[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4547984B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4547984B2
JP4547984B2 JP2004146006A JP2004146006A JP4547984B2 JP 4547984 B2 JP4547984 B2 JP 4547984B2 JP 2004146006 A JP2004146006 A JP 2004146006A JP 2004146006 A JP2004146006 A JP 2004146006A JP 4547984 B2 JP4547984 B2 JP 4547984B2
Authority
JP
Japan
Prior art keywords
diffusion region
type
region
diffusion
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004146006A
Other languages
Japanese (ja)
Other versions
JP2005327964A (en
Inventor
巧裕 伊倉
直樹 熊谷
高広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004146006A priority Critical patent/JP4547984B2/en
Publication of JP2005327964A publication Critical patent/JP2005327964A/en
Application granted granted Critical
Publication of JP4547984B2 publication Critical patent/JP4547984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

この発明は、一つの半導体基板に複数の回路部を備え、それぞれ個別に静電放電(ESD:Electro Static Discharge)などのサージ電圧保護用の縦型ツェナーダイオードを備え、特に車載用に用いられる半導体装置に関する。
The present invention includes a plurality of circuit units on a single semiconductor substrate, each of which is provided with a vertical zener diode for surge voltage protection such as electrostatic discharge (ESD), and is particularly used in a vehicle. Relates to the device.

複数のパワー半導体素子や制御回路及び横型のサージ保護素子とが同一半導体基板に形成された半導体装置において、外来サージ電圧やノイズ電圧の印加およびパワー半導体素子自身の動作で発生したサージ電圧によって、パワー半導体素子や制御回路の正常動作が妨害される場合がある。これを防止するために、パワー半導体素子や制御回路やサージ保護素子を互いに分離する必要があり、分離する方法として、誘電体分離構造や高濃度埋め込みエピタキシャル層と高濃度分離拡散層を用いた接合分離構造の適用が行われている。
自動車向け半導体装置において、前記の誘電体分離構造や接合分離構造を用いて微細化・統合化を進めパワー半導体素子や制御回路を形成する面積の縮小化を図っている。
しかし、自動車向け半導体装置においては、ESD耐量などのサージ耐量およびノイズ耐量などの要求が特に厳しいため、横型のサージ保護素子ではその占有面積が大きくなり、チップ面積が大型化する。
In a semiconductor device in which a plurality of power semiconductor elements, control circuits, and horizontal surge protection elements are formed on the same semiconductor substrate, the power is increased by the application of external surge voltage or noise voltage and the surge voltage generated by the operation of the power semiconductor element itself. The normal operation of the semiconductor element or the control circuit may be disturbed. In order to prevent this, it is necessary to isolate the power semiconductor element, the control circuit, and the surge protection element from each other. As a method for isolation, a dielectric isolation structure or a junction using a high concentration buried epitaxial layer and a high concentration isolation diffusion layer is used. Separation structure is applied.
In semiconductor devices for automobiles, miniaturization and integration are promoted by using the dielectric isolation structure and the junction isolation structure, and an area for forming a power semiconductor element and a control circuit is reduced.
However, in semiconductor devices for automobiles, demands for surge resistance such as ESD resistance and noise resistance are particularly severe, so that the area occupied by a horizontal surge protection element increases and the chip area increases.

そのため、サージ保護素子以外のパワー半導体素子や制御回路を同一半導体基板に形成してチップ面積を縮小化し、サージ保護素子であるツェナーダイオードや抵抗・コンデンサ等を外付けにして、高サージ耐量を実現させる例が多い。
一方、サージ保護素子として縦型ツェナーダイオードを同一半導体基板に形成して、チップ面積を小さくする方法がある。
図7は、縦型ツェナーダイオードを有する従来の半導体装置の要部平面図である。チップの周辺部に多数の入力端子(カソード電極58、59など)が形成され、この入力端子下にサージ保護素子である縦型ツェナーダイオードが配置されている。チップ内側には制御回路やパワー半導体素子などが配置される。前記の入力端子はボンディングパッドであり、また縦型ツェナーダイオードのカソード電極でもある。
For this reason, power semiconductor elements and control circuits other than surge protection elements are formed on the same semiconductor substrate to reduce the chip area, and a surge protection element such as a Zener diode, resistor / capacitor, etc. is externally attached to achieve high surge resistance. There are many examples.
On the other hand, there is a method of reducing the chip area by forming a vertical Zener diode as a surge protection element on the same semiconductor substrate.
FIG. 7 is a plan view of a main part of a conventional semiconductor device having a vertical Zener diode. A large number of input terminals (cathode electrodes 58, 59, etc.) are formed in the periphery of the chip, and a vertical Zener diode, which is a surge protection element, is disposed under the input terminals. A control circuit, a power semiconductor element, and the like are disposed inside the chip. The input terminal is a bonding pad and a cathode electrode of a vertical Zener diode.

縦型ツェナーダイオードは、横型ツェナーダイオードと比較して単位面積当たりに、より大きな電流を流すことができるため、小面積でも高いサージ電圧を吸収でき保護効果が大きい。また縦形ツェナーダイオードの動作抵抗は、横型ツェナーダイオードより小さくすることができて、サージ吸収・保護効果がさらに大きくなり、素子面積の縮小化が可能となる。
図8は、従来の半導体装置の要部構成図であり、同図(a)は図7のA部拡大図、同図(b)は同図(a)のX−X線で切断した断面図である。これらの図は隣り合う2つの縦型ダイオードの要部構成図である。
p型半導体基板51の表面層に隣り合うn型カソード領域53、54を形成し、n型カソード領域53、54上にカソード電極58、59を形成し、p型半導体基板51の裏面には共通電極である裏面電極61を形成する。n型カソード領域53、54とp型半導体基板51はそれぞれpn接合の縦型ダイオードを構成し、p型半導体基板51はp型アノード領域となる。
A vertical Zener diode can absorb a higher surge voltage even in a small area because it can pass a larger current per unit area than a horizontal Zener diode, and has a great protection effect. Further, the operating resistance of the vertical Zener diode can be made smaller than that of the horizontal Zener diode, the surge absorption / protection effect is further increased, and the element area can be reduced.
8A and 8B are main part configuration diagrams of a conventional semiconductor device, in which FIG. 8A is an enlarged view of a portion A in FIG. 7, and FIG. FIG. These drawings are main part configuration diagrams of two adjacent vertical diodes.
The n-type cathode regions 53 and 54 adjacent to the surface layer of the p-type semiconductor substrate 51 are formed, the cathode electrodes 58 and 59 are formed on the n-type cathode regions 53 and 54, and the back surface of the p-type semiconductor substrate 51 is common. A back electrode 61 as an electrode is formed. The n-type cathode regions 53 and 54 and the p-type semiconductor substrate 51 constitute a pn junction vertical diode, and the p-type semiconductor substrate 51 becomes a p-type anode region.

n型カソード領域53、54と離してそれぞれ、n型カソード領域53、54を取り囲むようにp型拡散領域56を形成する。このp型拡散領域56はn型カソード領域53、54からp型半導体基板51の表面層に広がる空乏層の伸びを停止させる働きをする。カソード電極58、59は、ボンディングパッドでもある入力端子IN1、IN2となり、それぞれ独立に入力信号が入力される。また、カソード電極はプルアップ抵抗62a、62b(例えば、10kΩ程度)を介して、電源の高電位側端子Vcc(例えば、14V程度)と接続する。さらに、カソード電極58、59は被保護素子である図示しないパワー半導体素子や制御回路等とも接続する。裏面電極61はグランドGNDと接続する。
また、隣り合う2つの縦型ツェナーダイオードの間の半導体基板の表面層に、拡散領域を形成し、この拡散領域とグランドを接続して、入力端子間の相互の影響を防止する構造が報告されている(例えば、特許文献1)。
特開平6−224427号公報 図1
A p-type diffusion region 56 is formed so as to surround the n-type cathode regions 53 and 54 apart from the n-type cathode regions 53 and 54, respectively. The p-type diffusion region 56 functions to stop the depletion layer extending from the n-type cathode regions 53 and 54 to the surface layer of the p-type semiconductor substrate 51. The cathode electrodes 58 and 59 become input terminals IN1 and IN2 which are also bonding pads, and input signals are independently input thereto. Further, the cathode electrode is connected to the high potential side terminal Vcc (for example, about 14 V) of the power supply via the pull-up resistors 62a and 62b (for example, about 10 kΩ). Furthermore, the cathode electrodes 58 and 59 are also connected to a power semiconductor element (not shown) that is a protected element, a control circuit, and the like. The back electrode 61 is connected to the ground GND.
In addition, a structure has been reported in which a diffusion region is formed in the surface layer of the semiconductor substrate between two adjacent vertical Zener diodes, and this diffusion region is connected to the ground to prevent mutual influence between the input terminals. (For example, Patent Document 1).
Japanese Patent Laid-Open No. 6-224427 FIG.

図8の半導体装置の動作を説明する。通常動作では、縦型ツェナーダイオードのpn接合は逆バイアス状態であるために、順方向電流は流れない。しかし、例えば、入力端子IN1に負のサージ電圧が印加されると、つまり、カソード電極58にマイナスのサージ電圧が印加されると、裏面電極61からn型カソード領域53を通ってカソード電極58に過大なサージ電流が流れる。このサージ電流は主電流71であり、この主電流71はp型半導体基板51からn型カソード領域53に流入する正孔流とn型カソード領域53からp型半導体基板51に注入される電子流74で構成される。
この正孔流の一部が、n型カソード領域53、p型半導体基板51、n型カソード領域54で構成される寄生npnトランジスタのゲート電流となり、寄生npnトランジスタが動作して、n型カソード領域53からp型半導体基板51を経由してn型カソード領域54へ電子流74が流れる。この電子流74はn型カソード領域54に入り込み、カソード電極59とプルアップ抵抗62bを通って電源の高電位側端子Vccへ流れ込み、プルアップ抵抗62bの電圧降下を発生させ、隣り合う入力端子IN2の電位を変動させ、これと接続する制御回路の動作を不安定にさせたり、誤動作させる。
The operation of the semiconductor device in FIG. 8 will be described. In normal operation, the forward current does not flow because the pn junction of the vertical Zener diode is in a reverse bias state. However, for example, when a negative surge voltage is applied to the input terminal IN 1, that is, a negative surge voltage is applied to the cathode electrode 58, the back electrode 61 passes through the n-type cathode region 53 to the cathode electrode 58. Excessive surge current flows. This surge current is a main current 71, which is a hole current flowing from the p-type semiconductor substrate 51 into the n-type cathode region 53 and an electron flow injected from the n-type cathode region 53 into the p-type semiconductor substrate 51. 74.
A part of this hole flow becomes a gate current of a parasitic npn transistor composed of the n-type cathode region 53, the p-type semiconductor substrate 51, and the n-type cathode region 54, and the parasitic npn transistor is operated, and the n-type cathode region is operated. An electron flow 74 flows from 53 to the n-type cathode region 54 via the p-type semiconductor substrate 51. This electron flow 74 enters the n-type cathode region 54, flows through the cathode electrode 59 and the pull-up resistor 62b, and flows into the high potential side terminal Vcc of the power source, causing a voltage drop of the pull-up resistor 62b, and the adjacent input terminal IN2 The control circuit connected thereto is made unstable or malfunctions.

この発明の目的は、前記の課題を解決して、負のサージ電圧が入力された場合、隣り合う入力端子の電位変動を抑制し、回路動作を安定化させることができる半導体装置を提供することにある。   An object of the present invention is to provide a semiconductor device that solves the above-described problems and suppresses fluctuations in potential of adjacent input terminals and stabilizes circuit operation when a negative surge voltage is input. It is in.

前記の目的を達成するために、半導体基板に形成された半導体素子と該半導体素子を制御する制御回路およびサージ保護素子である複数の縦型pn接合ダイオード(例えば、縦型ツェナーダイオード)とを有する半導体装置において、第1導電型の半導体基板の表面層に形成された複数の第2導電型の第1拡散領域と、隣り合う該第1拡散領域の間に挟まれ、該第1拡散領域から離れて前記半導体基板の表面層に形成された第1導電型の第2拡散領域と、該第2拡散領域の両側に前記第1拡散領域と離れ、前記第2拡散領域と接して、前記半導体基板の表面層に形成された第2導電型の第3拡散領域と、前記第1拡散領域上に形成した第1金属電極と、前記第2拡散領域上と前記第3拡散領域上に形成された第2金属電極と、前記半導体基板の裏面に形成した裏面電極とを有し、前記半導体基板と前記第1拡散領域で前記縦型pn接合ダイオードを構成する半導体装置であって、前記第2金属電極がグランドと接続する構成とする。 In order to achieve the above object, a semiconductor element formed on a semiconductor substrate, a control circuit that controls the semiconductor element, and a plurality of vertical pn junction diodes (for example, vertical Zener diodes) that are surge protection elements are included. In a semiconductor device, a plurality of second conductivity type first diffusion regions formed in a surface layer of a first conductivity type semiconductor substrate are sandwiched between the adjacent first diffusion regions, and the first diffusion regions are separated from each other. A second diffusion region of a first conductivity type formed in a surface layer of the semiconductor substrate apart from the first diffusion region on both sides of the second diffusion region and in contact with the second diffusion region; A third diffusion region of a second conductivity type formed on a surface layer of the substrate; a first metal electrode formed on the first diffusion region; and formed on the second diffusion region and the third diffusion region. Second metal electrode and the semiconductor substrate And a back surface electrode formed on the back surface, the a semiconductor device constituting the vertical pn junction diode with the semiconductor substrate and the first diffusion region, a structure in which the second metal electrode is connected to the ground.

また、前記第2拡散領域が前記第3拡散領域より拡散深さが深いとよい。
また、半導体基板に形成された半導体素子と該半導体素子を制御する制御回路およびサージ保護素子である複数の縦型pn接合ダイオードとを有する半導体装置において、第1導電型の半導体基板の表面層に形成された複数の第2導電型の第1拡散領域と、隣り合う該第1拡散領域の間に挟まれ、該第1拡散領域から離れて前記半導体基板の表面層に形成された第2導電型の第4拡散領域と、該第4拡散領域の両側に前記第1拡散領域と離れ、前記第4拡散領域と接して、前記半導体基板の表面層に形成された第1導電型の第5拡散領域と、前記第1拡散領域上に形成した第1金属電極と、前記第4拡散領域上と前記第5拡散領域上に形成された第3金属電極と、前記半導体基板の裏面に形成した裏面電極とを有し、前記半導体基板と前記第1拡散領域で前記縦型pn接合ダイオードを構成する半導体装置であって、前記第3金属電極がグランドと接続する構成とする。
The second diffusion region may have a deeper diffusion depth than the third diffusion region.
Further, in a semiconductor device having a semiconductor element formed on a semiconductor substrate, a control circuit that controls the semiconductor element, and a plurality of vertical pn junction diodes that are surge protection elements, a surface layer of the first conductivity type semiconductor substrate is provided. A second conductive layer sandwiched between the formed first diffusion regions of the second conductivity type and the adjacent first diffusion regions, and formed on the surface layer of the semiconductor substrate away from the first diffusion regions. A fourth diffusion region of the mold, and a fifth fifth of the first conductivity type formed on the surface layer of the semiconductor substrate in contact with the fourth diffusion region on both sides of the fourth diffusion region and in contact with the fourth diffusion region. A diffusion region, a first metal electrode formed on the first diffusion region, a third metal electrode formed on the fourth diffusion region and the fifth diffusion region, and a back surface of the semiconductor substrate A back electrode, and the semiconductor substrate and the first electrode A semiconductor device constituting the vertical pn junction diode diffusion region, a structure in which the third metal electrode is connected to the ground.

また、前記第4拡散領域が前記第5拡散領域より拡散深さが深いとよい。   The fourth diffusion region may have a deeper diffusion depth than the fifth diffusion region.

この発明によれば、隣り合う縦型ツェナーダイオードの間の半導体基板の表面層に形成した拡散領域をグランドと接続することで、負のサージ電圧が印加されたとき、縦型ツェナーダイオードに流れる主電流の一部が染み出した電流を効率よく吸い込み、隣の入力端子に染み出した電流が流入するのを防止し、隣の入力端子の電位変動を抑制することで、回路動作の安定化を図ることができる。また、この拡散領域をp型拡散領域の両側をn型拡散領域で挟んでp型半導体基板の表面層に形成し、このp型およびn型拡散領域を金属電極で短絡し、この金属電極をグランドと接続することで、n型カソード領域から染み出した電子を効率よくn型拡散領域で吸い込み、隣のn型カソード領域に染み出した電子が流入するのを抑制して、回路動作の安定化を図ることができる。   According to the present invention, the diffusion region formed in the surface layer of the semiconductor substrate between the adjacent vertical Zener diodes is connected to the ground, so that when a negative surge voltage is applied, the main current flowing through the vertical Zener diodes is applied. Efficiently absorbs the current that is part of the current, prevents the current that has leaked into the adjacent input terminal from flowing in, and suppresses fluctuations in the potential of the adjacent input terminal, thereby stabilizing the circuit operation. Can be planned. Further, the diffusion region is formed on the surface layer of the p-type semiconductor substrate with both sides of the p-type diffusion region sandwiched between the n-type diffusion regions, the p-type and n-type diffusion regions are short-circuited with a metal electrode, By connecting to the ground, the electrons exuded from the n-type cathode region are efficiently sucked into the n-type diffusion region, and the inflow of the electrons exuded into the adjacent n-type cathode region is suppressed, thereby stabilizing the circuit operation. Can be achieved.

このp型拡散領域の深さをn型拡散領域より深くすることで、p型拡散領域が染み出した電子に対して電位障壁となり、隣のn型カソード領域へ電子が侵入するのを防止し、n型拡散領域に電子を効率よく吸い込み、隣のn型カソード領域に染み出した電子が流入するのを抑制して、回路動作の安定化を図ることができる。
また、この拡散領域をp型半導体基板の表面層にn型拡散領域の両側をp型拡散領域で挟んで形成することで、p型拡散領域が空乏層の伸びを抑制するストッパーの働きをして、サージ電圧でn型カソード領域とn型拡散領域がパンチスルーするのを防止することができる。
このn型拡散領域の深さをp型拡散領域より深くすることで、電子を吸い込む効率を高め、隣のn型カソード領域に染み出した電子が流入するのを抑制して、回路動作の安定化を図ることができる。
By making the depth of the p-type diffusion region deeper than that of the n-type diffusion region, the p-type diffusion region becomes a potential barrier against the exuded electrons and prevents the electrons from entering the adjacent n-type cathode region. Thus, it is possible to efficiently absorb the electrons into the n-type diffusion region and suppress the inflow of the electrons exuded into the adjacent n-type cathode region, thereby stabilizing the circuit operation.
Further, by forming this diffusion region on the surface layer of the p-type semiconductor substrate with both sides of the n-type diffusion region sandwiched between the p-type diffusion regions, the p-type diffusion region functions as a stopper that suppresses the depletion layer extension. Thus, it is possible to prevent the n-type cathode region and the n-type diffusion region from being punched through by the surge voltage.
By making the depth of the n-type diffusion region deeper than that of the p-type diffusion region, the efficiency of sucking electrons is increased, and the leakage of electrons that have exuded to the adjacent n-type cathode region is suppressed, thereby stabilizing the circuit operation. Can be achieved.

この発明の実施の形態は、負のサージ電圧を印加したとき、サージ保護素子である縦型ツェナーダイオードに流れるサージ電流の一部が染み出した電流となって隣り合う縦型ツェナーダイオードに入り込み、入力端子の電圧を変動させることを防止するために、隣り合う2つの縦型ツェナーダイオードの間に染み出した電流を吸収するための領域(拡散領域と金属電極)を形成し、この領域をグランドと接続したことである。
以下、図面を参照しながらこの発明の実施例を説明する。また、第1導電型をp型、第2導電型をn型とするが逆にしても構わない。
In the embodiment of the present invention, when a negative surge voltage is applied, a part of the surge current flowing through the vertical Zener diode which is a surge protection element becomes a leaked current and enters an adjacent vertical Zener diode, In order to prevent the voltage at the input terminal from fluctuating, a region (diffusion region and metal electrode) for absorbing the leaked current is formed between two adjacent vertical Zener diodes, and this region is grounded. Is connected.
Embodiments of the present invention will be described below with reference to the drawings. The first conductivity type is p-type and the second conductivity type is n-type, but they may be reversed.

図1は、この発明の第1実施例の要部構成図であり、同図(a)は平面図、同図(b)は同図(a)のX−X線で切断した断面図である。これらの図は隣り合う2つの縦型ツェナーダイオードの要部構成図であり、図示しないが、これらの図の外側には、図7に示すような被保護素子であるパワー半導体素子や制御回路が形成されている。
p型半導体基板1の表面層に隣接してn型カソード領域3、4を形成し、n型カソード領域3、4上にカソード電極8、9を形成し、p型半導体基板1の裏面には共通電極である裏面電極11を形成する。n型カソード領域3、4とp型半導体基板1はそれぞれpn接合の縦型ツェナーダイオードを構成し、p型半導体基板1はp型アノード領域となる。
n型カソード領域3、4を個々に取り囲むように、n型拡散領域5をn型カソード領域3、4と離してそれぞれ形成する。このn型拡散領域5の間にp型拡散領域6をn型拡散領域5と接するように形成する。但し、チップ端側では、p型拡散領域6の外側にはn型拡散領域5を形成しなくてもよい。前記のp型拡散領域6上とn型拡散領域5上に金属電極10を形成し、この金属電極10をグランドGND接続する。尚、図中の7はLOCOS酸化膜である。
FIGS. 1A and 1B are main part configuration diagrams of a first embodiment of the present invention, in which FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line XX in FIG. is there. These figures are main part configuration diagrams of two adjacent vertical Zener diodes, and although not shown, a power semiconductor element and a control circuit which are protected elements as shown in FIG. Is formed.
N-type cathode regions 3 and 4 are formed adjacent to the surface layer of the p-type semiconductor substrate 1, cathode electrodes 8 and 9 are formed on the n-type cathode regions 3 and 4, A back electrode 11 that is a common electrode is formed. The n-type cathode regions 3 and 4 and the p-type semiconductor substrate 1 constitute a pn junction vertical Zener diode, and the p-type semiconductor substrate 1 becomes a p-type anode region.
The n-type diffusion regions 5 are formed separately from the n-type cathode regions 3 and 4 so as to individually surround the n-type cathode regions 3 and 4. A p-type diffusion region 6 is formed between the n-type diffusion regions 5 so as to be in contact with the n-type diffusion region 5. However, the n-type diffusion region 5 may not be formed outside the p-type diffusion region 6 on the chip end side. A metal electrode 10 is formed on the p-type diffusion region 6 and the n-type diffusion region 5, and the metal electrode 10 is connected to the ground GND. In the figure, reference numeral 7 denotes a LOCOS oxide film.

カソード電極8、9は、ボンディングパッドでもある入力端子IN1、IN2となり、それぞれ独立に入力信号が入力される。また、カソード電極8、9はプルアップ抵抗12a、12bを介して、電源の高電位側端子Vccと接続する。さらに、カソード電極8、9は被保護素子であるパワー半導体素子や制御回路等も金属配線で接続する。裏面電極11はグランドGNDと接続する。
この半導体装置の動作を説明する。通常動作では、縦型ツェナーダイオードのpn接合は逆バイアス状態であるために、順方向電流は流れない。しかし、例えば、入力端子IN1に負のサージ電圧が印加されると、つまり、カソード電極8にマイナスのサージ電圧が印加されると、裏面電極11からn型カソード領域3を通ってカソード電極8に過大なサージ電流が流れる。このサージ電流は図示した主電流21である。この主電流21はp型半導体基板1からn型カソード領域3に流入する正孔流25とn型カソード領域3からp型半導体基板1に流入する電子流23で構成される。この正孔流25の一部は染み出した正孔流26となり、n型カソード領域3、p型半導体基板1、n型拡散領域5で形成される寄生npnトランジスタ27のベース電流となり、寄生npnトランジスタ27を動作させる。寄生npnトランジスタ27が動作するとn型カソード領域3から染み出した電子流24はグランド電位にあるn型拡散領域5に流れて行き、n型カソード領域4へは流れて行かない。
The cathode electrodes 8 and 9 become input terminals IN1 and IN2 which are also bonding pads, and input signals are input independently. The cathode electrodes 8 and 9 are connected to the high potential side terminal Vcc of the power supply via the pull-up resistors 12a and 12b. Further, the cathode electrodes 8 and 9 are connected to a power semiconductor element, a control circuit, and the like, which are protected elements, by metal wiring. The back electrode 11 is connected to the ground GND.
The operation of this semiconductor device will be described. In normal operation, the forward current does not flow because the pn junction of the vertical Zener diode is in a reverse bias state. However, for example, when a negative surge voltage is applied to the input terminal IN 1, that is, a negative surge voltage is applied to the cathode electrode 8, the back electrode 11 passes through the n-type cathode region 3 to the cathode electrode 8. Excessive surge current flows. This surge current is the main current 21 shown in the figure. The main current 21 is composed of a hole flow 25 flowing from the p-type semiconductor substrate 1 into the n-type cathode region 3 and an electron flow 23 flowing from the n-type cathode region 3 into the p-type semiconductor substrate 1. A part of the hole current 25 becomes a leaked hole current 26, and becomes a base current of a parasitic npn transistor 27 formed by the n-type cathode region 3, the p-type semiconductor substrate 1, and the n-type diffusion region 5, and a parasitic npn The transistor 27 is operated. When the parasitic npn transistor 27 is operated, the electron flow 24 exuded from the n-type cathode region 3 flows to the n-type diffusion region 5 at the ground potential, but does not flow to the n-type cathode region 4.

このように、隣り合う縦型ツェナーダイオードの間に染み出した電流24を引き抜くためのn型拡散領域5およびp型拡散領域6とこれらを短絡する金属電極10を設け、この金属電極10をグランドに接続することで、n型カソード領域3に隣接したn型カソード領域4に流れ出す電子流を防止し、カソード電極8に隣接したカソード電極9の電位変動を抑制することができる。電位変動を抑制することで、隣接した入力端子となるカソード電極9と接続する回路の動作が安定化される。
また、p型拡散領域6は電子がn型カソード領域4へ流れて行くことを防止する電位障壁となる。
尚、図1(a)の平面図を、図2、図3のように、n型カソード領域3、4をn型拡散領域5、p型拡散領域6で取り囲まずに、隣り合うn型カソード領域の間にのみn型拡散領域5、p型拡散領域6を形成しても同様の効果が得られる。また、図2では、n型拡散領域5でp型拡散領域6を挟んだ平面形状をしており、図3では、p型拡散領域6をn型拡散領域5で取り囲んだ平面形状をしている。どちらも図1と同様の効果を得ることができる。
As described above, the n-type diffusion region 5 and the p-type diffusion region 6 for drawing out the current 24 that leaks between the adjacent vertical Zener diodes and the metal electrode 10 that short-circuits them are provided, and the metal electrode 10 is grounded. By connecting to, an electron flow that flows out to the n-type cathode region 4 adjacent to the n-type cathode region 3 can be prevented, and potential fluctuation of the cathode electrode 9 adjacent to the cathode electrode 8 can be suppressed. By suppressing the potential fluctuation, the operation of the circuit connected to the cathode electrode 9 serving as an adjacent input terminal is stabilized.
The p-type diffusion region 6 serves as a potential barrier that prevents electrons from flowing to the n-type cathode region 4.
1A, the n-type cathode regions 3 and 4 are not surrounded by the n-type diffusion region 5 and the p-type diffusion region 6 as shown in FIGS. Even if the n-type diffusion region 5 and the p-type diffusion region 6 are formed only between the regions, the same effect can be obtained. In FIG. 2, the n-type diffusion region 5 has a planar shape sandwiching the p-type diffusion region 6. In FIG. 3, the p-type diffusion region 6 is surrounded by the n-type diffusion region 5. Yes. In either case, the same effect as in FIG. 1 can be obtained.

また、前記のp型半導体基板1を低抵抗のp型半導体基板上に高抵抗のエピタキシャル層を形成したエピタキシャル基板に替えて、このエピタキシャル層に前記の各拡散領域を形成してもよい。このエピタキシャル基板を用いると、縦型ツェナーダイオードの動作抵抗を小さくすることができて、サージ保護性能を高めることができる。   In addition, the p-type semiconductor substrate 1 may be replaced with an epitaxial substrate in which a high-resistance epitaxial layer is formed on a low-resistance p-type semiconductor substrate, and the respective diffusion regions may be formed in the epitaxial layer. When this epitaxial substrate is used, the operating resistance of the vertical Zener diode can be reduced, and the surge protection performance can be improved.

図4は、この発明の第2実施例の半導体装置の要部断面図である。この図は、図1に相当する隣り合う2つの縦型ツェナーダイオードの要部断面図である。
図1との違いは、n型拡散領域5とp型拡散領域6の配置が入れ代わっている点である。この場合も、動作は図1と同じであり、n型カソード領域3からの染み出した電子流24はp型半導体基板1、n型半導体領域5を通って金属電極10に流入して、n型カソード領域4へは流れて行かない。また、p型拡散領域6により空乏層の伸びが抑制され、正のサージ電圧でパンチスルーするのを防止することができる。
FIG. 4 is a cross-sectional view of the main part of the semiconductor device according to the second embodiment of the present invention. This figure is a cross-sectional view of the main part of two adjacent vertical Zener diodes corresponding to FIG.
The difference from FIG. 1 is that the arrangement of the n-type diffusion region 5 and the p-type diffusion region 6 is interchanged. Again, the operation is the same as FIG. 1, an electronic flow 24 that exits viewed dyed from n-type cathode region 3 flows into the metal electrode 10 through the p-type semiconductor substrate 1, n-type semiconductor regions 5, It does not flow to the n-type cathode region 4. Further, the extension of the depletion layer is suppressed by the p-type diffusion region 6, and punch-through with a positive surge voltage can be prevented.

図5は、この発明の第3実施例の半導体装置の要部断面図である。この図は、図1に相当する隣り合う2つの縦型ツェナーダイオードの要部断面図である。
図1との違いは、p型拡散領域6の拡散深さがn型拡散領域5より深くなっている点である。こうすることで、p型拡散領域6で形成される電位障壁で、電子流24は遮られ、n型拡散領域5に電子が流入し易くなる。そのため、図1より、さらに、電位変動が抑制され、隣接した入力端子となるカソード電極9と接続する回路の動作が安定化される。
FIG. 5 is a cross-sectional view of the main part of the semiconductor device according to the third embodiment of the present invention. This figure is a cross-sectional view of the main part of two adjacent vertical Zener diodes corresponding to FIG.
The difference from FIG. 1 is that the diffusion depth of the p-type diffusion region 6 is deeper than that of the n-type diffusion region 5. By doing so, the electron barrier 24 is blocked by the potential barrier formed in the p-type diffusion region 6, and electrons easily flow into the n-type diffusion region 5. Therefore, as shown in FIG. 1, the potential fluctuation is further suppressed, and the operation of the circuit connected to the cathode electrode 9 serving as an adjacent input terminal is stabilized.

図6は、この発明の第4実施例の半導体装置の要部断面図である。この図は、図4に相当する隣り合う2つの縦型ツェナーダイオードの要部断面図である。
図4との違いは、n型拡散領域5の拡散深さがp型拡散領域6より深くなっている点である。こうすることで、n型拡散領域5に電子流24が一層流入し易くなる。そのため、図4より、さらに、電位変動が抑制され、隣接した入力端子となるカソード電極9と接続する回路の動作が安定化される。
また、n型拡散領域5を深く拡散することで、p型半導体基板1と接する箇所のp型半導体基板1側の不純物濃度が低くなる領域が広くなり、その分電子を吸収する領域が広がり、n型拡散領域5の電子を吸収する作用が強化される。
FIG. 6 is a cross-sectional view of the main part of the semiconductor device according to the fourth embodiment of the present invention. This figure is a cross-sectional view of the main part of two adjacent vertical Zener diodes corresponding to FIG.
The difference from FIG. 4 is that the n-type diffusion region 5 has a deeper diffusion depth than the p-type diffusion region 6. By doing so, the electron flow 24 is more likely to flow into the n-type diffusion region 5. Therefore, as shown in FIG. 4, the potential fluctuation is further suppressed, and the operation of the circuit connected to the cathode electrode 9 serving as an adjacent input terminal is stabilized.
Further, by deeply diffusing the n-type diffusion region 5, the region where the impurity concentration on the p-type semiconductor substrate 1 side at the portion in contact with the p-type semiconductor substrate 1 is reduced is widened, and the region for absorbing electrons is expanded accordingly. The action of absorbing electrons in n-type diffusion region 5 is enhanced.

この発明の第1実施例の要部構成図であり、(a)は平面図、(b)は(a)のX−X線で切断した断面図BRIEF DESCRIPTION OF THE DRAWINGS It is principal part block diagram of 1st Example of this invention, (a) is a top view, (b) is sectional drawing cut | disconnected by the XX line of (a) 図1(a)とは異なる要部平面図Main part plan view different from FIG. 図1(a)とは異なる要部平面図Main part plan view different from FIG. この発明の第2実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 2nd Example of this invention この発明の第3実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 3rd Example of this invention. この発明の第4実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 4th Example of this invention. 縦型のサージ保護素子を有する従来の半導体装置の要部平面図Plan view of relevant parts of a conventional semiconductor device having a vertical surge protection element 従来の半導体装置の要部構成図であり、(a)は図7のA部拡大図、(b)は(a)のX−X線で切断した断面図8A and 8B are configuration diagrams of a main part of a conventional semiconductor device, in which FIG. 7A is an enlarged view of a portion A in FIG.

1 p型半導体基板
3、4 n型カソード領域
5 n型拡散領域
6 p型拡散領域
7 LOCOS酸化膜
8、9 カソード電極
10 金属電極
11 裏面電極
12a、12b プルアップ抵抗
21 主電流(サージ電流)
22 染み出した電流
23 電子流
24 染み出した電子流
25 正孔流
26 染み出した正孔流(ゲート電流)
27 寄生npnトランジスタ
Vcc 電源の高電位端子
IN1、IN2 入力端子
GND グランド
e 電子
h 正孔
Reference Signs List 1 p-type semiconductor substrate 3, 4 n-type cathode region 5 n-type diffusion region 6 p-type diffusion region 7 LOCOS oxide film 8, 9 cathode electrode 10 metal electrode 11 back electrode 12a, 12b pull-up resistor 21 main current (surge current)
22 Exuded current 23 Electron current 24 Exuded electron current 25 Hole current 26 Exuded hole current (gate current)
27 Parasitic npn transistor Vcc High potential terminal IN1, IN2 of power supply Input terminal GND Ground e Electron h Hole

Claims (4)

半導体層に形成された半導体素子と該半導体素子を制御する制御回路およびサージ保護素子である複数の縦型pn接合ダイオードとを有する半導体装置において、
第1導電型の半導体層の表面層に形成された複数の第2導電型の第1拡散領域と、隣り合う該第1拡散領域の間に挟まれ、該第1拡散領域から離れて前記半導体層の表面層に形成された第1導電型の第2拡散領域と、該第2拡散領域の両側に前記第1拡散領域と離れ、前記第2拡散領域と接して、前記半導体層の表面層に形成された第2導電型の第3拡散領域と、前記第1拡散領域上に形成した第1金属電極と、前記第2拡散領域上と前記第3拡散領域上に形成された第2金属電極と、前記半導体層の裏面側に形成した裏面電極とを有し、前記半導体層と前記第1拡散領域で前記縦型pn接合ダイオードを構成する半導体装置であって、前記第2金属電極がグランドと接続することを特徴とする半導体装置。
In a semiconductor device having a semiconductor element formed in a semiconductor layer, a control circuit that controls the semiconductor element, and a plurality of vertical pn junction diodes that are surge protection elements,
The plurality of second conductivity type first diffusion regions formed in the surface layer of the first conductivity type semiconductor layer and the adjacent first diffusion regions, and separated from the first diffusion region, the semiconductor A second diffusion region of a first conductivity type formed in a surface layer of the layer, and a surface layer of the semiconductor layer separated from the first diffusion region on both sides of the second diffusion region and in contact with the second diffusion region A third diffusion region of the second conductivity type formed on the first diffusion electrode; a first metal electrode formed on the first diffusion region; and a second metal formed on the second diffusion region and the third diffusion region. An electrode and a back electrode formed on the back side of the semiconductor layer, wherein the vertical pn junction diode is configured by the semiconductor layer and the first diffusion region, wherein the second metal electrode is A semiconductor device connected to a ground.
前記第2拡散領域が前記第3拡散領域より拡散深さが深いことを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the second diffusion region has a deeper diffusion depth than the third diffusion region. 半導体層に形成された半導体素子と該半導体素子を制御する制御回路およびサージ保護素子である複数の縦型pn接合ダイオードとを有する半導体装置において、
第1導電型の半導体層の表面層に形成された複数の第2導電型の第1拡散領域と、隣り合う該第1拡散領域の間に挟まれ、該第1拡散領域から離れて前記半導体層の表面層に形成された第2導電型の第4拡散領域と、該第4拡散領域の両側に前記第1拡散領域と離れ、前記第4拡散領域と接して、前記半導体層の表面層に形成された第1導電型の第5拡散領域と、前記第1拡散領域上に形成した第1金属電極と、前記第4拡散領域上と前記第5拡散領域上に形成された第3金属電極と、前記半導体層の裏面側に形成した裏面電極とを有し、前記半導体層と前記第1拡散領域で前記縦型pn接合ダイオードを構成する半導体装置であって、前記第3金属電極がグランドと接続することを特徴とする半導体装置。
In a semiconductor device having a semiconductor element formed in a semiconductor layer, a control circuit that controls the semiconductor element, and a plurality of vertical pn junction diodes that are surge protection elements,
The plurality of second conductivity type first diffusion regions formed in the surface layer of the first conductivity type semiconductor layer and the adjacent first diffusion regions, and separated from the first diffusion region, the semiconductor A fourth diffusion region of a second conductivity type formed in the surface layer of the layer, and the surface layer of the semiconductor layer separated from the first diffusion region on both sides of the fourth diffusion region and in contact with the fourth diffusion region A fifth diffusion region of the first conductivity type formed on the first diffusion electrode; a first metal electrode formed on the first diffusion region; a third metal formed on the fourth diffusion region and the fifth diffusion region. An electrode and a back electrode formed on the back side of the semiconductor layer, wherein the semiconductor layer and the first diffusion region constitute the vertical pn junction diode, wherein the third metal electrode is A semiconductor device connected to a ground.
前記第4拡散領域が前記第5拡散領域より拡散深さが深いことを特徴とする請求項3に記載の半導体装置。 The semiconductor device according to claim 3, wherein the fourth diffusion region has a deeper diffusion depth than the fifth diffusion region.
JP2004146006A 2004-05-17 2004-05-17 Semiconductor device Expired - Lifetime JP4547984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004146006A JP4547984B2 (en) 2004-05-17 2004-05-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146006A JP4547984B2 (en) 2004-05-17 2004-05-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2005327964A JP2005327964A (en) 2005-11-24
JP4547984B2 true JP4547984B2 (en) 2010-09-22

Family

ID=35474048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146006A Expired - Lifetime JP4547984B2 (en) 2004-05-17 2004-05-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4547984B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369396B2 (en) * 2007-07-23 2013-12-18 富士電機株式会社 Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236965A (en) * 1993-01-13 1994-08-23 Philips Electron Nv Semiconductor device
JPH0774316A (en) * 1993-09-02 1995-03-17 Toshiba Corp Analog input channel circuit
JPH0927595A (en) * 1995-05-12 1997-01-28 Sgs Thomson Microelectron Sa Inductive protection part for subscriber's line interface circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236965A (en) * 1993-01-13 1994-08-23 Philips Electron Nv Semiconductor device
JPH0774316A (en) * 1993-09-02 1995-03-17 Toshiba Corp Analog input channel circuit
JPH0927595A (en) * 1995-05-12 1997-01-28 Sgs Thomson Microelectron Sa Inductive protection part for subscriber's line interface circuit

Also Published As

Publication number Publication date
JP2005327964A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
KR100976410B1 (en) Electrostatic Discharge Device
JP3237110B2 (en) Semiconductor device
JP4854934B2 (en) Electrostatic discharge protection element
US10354990B2 (en) Optimized configurations to integrate steering diodes in low capacitance transient voltage suppressor (TVS)
JP5585593B2 (en) Semiconductor device
KR100431066B1 (en) Semiconductor device having electro-static discharge circuit
JP5041749B2 (en) Semiconductor device
JP5265951B2 (en) Protection circuit
JP2006303110A (en) Semiconductor device
JP4209433B2 (en) ESD protection device
US20100193869A1 (en) Semiconductor device having electro-static discharge protection element
WO2010029672A1 (en) Semiconductor device having electrostatic discharge protection circuit
JP5764254B2 (en) Semiconductor device
US7187037B2 (en) ESD protection devices with SCR structures for semiconductor integrated circuits
JP5156331B2 (en) Semiconductor device
JP4547984B2 (en) Semiconductor device
JP4547977B2 (en) Semiconductor device
JP2003060059A (en) Protective circuit and protective element
JP5369396B2 (en) Semiconductor device
JP2000040788A (en) Semiconductor device
US7449750B2 (en) Semiconductor protection device
JP2007189048A (en) Semiconductor device
JP2007019413A (en) Semiconductor device for protection circuit
KR100976322B1 (en) Semiconductor integrated circuit
JP2012028380A (en) Semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4547984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term