加熱し、圧縮し、その後、加圧下で冷却して、少なくともその一部を凝縮させ、それによって凝縮流れを形成する、請求項1〜7のいずれか1項に記載の方法。  8. The volatile residual gas fraction is heated, compressed and then cooled under pressure to condense at least a portion thereof, thereby forming a condensed stream. the method of. 揮発性残留ガス留分が、メタンの大部分、軽質成分、及びC成分を含有する、請求項1〜9のいずれか1項に記載の方法。Volatile residual gas fraction, most of the methane, lighter components, and containing C 2 components, the method according to any one of claims 1-9. 揮発性残留ガス留分が、メタンの大部分、軽質成分、C成分及びC成分を含有する、請求項1〜9のいずれか1項に記載の方法。Volatile residual gas fraction, most of the methane, lighter components, containing C 2 components and C 3 components, the method according to any one of claims 1-9.
JP2007510667A 2004-04-26 2004-04-26 Natural gas liquefaction Expired - Fee Related JP4551446B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2004/012792 WO2005114076A1 (en) 2004-04-26 2004-04-26 Natural gas liquefaction

Publications (2)

Publication Number Publication Date
JP2007534923A JP2007534923A (en) 2007-11-29
JP4551446B2 true JP4551446B2 (en) 2010-09-29

Family

ID=35428468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007510667A Expired - Fee Related JP4551446B2 (en) 2004-04-26 2004-04-26 Natural gas liquefaction

Country Status (18)

Country Link
EP (1) EP1740897A4 (en)
JP (1) JP4551446B2 (en)
KR (1) KR101118830B1 (en)
CN (1) CN100473927C (en)
AR (1) AR046607A1 (en)
AU (1) AU2004319953B2 (en)
BR (1) BRPI0418780B1 (en)
CA (1) CA2562323C (en)
EA (1) EA010538B1 (en)
EG (1) EG25056A (en)
HK (1) HK1101424A1 (en)
MX (1) MXPA06011644A (en)
MY (1) MY137287A (en)
NO (1) NO20065055L (en)
PE (1) PE20051002A1 (en)
SA (1) SA05260083B1 (en)
WO (1) WO2005114076A1 (en)
ZA (1) ZA200607240B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9217603B2 (en) 2007-09-13 2015-12-22 Battelle Energy Alliance, Llc Heat exchanger and related methods
US9254448B2 (en) 2007-09-13 2016-02-09 Battelle Energy Alliance, Llc Sublimation systems and associated methods
US9574713B2 (en) 2007-09-13 2017-02-21 Battelle Energy Alliance, Llc Vaporization chambers and associated methods
US9939196B2 (en) * 2009-02-17 2018-04-10 Ortloff Engineers, Ltd. Hydrocarbon gas processing including a single equipment item processing assembly
PE20120712A1 (en) * 2009-02-17 2012-06-20 Ortloff Engineers Ltd PROCESSING OF HYDROCARBON GASES
JP5753535B2 (en) * 2009-06-11 2015-07-22 オートロフ・エンジニアーズ・リミテッド Hydrocarbon gas treatment
AR076506A1 (en) * 2009-06-11 2011-06-15 Sme Products Lp HYDROCARBON GAS PROCESSING
EP2440311A1 (en) * 2009-06-11 2012-04-18 Ortloff Engineers, Ltd Hydrocarbon gas processing
CA2764282C (en) * 2009-06-11 2016-01-05 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US20110067441A1 (en) 2009-09-21 2011-03-24 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
AU2011233648B2 (en) * 2010-03-31 2016-01-07 Uop Llc Hydrocarbon gas processing
KR101714101B1 (en) * 2010-03-31 2017-03-08 오르트로프 엔지니어스, 리미티드 Hydrocarbon gas processing
CN102472573B (en) * 2010-03-31 2014-10-22 奥特洛夫工程有限公司 Hydrocarbon gas processing
GB2486036B (en) * 2011-06-15 2012-11-07 Anthony Dwight Maunder Process for liquefaction of natural gas
US10655911B2 (en) * 2012-06-20 2020-05-19 Battelle Energy Alliance, Llc Natural gas liquefaction employing independent refrigerant path
JP6517251B2 (en) * 2013-12-26 2019-05-22 千代田化工建設株式会社 Natural gas liquefaction system and liquefaction method
US10436505B2 (en) 2014-02-17 2019-10-08 Black & Veatch Holding Company LNG recovery from syngas using a mixed refrigerant
US10443930B2 (en) 2014-06-30 2019-10-15 Black & Veatch Holding Company Process and system for removing nitrogen from LNG
CN106715368B (en) 2014-09-30 2022-09-09 陶氏环球技术有限责任公司 Method for increasing ethylene and propylene production from propylene plant
CN105444527B (en) * 2015-12-02 2017-10-03 中国石油大学(北京) A kind of natural gas treatment plant and method
US11946355B2 (en) 2017-11-14 2024-04-02 1304338 Alberta Ltd. Method to recover and process methane and condensates from flare gas systems
US10976103B2 (en) 2017-12-15 2021-04-13 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
RU2744138C2 (en) * 2018-11-30 2021-03-03 Андрей Владиславович Курочкин Installation for natural gas treatment resulting in liquefied natural gas

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157904A (en) * 1976-08-09 1979-06-12 The Ortloff Corporation Hydrocarbon gas processing
JPH01142382A (en) * 1987-11-27 1989-06-05 Air Prod And Chem Inc Recovery and purifying method of c3-c4+hydrocarbon severally using phase separation and dephlegmation
US4869740A (en) * 1988-05-17 1989-09-26 Elcor Corporation Hydrocarbon gas processing
US4889545A (en) * 1988-11-21 1989-12-26 Elcor Corporation Hydrocarbon gas processing
JPH06159928A (en) * 1992-11-20 1994-06-07 Chiyoda Corp Liquefying method for natural gas
US5615561A (en) * 1994-11-08 1997-04-01 Williams Field Services Company LNG production in cryogenic natural gas processing plants
FR2739916B1 (en) * 1995-10-11 1997-11-21 Inst Francais Du Petrole METHOD AND DEVICE FOR LIQUEFACTION AND TREATMENT OF NATURAL GAS
US6401486B1 (en) * 2000-05-18 2002-06-11 Rong-Jwyn Lee Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
US6712880B2 (en) * 2001-03-01 2004-03-30 Abb Lummus Global, Inc. Cryogenic process utilizing high pressure absorber column
US6526777B1 (en) * 2001-04-20 2003-03-04 Elcor Corporation LNG production in cryogenic natural gas processing plants
US6742358B2 (en) * 2001-06-08 2004-06-01 Elkcorp Natural gas liquefaction
UA76750C2 (en) * 2001-06-08 2006-09-15 Елккорп Method for liquefying natural gas (versions)

Also Published As

Publication number Publication date
KR20070012814A (en) 2007-01-29
MXPA06011644A (en) 2007-01-23
KR101118830B1 (en) 2012-03-22
NO20065055L (en) 2007-01-12
CN1946979A (en) 2007-04-11
SA05260083B1 (en) 2009-02-07
JP2007534923A (en) 2007-11-29
CN100473927C (en) 2009-04-01
BRPI0418780B1 (en) 2015-12-29
EP1740897A1 (en) 2007-01-10
EP1740897A4 (en) 2013-01-30
CA2562323C (en) 2011-01-04
HK1101424A1 (en) 2007-10-18
AU2004319953B2 (en) 2010-11-18
ZA200607240B (en) 2008-03-26
EA010538B1 (en) 2008-10-30
AU2004319953A1 (en) 2005-12-01
BRPI0418780A (en) 2007-10-09
CA2562323A1 (en) 2005-12-01
WO2005114076A1 (en) 2005-12-01
MY137287A (en) 2009-01-30
AR046607A1 (en) 2005-12-14
PE20051002A1 (en) 2005-11-26
EG25056A (en) 2011-07-20
EA200601989A1 (en) 2007-02-27

Similar Documents

Publication Publication Date Title
JP4551446B2 (en) Natural gas liquefaction
CA2562907C (en) Natural gas liquefaction
JP5847371B2 (en) Natural gas liquefaction
US6945075B2 (en) Natural gas liquefaction
JP4659334B2 (en) LNG production method in low temperature processing of natural gas
US6742358B2 (en) Natural gas liquefaction
NZ549861A (en) A process for liquefying natural gas and producing predominantly hydrocarbons heavier than methane
AU2002349087A1 (en) Natural gas liquefaction

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees