JP4547489B2 - Optical thin film forming apparatus equipped with film thickness measuring device and optical thin film forming method - Google Patents
Optical thin film forming apparatus equipped with film thickness measuring device and optical thin film forming method Download PDFInfo
- Publication number
- JP4547489B2 JP4547489B2 JP2007105963A JP2007105963A JP4547489B2 JP 4547489 B2 JP4547489 B2 JP 4547489B2 JP 2007105963 A JP2007105963 A JP 2007105963A JP 2007105963 A JP2007105963 A JP 2007105963A JP 4547489 B2 JP4547489 B2 JP 4547489B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- wavelength
- optical
- film thickness
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Optical Filters (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は光学薄膜形成用装置に搭載する光学膜厚計測装置に関するものであり、光学薄膜作成後の光学特性評価に使用されていた分光特性測定法を、膜厚制御法に導入し、高精度の光学膜厚計測装置を実現するものである。 TECHNICAL FIELD The present invention relates to an optical film thickness measuring device mounted on an optical thin film forming apparatus, and introduces a spectral characteristic measuring method used for optical characteristic evaluation after optical thin film creation into a film thickness control method to provide high accuracy. An optical film thickness measuring apparatus is realized.
高密度波長分割多重伝送方式(以下DWDMと記す)に於いて、波長の多重化及び多重化された光信号の分波には光合分波器が用いられるが、光合分波器内部で使用される誘電体多層膜構造の狭帯域バンド・パス・フィルタ(以下NBPFと称す。)に要求される透過帯域幅、平坦度、透過損失、隣接波長との抑圧比等の光学的仕様は、光通信の高速・大容量化実現のために厳しい値となっている。図1及び表1に50GHz(国際電気通信連合:ITUで規定された波長間隔)用NBPFに要求される光学的仕様の一例を示す。透過帯域内の透過損失は1.0dB以下、透過帯域内の平坦度は0.4dB以下が要求され、波形の矩形特性では0.5dB帯域幅:0.25nm以上、且つ25dB帯域幅:0.6nm以下が要求されている。 In a high-density wavelength division multiplexing transmission system (hereinafter referred to as DWDM), an optical multiplexer / demultiplexer is used for wavelength multiplexing and demultiplexing of multiplexed optical signals, but it is used inside the optical multiplexer / demultiplexer. Optical specifications such as transmission bandwidth, flatness, transmission loss, and suppression ratio between adjacent wavelengths required for a narrow band pass filter (hereinafter referred to as NBPF) with a dielectric multilayer structure It is a strict value for realizing high speed and large capacity. FIG. 1 and Table 1 show an example of optical specifications required for a NBPF for 50 GHz (International Telecommunication Union: wavelength interval defined by ITU). Transmission loss within the transmission band is 1.0 dB or less, flatness within the transmission band is required to be 0.4 dB or less, and the rectangular characteristics of the waveform require 0.5 dB bandwidth: 0.25 nm or more and 25 dB bandwidth: 0.6 nm or less. Has been.
前記NBPFは光の干渉を利用した光学薄膜の応用製品のひとつであり、その構造は高・低屈折率誘電体物質を交互に堆積し、層界面からの多重反射を利用して所望のフィルタリング特性を得るものである。図2はNBPFの基本構造であるが、透過波長:λに対して各層の光学膜厚がλ/4、すなわち高屈折率物質(29)と低屈折率物質(30)のペアでλ/2となるよう多層化することにより、層界面からの反射光が同相で加算されて反射帯層(31)となる。反射帯層(31)は2つ存在し、間に光学膜厚がλ/2の整数倍となるスペーサ層(32)を配置して対向させるファブリペロー構造のフィルタとなりキャビティ(33)を形成する。NBPFでは前記光学的仕様を満たすために、ファブリペロー構造のフィルタを結合層(34)を介して複数段接続したマルチキャビティー構造とし、その積層数は100層以上の多層構造となる。更に、各層の光学膜厚は0.01%以下の精度で制御しなければ、前記した光学的仕様を満足することが出来ない。 The NBPF is one of the applications of optical thin films using light interference, and its structure is made by alternately depositing high and low refractive index dielectric materials and using multiple reflections from the layer interface to obtain the desired filtering characteristics. Is what you get. FIG. 2 shows the basic structure of NBPF. The optical film thickness of each layer is λ / 4 with respect to the transmission wavelength: λ, that is, λ / 2 for a pair of high refractive index material (29) and low refractive index material (30). As a result, the reflected light from the layer interface is added in phase to form the reflective band layer (31). There are two reflection band layers (31), and a spacer layer (32) having an optical film thickness of an integral multiple of λ / 2 is disposed between them to serve as a Fabry-Perot structure filter to form a cavity (33). . In order to satisfy the above optical specifications, NBPF has a multi-cavity structure in which a plurality of Fabry-Perot filters are connected via a coupling layer (34), and has a multilayer structure with 100 or more layers. Further, the optical specifications described above cannot be satisfied unless the optical film thickness of each layer is controlled with an accuracy of 0.01% or less.
次に各層の光学膜厚制御方法について述べる。屈折率:ngの透明基板上に屈折率:nmの薄膜を厚さ:d堆積させ、空気中または真空中で波長:λの光を入射した際、エネルギー反射率:Rは
図4に従来の光学膜厚計測装置を具えたNBPF用真空成膜装置の構成図を示す。真空容器(1)は図示していない油拡散ポンプやクライオポンプ等の真空ポンプにより1×10-5Pa台まで排気される。基板ドーム(5)中心に取り付けられた成膜基板(6)は、基板内膜厚分布の均一化を図るため、図示していない高速回転機構により基板ドーム(5)と共に1000rpmで回転し、基板加熱用シースヒーター(7)及びハロゲンヒーター(21)により加熱される。また、成膜基板(6)の温度は放射型温度計(17)を用いて測定し、実測データは温度調節器(18)に入力され、温度調節器(18)は、予め設定された温度と実測温度を比較・演算し、その結果を基に、成膜基板(6)が電子ビームからの輻射熱やプラズマ発生時の熱を受けても基板温度が常に一定となるようハロゲンヒーター用電力調整器(19)を制御する(特2002-229025号)。 FIG. 4 shows a configuration diagram of a vacuum film forming apparatus for NBPF provided with a conventional optical film thickness measuring apparatus. The vacuum container (1) is evacuated to a level of 1 × 10 −5 Pa by a vacuum pump (not shown) such as an oil diffusion pump or a cryopump. The film formation substrate (6) attached to the center of the substrate dome (5) is rotated at 1000 rpm together with the substrate dome (5) by a high-speed rotation mechanism (not shown) in order to make the film thickness distribution in the substrate uniform. Heated by a heating sheath heater (7) and a halogen heater (21). Further, the temperature of the film formation substrate (6) is measured using a radiation type thermometer (17), the actual measurement data is input to the temperature controller (18), and the temperature controller (18) is set at a preset temperature. Compare and calculate the measured temperature and the measured temperature, and based on the results, adjust the power for the halogen heater so that the substrate temperature is always constant even if the deposition substrate (6) receives radiant heat from the electron beam or heat generated during plasma generation. Control (19) (special issue 2002-229025).
光学薄膜である誘電体膜の成膜には電子ビーム蒸発源(2)が用いられる。その際、高周波電源(22)より出力される高周波電力(周波数:13.56MHz)を直接基板ドーム(5)に印加すると、基板ドーム(5)と蒸発源(2)との空間にグロー放電が発生しプラズマ状態になり、基板ドーム(5)に取り付けられた成膜基板(6)表面には自己誘起された負の直流電界が生じ、その高いエネルギーで高充填密度な薄膜が形成される(特開2001-73136号)。 An electron beam evaporation source (2) is used to form a dielectric film which is an optical thin film. At that time, when high frequency power (frequency: 13.56 MHz) output from the high frequency power source (22) is directly applied to the substrate dome (5), glow discharge is generated in the space between the substrate dome (5) and the evaporation source (2). Then, a plasma state occurs, and a self-induced negative DC electric field is generated on the surface of the film formation substrate (6) attached to the substrate dome (5), and a thin film with high energy and high packing density is formed (special feature). Kai 2001-73136).
マッチングボックス(23)は高周波電源(22)の出力インピーダンスと負荷である基板ドーム(5)を含む放電機構のインピーダンスの整合をとるものである。水晶膜厚センサ(4)は蒸発速度を検出し、図示していないが電子ビーム蒸発源コントローラに検出信号をフィードバックし成膜速度を一定に制御している。光学膜厚計測装置はレーザ光源(11)、光ファイバ(13)、出射筒(14)単色測光用受光器(15)及びコントローラ(10)部で主に構成されている。レーザ光源(11)から出射されたレーザ光(単色光)は、デポラライザー(12)、光ファイバ(13)、出射筒(14)、下部覗き窓(8)を介して成膜基板(6)、上部覗き窓(9)を透過し、単色測光用受光器(15)に入射する。成膜基板(6)上に堆積した光学薄膜の膜厚により変化した透過光量は単色測光用受光器(15)で電気信号に光電変換される。コントローラ(10)は光電変換された電気信号を演算処理し、透過率がλ/4の極値に達した際、シャッタ(3)を閉にし、成膜を終了させ、順次誘電体物質を積層していく。 The matching box (23) matches the output impedance of the high-frequency power source (22) and the impedance of the discharge mechanism including the substrate dome (5) as a load. The quartz film thickness sensor (4) detects the evaporation rate and feeds back a detection signal to the electron beam evaporation source controller (not shown) to control the film formation rate to be constant. The optical film thickness measuring device mainly includes a laser light source (11), an optical fiber (13), an emission tube (14), a monochromatic photometric light receiver (15), and a controller (10). The laser beam (monochromatic light) emitted from the laser light source (11) passes through the depolarizer (12), the optical fiber (13), the emission tube (14), and the lower viewing window (8) to form the film formation substrate (6). Then, the light passes through the upper viewing window (9) and enters the monochromatic photometric light receiver (15). The amount of transmitted light that changes depending on the film thickness of the optical thin film deposited on the film formation substrate (6) is photoelectrically converted into an electrical signal by the monochromatic photometric light receiver (15). The controller (10) performs arithmetic processing on the photoelectrically converted electrical signal, and when the transmittance reaches the extreme value of λ / 4, the shutter (3) is closed, the film formation is terminated, and the dielectric materials are sequentially stacked. I will do it.
図5は成膜基板(6)の詳細図である。成膜基板(6)裏面には、入射光と反射光による干渉を低減するための反射防止膜(36)が形成されており、また、レーザ光が成膜基板(6)表面に入射する点を基準点(37)とし成膜基板(6)裏面で反射したレーザ光が成膜基板(6)表面に戻る点を反射点(38)として、基準点(37)と反射点(38)の距離がレーザ光の波長よりも長くなるよう成膜基板(6)裏面側に傾斜を持たせ、成膜基板(6)裏面での反射光が入射光路上に戻るのを防いでいる(特願2002-229025号)。 FIG. 5 is a detailed view of the film formation substrate (6). An antireflection film (36) for reducing interference between incident light and reflected light is formed on the back surface of the film formation substrate (6), and laser light is incident on the surface of the film formation substrate (6). Is the reference point (37), the point where the laser beam reflected from the back surface of the film formation substrate (6) returns to the surface of the film formation substrate (6) is the reflection point (38), and the reference point (37) and the reflection point (38) The rear surface side of the film formation substrate (6) is inclined so that the distance is longer than the wavelength of the laser beam, and the reflected light from the rear surface of the film formation substrate (6) is prevented from returning to the incident optical path (Japanese Patent Application No. 2002-229025).
NBPFの製造工程では前記NBPF用真空成膜装置を用いての全層成膜終了後、成膜基板を大気中に取り出し、光スペクトルアナライザー等を用いた分光特性測定法により図1及び表1に示した光学的仕様を満たしているかを測定・評価する。前記した単色測光法による光学膜厚計測装置を用いて高精度の膜厚制御を行った場合でも、種々の測定誤差の累積、成膜中の諸条件(真空度、成膜速度、基板温度等)の変動によりNBPFの分光特性が悪化し、図1及び表1に示した光学的仕様が得られないことがあり、この場合10〜20時間に及ぶ成膜工程が全て無駄となる製造上の大きな問題を抱えている。 In the manufacturing process of NBPF, after all the film formation using the vacuum film forming apparatus for NBPF is completed, the film formation substrate is taken out into the atmosphere, and a spectral characteristic measurement method using an optical spectrum analyzer or the like is used as shown in FIG. Measure and evaluate whether the specified optical specifications are met. Even when high-precision film thickness control is performed using the above-described monochromatic photometry optical film thickness measurement apparatus, accumulation of various measurement errors, various conditions during film formation (degree of vacuum, film formation speed, substrate temperature, etc.) ), The spectral characteristics of NBPF deteriorate, and the optical specifications shown in FIG. 1 and Table 1 may not be obtained. In this case, the film forming process for 10 to 20 hours is all wasted. I have a big problem.
図6を用いてこの問題を説明する。単色測光法による従来の膜厚制御は、NBPFの中心波長、図6では1550.0nmで膜厚監視していることに相当する。仮に、基板上に成膜されたNBPFの分光特性結果が、図6に示した実線(47)のように正常な分光特性であれば問題無いが、点線(48)で示したように分光特性に異常があった場合、1550.0nmの波長だけで膜厚監視している従来の単色測光法では、異常を判別する事は不可能である。更に、単色測光法による膜厚制御は、膜厚:nm・dがλ/4の整数倍となる毎に透過率が極値となることを利用するものであり、透過率の変化を監視しているため、透過率の変化量が小さい層では極値検出に誤差が生じ易く、結果的にNBPFの光学的特性が悪化するという問題がある。問題解決のため本出願人はレーザ光源の出力を可変し、透過率の変化量が小さい層ではレーザ光の強度を増大して透過光量の変化を拡大し、極値検出による膜厚制御の精度を向上させている(特願2003-282837号)。 This problem will be described with reference to FIG. Conventional film thickness control by monochromatic photometry corresponds to monitoring the film thickness at the center wavelength of NBPF, which is 1550.0 nm in FIG. If the result of the spectral characteristics of the NBPF formed on the substrate is normal spectral characteristics as indicated by the solid line (47) shown in FIG. 6, there is no problem, but the spectral characteristics as indicated by the dotted line (48). If there is an abnormality, it is impossible to determine the abnormality by the conventional monochromatic photometry method in which the film thickness is monitored only at the wavelength of 1550.0 nm. Furthermore, film thickness control by monochromatic photometry utilizes the fact that the transmittance becomes an extreme value every time the film thickness: nm · d becomes an integral multiple of λ / 4, and the change in transmittance is monitored. Therefore, in the layer where the change amount of the transmittance is small, an error is likely to occur in the extreme value detection, resulting in a problem that the optical characteristics of the NBPF deteriorate. In order to solve the problem, the applicant changed the output of the laser light source, and in the layer where the amount of change in the transmittance was small, the intensity of the laser light was increased to expand the change in the amount of transmitted light, and the accuracy of film thickness control by extreme value detection (Japanese Patent Application No. 2003-282837).
図19にNBPFにおける各層の透過率変化をシミュレーションした結果を示す。図は横軸に層番号を、縦軸に透過率を示す。層番号は、ガラス基板から数えて何層目であるかを示し、層番号1〜15,17〜31,33〜47,49〜63は反射帯層を、層番号16,48はスペーサ層を、層番号32は結合層を示している。特願2003-282837号に示す方法は、スペーサ層のように透過率が低い層を成膜する場合には有効であるが、結合層のように透過率が高く透過光量がもともと大きい層を成膜する場合、レーザ光源の出力増大による透過光量の変化拡大に限界があり、精度良く極値検出を行うことが困難であった。
FIG. 19 shows the simulation result of the transmittance change of each layer in NBPF. In the figure, the horizontal axis indicates the layer number, and the vertical axis indicates the transmittance. The layer number indicates how many layers are counted from the glass substrate, the
従来のNBPFの製造工程では、NBPF作成時の膜厚制御法とNBPF作成後の評価法が異なるため、上記問題点が発生した。本発明は、NBPF作成時の膜厚制御法にNBPF作成後の評価法である分光特性測定法を導入することにより、単色測光法では判別不能であったNBPFの分光特性を成膜中常時測定し、NBPFの分光特性の変化から膜厚制御を行う、新方式の光学膜厚計測装置を提供することを目的とするものである。 In the conventional manufacturing process of NBPF, the film thickness control method at the time of NBPF creation and the evaluation method after NBPF creation are different, so the above-mentioned problems have occurred. The present invention introduces a spectral characteristic measurement method, which is an evaluation method after NBPF creation, into the film thickness control method at the time of NBPF creation, thereby constantly measuring the spectral characteristics of NBPF that could not be distinguished by monochromatic photometry during film formation. It is an object of the present invention to provide a new type optical film thickness measuring device that controls the film thickness from the change in the spectral characteristics of NBPF.
前記目的を達成するための第1の手段は、所望の分光特性を有する光学薄膜の少なくとも目標膜厚値を含む膜厚における分光特性の理論値を記憶し、分光特性理論値と成膜中の分光特性の実測値とを逐次比較し膜厚制御を行うために、薄膜試料に投光する実測光を波長掃引し、薄膜試料の分光特性を実測することを特徴とする。具体的には、薄膜試料に投光する実測光を波長掃引する波長可変レーザと、薄膜試料を透過または反射した光を受光し、受光した光を光電変換して薄膜試料の分光特性を実測する光パワーメータと、光パワーメータの出力する薄膜試料の分光特性を読込み前記理論値との比較を行うコンピュータと、コンピュータの比較結果に応じて成膜を制御する制御手段とを備えていればよい。成膜は実測値が理論値の目標範囲内となった時点で終了させる。分光特性の理論値の計算式を以下に示す。 The first means for achieving the above object stores the theoretical value of the spectral characteristic in the film thickness including at least the target film thickness value of the optical thin film having the desired spectral characteristic. In order to control the film thickness by sequentially comparing the measured values of the spectral characteristics, the measured light projected on the thin film sample is swept in wavelength, and the spectral characteristics of the thin film sample are measured. Specifically, a wavelength tunable laser that sweeps the wavelength of the actually measured light projected on the thin film sample, and the light transmitted or reflected through the thin film sample are received, and the received light is photoelectrically converted to measure the spectral characteristics of the thin film sample. An optical power meter, a computer that reads the spectral characteristic of the thin film sample output from the optical power meter and compares the spectral value with the theoretical value, and a control unit that controls film formation according to the comparison result of the computer may be provided. . Film formation is terminated when the measured value falls within the target range of the theoretical value. The calculation formula of the theoretical value of the spectral characteristics is shown below.
NBPFの分光特性の理論値は四端子行列の積から求めることが可能であり、
NBPFの各層は四端子行列
Each layer of NBPF is a four-terminal matrix
また、多層膜は各層に対する四端子行列の積として表されるから
前記目的を達成するための第2の手段は、所望の分光特性を有する光学薄膜の少なくとも目標膜厚値を含む膜厚における分光特性の理論値を記憶し、前記分光特性理論値と成膜中の分光特性の実測値とを逐次比較し膜厚制御を行うために、薄膜試料に広帯域多波長の光を投光し、薄膜試料を透過または反射した光を波長掃引し、薄膜試料の分光特性を実測することを特徴とする。具体的には、薄膜試料に広帯域多波長の光を投光する広帯域光源と、薄膜試料を透過または反射した光を受光し、薄膜試料の分光特性を計測する光スペクトルアナライザーと、光スペクトルアナライザーの出力する薄膜試料の分光特性を読込み、前記理論値との比較を行うコンピュータと、コンピュータの比較結果に応じて成膜を制御する制御手段とを備えていればよい。成膜は実測値が理論値の目標範囲内となった時点で終了させる。 The second means for achieving the object stores the theoretical value of the spectral characteristic at the film thickness including at least the target film thickness value of the optical thin film having the desired spectral characteristic, In order to control the film thickness by sequentially comparing the measured spectral characteristics of the film, the broadband thin-wavelength light is projected onto the thin film sample, and the light that has been transmitted or reflected through the thin film sample is swept in wavelength. It is characterized by actually measuring. Specifically, a broadband light source that projects broadband multi-wavelength light onto a thin film sample, an optical spectrum analyzer that receives light transmitted through or reflected from the thin film sample, and measures the spectral characteristics of the thin film sample, and an optical spectrum analyzer A computer that reads the spectral characteristics of the thin film sample to be output and compares it with the theoretical value, and a control means for controlling the film formation according to the comparison result of the computer may be provided. Film formation is terminated when the measured value falls within the target range of the theoretical value.
更に、前記第1及び第2の手段に、成膜基板に単色光を投光し成膜基板の透過率あるいは反射率の変化から光学薄膜の膜厚を制御する単色測光による膜厚制御手段と、分光特性測定による膜厚制御と単色測光による膜厚制御とを切り替える手段とを設け、成膜中に分光特性測定法と単色測光法を適宜選択した膜厚制御を行うことを特徴とする。 Further, the first and second means include a film thickness control means by monochromatic photometry for projecting monochromatic light onto the film forming substrate and controlling the film thickness of the optical thin film from a change in transmittance or reflectance of the film forming substrate. A means for switching between film thickness control by spectral characteristic measurement and film thickness control by monochromatic photometry is provided, and film thickness control is performed by appropriately selecting the spectral characteristic measurement method and monochromatic photometry during film formation.
本発明で、光学薄膜の膜厚制御法に分光特性測定法を導入することにより、単色測光法のみの膜厚制御法では判別不能であった光学薄膜の分光特性を成膜中常時測定することが可能となり、高精度の成膜を行うことが可能となった。 In the present invention, by introducing the spectral characteristic measurement method into the film thickness control method of the optical thin film, the spectral characteristics of the optical thin film that could not be discriminated by the film thickness control method of only monochromatic photometry are constantly measured during the film formation. It became possible to perform highly accurate film formation.
実施例の構成の説明
図9〜12に、第1と第2のキャビティとからなる2キャビティNBPFを題材とし、2キャビティ目の結合層、スペーサ層、反射帯層における光学膜厚の分光特性をシミュレーションした結果を示す。図中aからeは、各層の成膜開始時を光学膜厚0として、光学膜厚が0、λ/16、λ/12、λ/8、λ/4と変化する様子を示す。シミュレーションは、高屈折率物質にTa2O5を、低屈折物質にSiO2を用い、中心波長をλ=1550.00nmとして、Ta2O5とSiO2の光学膜厚λ/4をそれぞれH,Lとすると、基板/{[HL]7H8LH[LH]7}L{[HL]7H8LH[LH]7}で表わされる膜構成のNBPFを想定している。屈折率は、図4に示したNBPF用真空成膜装置を用いて光学薄膜材料であるTa2O5及びSiO2をそれぞれ単層成膜した結果より算出した。
Description of Configuration of Example FIGS. 9 to 12 show the two-cavity NBPF composed of the first and second cavities as the subject, and the spectral characteristics of the optical film thickness in the coupling layer, spacer layer, and reflective band layer of the second cavity. The simulation result is shown. In the figure, a to e show how the optical film thickness changes to 0, λ / 16, λ / 12, λ / 8, and λ / 4, assuming that the optical film thickness is 0 at the start of film formation of each layer. In the simulation, Ta 2 O 5 is used as the high refractive index material, SiO 2 is used as the low refractive material, the center wavelength is λ = 1550.00 nm, and the optical film thicknesses λ / 4 of Ta 2 O 5 and SiO 2 are H, Assuming L, an NBPF having a film structure represented by a substrate / {[HL] 7 H8LH [LH] 7 } L {[HL] 7 H8LH [LH] 7 } is assumed. The refractive index was calculated from the results of single-layer deposition of Ta 2 O 5 and SiO 2, which are optical thin film materials, using the NBPF vacuum film deposition apparatus shown in FIG.
図9は結合層の分光特性を、図10はスペーサ層の分光特性を、図11はスペーサ層直後の反射帯層第1層目の分光特性を、図12は反射帯層最終層の分光特性をシミュレーションした結果である。図9は、ガラス基板上に形成された反射帯層(31)、スペーサ層(32)及び反射帯層(31)とからなる第1のキャビティ(33)上に結合層を成膜していくとき、その第1のキャビティ(33)と結合層からなるサブアッセンブリAの透過損失が結合層膜の成長につれて変化する様子を示す。結合層膜がないとき(膜厚が0)、その透過損失は曲線aであり、結合層膜厚がλ/16、λ/12、λ/8、λ/4となるにつれて透過損失はb、c、d、及びeと変化する。その際、膜厚が0のときの透過損失曲線aのピークと膜厚がλ/4(つまりターゲット膜厚)のときの透過損失曲線のピークはともに中心波長の1550.0nmであるが、途中の膜厚では透過損失曲線のピークが中心波長の1550.0nmからずれている。 9 shows the spectral characteristics of the coupling layer, FIG. 10 shows the spectral characteristics of the spacer layer, FIG. 11 shows the spectral characteristics of the first reflective band layer immediately after the spacer layer, and FIG. 12 shows the spectral characteristics of the final layer of the reflective band layer. It is the result of having simulated. In FIG. 9, a bonding layer is formed on a first cavity (33) formed of a reflective band layer (31), a spacer layer (32), and a reflective band layer (31) formed on a glass substrate. When the coupling layer film grows, the transmission loss of the subassembly A composed of the first cavity (33) and the coupling layer is shown. When there is no coupling layer film (film thickness is 0), the transmission loss is curve a, and the transmission loss becomes b, as the coupling layer film thickness becomes λ / 16, λ / 12, λ / 8, λ / 4. c, d, and e. At that time, the peak of the transmission loss curve a when the film thickness is 0 and the peak of the transmission loss curve when the film thickness is λ / 4 (that is, the target film thickness) are both 1550.0 nm of the center wavelength. In the film thickness, the peak of the transmission loss curve is shifted from the center wavelength of 1550.0 nm.
図10は、第1のキャビティと結合層とからなる上述のサブアッセンブリA上に反射帯(31)を形成した後、その反射帯層(31)上に更にスペーサ層(即ち第2のキャビティのスペーサ層)を成膜していくとき、サブアッセンブリA、反射帯層及びスペーサ層からなるサブアッセンブリBの透過損失がスペーサ層膜の成長につれて変化する様子を示す。この場合、透過損失曲線a、b、c、d、eはいすれも波長1550.0nmでピークを有する。 FIG. 10 shows a case where a reflection band (31) is formed on the above-described subassembly A composed of the first cavity and the coupling layer, and then a spacer layer (that is, the second cavity is formed on the reflection band layer (31)). When the spacer layer is formed, the transmission loss of the subassembly A, the reflection band layer, and the subassembly B composed of the spacer layer changes as the spacer layer film grows. In this case, each of the transmission loss curves a, b, c, d, and e has a peak at a wavelength of 1550.0 nm.
図11は上述のサブアッセンブリB上に反射帯層の第1層目(即ち、第2キャビティにおけるスペーサ上の反射帯層の第1層目)を成膜する際の、サブアッセンブリBと反射帯第1層とからなるサブアッセンブリCの透過損失特性を示す。図10と同様、曲線a、b、c、d、eはいずれも波長1550.0nmでピークを有する。 FIG. 11 shows the sub-assembly B and the reflection band when the first layer of the reflection band layer (that is, the first layer of the reflection band layer on the spacer in the second cavity) is formed on the sub-assembly B described above. The transmission loss characteristic of the subassembly C composed of the first layer is shown. As in FIG. 10, the curves a, b, c, d, and e all have a peak at a wavelength of 1550.0 nm.
図12は、上述のサブアッセンブリCに反射帯の層を重ねた後に反射帯の最後の層(即ち、2キャビティNBPFアッセンブリの最終層)を成膜する際のNBPFアッセンブリの透過損失特性を示す。図9と同様、膜の成長につれて透過損失曲線のピークが変化している。 FIG. 12 shows the transmission loss characteristics of the NBPF assembly when the last layer of the reflection band (that is, the final layer of the two-cavity NBPF assembly) is formed after the reflection band layer is overlaid on the sub-assembly C described above. As in FIG. 9, the peak of the transmission loss curve changes as the film grows.
図9〜12には特定層の特定膜厚における分光特性のみを一例として示したが、任意の層における任意の膜厚の分光特性がシミュレーション可能である。例えば図13は、172層構造を有するNBPFの分光特性をシミュレーションした結果である。 FIGS. 9 to 12 show only the spectral characteristics of a specific layer at a specific film thickness as an example, but the spectral characteristics of an arbitrary film thickness in an arbitrary layer can be simulated. For example, FIG. 13 shows the result of simulating the spectral characteristics of NBPF having a 172 layer structure.
本発明は、光学薄膜形成用装置に分光特性測定装置を搭載し、成膜過程に於ける分光特性の変化を常時測定し、得られた測定データとシミュレーション結果を逐次比較しながら膜厚を制御するものである。成膜は、シミュレーション結果を基に分光特性の目標範囲を予め設定し、実測データが目標範囲内となった時点で終了させる。図9〜12に示す場合であれば、透過損失曲線eとなるように制御すればよい。図9〜12を参照すると、図10及び図11に見られるように膜成長の過程において透過損失曲線のピークが一定である層と、図9及び図12に見られるようにピークが変化する層とがある。膜成長の過程において透過損失曲線のピークが変化する層では分光特性の変化を観察し易いため、分光特性測定法は、透過損失曲線のピークが変化する層で特に有効である。 The present invention is equipped with an optical thin film forming device equipped with a spectral characteristic measuring device to constantly measure changes in spectral characteristics during the film formation process, and control the film thickness while sequentially comparing the obtained measurement data and simulation results. To do. The film formation is terminated when the target range of the spectral characteristics is set in advance based on the simulation result and the actually measured data falls within the target range. In the case shown in FIGS. 9 to 12, the transmission loss curve e may be controlled. Referring to FIGS. 9 to 12, a layer in which the peak of the transmission loss curve is constant during the film growth process as shown in FIGS. 10 and 11, and a layer in which the peak changes as shown in FIGS. There is. Since it is easy to observe changes in spectral characteristics in a layer where the peak of the transmission loss curve changes during the film growth process, the spectral characteristic measurement method is particularly effective in a layer where the peak of the transmission loss curve changes.
図7及び図8に分光特性測定装置の概略図を示す。図7は、光源に波長可変レーザ(39)を用い受光側に光パワーメータ(40)を用いた、光源側で波長掃引する方式である。図8は、光源に広帯域光源(45)を用い受光側に光スペクトルアナライザー(46)を用いた、受光側で波長掃引する方式である。両方式ともNBPFの分光特性の測定が可能である。図中(43)は測定基板を、(42)は受光側コリメーターを、(44)は投光側コリメーターを示す。 7 and 8 are schematic views of the spectral characteristic measuring apparatus. FIG. 7 shows a wavelength sweeping method on the light source side using a tunable laser (39) as the light source and an optical power meter (40) on the light receiving side. FIG. 8 shows a wavelength sweep method on the light receiving side using a broadband light source (45) as the light source and an optical spectrum analyzer (46) on the light receiving side. Both types can measure the spectral characteristics of NBPF. In the figure, (43) indicates a measurement substrate, (42) indicates a light receiving side collimator, and (44) indicates a light emitting side collimator.
以下、本発明の第1の構成形態について説明する。第1の構成形態では、成膜時における基板の分光特性を光源側で波長掃引を行うことにより測定する。図14は、図7に示した分光特性測定装置を図4に示したNBPF用真空成膜装置に搭載した際の概略図である。従来装置と同様のものには同一符号を付し説明を省略する。図中(11)は波長掃引を行う波長可変レーザを示し、(49)は光雑音を除去する外乱光カットフィルタ、(27)は波長可変レーザの波長掃引に同期して成膜基板(6)の透過率を測定する光パワーメータを示す。外乱光カットフィルタ(49)はプラズマ生成に伴う発光や電子ビーム蒸着時に発生する光、ハロゲンヒーター(21)が発する光が光雑音として分光特性測定用受光器(25)に入射するのを防いでいる。外乱光カットフィルタ(49)には、例えば高屈折率物質と低屈折率物質とを交互に積層したバンド・パス・フィルタを用いることにより、受光器に入射する測定波長近傍の光を低減化することが可能となる。 The first configuration form of the present invention will be described below. In the first configuration, the spectral characteristic of the substrate during film formation is measured by performing wavelength sweeping on the light source side. FIG. 14 is a schematic view when the spectral characteristic measuring apparatus shown in FIG. 7 is mounted on the NBPF vacuum film forming apparatus shown in FIG. Components similar to those of the conventional apparatus are denoted by the same reference numerals and description thereof is omitted. In the figure, (11) shows a wavelength tunable laser that performs wavelength sweeping, (49) is a disturbance light cut filter that removes optical noise, and (27) is a deposition substrate in synchronization with the wavelength sweeping of the wavelength tunable laser (6) The optical power meter which measures the transmittance | permeability of is shown. The ambient light cut filter (49) prevents light emitted during plasma generation, light generated during electron beam evaporation, and light emitted by the halogen heater (21) from entering the optical receiver (25) as spectral noise. Yes. For the ambient light cut filter (49), for example, a band pass filter in which a high refractive index substance and a low refractive index substance are alternately laminated is used to reduce light in the vicinity of the measurement wavelength incident on the light receiver. It becomes possible.
図15に分光特性測定時のフローチャートを示す。分光特性測定時、波長可変レーザ(11)は波長掃引を繰り返す為、掃引波長範囲、掃引波長間隔の初期設定を行う必要がある(S1)。掃引波長範囲をλ1〜λ2(λ1<λ2)、掃引波長間隔をΔλとすると、波長可変レーザ(11)はλ1、λ1+Δλ、λ1+2Δλ、λ1+3Δλ、…λ2の波長を繰り返し出射する。 FIG. 15 shows a flowchart for measuring the spectral characteristics. When measuring spectral characteristics, the wavelength tunable laser (11) repeats wavelength sweeping, and therefore it is necessary to perform initial setting of the sweep wavelength range and sweep wavelength interval (S1). When the sweep wavelength range is λ 1 to λ 2 (λ 1 <λ 2 ) and the sweep wavelength interval is Δλ, the wavelength tunable laser (11) has λ 1 , λ 1 + Δλ, λ 1 + 2Δλ, λ 1 + 3Δλ, ... A wavelength of λ 2 is repeatedly emitted.
分光特性測定開始時、波長可変レーザ(11)は波長λ1の光を出射する(S2)。出射された光は、成膜基板を透過し、半透明鏡(26)で反射し、外乱光カットフィルタ(49)を介して分光特性測定用受光器(25)に入射する。分光特性測定用受光器(25)は受光した光を電気信号に光電変換し、光パワーメータ(27)に出力する。光パワーメータ(27)は受光器に入射する光の輝度の差を記録して波長λ1における成膜基板(6)の透過率測定し(S3)、コンピュータ(28)に出力する。コンピュータ(28)は光パワーメータ(27)の測定データの読込みを行う(S4)。次に波長可変レーザ(11)は波長λ1+Δλの光を出射し(S2)同様に波長λ1+Δλにおける成膜基板(6)の透過率の測定(S3)及びデータの読込み(S4)を行う。同様に、波長可変レーザ(11)は波長λ2になるまで間隔Δλで波長を連続的に変化させ、コンピュータ(28)は各波長における透過率データの読込みを行う。λ1からλ2までの波長掃引を終了すると、波長可変レーザ(11)は再び波長λ1の光を成膜基板(6)に出射し、(S2)から(S4)を繰り返す。同時に、コンピュータ(28)は、分光特性の実測値とシミュレーション結果とを比較し(S5)、比較結果をシャッタ(3)を制御するコントローラ(10)にフィードバックする。分光特性の実測値がシミュレーション結果の目標範囲内となった時点で、コントローラ(10)はシャッタを閉じて成膜を終了させる。目標範囲は仕様により異なるため、目的に合わせて設定すればよい。掃引波長範囲、掃引波長間隔の設定値は自由であるが、本実施例では、波長範囲:数nm,波長間隔:0.01nmの波長掃引を1秒以下の速度で繰り返すものとする。上記実施例では、短波長から長波長へ連続的に波長掃引を行ったが、波長掃引は長波長から短波長へ移行させても、ランダムに変化させてもよい。 At the beginning spectroscopic characteristic measurement, a tunable laser (11) emits light having a wavelength lambda 1 (S2). The emitted light passes through the film formation substrate, is reflected by the semitransparent mirror (26), and enters the spectral characteristic measurement light receiver (25) via the disturbance light cut filter (49). The spectral characteristic measuring photoreceiver (25) photoelectrically converts the received light into an electrical signal and outputs it to the optical power meter (27). An optical power meter (27) measures the transmittance of the deposition substrate (6) at a wavelength lambda 1 to record the difference in the brightness of light incident on the light receiver (S3), and outputs to the computer (28). The computer (28) reads the measurement data of the optical power meter (27) (S4). Then tunable laser (11) emits light having a wavelength lambda 1 + [Delta] [lambda] (S2) likewise wavelength lambda 1 + [Delta] [lambda] Measurement of the transmittance of the deposition substrate (6) in (S3) and data reading (S4 )I do. Likewise, the tunable laser (11) is continuously varied wavelength intervals Δλ to a wavelength lambda 2, the computer (28) reads the transmission data at each wavelength. When the wavelength sweep from λ 1 to λ 2 is completed, the wavelength tunable laser (11) again emits light of wavelength λ 1 to the film formation substrate (6), and repeats (S2) to (S4). At the same time, the computer (28) compares the measured value of the spectral characteristics with the simulation result (S5), and feeds back the comparison result to the controller (10) that controls the shutter (3). When the measured value of the spectral characteristics falls within the target range of the simulation result, the controller (10) closes the shutter and finishes the film formation. Since the target range varies depending on the specifications, it may be set according to the purpose. The set values of the sweep wavelength range and the sweep wavelength interval are arbitrary, but in this embodiment, the wavelength sweep of the wavelength range: several nm and the wavelength interval: 0.01 nm is repeated at a speed of 1 second or less. In the above embodiment, the wavelength sweep is continuously performed from the short wavelength to the long wavelength. However, the wavelength sweep may be changed from the long wavelength to the short wavelength or may be changed randomly.
同図に示す装置では、従来の単色測光法による膜厚制御も可能にするため、単色測光用受光器(15)と分光特性測定用受光器(25)の双方を設け、波長可変レーザ(11)は兼用とした。更に、光軸に対して角度:45°の位置に半透明鏡(26)を配置し、成膜基板(6)を透過した測定光が、一方は単色測光用受光器(15)に入射し、もう一方は外乱光カットフィルタ(49)を介して分光特性測定用受光器(25)に入射する構成とした。単色測光時、波長可変レーザ(11)の出射する測定光は単一波長に固定され、単色測光用受光器(15)に入射する単色光の透過率をコントローラ(10)が測定し、膜厚制御を行う。各層の膜厚制御は、従来の単色測光法と分光特性測定法を、切り替え手段を用いて適宜選択するものとする。 In the apparatus shown in the figure, in order to enable film thickness control by the conventional monochromatic photometry method, both a monochromatic photometric photoreceiver (15) and a spectral characteristic measuring photoreceiver (25) are provided, and a wavelength tunable laser (11 ) Was used as a dual purpose. Furthermore, a semi-transparent mirror (26) is arranged at an angle of 45 ° with respect to the optical axis, and one of the measurement light transmitted through the film-forming substrate (6) is incident on the monochromatic photometric light receiver (15). On the other hand, the light is incident on the spectral characteristic measuring light receiver (25) through the ambient light cut filter (49). During monochromatic photometry, the measurement light emitted from the wavelength tunable laser (11) is fixed at a single wavelength, and the controller (10) measures the transmittance of the monochromatic light incident on the monochromatic photometry light receiver (15). Take control. For film thickness control of each layer, a conventional monochromatic photometry method and spectral characteristic measurement method are appropriately selected by using a switching means.
第1の構成形態において、単色測光用受光器(15)を省略し、分光特性測光用受光器(25)のみで単色測光法と分光特性測定法との切り替えを行ってもよい。この場合、分光特性測定時の動作は前記説明と同様である。単色測光時、波長可変レーザ(11)は測定光を単一波長に固定し、光パワーメータ(27)は単色光の透過率を測定し、単色測光法により膜厚制御を行う。膜厚制御は、単色測光法と分光特性測定法の双方を適宜選択して行っても、分光特性測光法のみで行ってもよい。また分光特性測定時、コンピュータ(28)が特定の波長の透過率変化をプロットすることにより単色測光法と分光特性測定法の同時測光も可能である。 In the first configuration, the monochromatic photometry light receiver (15) may be omitted, and the monochromatic photometry method and the spectral characteristic measurement method may be switched using only the spectral characteristic photometry light receiver (25). In this case, the operation at the time of spectral characteristic measurement is the same as described above. During monochromatic photometry, the tunable laser (11) fixes the measurement light to a single wavelength, and the optical power meter (27) measures the transmittance of the monochromatic light, and performs film thickness control by monochromatic photometry. The film thickness control may be performed by appropriately selecting both the monochromatic photometry method and the spectral characteristic measurement method, or may be performed only by the spectral characteristic photometry method. When spectral characteristics are measured, the computer (28) plots a change in transmittance at a specific wavelength, so that monochromatic photometry and spectral characteristics measurement can be performed simultaneously.
次に本発明の第2の構成形態について説明する。第2の構成形態では、広帯域光源を用い成膜時における基板の分光特性を受光側で波長掃引を行うことにより測定する。具体的には、図8に示す分光特性測定装置を図4に示すNBPF用真空成膜装置に搭載するものである。第2の構成形態では、光源に広帯域光源(45)を用い受光側に光スペクトルアナライザー(46)を用いることを特徴とする。光スペクトルアナライザー(46)は、成膜基板(6)を透過した広帯域多波長の光を波長掃引し、成膜基板(6)の分光特性を測定する。単色測光法を採用する場合は、光スペクトルアナライザー(46)は、単一波長の透過率のみを測定する。膜厚制御は、単色測光法と分光特性測定法の双方を適宜選択して行っても、分光特性測定法のみで行っても単色測光法と分光特性測定法を同時に行ってもよい。 Next, a second configuration form of the present invention will be described. In the second configuration, a spectral characteristic of the substrate at the time of film formation is measured by performing a wavelength sweep on the light receiving side using a broadband light source. Specifically, the spectral characteristic measuring apparatus shown in FIG. 8 is mounted on the NBPF vacuum film forming apparatus shown in FIG. In the second configuration, a broadband light source (45) is used as a light source, and an optical spectrum analyzer (46) is used on the light receiving side. The optical spectrum analyzer (46) sweeps the broadband multi-wavelength light transmitted through the film formation substrate (6) and measures the spectral characteristics of the film formation substrate (6). When monochromatic photometry is employed, the optical spectrum analyzer (46) measures only the transmittance of a single wavelength. The film thickness control may be performed by appropriately selecting both the monochromatic photometry method and the spectral characteristic measurement method, or may be performed only by the spectral characteristic measurement method, or the monochromatic photometry method and the spectral characteristic measurement method may be performed simultaneously.
上記構成形態では、図4に示す成膜装置に分光特性測定装置を搭載したが、分光特性測定装置を搭載する成膜装置は図4に示す装置に限られるものではない。しかし、本出願人の先の発明である、位相特性及び偏光特性を変化させて干渉性を弱めたレーザ光を成膜基板に投光する手段と、成膜基板への入射光と基板裏面からの反射光との干渉防止手段と、成膜基板の温度を一定に保つための温度制御手段とを備えた成膜装置(特願2002-229025号)に本発明分光特性測定装置を搭載することにより、光量変動を抑止し、より高精度な成膜を行うことが可能となる。 In the above configuration, the spectral characteristic measuring device is mounted on the film forming apparatus shown in FIG. 4, but the film forming apparatus on which the spectral characteristic measuring apparatus is mounted is not limited to the apparatus shown in FIG. However, the invention of the present applicant's previous invention, means for projecting a laser beam having a reduced coherence by changing the phase characteristics and polarization characteristics, the incident light on the film formation substrate and the back surface of the substrate The spectral characteristic measuring device of the present invention is mounted on a film forming apparatus (Japanese Patent Application No. 2002-229025) equipped with a means for preventing interference with reflected light and a temperature control means for keeping the temperature of the film forming substrate constant. As a result, it is possible to suppress the fluctuation of the amount of light and perform film formation with higher accuracy.
本発明により実測光を波長掃引して成膜工程中に薄膜試料の分光特性を測定する方法を採用することにより、薄膜試料の成膜中単色測光法と分光特性測定法を任意に選択することが可能となり、膜厚制御の精度を著しく向上させることが可能となった。単色測光法と分光特性測定法の選択は諸条件に合わせて自由に組み合わせ可能であるが、高精度のNBPFを成膜するための1つの提案として以下の組み合わせが考えられる。 By adopting a method of measuring the spectral characteristics of a thin film sample during the film formation process by sweeping the wavelength of the measured light according to the present invention, the monochromatic photometry method and the spectral characteristic measurement method can be arbitrarily selected during the film formation of the thin film sample. Thus, the accuracy of film thickness control can be remarkably improved. The monochromatic photometry method and the spectral characteristic measurement method can be freely combined according to various conditions, but the following combinations are conceivable as one proposal for forming a highly accurate NBPF.
説明は、2キャビティNBPFを題材とする。図19に示すNBPFにおける各層の透過率の変化を参照すると、ガラス基板への成膜開始後の反射帯層では透過率の変化が大きく極値検出を高精度に行うことが可能であるため、単色測光法を採用する。反射帯層の積層後透過率の変化量が小さくなるが、透過率が低いため、特願2003-282837号に示す方法を採用し、レーザ光の出力を増大させて単色測光法により膜厚制御を行う。同様に、1キャビティ目の反射帯層、スペーサ層、反射帯層における成膜は単色測光法を採用し、透過率の変化量が小さい層ではレーザ光源の出力を増大させて変化を拡大し膜厚制御を行う。 The explanation is based on the two-cavity NBPF. Referring to the change in transmittance of each layer in the NBPF shown in FIG. 19, since the change in transmittance is large in the reflection band layer after the start of film formation on the glass substrate, extreme value detection can be performed with high accuracy. Employ monochromatic photometry. Although the amount of change in transmittance after reflection band layer deposition is small, the transmittance is low, so the method shown in Japanese Patent Application No. 2003-282837 is adopted, and the laser light output is increased to control the film thickness by monochromatic photometry. I do. Similarly, the monochromatic photometry method is used for film formation in the reflection band layer, spacer layer, and reflection band layer in the first cavity, and in the layer where the amount of change in transmittance is small, the output is increased by increasing the output of the laser light source. Thickness control is performed.
次に、1キャビティ成膜後の結合層では、図19に示すように透過率の変化量が小さくかつ透過率が高いためレーザ光源の出力制御により膜厚精度を向上させることが困難である。図9より、結合層では膜厚が変化するにつれて透過損失曲線のピーク波長が変化するため分光特性法による膜厚制御が容易であり結合層の成膜では分光特性測定法を採用する。これにより、単色測光法のみを採用した膜厚制御ではその精度に限界のあった結合層の膜厚制御が、分光特性測定法を採用することにより、高精度の膜厚制御が可能となったことがわかる。 Next, in the bonding layer after the formation of one cavity, as shown in FIG. 19, it is difficult to improve the film thickness accuracy by controlling the output of the laser light source because the change in transmittance is small and the transmittance is high. As shown in FIG. 9, the peak wavelength of the transmission loss curve changes as the film thickness changes in the bonding layer, so that the film thickness control by the spectral characteristic method is easy, and the spectral characteristic measurement method is adopted in the formation of the bonding layer. As a result, the film thickness control using only the monochromatic photometry method has made it possible to control the film thickness of the bonding layer, whose accuracy has been limited. I understand that.
2キャビティ目の反射帯層では再び透過率の変化量が大きくなるため、単色測光法を採用する。その後透過率の変化量が小さくなるが、前記同様にレーザ光源の出力制御を行いながら膜厚制御を行うことで2キャビティ目の反射帯層、スペーサ層、反射帯層においても単色測光法を採用する。しかし、2キャビティ目最終層では分光特性測定法を採用する。これは、最終層の特性がNBPFの最終的フィルタ特性を意味するためであり、最終層で中心波長のみを監視していると、図6に示すような欠陥を発見できないため、最終層では分光特性をチェックする必要があるためである。最終層では分光特性測定法を用い、分光特性が完成品であるNBPFフィルタ特性の規格を満たした時点で成膜を終了させる。あるいは2キャビティ目の最終層を単色測光法で完成させ、最終層まで成膜した2キャビティNBPFを所望のフィルタ特性に調整する補正膜を付加する際に、その補正膜の形成に分光特性によるチェックを行ってもよい。 Since the amount of change in transmittance is again large in the second cavity reflection band layer, the monochromatic photometry method is adopted. After that, the amount of change in transmittance becomes small, but the monochromatic photometry method is also applied to the reflection band layer, spacer layer, and reflection band layer of the second cavity by controlling the film thickness while controlling the output of the laser light source in the same manner as described above. To do. However, the spectral characteristic measurement method is adopted for the final layer of the second cavity. This is because the characteristics of the final layer mean the final filter characteristics of NBPF.If only the center wavelength is monitored in the final layer, defects such as those shown in FIG. 6 cannot be found. This is because it is necessary to check the characteristics. In the final layer, the spectral characteristic measurement method is used, and the film formation is terminated when the spectral characteristic satisfies the standard of the NBPF filter characteristic which is a finished product. Alternatively, the final layer of the second cavity is completed by monochromatic photometry, and when adding a correction film that adjusts the two-cavity NBPF formed up to the final layer to the desired filter characteristics, the correction film is checked by spectral characteristics May be performed.
上記のように、透過率の変化量が小さく、かつ透過率が高い層を成膜する際に分光特性測定法を用いて膜厚制御を行い、透過率の変化量が大きい層あるいは透過率の変化量が小さい層であっても透過率が低い層を成膜する際には単色測光法を用いればよい。 As described above, when forming a layer with a small transmittance change and a high transmittance, film thickness control is performed using a spectral characteristic measurement method, and a layer having a large transmittance change or a transmittance Even when the amount of change is small, a monochromatic photometry method may be used when forming a layer with low transmittance.
本発明により、従来透過率の変化量が小さくかつ透過率が高い層の膜厚制御では極値検出の誤差が生じ易く所望の光学特性を得ることが出来なかったという問題を、分光特性測定法と単色測光法を適宜選択して膜厚制御を行うことにより高精度の膜厚制御を行うことが可能となった。 According to the present invention, the problem that the detection of the extreme value is likely to occur in the conventional film thickness control of the layer having a small transmittance change and a high transmittance, and the desired optical characteristics cannot be obtained. It is possible to control the film thickness with high accuracy by appropriately selecting the monochromatic photometry method and controlling the film thickness.
実施例の作用・動作の説明
前記した実施例を基に単色測光法と分光特性測定法を併用し50GHz用5キャビティー構成のNBPFを作成した。作成したNBPFはTa2O5とSiO2の光学薄膜材料を用い、それらの光学膜厚はλ/4(λ:1550nm)で堆積・制御される。Ta2O5とSiO2の光学膜厚をλ/4とし、それぞれをH,Lとすると膜構成は、基板/{[HL]7H8LH[LH]7}L{[HL]8H8LH[LH]8}L{[HL]8H8LH[LH]8}L{[HL]8H8LH[LH]8}L{[HL]7H8LH[LH]6}1.1837L 0.88899H1.54721L /大気の172層とした。
Description of Action and Operation of Examples Based on the above-described examples, a NBPF having a 5-cavity configuration for 50 GHz was prepared using both monochromatic photometry and spectral characteristic measurement. The produced NBPF uses optical thin film materials of Ta 2 O 5 and SiO 2 , and their optical film thickness is deposited and controlled at λ / 4 (λ: 1550 nm). When the optical film thicknesses of Ta 2 O 5 and SiO 2 are λ / 4, and H and L respectively, the film configuration is substrate / {[HL] 7 H8LH [LH] 7 } L {[HL] 8 H8LH [LH ] 8 } L {[HL] 8 H8LH [LH] 8 } L {[HL] 8 H8LH [LH] 8 } L {[HL] 7 H8LH [LH] 6 } 1.1837L 0.88899H1.54721L / 172 layers in the atmosphere It was.
膜厚制御は、図9から12に示すシミュレーションで膜厚変化に対する中心波長の変化割合の大きかった、スペーサ層から最も離れた反射帯層で分光特性測定法を用い、その他の層では単色測光法を用いた。具体的には、172層目までは単色測光法を用いて成膜を行い、172層終了後分光特性測定法を用いて補正膜の形成を行った。成膜条件は温度調整器(18)の設定温度を400℃、真空容器(1)内の真空度は酸素ガスを導入にしてTa2O5成膜時は2.5×10-2Pa,SiO2成膜時は1.5×10-2Paに保持し、Ta2O5及びSiO2の成膜速度はそれぞれ0.4nm/sec,0.8nm/secとした。 For the film thickness control, the spectral characteristic measurement method is used for the reflection band layer farthest from the spacer layer, and the monochromatic photometry method is used for the other layers. Was used. Specifically, film formation was performed using the monochromatic photometry method up to the 172nd layer, and a correction film was formed using the spectral characteristic measurement method after completion of the 172th layer. The film forming conditions are 400 ° C. at the set temperature of the temperature controller (18), and the degree of vacuum in the vacuum vessel (1) is 2.5 × 10 −2 Pa, SiO 2 when Ta 2 O 5 is formed by introducing oxygen gas. During film formation, the film was held at 1.5 × 10 −2 Pa, and the film formation rates of Ta 2 O 5 and SiO 2 were set to 0.4 nm / sec and 0.8 nm / sec, respectively.
図16の(51)に172層目終了後の分光特性測定結果を示す。透過損失は-1.2dB、平坦度は0.6dBであり、設計値(50)と大きなズレが生じ光学的仕様を満たしていないのが判る。図17の(52)は分光特性改善のため、分光特性測定法を用いてH材料による補正成膜を行った結果である。成膜中に於ける分光特性の変化とシミュレーションによる設計値とを逐次比較し、設計値(50)に最も近接した時点で成膜を終了させた。図16と比べて透過損失は25%改善され-0.9dBとなり平坦度も60%以上改善され0.2dBと光学的仕様を満足する良好な分光特性が得られているのが判る。 FIG. 16 (51) shows the spectral characteristic measurement results after the 172nd layer. The transmission loss is -1.2 dB, and the flatness is 0.6 dB, which shows a large deviation from the design value (50), which does not satisfy the optical specifications. (52) in FIG. 17 shows the result of correction film formation using an H material using the spectral characteristic measurement method for improving the spectral characteristics. A change in spectral characteristics during film formation and a design value by simulation were sequentially compared, and the film formation was terminated when it was closest to the design value (50). Compared to FIG. 16, the transmission loss is improved by 25% to −0.9 dB, and the flatness is improved by 60% or more, and 0.2 dB, which is a good spectral characteristic satisfying optical specifications.
図18は成膜終了後、成膜基板(6)を大気中に取りだし、光スペクトルアナライザーを用いて分光特性を測定した結果である。図より-0.5dB幅:0.297nm、-25dB幅:0.53nm、平坦度:0.1dBであり、大気中においても光学的仕様を満たす良好な結果が得られた。 FIG. 18 shows the result of measuring the spectral characteristics using an optical spectrum analyzer after the film formation substrate (6) was taken out into the atmosphere after the film formation was completed. From the figure, -0.5 dB width: 0.297 nm, -25 dB width: 0.53 nm, flatness: 0.1 dB, and good results that satisfy optical specifications were obtained even in the atmosphere.
従来では光学的仕様を満たすことが出来ず失敗となる成膜が、本発明により光学的仕様を満たす事に成功した。上述の例では、172層完成後の補正膜の形成を分光特性のチェックで行ったが、172層の形成時に分光特性のチェックを行い、目標のフィルタ特性が得られるような172層目の膜の形成の制御を行うことも可能であった。 Conventionally, the film formation that fails because the optical specifications cannot be satisfied succeeded in satisfying the optical specifications according to the present invention. In the above example, the correction film was formed after the completion of the 172th layer by checking the spectral characteristics. However, the 172nd layer of the film can be obtained by checking the spectral characteristics when forming the 172th layer and obtaining the target filter characteristics. It was also possible to control the formation of.
又、キャビティ間の結合層の形成時に分光特性による成膜の制御を行うことにより、更に精度の高いフィルタ特性のNBPFが得られた。特に、成膜中に中心波長(例えば1550.0nm)から透過損失曲線のピークがずれるようなケースについて、分光特性のチェックによる成膜を行うことで、より精度の高いNBPF完成品を得られた。 Further, by controlling the film formation by spectral characteristics when forming the coupling layer between the cavities, NBPF with higher accuracy filter characteristics was obtained. In particular, in the case where the peak of the transmission loss curve deviates from the center wavelength (for example, 1550.0 nm) during film formation, a more accurate NBPF finished product was obtained by performing film formation by checking spectral characteristics.
他の実施例の説明、他の用途への転用例の説明
上記実施例ではNBPFの作成について述べたが、本発明はNBPFの成膜に限られるものではなく、他の光学薄膜素子の成膜制御も可能である。また、上記実施例では透過率を測定したが反射率を測定してもよい。
Description of other examples, description of examples of diversion to other applications In the above examples, the creation of NBPF was described. However, the present invention is not limited to the formation of NBPF, and the film formation of other optical thin film elements Control is also possible. Moreover, in the said Example, although the transmittance | permeability was measured, you may measure a reflectance.
1 真空容器
2 電子ビーム蒸発源
3 シャッタ
4 水晶センサ
5 基板ドーム
6 成膜基板
7 基板加熱用シースヒーター
8 下部覗き窓
9 上部覗き窓
10 コントローラ
11 波長可変レーザ
12 デポラライザー
13 光ファイバ
14 出射筒
15 単色測光用受光器
16 覗き窓
17 放射型温度計
18 温度調節器
19 ハロゲンヒーター用電力調整器
20 低圧導入電極
21 ハロゲンヒーター
22 高周波電源
23 マッチングボックス
24 高圧導入電極
25 分光特性測定用受光器
26 半透明鏡
27 光パワーメータ
28 コンピュータ
29 高屈折率物質
30 低屈折率物質
31 反射帯層
32 スペーサ層
33 キャビティ
34 結合層
35 基板
36 反射防止膜
37 基準点
38 反射点
39 波長可変レーザ
40 光パワーメータ
41 光ファイバ
42 受光側コリメーター
43 測定基板
44 投光側コリメーター
45 広帯域光源
46 光スペクトルアナライザー
47 正常時の分光特性
48 異常時の分光特性
49 外乱光カットフィルタ
50 50GHz用NBPFの設計値
51 単色測光法を用いた172層目終了時の分光特性
52 分光特性測定法を用いて補正成膜を行った後の分光特性
DESCRIPTION OF
DESCRIPTION OF
42 Light receiving
47 Spectral characteristics at normal time 48 Spectral characteristics at
Claims (2)
(A)n層からなる、前記光学多層膜構造体のサブアッセンブリについて、少なくとも所定の光波長帯域内の光透過率の分光特性のシミュレーション理論値を記憶し、
前記サブアッセンブリのn番目層としての結合層を形成している際中に、所定のくり返し周期で前記光波長帯域内の複数の異なる波長における前記サブアッセンブリの光透過率の値を実測し、
前記くり返し周期毎に、前記記憶していた分光特性の理論値と前記複数の異なる波長での前記実測した光透過率の値とを対比させて前記くり返し周期毎の該n番目の膜厚を推定し、前記実測した値が該n番目層の目標膜厚のシミュレーション理論値になったときに、薄膜形成装置での前記n番目の層の形成を停止する指示を出力することとからなり、
前記光透過率の値の実測は波長可変レーザーと受光した光を光電変換する装置で行なわれ、
前記サブアッセンブリの前記n番目層を形成する際中に、該波長可変レーザーは、前記光波長帯域内の波長間隔0.01nm以下の複数の異なる波長の光を前記くり返し周期で出
力して形成中の前記サブアッセンブリに照射し、
前記光電変換装置により、形成中の前記サブアッセンブリに照射された前記波長可変レーザーからの光の透過成分を受光して、前記くり返し周期毎に前記複数の異なる波長での光透過率の実測値を得ており、そして
(B)m層からなる、前記光学多層膜構造体のサブアッセンブリのm番目層としてのファブリペロー構造の反射帯層とスペーサ層を形成している際中に、前記波長可変レーザーにより前記所定の帯域幅の中心波長である固定波長の光出力を前記形成中の前記m層のサブアッセンブリに照射しており、
前記光電変換装置により、前記固定波長における形成中の前記m層のサブアッセンブリの光透過率の実測値を所定の時間間隔で得ており、
前記時間間隔毎の前記m層のサブアッセンブリの光透過率の実測値に基いて該実測値の変化量を前記時間間隔毎に得て、該実測値の変化の推移における極値を検出したとき薄膜形成装置での前記m番目層の形成を停止しており、
前記n番目層の形成時には前記波長可変レーザーを波長可変モードにし、前記m番目層の形成時には前記波長可変レーザーを固定波長モードに切り換ている方法。
In a thin film forming apparatus, a predetermined bandwidth for wavelength division multiplexing optical transmission is formed by a multi-cavity structure in which a Fabry-Perot filter having a spacer layer disposed between two reflection band layers is connected in multiple stages through a coupling layer. An optical multilayer film structure which is a bandpass filter having an optical film thickness of each of the layers of the structure, the optical film thickness of the reflection band layer being λ when the bandwidth center wavelength of the bandpass filter is λ In the method of manufacturing an optical multilayer film structure in which the optical film thickness of the spacer layer is an integer multiple of λ / 2, which is an integral multiple of / 4,
(A) A simulation theoretical value of spectral characteristics of light transmittance at least in a predetermined light wavelength band is stored for the sub-assembly of the optical multilayer film structure consisting of n layers,
During the formation of the coupling layer as the nth layer of the subassembly, the optical transmittance value of the subassembly at a plurality of different wavelengths within the optical wavelength band is measured at a predetermined repetition period,
For each repetition period, the stored theoretical value of the spectral characteristic is compared with the measured light transmittance values at the plurality of different wavelengths to estimate the nth film thickness for each repetition period. And when the actually measured value becomes a simulation theoretical value of the target film thickness of the nth layer, outputting an instruction to stop the formation of the nth layer in the thin film forming apparatus,
The actual measurement of the light transmittance value is performed by a wavelength tunable laser and a device that photoelectrically converts received light,
During the formation of the nth layer of the subassembly, the wavelength tunable laser is formed by outputting a plurality of light of different wavelengths with a wavelength interval of 0.01 nm or less within the optical wavelength band at the repetition period. Irradiating the sub-assembly of
The photoelectric conversion device receives a transmission component of light from the wavelength tunable laser irradiated to the subassembly being formed, and obtains an actual measured value of light transmittance at the plurality of different wavelengths for each repetition period. And
(B) During the formation of the Fabry-Perot structure reflecting band layer and spacer layer as the m-th layer of the sub-assembly of the optical multilayer structure, which is composed of m layers, the predetermined wavelength is applied by the wavelength tunable laser. Illuminating the sub-assembly of the m layer being formed with a light output of a fixed wavelength, which is the central wavelength of the bandwidth,
The photoelectric conversion device obtains measured values of the light transmittance of the m-layer subassembly being formed at the fixed wavelength at predetermined time intervals,
When an amount of change of the actual measurement value is obtained for each time interval based on the actual measurement value of the light transmittance of the m-layer subassembly at each time interval, and an extreme value in the transition of the change in the actual measurement value is detected The formation of the mth layer in the thin film forming apparatus is stopped,
A method in which the wavelength tunable laser is set to a wavelength tunable mode when the nth layer is formed, and the wavelength tunable laser is switched to a fixed wavelength mode when the mth layer is formed.
5dB帯域幅が0.6nm以下である光学多層膜構造体の製造方法。 2. The manufacturing method according to claim 1, wherein the optical multilayer structure is a bandpass filter.
A method for producing an optical multilayer film structure having a 5 dB bandwidth of 0.6 nm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007105963A JP4547489B2 (en) | 2003-05-01 | 2007-04-13 | Optical thin film forming apparatus equipped with film thickness measuring device and optical thin film forming method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003126404 | 2003-05-01 | ||
JP2007105963A JP4547489B2 (en) | 2003-05-01 | 2007-04-13 | Optical thin film forming apparatus equipped with film thickness measuring device and optical thin film forming method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004129868A Division JP2004354372A (en) | 2003-05-01 | 2004-04-26 | Optical thin film forming device with film thickness measuring instrument mounted thereon, and optical thin film forming method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2007199084A JP2007199084A (en) | 2007-08-09 |
JP2007199084A5 JP2007199084A5 (en) | 2008-01-24 |
JP4547489B2 true JP4547489B2 (en) | 2010-09-22 |
Family
ID=38453798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007105963A Expired - Fee Related JP4547489B2 (en) | 2003-05-01 | 2007-04-13 | Optical thin film forming apparatus equipped with film thickness measuring device and optical thin film forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4547489B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4878632B2 (en) * | 2009-07-03 | 2012-02-15 | 株式会社シンクロン | Optical film thickness meter and thin film forming apparatus equipped with optical film thickness meter |
TW201250301A (en) * | 2011-06-03 | 2012-12-16 | Asia Optical Co Inc | Optical filter apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001305337A (en) * | 2000-04-27 | 2001-10-31 | Furukawa Electric Co Ltd:The | Optical filter and method for manufacturing the optical filter |
WO2002063064A1 (en) * | 2001-02-07 | 2002-08-15 | Asahi Glass Company, Limited | Spatter device and spatter film forming method |
JP2003014423A (en) * | 2001-06-27 | 2003-01-15 | Kyocera Corp | Multiple thin film forming device |
JP2003121119A (en) * | 2001-10-15 | 2003-04-23 | Nippon Telegr & Teleph Corp <Ntt> | Film thickness monitoring apparatus and method |
JP2003121117A (en) * | 2001-10-15 | 2003-04-23 | Nippon Telegr & Teleph Corp <Ntt> | Film thickness monitoring apparatus and method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3084862B2 (en) * | 1991-12-11 | 2000-09-04 | 松下電器産業株式会社 | Optical film thickness monitor |
JPH06137948A (en) * | 1992-10-28 | 1994-05-20 | Shimadzu Corp | Photometer |
JP3892525B2 (en) * | 1997-03-25 | 2007-03-14 | ペンタックス株式会社 | Film thickness monitoring apparatus, vacuum deposition method and vacuum deposition apparatus |
-
2007
- 2007-04-13 JP JP2007105963A patent/JP4547489B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001305337A (en) * | 2000-04-27 | 2001-10-31 | Furukawa Electric Co Ltd:The | Optical filter and method for manufacturing the optical filter |
WO2002063064A1 (en) * | 2001-02-07 | 2002-08-15 | Asahi Glass Company, Limited | Spatter device and spatter film forming method |
JP2003014423A (en) * | 2001-06-27 | 2003-01-15 | Kyocera Corp | Multiple thin film forming device |
JP2003121119A (en) * | 2001-10-15 | 2003-04-23 | Nippon Telegr & Teleph Corp <Ntt> | Film thickness monitoring apparatus and method |
JP2003121117A (en) * | 2001-10-15 | 2003-04-23 | Nippon Telegr & Teleph Corp <Ntt> | Film thickness monitoring apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
JP2007199084A (en) | 2007-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW584742B (en) | Multilayer film optical filter, method of producing the same, and optical component using the same | |
JP4547489B2 (en) | Optical thin film forming apparatus equipped with film thickness measuring device and optical thin film forming method | |
JP4418926B2 (en) | Optical thin film forming apparatus and method | |
JP2004354372A (en) | Optical thin film forming device with film thickness measuring instrument mounted thereon, and optical thin film forming method | |
CN112230322B (en) | Preparation method of bandpass filter with insertion loss linearly changing | |
EP1170396A2 (en) | Method and apparatus for forming an optical multilayer filter | |
JP4235997B2 (en) | Optical film thickness measuring method and apparatus | |
JP3737409B2 (en) | Film thickness monitoring apparatus and method | |
CN112230323B (en) | Preparation method of optical filter with linearly changed transmittance | |
JP4413824B2 (en) | CWDM filter | |
JP3737442B2 (en) | Film thickness monitoring apparatus and film thickness monitoring method | |
JP2005107010A (en) | Method for manufacturing multilayer optical filter, and multilayer optical filter | |
JP3737408B2 (en) | Film thickness monitoring apparatus and method | |
KR102151947B1 (en) | Optical filter and sensor system having the same, and halogenated amorphous silicon film manufacturing method for optical filter | |
JP2003029026A (en) | Device for deposition of optical thin film, method for depositing film and optical filter | |
JP2001215325A (en) | Narrow band optical filter and method of manufacturing the same | |
JP2002022938A (en) | Wavelength selective filter and wavelength controlling module | |
JP3737407B2 (en) | Film thickness monitoring apparatus and method | |
Groß et al. | Systematic errors in broadband optical monitoring | |
Meister et al. | Single cavity filters on end-faces of optical fibers | |
JP2008009117A (en) | Method of forming dielectric multilayer film | |
JP3084862B2 (en) | Optical film thickness monitor | |
JP3231299B2 (en) | Optical interference filter fabrication method | |
CN118801208A (en) | Adaptive frequency-sweeping laser and adaptive drive current adjustment method | |
CN116411246A (en) | Vapor deposition method of multi-cavity Fabry-Perot filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100310 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100430 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100430 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100602 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100608 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4547489 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140716 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |