JP4437481B2 - Ground improvement method - Google Patents
Ground improvement method Download PDFInfo
- Publication number
- JP4437481B2 JP4437481B2 JP2006234511A JP2006234511A JP4437481B2 JP 4437481 B2 JP4437481 B2 JP 4437481B2 JP 2006234511 A JP2006234511 A JP 2006234511A JP 2006234511 A JP2006234511 A JP 2006234511A JP 4437481 B2 JP4437481 B2 JP 4437481B2
- Authority
- JP
- Japan
- Prior art keywords
- injection
- ground
- soil
- solution
- silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 47
- 230000006872 improvement Effects 0.000 title claims description 46
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 363
- 239000007924 injection Substances 0.000 claims description 334
- 238000002347 injection Methods 0.000 claims description 334
- 239000000243 solution Substances 0.000 claims description 175
- 238000001879 gelation Methods 0.000 claims description 155
- 239000002689 soil Substances 0.000 claims description 145
- 239000000377 silicon dioxide Substances 0.000 claims description 138
- 238000010276 construction Methods 0.000 claims description 37
- 230000035515 penetration Effects 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 20
- 238000011065 in-situ storage Methods 0.000 claims description 17
- 239000003352 sequestering agent Substances 0.000 claims description 9
- 239000000376 reactant Substances 0.000 claims description 7
- 230000021148 sequestering of metal ion Effects 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 4
- 238000009472 formulation Methods 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 3
- 239000000126 substance Substances 0.000 description 78
- 239000004576 sand Substances 0.000 description 62
- 230000002378 acidificating effect Effects 0.000 description 46
- 235000019353 potassium silicate Nutrition 0.000 description 37
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 36
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 35
- 239000000499 gel Substances 0.000 description 35
- 239000011440 grout Substances 0.000 description 31
- 239000000523 sample Substances 0.000 description 31
- 239000002253 acid Substances 0.000 description 29
- 239000007788 liquid Substances 0.000 description 28
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 18
- 238000007596 consolidation process Methods 0.000 description 18
- 239000008119 colloidal silica Substances 0.000 description 17
- 238000001764 infiltration Methods 0.000 description 17
- 230000008595 infiltration Effects 0.000 description 17
- 239000002245 particle Substances 0.000 description 17
- 238000002474 experimental method Methods 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 230000007935 neutral effect Effects 0.000 description 13
- 229910052791 calcium Inorganic materials 0.000 description 12
- 239000011575 calcium Substances 0.000 description 12
- 238000013461 design Methods 0.000 description 12
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 230000003204 osmotic effect Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 9
- 239000003513 alkali Substances 0.000 description 9
- -1 silica compound Chemical class 0.000 description 9
- 235000002639 sodium chloride Nutrition 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000009533 lab test Methods 0.000 description 8
- 230000000149 penetrating effect Effects 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000003673 groundwater Substances 0.000 description 6
- 239000003978 infusion fluid Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 5
- 230000006399 behavior Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- 239000003729 cation exchange resin Substances 0.000 description 3
- 238000012669 compression test Methods 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 239000008155 medical solution Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 229940037003 alum Drugs 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- AQCZMUGGYZMBPU-UHFFFAOYSA-N 2-[bis(carboxymethyl)amino]acetic acid;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O AQCZMUGGYZMBPU-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000013072 incoming material Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Description
本発明は非アルカリ領域、特に酸性領域のシリカグラウトの注入に関し、注入液のゲル化時間を注入時間と土中ゲル化時間から設定する地盤注入工法にかかり、広範囲の注入領域を確実に浸透固結すると共に強度の均等化を図ることを特徴とする。 The present invention relates to the injection of silica grout in a non-alkaline region, particularly an acidic region, and is related to a ground injection method in which the gelation time of the injection solution is set from the injection time and the gelation time in the soil, and reliably infiltrates a wide range of injection regions. And equalizing the strength.
従来、シリカ溶液を使用した注入工法は、注入孔間隔(≒浸透固結径)を、通常直径0.8〜1.0m程度とし、毎分吐出量8〜20l、注入ステージのピッチ0.30〜0.5mとして注入する方法をとった。注入孔間隔がこれ以上になると固結が不確実になり、均等な固結が期待できない。そのため、注入孔間隔を短くし地盤改良を行うことが必要であった。 Conventionally, the injection method using a silica solution has an injection hole interval (≈ permeation diameter) of about 0.8 to 1.0 m in diameter, a discharge rate of 8 to 20 l / min, and an injection stage pitch of 0.30 to 0.5 m. I took the way. If the interval between the injection holes is larger than this, consolidation is uncertain, and uniform consolidation cannot be expected. Therefore, it was necessary to improve the ground by shortening the injection hole interval.
しかるに長期耐久性に優れたシリカ溶液を用いて液状化防止に注入工法を用いられるようになり、そこで、経済性を得るには注入孔間隔を大きくとり大きな注入固結径を得ることが必要になった。このためには、注入孔間隔を1m以上から4m、即ち固結径を1.5m以上例えば2〜4mの大きな浸透固結を土粒子間浸透によって行う事が必要である。 However, an injection method can be used to prevent liquefaction by using a silica solution having excellent long-term durability. Therefore, in order to obtain economy, it is necessary to increase the injection hole interval and obtain a large injection consolidation diameter. became. For this purpose, it is necessary to carry out large permeation consolidation with an injection hole interval of 1 m or more to 4 m, that is, a consolidation diameter of 1.5 m or more, for example 2 to 4 m, by infiltration between soil particles.
この場合、1注入ステージ当たりの注入量は数百l以上、通常は400l以上、或いは1000l以上となり、1注入ステージ当り数時間から十数時間の注入時間を要する事になり、当然のことながら注入液のゲル化時間は注入時間よりも長いことが土粒子間浸透のために必要なため、数時間から十数時間の長いゲル化時間を要求される事になる。 In this case, the injection volume per injection stage is several hundred l or more, usually 400 l or more, or 1000 l or more, and it takes several to ten or more hours of injection time per injection stage. Since the gelation time of the liquid needs to be longer than the injection time for permeation between the soil particles, a long gelation time of several hours to several tens of hours is required.
又、液状化防止注入においては当然、恒久的かつ経済的地盤固化が要求される。恒久的注入効果を得るには耐久性のあるシリカ注入液を用いて低い注入速度で土粒子間浸透を図る必要がある。なぜならば経済性を得るために大きな注入速度で注入したり、ゲル化時間が短いと脈状注入になり未固結部分が生じて恒久性のある固結地盤が形成されないからである。 In addition, the liquefaction prevention injection naturally requires permanent and economical ground solidification. In order to obtain a permanent injection effect, it is necessary to infiltrate between soil particles at a low injection rate using a durable silica injection solution. This is because, in order to obtain economic efficiency, injection is performed at a high injection rate, or when the gelation time is short, pulse injection occurs and an unconsolidated portion is generated, and a permanent consolidated ground is not formed.
しかるに、低速度の注入はさらに注入時間を長く必要とし、したがってゲル化時間は当然更に長い時間を必要とすることになり、それが又、地下水による希釈や分散のみならずその間の注入地盤と注入液の反応時間が長くなり、それがゲル化時間等のゲル化の挙動と浸透固結性に大きな影響をもつことがわかった。このような新しい地盤注入に対して、確実な注入効果を得るための注入設計に対応した配合設計は未だ確立されてないのが実情である。 However, low speed injections require longer injection times and therefore gelation times will naturally require longer time, which not only dilutes and disperses with groundwater, but also the injection ground and injections in between. It was found that the reaction time of the liquid becomes longer, which has a great influence on the gelation behavior such as the gelation time and the permeation solidification. In fact, for such new ground injection, a compounding design corresponding to the injection design for obtaining a reliable injection effect has not yet been established.
地盤中における薬液は、注入予定地盤が中性〜アルカリ性を呈していることが多く、酸性シリカグラウトを使用すると、地盤中で中性方向に移行したり、酸性シリカグラウトと地盤中のアルカリ物質が反応してしまい、ゲル化時間が短くなる。時に液状化防止工法が対象となる海岸付近の砂地盤は、貝殻混じりの弱アルカリ性を呈する地盤が多く酸性のシリカグラウトは急速にpHが上昇しゲル化時間が急速に短縮という問題があった。 The chemical solution in the ground is often neutral to alkaline in the planned injection ground, and when acidic silica grout is used, it moves in the neutral direction in the ground, or the acidic silica grout and the alkaline substance in the ground It will react and gel time will become short. The sandy ground near the coast, which is sometimes subject to liquefaction prevention methods, has a problem that there is a lot of ground with weak alkalinity mixed with shells, and the acidic silica grout rapidly increases in pH and gelation time is shortened rapidly.
そこで、従来では地盤に注入する酸性シリカグラウトとして過剰な酸性反応剤を混合し、長いゲル化時間を持つグラウト材を注入した。従来酸性シリカグラウトにおいて、浸透距離を長くするには、シリカ濃度を低く設定するか、多量の酸を用いグラウト自体をpH1付近に設定することで長時間のゲル化時間を得ていた。
Therefore, in the past, excessive acidic reactants were mixed as acidic silica grout to be injected into the ground, and grout material having a long gel time was injected. In the conventional acidic silica grout, in order to increase the permeation distance, a long gelation time was obtained by setting the silica concentration low or setting the grout itself near
実際の注入にあたって注入液の気中ゲル化時間(Ta)の設定は現場地盤中で採取した砂を用い室内試験でシリカグラウトを混ぜて、サンドゲルのゲル化時間(Ts)すなわち土中ゲル化時間を測定し、必要な固結範囲から算出した注入量を注入する時間(H)に相当する土中ゲル化時間(Ts)を得る酸の量を設定してシリカグラウトの気中ゲル化時間(Ta)と配合を決定する方法がとられた。 In the actual injection, the in-air gelation time (Ta) of the injection solution is set by sand collected in the field ground, mixed with silica grout in the laboratory test, and the gelation time (Ts) of the sand gel, that is, the gelation time in the soil Is measured, and the amount of acid to obtain the gel time (Ts) in the soil corresponding to the time (H) for injecting the injection amount calculated from the necessary consolidation range is set, and the gelation time in the air of silica grout ( The method of determining the formulation with Ta) was taken.
前述したように耐久性に優れた地盤を形成するには、土粒子間浸透による均質な固結体を形成しなくてはならない。このため、低い吐出量で大きな径の固結径を得るには十数時間の長いゲル化時間(Ta)を必要とする。ところが、このような長いゲル化時間の酸性シリカ注入液を注入すると1.5〜4.0mのように固結系が大きいと注入孔からの距離が離れるほど固結が不十分になることが判った。又、改良地盤の強度発現が遅かったり、固結しないまま逸脱したり、あるいは地下水で希釈されて固結が不十分であることが起こり得ることがわかった。 As described above, in order to form a ground having excellent durability, it is necessary to form a homogeneous consolidated body by infiltration between soil particles. For this reason, in order to obtain a consolidated diameter having a large diameter with a low discharge amount, a long gelling time (Ta) of several tens of hours is required. However, it has been found that when the acidic silica injection solution having such a long gelation time is injected, if the solidification system is large as 1.5 to 4.0 m, the solidification becomes insufficient as the distance from the injection hole increases. In addition, it was found that the strength development of the improved ground could be slow, deviated without consolidating, or diluted with groundwater and insufficiently consolidated.
即ち、従来の仮設注入では、注入孔間隔が1.0m程度、すなわち固結径が1.0m程度で1ステージの注入量が数十l程度の注入であり、その限りにおいては従来の配合検討でそれなりの効果を得る事ができた。それに対して、注入孔間隔が1〜4mとなると、1ステージ当りの注入が数百〜数千lの注入で、注入時間が数時間〜十数時間連続注入し続けなくてはならないことになると、従来の考え方とは全く異なる考えに基づくことが必要なことが判った。 That is, in the conventional temporary injection, the injection hole interval is about 1.0 m, that is, the consolidation diameter is about 1.0 m, and the injection amount of one stage is about several tens of liters. The effect of was able to be obtained. On the other hand, when the injection hole interval is 1 to 4 m, the injection per stage is an injection of several hundred to several thousand l, and the injection time must be continuously injected for several hours to several tens of hours. It was found that it was necessary to be based on a completely different idea from the conventional way of thinking.
そこで本発明者は、このような長時間の土粒子間連続注入する液状化対策工のような恒久地盤改良では、地盤中におけるグラウトの特性が浸透中に土粒子と接触して地盤中に浸透する過程で刻々と変化することを考慮し、そのような注入材の特性の変化と挙動に対応した配合設定と注入法をとる事が必要であると想到して本発明を完成するに至った。 Therefore, the present inventor, in permanent ground improvement such as liquefaction countermeasure work that continuously injects between soil particles for such a long time, the characteristics of the grout in the ground are in contact with the soil particles during penetration and penetrated into the ground. In view of the fact that the process changes every moment, the present invention was completed with the idea that it is necessary to adopt a blending setting and injection method corresponding to such changes and behaviors of the characteristics of the injection material. .
注入孔間隔の大きい大規模な地盤改良工事では、現場ごとに異なる地盤条件や設計強度に対応して、適切な配含設計、注入設計を行わなくてはならない。このため、現場採取土を用いて室内実験を行い、注人時間、目標強度に合った配合を決定する。 In large-scale ground improvement work with large intervals between injection holes, appropriate inclusion design and injection design must be performed in response to different ground conditions and design strength at each site. For this reason, laboratory experiments are carried out using on-site collected soil, and the composition suitable for the pouring time and the target strength is determined.
例えば、従来の仮設用注入では、せいぜい直径1m程度の個結径であれば済んだ。しかし、直径2〜4mの固結径を低圧浸透注人で土粒子間浸透となると、1ステージ当たり十数時間の連統注入を必要とする。その注入時間中、土と接触しながら浸透して行くわけであるから、土中に含まれる成分との反応により、土中ゲル化時間も変動し、かつ土中水の希釈の影響も受けて強度も変化する。 For example, in the case of the conventional temporary injection, it is sufficient if the individual diameter is about 1 m in diameter. However, when a solidified diameter of 2 to 4 m is infiltrated between soil particles with a low-pressure infiltrator, continuous injection for 10 or more hours per stage is required. As during the time of injection, since it is not going to penetrate while contacting the soil, by reaction with components contained in the soil, also fluctuates soil gel time, and also affected by dilution of soil water The strength also changes.
注入材のゲル化時間は、注入材そのもののゲル化時間可能範囲と現地盤の土性、1ステージ当たりの連続注入時間と関係する。注入時間は毎分吐出量と関係しており、毎分吐出量は、適用する注入工法と地盤条件と土粒子間浸透限界注入圧によって決まる。したがって、現揚採取土を用いた確認実験により、シリカ濃度やゲル化時間などの配含設計を行わなくてはならない。 Note During gelatinizing of the incoming material, it can while gelatinizing the grout itself range and local Release soil properties, related to the continuous infusion time per stage. The injection time is related to the discharge amount per minute, and the discharge amount per minute is determined by the injection method applied, the ground conditions, and the permeation limit injection pressure between soil particles. Therefore, it is necessary to conduct inclusion design such as silica concentration and gelation time by confirming experiments using the current excavated soil.
本発明は、これらのデ一タに基づいて目標強度を得るための注入設計を行い、特に耐久性のある注入孔問隔の大きい地盤注入工事において、確実な地盤改良効果を得るという一連の設計方法を提供するものである。 The present invention performs an injection design to obtain the target strength based on these data, and a series of designs to obtain a reliable ground improvement effect, especially in a ground injection construction with a large durable injection hole gap. A method is provided.
そこで、本出願人はこれらの固結径の大きな地盤改良を行う場合の非アルカリ性シリカ溶液の地盤中における特性の変化とゲル化の挙動に影響する要因を解明し、浸透距離が長くても過剰のゲル化調整剤(酸や無機塩)を使用せず、地盤中で均等に固結し、早く強度を発現する注入薬液の配合を土中ゲル化時間と注入時間の比(A)により決めることにより課題を解決し、本発明を完成した。また、注入孔の間隔を大きくとると1本当りの固結範囲の境界付近の固結性が悪いことが判ったが、本発明はこの課題も解決することが出来るものである。 Therefore, the present applicant has elucidated the factors affecting the change in properties of the non-alkaline silica solution in the ground and the gelation behavior in the case of ground improvement with a large consolidated diameter. The ratio of the gelation time to the injection time in the soil (A) determines the formulation of the infusion solution that solidifies evenly in the ground without using any gelation modifier (acid or inorganic salt) and quickly develops strength. Thus, the problems were solved and the present invention was completed. Further, it has been found that if the interval between the injection holes is increased, the caking property near the boundary of the caking range per one is poor, but the present invention can also solve this problem.
本発明者は上記問題の解決のため、(1)ビーカー中における酸性シリカ液の配合とpH(気中pH:pHa)とゲル化時間(気中ゲル化時間:Ta)の関係、(2)酸性シリカ液の配合と小型モールド(直径5cm×長さ10cm)における酸性シリカ液を混合した現場砂のpH(土中pH:pHs)とゲル化時間(土中ゲル化時間と:Ts)との関係を調べた。
Since the present inventors have for the solution of the above-described problems, (1) Blend the pH of the acidic silica solution in the beaker (aerial pH: pHa) and gel time (aerial gelation time: Ta) relations, (2 ) The pH of the in-situ sand mixed with the acidic silica solution in the small mold (
(3)更に直径10cm×長さ2mの円筒型モールド内に浸透した固結土のpH(土中浸透液pH:pHsf)と土中浸透液ゲル化時間(Tsf)、並びに浸透長Lと浸透長Lにおける固結砂の強度(quL)の関係を調べた。(4)この結果と実際の固結地盤におけるサンプリング供試体の強度とpHの関係より、酸性シリカ溶液が注入地盤中で長距離浸透した場合の特性の変化と挙動を解明した。これから前述の問題は以下の理由によって起きることを見出し、上記問題を解決し、本発明を完成したものである。 (3) Further, the pH of the consolidated soil permeated into a cylindrical mold having a diameter of 10 cm and a length of 2 m (soil infiltrate pH: pH sf ), soil permeate gelation time (Ts f ), and permeation length L The relationship between the strength of sand and the strength (qu L ) of the consolidated sand at penetration length L was investigated. (4) From the relationship between the results and the strength and pH of the sampling specimens in the actual consolidated ground, the change and behavior of the characteristics when the acidic silica solution penetrated in the injection ground for a long distance was clarified. The inventors have found that the above-mentioned problems occur for the following reasons, and have solved the above problems and completed the present invention.
通常の地盤であるほぼ中性、又は弱アルカリの地盤中に酸性シリカ溶液等、非アルカリ性シリカ溶液を注入し続けた場合、地盤中で中和反応が進行し、或は地盤中の貝殻等のアルカリ分と反応し、或は地盤中に含まれるCa、Mg、Fe等の多価金属イオンと反応してシリカ溶液はpHが酸性から中性方向に移行し(土中浸透液(浸透中の注入液)のpHsf)、土中に浸透しているシリカ溶液のゲル化時間(浸透土中ゲル化時間:Tsf)が短縮する。 If a non-alkaline silica solution, such as an acidic silica solution, is continuously injected into an almost neutral or weakly alkaline ground that is normal ground, the neutralization reaction proceeds in the ground, or shells in the ground, etc. The silica solution reacts with alkali components or reacts with polyvalent metal ions such as Ca, Mg, Fe, etc. contained in the ground, and the pH of the silica solution shifts from acidic to neutral (soaking solution in soil (during infiltration) PHs f ) of the injection solution) and the gelation time of the silica solution penetrating into the soil (gelation time in the penetrating soil: Ts f ) is shortened.
注入初期段階のシリカ溶液はその先行部は常に新しい地盤と反応を続けていくため急速に上記反応が進行するが後続のシリカ溶液はすでに反応した後の地盤に浸透するため地盤との反応が少なくて済むから、pHの上昇度が低下し、土中浸透液のpH(pHsf)は気中で配合された注入液のpH(pHa)に近くなり、したがって浸透土中ゲル化時間の短縮の傾向は低減して気中ゲル化時間(Ta)に近づく。このため、浸透距離が長い程注入孔に近い浸透領域程浸透土中ゲル化時間は長いままで浸透が続けられていく事がわかった。 In the initial stage of the injection, the silica solution in the initial stage always reacts with the new ground, so the above reaction proceeds rapidly, but the subsequent silica solution penetrates into the ground after the reaction, so there is little reaction with the ground. Therefore, the degree of increase in pH is reduced, and the pH of the soil osmotic solution (pHs f ) is close to the pH (pHa) of the infusion solution formulated in the air, thus reducing the gelation time in the osmotic soil. The tendency decreases and approaches the air gelation time (Ta). For this reason, it was found that the longer the permeation distance, the longer the permeation region closer to the injection hole, the longer the permeation time, and the longer the permeation, the longer the permeation time.
注入孔間隔が従来の注入孔間隔1mの場合よりも大きくなるにつれ、浸透している注入液の先端部は新しい土との反応でpHは上昇するものの浸透面積は急激に増大し、注入液の注入圧の圧力勾配が大幅に低下するため、浸透面積が拡大して注入液の単位面積当たりの浸透速度は低下して、注入液は拡散し、地下水により希釈して固結性が低減する。 As the injection hole interval becomes larger than that of the conventional injection hole interval of 1 m, the permeation area of the injection solution rapidly increases although the pH of the tip of the injection solution that has infiltrated increases due to reaction with new soil. Since the pressure gradient of the injection pressure is greatly reduced, the permeation area is expanded, the permeation rate per unit area of the infusion liquid is reduced, the infusion liquid is diffused, and diluted with ground water to reduce the caking property.
このため、後続のゲル化時間が長いままの土中注入液は、希釈分散されてますます固結性を失う。このため、注入領域のうち中心部からはなれるにつれ、大幅に強度低下や未固結部分が生じるのみならず、注入途中で注入液が注入範囲外に逸脱したり地上部に逸脱したりする。一度逸脱すると止まらず注入を中止して固結を待たなくてはならず、その場合固結待ちに長時間かかり、且つ、再注入しても固結状態が不均等になっているため、注入対象地盤の計画通りの注入が出来ず、注入領域内部の固結が不均一であったりすることが判った。 For this reason, the injection solution in the soil in which the subsequent gelation time remains long dilutes and disperses and loses its caking property. For this reason, as it is separated from the central portion of the injection region, not only is the strength significantly reduced and an unconsolidated portion is generated, but also the injection solution deviates from the injection range or deviates to the ground part during the injection. Once it deviates, it must stop and wait for consolidation without stopping, in which case it takes a long time to wait for consolidation, and even after reinjection, the consolidated state is uneven, so injection It was found that the target ground could not be injected as planned, and the consolidation inside the injection area was uneven.
以上の特性を見出した本発明者は以下の手法により上記の課題を解決した。 The present inventor who found the above characteristics solved the above-mentioned problems by the following method.
本発明者らは改良地盤を事前に調査し、注入孔間隔、注入ステージ、注入率、注入量Q、注入速度qから注入時間Hを算出し、注入する薬液の現場砂の土中ゲル化時間(Ts)と注入時間Hの比率Aを0.01〜1、好ましくは0.03〜0.5の範囲に設定することで、酸性反応剤の使用量が少なく注入時間(H)よりも土中ゲル化時間の短い薬液であっても、広い改良範囲を地盤改良することができ、且つ確実に地盤を固結する事が出来、又以下の配合設定をすることにより上記の課題を解決することができた。 The present inventors investigated the improved ground in advance, calculated the injection time H from the injection hole interval, injection stage, injection rate, injection amount Q, and injection speed q, and the gelation time of the in-situ sand of the chemical solution to be injected By setting the ratio A of (Ts) and injection time H to a range of 0.01 to 1, preferably 0.03 to 0.5, the amount of acidic reactant used is small and the gel time in soil is shorter than the injection time (H). Even if it was a chemical | medical solution, the ground of the wide improvement range could be improved, the ground could be solidified reliably, and said subject was able to be solved by setting the following mixing | blending settings.
1.地盤中に非アルカリ性シリカ注入液を注入する地盤注入工法であって、地盤改良を行う地盤において、以下の(1)〜(8)の手法で注入液の配合設定を行うことを特徴とする地盤改良工法。 1. A ground injection method for injecting non-alkaline silica injection solution into the ground, and in the ground to improve the ground, the composition of the injection solution is set by the following methods (1) to (8) Improvement method.
(1) 注入液の配合(シリカ濃度と反応剤濃度)と気中pHaと気中ゲル化時間(Ta)の関係を確認する。
(2) 改良対象地盤からの採取土と注入液を用いて、注入液の配合と、土中ゲル化時間(Ts)と土中pHsの関係を確認する。
(3) 採取土と注入液を用いて、注入液の配合と固結採取土の強度(qu)の関係を確認する。
(4) 要求される地盤改良強度から注入液の配合のシリカ濃度を決定する。
(5) 注入対象土層における改良土の単位体積あたりの注入量を算出する。
(6) 注入孔間隔と注入ステージ長を決定し、単位ステージあたりの受持土量から1ステージあたりの注入量(Ql)を算出する。
(7) 毎分吐出量(ql)を設定し、1注入ステージ当たりの注入時間(H)を設定する。
(8) 注入時間(H)と土中ゲル化時間(Ts)の関係から注入液の反応剤濃度を設定する。
(1) Check the relationship between the composition of the injection solution (silica concentration and reactant concentration), air pHa, and air gelation time (Ta).
(2) Using the soil collected from the ground to be improved and the injection solution, check the composition of the injection solution and the relationship between the gelation time (Ts) in the soil and the pH in the soil.
(3) Using the collected soil and the injected solution, check the relationship between the composition of the injected solution and the strength (qu) of the consolidated collected soil.
(4) Determine the silica concentration of the injection solution from the required ground improvement strength.
(5) Calculate the injection volume per unit volume of improved soil in the soil layer to be injected.
(6) The injection hole interval and the injection stage length are determined, and the injection amount (Ql) per stage is calculated from the amount of soil per unit stage.
(7) Set the discharge amount (ql) per minute and set the injection time (H) per injection stage.
(8) to set the reactant concentration of the infusate from the relationship between the injection time (H) and soil gelation time (Ts).
2.請求項1記載の地盤改良工法において、(3)で上載圧を加えて固結採取土の強度(qu)を確認することを特徴とする地盤改良工法。
2. 2. The ground improvement method according to
3.請求項2記載の地盤改良工法において、(7)で毎分吐出量(ql)は注入速度と注入圧力が比例関係にある初期直線勾配領域と初期直線勾配から破壊勾配領域までの漸移領域までの注入速度で注入することを特徴とする地盤改良工法。
3. 3. The ground improvement method according to
4.請求項1、2または3記載の地盤改良工法において、前記注入液の注入時間(H)と土中ゲル化時間(Ts)が以下の条件を満たすように設定する地盤改良工法。
4). The ground improvement construction method according to
(1) 0.01≦A<1
(2) Ts<H<Ta
(3) 15分<H<1500分
(4) pHaが1.5〜8
ここで、
A :土中ゲル化時間Ts(分)と注入時間H(分)の比(=Ts/H)
Ta:注入液の気中ゲル化時間(20℃)
Ts:現物採取土と注入液の混合土のゲル化時間(分)
H :1ステージ当たりの注入時間(分)
pHa:気中pH
(1) 0.01 ≦ A < 1
(2) Ts <H <Ta
(3) 15 minutes <H <1500 minutes (4) pHa is 1.5-8
here,
A: Ratio of soil gelation time Ts ( min ) to injection time H ( min ) (= Ts / H)
Ta: In-air gelation time of injection solution (20 ° C)
Ts: Gelation time (min) of mixed soil of in-situ collected soil and injected solution
H: Injection time per stage (minutes)
pHa: Air pH
5.請求項4記載の地盤改良工法において、以下の条件を満たすように設定する地盤改良工法。
(1) 0.01≦A<1
(2) 10分<Ts<H<Ta<4000分
(3) 15分<H<1500分
(4) 2<pHa<8
(5) 3<pHs<9
ここで、
pHs:土中pH 5. The ground improvement construction method according to
(1) 0.01 ≦ A <1
(2) 10 minutes <Ts <H <Ta <4000 minutes
(3) 15 minutes <H <1500 minutes
(4) 2 <pHa <8
(5) 3 <pHs <9
here,
pHs: pH in soil
6.請求項4または5記載の地盤改良工法において、0.03≦A≦0.5である地盤改良工法。
6). The ground improvement construction method according to
7.請求項4または5記載の地盤改良工法において、注入中にAを0.01〜1の範囲幅で異なる配合を併用する地盤改良工法。
7). The ground improvement construction method according to
8.5において、注入中にTsが10分以下の配合を併用する地盤改良工法。 In 8.5, a ground improvement method using a combination of Ts of 10 minutes or less during injection.
9.1〜5において、注入間隔を1〜4mとする地盤注入工法。 In 9.1-5, the ground injection method with an injection interval of 1-4m.
10.1〜5において、1ステージあたりの注入量(Q)と注入時間(H)が以下の注入条件を満たす地盤注入工法。
(1) Q≧400l
(2) H≧60分
10. Ground injection method in which the injection amount (Q) and injection time (H) per stage satisfy the following injection conditions in 10.1 to 5.
(1) Q ≧ 400l
(2) H ≧ 60 minutes
11.1〜5におけるシリカ注入液として金属イオン封鎖剤を含む注入液を用いるか、金属イオン封鎖剤を含まないシリカ注入液を併用する地盤注入工法。 11. A ground injection method using an injection solution containing a metal ion sequestering agent as a silica injection solution in 11.1 to 5 or a silica injection solution not containing a metal ion sequestering agent.
12.1〜5において、シリカ注入液がAlイオンを含有する地盤注入工法。 In 12.1-5, the ground injection construction method in which the silica injection liquid contains Al ions.
13.1〜5において、シリカ注入液が柱状浸透源或いは複数の注入ポイントから同時に注入される地盤改良工法。 13. The ground improvement construction method in which silica injection liquid is simultaneously injected from a columnar infiltration source or a plurality of injection points in 1-5.
14.1〜5において、構造物の直下又は近傍の地盤の液状化防止のために注入する地盤注入工法。 In 14.1-5, the ground injection construction method inject | poured in order to prevent liquefaction of the ground directly under or near the structure.
15.1〜5において、構造物の直下又は近傍地盤、あるいは構造物建造予定の直下又は近傍地盤に注入する地盤改良工法。 In 15.1-5, the ground improvement construction method inject | poured into the structure directly under or near the structure, or the structure directly under or near the structure.
1.本発明により土中ゲル化時間が短縮しても、充分浸透距離を長く設定して注入孔周辺部も注入固結径の外周付近も確実に均質に固結できるため、浸透直径1〜4mの大きな固結領域の確実な注入が可能になった。
1. Because even if shortened Lido in gelation time by the present invention, may periphery near also ensure a homogeneous consolidation also injected consolidation diameter injection hole periphery by setting a sufficient penetration distance longer,
2. 注入薬液に過度な量の酸性反応剤を使用する必要がなく、それによって反応生成物が少なく薬液のpHを従来より高くすることができ、経済的であり、且つ地盤を中性付近に保持して環境にやさしく、施工後における地下水や周辺の環境への影響が少ないという効果が得られる。 2. It is not necessary to use an excessive amount of acidic reactant in the injected chemical solution, thereby reducing the reaction product and making the pH of the chemical solution higher than before, which is economical and makes the ground near neutrality. It is environmentally friendly by holding and has the effect of little impact on the groundwater and surrounding environment after construction.
3. 注入薬液に過度なゲル化調整材を使用しないため、従来のように地盤が強酸性となり強度発現が遅れることがなく、地盤中で急速に強度発現をすることができ短期のうちに、改良効果が現れやすい。 3. Since an excessive gelation modifier is not used for the injected drug solution, the ground becomes strongly acidic and the strength development is not delayed as in the past. Improvement effect tends to appear.
4. 複数の吐出孔からの同時注入あるいは連続注入により、隣接注入孔による固結によってお互いに拘束されるため、先端部での注入液が希釈分散しにくく、正常にゲル化する。このため1本当たりの受け持ち固結面積が広くてもその隣接する注入孔の間の境界部分の固結性が低減しないで済む。 4. Simultaneous injection or continuous injection from a plurality of discharge holes restrains each other by consolidation by adjacent injection holes, so that the injection solution at the tip is difficult to dilute and disperse normally and gels normally. For this reason, even if the handling consolidation area per one is large, it is not necessary to reduce the consolidation of the boundary portion between the adjacent injection holes.
上述したように液状化対策工等の本設工事は、現場ごとに異なる地盤条件や設計強度に対応して、適切な配合設計、注入設計を行わなくてはならない。このため、現場採取土を用いて室内実験を行い、注入時間、目標強度に合った配合を決定する。 As described above, the main construction work such as a liquefaction countermeasure work must be performed with an appropriate blending design and injection design corresponding to the ground conditions and design strengths that differ from site to site. For this reason, laboratory experiments are performed using on-site collected soil, and the composition suitable for the injection time and target strength is determined.
例えば、従来の仮設用注入では、せいぜい直径1m程度の固結径であれば済んだ。しかし、直径2〜4mの固結径を低圧浸透注入で土粒子間浸透となると、1ステージ当たり十数時間の連続注入を必要とする。その注入時間中、土と接触しながら浸透していくわけであるから、土中に含まれる成分との反応により土中ゲル化時間も変動し、かつ土中水の希釈の影響も受けて強度も変化する。 For example, in the conventional temporary injection, a consolidated diameter of about 1 m in diameter can be used. However, when solidified with a diameter of 2 to 4 m is infiltrated between soil particles by low-pressure osmotic injection, continuous injection for several tens of hours per stage is required. During the injection time, it permeates while in contact with the soil, so the gelation time in the soil fluctuates due to the reaction with the components contained in the soil, and the strength is also affected by the dilution of the soil water. Also changes.
注入材のゲル化時間は、注入材そのもののゲル化時間可能範囲と現地盤の土性、1ステージ当たりの連続注入時間と関係する。注入時間は毎分吐出量と関係しており、毎分吐出量は適用する注入工法と地盤条件と土粒子間浸透限界注入圧によって決まる。したがって、今までの経験と蓄積されたデータとノウハウに加え、さらに現場採取土を用いた確認実験により、シリカ濃度やゲル化時間などの配合設計を行わなくてはならない。 The gelation time of the injection material is related to the possible range of gelation time of the injection material itself, the soil properties of the local board, and the continuous injection time per stage. The injection time is related to the discharge amount per minute, and the discharge amount per minute is determined by the injection method applied, the ground conditions, and the permeation limit injection pressure between soil particles. Therefore, in addition to the past experience and accumulated data and know-how, it is necessary to carry out blending design such as silica concentration and gelation time through confirmation experiments using on-site collected soil.
液状化対策工では注入孔間隔(浸透固結径)が、従来の0.5〜1mから急速浸透注入工法では1.5〜4.0mをめざす時代になりつつある。注入孔間隔の拡大に伴い、1ステージ当たりの注入量が従来は直径1mで100〜200l、注入時間は十数分から数十分であったものが、直径3mで数千l、注入時間で数時間から十数時間の連続注入に対応するゲルタイムを設定するという、全く異なる内容になりつつある。 In the liquefaction countermeasure work, the era of the injection hole interval (osmosis consolidation diameter) is aiming for 1.5 to 4.0 m in the rapid penetration injection method from the conventional 0.5 to 1 m. Along with the expansion of the injection hole interval, the injection volume per stage is conventionally 100 to 200 l at a diameter of 1 m, and the injection time is from several tens of minutes to several tens of minutes. It is becoming a completely different content of setting a gel time corresponding to continuous injection of 10 to several hours from time.
このような薬液注入が本設注入工法に用いられるに当って、注入孔間隔が広がることによって生ずる注入効果の不確実性を本発明者は土中ゲル化時間の考え方を導入して、注入効果に及ぼす要因を考慮してその条件を設置することによって解決したものである。 When such chemical injection is used in this injection method, the inventor introduced the concept of gelation time in the soil to introduce the uncertainty of the injection effect caused by the widening of the injection hole interval. It was solved by setting the conditions in consideration of the factors that affect it.
本発明に使用するシリカグラウトとは、水ガラスを素材とするグラウトであって水ガラスと酸を混合して脱アルカリした酸性水ガラス溶液、或は、水ガラスを脱アルカリ処理して得られるより活性珪酸、或はこれを濃縮増粒したコロイダルシリカをベースにしたシリカを有効成分としたシリカグラウトであって、これに更に酸を加えて酸性シリカ溶液とし、或は、水ガラスやアルカリを加えてpHを調整してアルカリに安定化し、更に酸を加えた酸性シリカグラウト、或はコロイダルシリカや活性シリカと酸や水ガラスを混合したり、或いは酸性水ガラスを混合した酸性シリカグラウト等である。 The silica grout used in the present invention is a grout made from water glass and is an acid water glass solution obtained by mixing water glass and acid to dealkali, or obtained by dealkalizing water glass. Silica grout with active silicic acid or silica based on colloidal silica concentrated and granulated as an active ingredient. Add acid to this to make acidic silica solution, or add water glass or alkali. PH is adjusted to be stabilized with alkali, and acid silica grout with acid added, or colloidal silica or active silica mixed with acid or water glass, or acid silica grout mixed with acid water glass, etc. .
更に、詳しく云えば、水ガラスをイオン交換樹脂またはイオン交換膜によって水ガラス中のアルカリの全部または一部を除去し、または、水ガラスを酸と混合して水ガラス中のアルカリを中和し、得られる酸性水ガラスをイオン交換樹脂またはイオン交換膜によって酸性水ガラス中の酸または塩の全部または一部を除去した酸性活性シリカ、或はこれを濃縮重合して弱アルカリで安定化したコロイダルシリカ、活性シリカまたはコロイダルシリカに水ガラスを加えたシリカ溶液に酸を加えた酸性シリカグラウト、或は上記シリカの混合物或はこれらと水ガラスやアルカリを加えて調整して現場に搬入し現場でpH調整を行って酸性シリカ溶液を素材とするシリカグラウト等が挙げられる。 More specifically, the water glass is completely or partially removed with an ion exchange resin or an ion exchange membrane, or the water glass is mixed with an acid to neutralize the alkali in the water glass. Acidic active silica obtained by removing all or part of the acid or salt in the acidic water glass with an ion exchange resin or ion exchange membrane, or a colloidal stabilized by weak polymerization by concentration polymerization Add silica to silica, activated silica or colloidal silica with water glass, acid silica grout with acid added, or a mixture of the above silica or water with glass or alkali, adjust and bring to site. Examples thereof include silica grout using an acidic silica solution as a raw material after pH adjustment.
或はこれらの酸性シリカグラウトに炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウム、珪酸カルシウム等、難溶性アルカリ剤を加えて、その中和反応により徐々に中性方向に移動せしめることにより急激なpH上昇によるゲル化時間の短縮を抑え、かつゲル化後ほぼ中性に近いpH領域に達せしめて地下水の酸性化を抑えても良い。 Alternatively, these acidic silica grouts can be rapidly added by adding a poorly soluble alkaline agent such as calcium carbonate, magnesium carbonate, calcium hydroxide, magnesium hydroxide, calcium silicate, etc., and gradually moving in the neutral direction by the neutralization reaction. It is also possible to suppress the shortening of the gelation time due to an increase in pH and to reach the pH range close to neutral after gelation to suppress the acidification of groundwater.
一般に、シリカ源として水ガラスを用いるアルカリ性シリカグラウトはゲルの収縮が大きくなり、未反応水ガラスが溶出して耐久性は低下する。一方酸性水ガラスグラウトはシリカの溶出は少ないが収縮が大きい。これに対して水ガラスをイオン交換して得られる酸性を呈する活性シリカは低濃度であっても強度が高く収縮も少なく安定している。 In general, alkaline silica grout using water glass as a silica source has a large gel shrinkage, and unreacted water glass is eluted to reduce durability. On the other hand, acidic water glass grout has little shrinkage of silica but large shrinkage. On the other hand, the active silica exhibiting acidity obtained by ion exchange of water glass has high strength and is stable with little shrinkage even at a low concentration.
また、活性シリカを増粒したコロイダルシリカグラウトはシリカ粒子が大きく、ゲル自体は安定しているものの、シリカ濃度の高い割には固結強度が低く、かつ強度発現が遅いが、収縮が少なくシリカの溶出量が殆ど無視できるほど小さいため、ゲルが構造的にも化学的にも安定しており長期耐久性に優れている。これらを、単独または、用途に合わせて混合し使用するのが好ましい。 In addition, colloidal silica grout with increased active silica has large silica particles and the gel itself is stable. Is so small that it can be almost ignored, the gel is structurally and chemically stable and has excellent long-term durability. These are preferably used alone or in combination according to the application.
本発明で用いられる水ガラスはいかなるモル比のものでもよいが、実用的にはJIS3号水ガラスからモル比5迄の水ガラスである。なお、この水ガラスの代わりに珪酸カリ、珪酸アルミニウム等の水溶性珪酸塩を用いることもできる。 The water glass used in the present invention may have any molar ratio, but is practically a water glass from JIS No. 3 water glass to a molar ratio of 5. In addition, water-soluble silicates such as potassium silicate and aluminum silicate can be used in place of the water glass.
本発明に用いられる硬化剤としては、リン酸、硫酸等の鉱酸、硫酸水素ナトリウム、硫酸アルミニウム、塩化アルミニウム等、水に溶解して比較的強酸性を呈する塩類、炭酸ガス、炭酸塩、その他の無機塩類、金属有機酸等をあげることができる。 Examples of the curing agent used in the present invention include mineral acids such as phosphoric acid and sulfuric acid, sodium hydrogen sulfate, aluminum sulfate, aluminum chloride and the like, salts that dissolve in water and exhibit relatively strong acidity, carbon dioxide, carbonates, and the like. Inorganic salts, metal organic acids, and the like.
この中で特に、リン酸、リン酸系化合物をはじめとする金属イオン封鎖剤、キレート剤、或は更に硫酸等の併用した主成分とする反応剤は、シリカと共に地中のコンクリート構造物をマスキング作用によって難溶性シリカ化合物の被覆膜を形成するため、コンクリートを保護する効果があるので好ましい。 Among them, in particular, sequestering agents such as phosphoric acid and phosphoric acid compounds, chelating agents, and further reactive agents mainly used in combination with sulfuric acid, etc. mask the concrete structures in the ground together with silica. Since the coating film of the hardly soluble silica compound is formed by the action, it is preferable because it has an effect of protecting the concrete.
又、リン酸イオン等金属イオン封鎖剤を含むシリカは土中の微量金属や貝殻などのカルシウム分と反応して不溶性あるいは難溶性のシリカ化合物を作るため地盤中のアルカリ成分を不動態化して、浸透中の土中シリカの急激なpHの増加によるゲル化の短縮を抑えることが出来ると推測される。 In addition, silica containing sequestering agents such as phosphate ions reacts with trace metals in the soil and calcium components such as shells to produce insoluble or poorly soluble silica compounds, thus passivating alkaline components in the ground, It is presumed that the shortening of gelation due to a sudden increase in pH of the silica in the soil during infiltration can be suppressed.
なお、反応剤としては水溶性の塩化ナトリウム、塩化カリ、塩化カルシウム等の鉱酸のアルカリ金属塩、アルカリ土金属塩、あるいは硫酸バンド、塩化アルミニウム、ポリ塩化アルミニウム、明ばん等のアルミニウム塩等があり、これらを少量添加して、或は併用して緩衝能を高め、ゲル化時間調整剤としての機能を保持せしめることもできる。 Reactive agents include water-soluble sodium chloride, potassium chloride, calcium chloride and other mineral acid alkali metal salts, alkaline earth metal salts, or aluminum salts such as sulfate bands, aluminum chloride, polyaluminum chloride, and alum. In addition, a small amount of these may be added or used together to increase the buffering capacity and maintain the function as a gelling time adjusting agent.
さらに、本発明において、リン酸化合物以外の金属イオン封鎖剤を使用し、金属イオンのマスキングを期待せしめることもできる。このような金属封鎖剤としてテトラポリリン酸塩、ヘキサメタリン酸塩(特にナトリウム塩が良い)、トリポリリン酸塩、ピロリン酸塩、酸性ヘキサメタリン酸塩、酸性ピロリン酸塩等の縮合リン酸塩類、エチレンジアミン四酢酸、ニトリロトリ酢酸、グルコン酸、酒石酸またはこれらの塩類等を挙げることができる。 Furthermore, in the present invention, a metal ion sequestering agent other than the phosphoric acid compound can be used to expect metal ion masking. Such sequestering agents include tetrapolyphosphates, hexametaphosphates (especially sodium salts are good), tripolyphosphates, pyrophosphates, acidic hexametaphosphates, acidic pyrophosphates and other condensed phosphates, ethylenediaminetetraacetic acid Nitrilotriacetic acid, gluconic acid, tartaric acid, or salts thereof.
本発明に用いる代表的シリカ溶液としては特に水ガラスと酸を混合して水ガラス中のアルカリを中和して得られる酸性シリカ溶液(シリカ液I)や、コロイダルシリカ(或は活性シリカ)と水ガラスと酸を混合してなる活性シリカ系コロイダルシリカ溶液(シリカ液II)が好ましい。このうち酸性シリカ溶液と活性シリカ系コロイダルシリカ溶液の違いは、図1に示すようにシリカ液Iは中性領域で瞬結領域になるため、長いゲル化時間を得るには強酸性にする必要がある。又、ゲル化時間とpHの曲線が急なため、ゲル化時間の調整が難しい。 Typical silica solutions used in the present invention include acidic silica solutions (silica liquid I) obtained by mixing water glass and acid to neutralize alkalis in water glass, colloidal silica (or active silica), and the like. An active silica colloidal silica solution (silica liquid II) obtained by mixing water glass and an acid is preferred. Among these, the difference between the acidic silica solution and the active silica-based colloidal silica solution is that, as shown in FIG. 1, the silica liquid I becomes an instantaneous setting region in the neutral region, so it is necessary to make it strongly acidic to obtain a long gel time. There is. Further, since the gelation time and pH curve are steep, it is difficult to adjust the gelation time.
それに対してシリカ液IIでは中性領域でゲル化時間は短縮するものの瞬結には至らないので長いゲル化時間を弱酸性領域で得られることができるし、又、中性方向に移行してもゲル化時間が急激に短縮することがないので、長時間の土中ゲル化を得るのに適している。 On the other hand, in the silica solution II, the gelation time is shortened in the neutral region, but it does not lead to instantaneous setting, so a long gelation time can be obtained in the weakly acidic region, However, since the gelation time is not rapidly shortened, it is suitable for obtaining gelation in the soil for a long time.
これらの違いはシリカ液IIはコロイド状でシリカの粒径が大きく、シリカ液Iはコロイドのシリカの粒径が小さいことによる。シリカ液IIとシリカの両者を有効成分とするシリカ液は、これらの中間的特性を持つ。 These differences are due to the fact that silica liquid II is colloidal and has a large silica particle diameter, and silica liquid I is small in colloidal silica particle diameter. A silica liquid containing both silica liquid II and silica as active ingredients has these intermediate characteristics.
表1にリン酸系と硫酸系の注入液のpH(pHa)と気中ゲル化時間(Ta)の関係を示す。これから分かるようにリン酸を酸として使用すると硫酸を酸として使用する場合に比べてpHと気中ゲル化時間の勾配がゆるやかになり、pHの調整が容易であり、従ってゲル化時間の設定も容易である。 Table 1 shows the relationship between the pH (pHa) and the gelation time (Ta) in the air of the phosphoric acid and sulfuric acid injection solutions. As can be seen, when using phosphoric acid as the acid, the gradient of pH and air gelation time is gentler than when sulfuric acid is used as the acid, making it easy to adjust the pH. Easy.
これに対し、硫酸単独の場合、pHとゲル化時間の関係が急速に変化し、ゲル化時間は短いか、非常に長いかを設定する事は容易であるが、中間的ゲル化時間を調整することはリン酸の場合よりも難しい。しかし、アルミニウム塩を併用したり、リン酸化合物を併用すればpH並びにゲル化時間を容易に変化させることはできる。 In contrast, in the case of sulfuric acid alone, the relationship between pH and gelation time changes rapidly, and it is easy to set whether the gelation time is short or very long, but the intermediate gelation time is adjusted. It is more difficult to do than with phosphoric acid. However, if an aluminum salt is used in combination or a phosphate compound is used in combination, pH and gelation time can be easily changed.
したがって酸としてリン酸単独を用いるかリン酸と硫酸を併用して用いる方がpHやゲル化時間を共に調整する事は容易である。リン酸と硫酸を併用した場合、表1の中間的値が得られる。 Therefore, it is easier to adjust both pH and gelation time by using phosphoric acid alone as the acid or using phosphoric acid and sulfuric acid in combination. When phosphoric acid and sulfuric acid are used in combination, the intermediate values in Table 1 are obtained.
また、硫酸バンド、塩化アルミニウム、ポリ塩化アルミニュウム、ミョウバン等のアルミニウム塩を酸と併用する事も効果的である。即ち、リン酸と硫酸バンド、硫酸と硫酸バンド等の併用である。この場合、Alイオンの緩衝作用によってpHの急激な変化を抑えてゲル化時間の急激な変化を抑えるため、ゲル化時間の調整が容易になる。 It is also effective to use an aluminum salt such as sulfuric acid band, aluminum chloride, polyaluminum chloride, and alum in combination with an acid. That is, phosphoric acid and a sulfuric acid band, sulfuric acid and a sulfuric acid band, etc. are used together. In this case, since the rapid change in pH is suppressed by the buffering action of Al ions and the rapid change in gelation time is suppressed, the gelation time can be easily adjusted.
以下、本発明を実施例によって本発明の原理と構成、効果を説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the principle, configuration, and effect of the present invention will be described by way of examples. However, the present invention is not limited to these examples.
〔実験1〕
1)pHと強度変化
シリカグラウトの固結強度はpHによって変化することを実証するため、豊浦標準砂を用いた混合法(浸透法でもよい)によるサンドゲル供試体を作成し(Dr=60%)、一軸圧縮強度を測定した。
(1) モールド
内径約50mm、長さ約100mm
(2) 試料砂
豊浦標準砂
(3) シリカ注入液
[Experiment 1]
1) Change in pH and strength In order to demonstrate that the consolidation strength of silica grout changes with pH, a sand gel specimen was prepared by a mixing method using Toyoura standard sand (or an infiltration method) (Dr = 60%). The uniaxial compressive strength was measured.
(1) Mold inner diameter about 50mm, length about 100mm
(2) Sample sand Toyoura standard sand
(3) Silica injection solution
活性シリカに水ガラス(またはアルカリ)を加えて安定化したアルカリ性シリカゾルに酸を加えた酸性シリカ液を実施例とする。 An acidic silica liquid obtained by adding an acid to an alkaline silica sol stabilized by adding water glass (or alkali) to active silica is taken as an example.
〔活性シリカ〕
活性シリカは、3号水ガラスを水で希釈した液を陽イオン交換樹脂に通過して処理し、得られるpH2.8、比重1.03、SiO2=4.5%のシリカである。
[Active silica]
The activated silica is silica having a pH of 2.8, a specific gravity of 1.03, and SiO 2 = 4.5% obtained by passing a solution obtained by diluting No. 3 water glass with water through a cation exchange resin.
上記において活性シリカの代わりに活性シリカを増粒したコロイダルシリカを用いてもよい。又は、水ガラスと酸を加えて水ガラスのアルカリを除去して得られた酸性シリカゾルからなる酸性シリカ液を用いてもほぼ同様の効果が得られる。コロイドの大きな場合は、図1の活性シリカ系コロイダルシリカ(シリカ-II)の特性を持ちコロイドの小さな酸性シリカゾルの場合は、図1の水ガラス系酸性シリカ液(シリカ-I)の特性を持つ。 In the above, colloidal silica obtained by increasing the active silica may be used instead of active silica. Or even if it uses the acidic silica liquid which consists of acidic silica sol obtained by adding water glass and an acid and removing the alkali of water glass, the substantially same effect is acquired. When the colloid is large, it has the characteristics of the active silica colloidal silica (silica-II) shown in FIG. 1, and when the colloid is a small acidic silica sol, it has the characteristics of the water glass acidic silica liquid (silica-I) shown in FIG. .
この、上記酸性シリカ液では酸として75%リン酸を用い、シリカ濃度が5%となるように調整した。また、リン酸の添加量を換え、薬液のpHを2〜7に調整した。 In the acidic silica solution, 75% phosphoric acid was used as the acid, and the silica concentration was adjusted to 5%. Moreover, the addition amount of phosphoric acid was changed and pH of the chemical | medical solution was adjusted to 2-7.
pHと一軸圧縮強度の変化を表2に示す。 Changes in pH and uniaxial compressive strength are shown in Table 2.
シリカグラウトは酸性領域において、中性に近いほど一軸圧縮強度が高く発現し、酸性側になるほど一軸圧縮強度は低く発現する。 Silica grout expresses higher uniaxial compressive strength as it is closer to neutrality in the acidic region, and lower uniaxial compressive strength as it becomes acidic.
2)シリカ濃度とゲル化時間
シリカグラウトの地盤中でのゲル化時間は薬液中の硬化剤の量以外にも、シリカ濃度や地盤中の環境に左右される。薬液中のシリカ濃度が高い場合、ゲル化時間が早くなる。また、シリカグラウトをテーブルテストにより固結させた時のゲル化時間(ホモゲルのゲル化時間即ち気中ゲル化時間Ta)と、現場採取砂の中にシリカグラウトを混合し、ゲル化させた時のゲル化時間(サンドゲルのゲル化時間−土中ゲル化時間:Ts)とでは、砂のpH、砂中の成分の影響を受け差が出る。そこで、シリカ濃度6%でのゲル化時間(Ta)、土中ゲル化時間(Ts)(神戸現場採取砂)を測定した(表4)。
2) Silica concentration and gelation time The gelation time of silica grout in the ground depends not only on the amount of curing agent in the chemical solution but also on the silica concentration and the environment in the ground. When the silica concentration in the chemical solution is high, the gelation time is shortened. In addition, when the silica grout is consolidated by a table test (gel time of homogel, that is, air gelation time Ta) and when the silica grout is mixed with the sand collected in the field and gelled. The gelation time (sand gelation time-soil gelation time: Ts) differs depending on the pH of the sand and the components in the sand. Therefore, the gelation time (Ta) at a silica concentration of 6% and the gelation time in soil (Ts) (Kobe field sampling sand) were measured (Table 4).
コロイダルシリカ、水ガラス(モル比3.75)、75%リン酸を混合し、シリカ濃度が4、5、6%となるように調整し、薬液のみのゲル化時間(気中ゲル化時間)を測定した。 Mix colloidal silica, water glass (molar ratio 3.75), 75% phosphoric acid, adjust the silica concentration to 4, 5 and 6%, and measure the gelation time (gelation time in the air) of the chemical only did.
また、薬液10ml試料砂(神戸現場採取砂)を30g混合し、土中ゲル化時間(Ts)を測定した。その結果を(表4)に示す。 Moreover, 30g of chemical | medical solution 10ml sample sand (Kobe field collection sand) was mixed, and the gelation time (Ts) in soil was measured. The results are shown in (Table 4).
また、シリカ濃度5%の気中ゲル化時間(Ta)と現場砂中に混合した場合の土中ゲル化時間(Ts)とpH(pHs)の関係を図2に示す。 Further, FIG. 2 shows the relationship between the gelation time (Ta) in the air with a silica concentration of 5% and the gelation time in the soil (Ts) and pH (pHs) when mixed in the in-situ sand.
この時の試料砂のpH試験は、豊浦標準砂pH7.26、現場採取砂pH7.20である。 The pH test of the sample sand at this time is Toyoura standard sand pH 7.26 and on-site collected sand pH 7.20.
また、現場採取砂のカルシウムとClの含有試験の結果を表3に示す。 Table 3 shows the results of a calcium and Cl content test of the sand collected on site.
シリカグラウトは表2に示すとおり、酸性溶液型シリカグラウトの場合、中性に近いほど固結体の一軸圧縮強度が高くなる。しかし、中性領域になるほどゲル化時間が短く固結しやすい。 As shown in Table 2, in the case of the acidic solution type silica grout, the silica grout becomes higher in the uniaxial compressive strength of the consolidated body as it is closer to neutrality. However, the more neutral the region, the shorter the gel time and the easier it is to consolidate.
また、シリカ濃度が薄いとゲル化時間が長く、濃いとゲル化時間が短くなる。 Further, when the silica concentration is low, the gelation time is long, and when the silica concentration is high, the gelation time is short.
しかし、実際に注入する地盤においては、注入液が地盤中の貝殻等のカルシウム分や微量のアルカリ金属塩やアルカリ土類金属塩(表3)と反応してしまい、土中ゲル化時間(Ts)が薬液の気中ゲル化時間(Ta)より短くなる(表4、図2)。 However, in the ground that is actually injected, the injected solution reacts with calcium content of shells and the like in the ground, and a small amount of alkali metal salt or alkaline earth metal salt (Table 3), and the gelation time in the soil (Ts ) Becomes shorter than the air gelation time (Ta) of the chemical solution (Table 4, FIG. 2).
表4では、シリカ注入液、注入液混合砂のpHとゲル化時間を比較した。 In Table 4, the pH and gelation time of silica injection liquid and injection liquid mixed sand were compared.
シリカ注入液の気中ゲル化時間に比べ、現場砂中での土中ゲル化時間のほうが短い。これは現場砂が中性付近にある事と、カルシウム分(表3)による。 The gelation time in the soil in the field sand is shorter than the gelation time in the air of the silica injection solution. This is due to the fact that the sand in the field is near neutral and the calcium content (Table 3).
〔実験2〕
地盤中のシリカグラウトの地盤中でのpH(pHsf)の変化、注入地盤における浸透距離(L)と注入地盤のpH(pHsf)の変化、浸透距離(L)と強度(qu)を測定するため、浸透実験を行った。
(1) 試料砂
神戸現場採取砂
(2) 薬液
[Experiment 2]
Changes in pH (pHs f ) of silica grout in the ground, changes in infiltration distance (L) and infusion ground pH (pHs f ), infiltration distance (L) and strength (qu) In order to do so, a penetration experiment was conducted.
(1) Sample sand
(2) Chemical solution
活性シリカは、3号水ガラスを水で希釈した液を陽イオン交換樹脂に通過して処理し、pH2.8、比重1.03、SiO2=4.5%の活性シリカが得られた。 The active silica was processed by passing a solution obtained by diluting No. 3 water glass with water through a cation exchange resin, and active silica having a pH of 2.8, a specific gravity of 1.03, and SiO 2 = 4.5% was obtained.
更に、水ガラス(モル比3.75)、75%リン酸を混合し、シリカ濃度が4、5、6%となるように調整した。 Further, water glass (molar ratio 3.75) and 75% phosphoric acid were mixed to adjust the silica concentration to 4, 5, and 6%.
〔実験装置〕
事前準備として、図3の装置を用いて、試料砂12を長さ2mのアクリルモールド11上部より自由落下させて充填し(Dr=60%)、薬液の注入に先立って、水で飽和させた。
〔Experimental device〕
As an advance preparation, using the apparatus of FIG. 3, the
活性シリカ溶液と水ガラスの混合液、硬化剤、水をタンク4、5、6に入れ、ポンプ7により、水槽9中に投入する。
A mixed solution of an active silica solution and water glass, a curing agent, and water are put into
この時の投入量は流量計8によって管理する。水槽9に投入された薬液は、攪拌機10によって攪拌され、コンプレッサー1によって押し出され、アクリルモールド11中の試料砂12中に浸透される。薬液の注入は、アクリルモールド11下部より0.03MPaで定圧注入し、試料砂12中を通過した薬液はアクリルモールド11上部より排出され、メスシリンダー13に採取される。
The input amount at this time is managed by the
浸透後作成されたサンドゲル(浸透固結サンドゲル)供試体は、4週間静置した後、切断し、浸透距離10cmごとに一軸圧縮強度と供試体のpHを測定した。 The sand gel (penetration consolidated sand gel) specimen prepared after the infiltration was allowed to stand for 4 weeks, then cut, and the uniaxial compressive strength and the pH of the specimen were measured every 10 cm of the infiltration distance.
〔結果〕
1)流出液のpH変化
浸透試験においてアクリルモールド上部から流出した薬液のpH変化を観察した(図4)。
〔result〕
1) Change in pH of effluent The change in pH of the chemical solution flowing out from the upper part of the acrylic mold was observed in the penetration test (FIG. 4).
まず飽和した水が溢出した後注入液が溢水した。モールド中の間隙は約1500cm3である。間隙量に相当する溢出が終わって後の溢出液はpHが中性から酸性に徐々になることから、地盤中に注入された注入液は浸透距離が長くなるほど(溢出量が多くなるほど)中性から酸性に変化するまでの溢出量が大きかった。これは先行シリカ液の浸透距離が大きいほど希釈されやすいことを示しており、このため、先行シリカによる固結が不十分になることを意味している。 First, saturated water overflowed, and then the injection liquid overflowed. The gap in the mold is about 1500 cm 3 . After the overflow corresponding to the gap amount is over, the pH of the overflowing solution gradually changes from neutral to acidic, so that the injected solution injected into the ground becomes more neutral as the permeation distance becomes longer (the larger the amount of overflowing). The amount of overflow until it changed to acidic was large. This indicates that the longer the permeation distance of the preceding silica liquid is, the easier it is to be diluted, which means that the solidification by the preceding silica is insufficient.
又、同時に、注入初期段階の薬液とアクリルモールドの試料砂が反応し、中和されるため、先行シリカ液のpH(pHsf)が中性に近くなっている。しかし、注入量が増えるに従い、中和反応が終了し試料砂自体が酸性シリカ液に飽和されて溢出シリカ液のpH(pHsf)はシリカ液のpH(pHa)に近づきpHが低下する。 At the same time, since the chemical solution in the initial stage of injection reacts with the sample sand of the acrylic mold and is neutralized, the pH of the preceding silica solution (pHs f ) is close to neutral. However, as the injection amount increases, the neutralization reaction ends, the sample sand itself is saturated with the acidic silica liquid, and the pH (pHs f ) of the overflowing silica liquid approaches the pH (pHa) of the silica liquid and the pH decreases.
2)浸透距離と浸透固結体のpH試験によるpHの変化
現場採取砂の薬液注入一週間後、アクリルモールドを10cm間隔で切断し、アクリルモールド中の浸透固結体を削りとり試料50g採取し、蒸留水125g(質量比2.5)を混合攪拌した。2時間静置後にpHを測定した(図5)。これより、非アルカリ性シリカはそれ自体酸性でも最終的固結土はほぼ中世を呈する事が判る。然るに、注入工程中は先行する酸性シリカで土粒子が填充され、その中を後続する酸性シリカが浸透していくことによって、生ずる問題を本発明は解決するものである。
2) Penetration distance and pH change due to pH test of osmotic solids After one week of chemical injection of sand collected on site, the acrylic mold was cut at 10cm intervals, and the osmotic solids in the acrylic mold were scraped and a 50g sample was taken. Then, 125 g (mass ratio 2.5) of distilled water was mixed and stirred. The pH was measured after standing for 2 hours (FIG. 5). From this, it can be seen that the non-alkaline silica itself is acidic, but the final consolidated soil is almost medieval. However, the present invention solves the problem caused by the soil particles being filled with the preceding acidic silica during the injecting step and the subsequent acidic silica permeating therethrough.
3)浸透距離と強度変化
薬液中のシリカ濃度を4,5,6%としたときの現場砂での浸透距離と一軸圧縮強度の関係を図6に示す。
3) Penetration distance and strength change Fig. 6 shows the relationship between the penetration distance and uniaxial compressive strength in the sand when the silica concentration in the chemical solution is 4,5,6%.
〔実験3〕
シリカ溶液通液後の浸透砂の土中pH(pHsf)と浸透中土中ゲル化時間(Tsf)の変化
実際の地盤において、初期の注入薬液(表6)、中期の注入薬液、後期の注入薬液を通過させた後の、地盤の土中pH(pHsf)、薬液のpH(pHa)、薬液のゲル化時間(Ta)を以下の方法により調べた。
[Experiment 3]
Changes in soil pH (pHs f ) and infiltration soil gelation time (Ts f ) of infiltrated sand after passing through silica solution In the actual ground, the initial infusate solution (Table 6), mid-term infusate solution, late phase The pH of the soil in the soil (pHs f ), the pH of the chemical solution (pHa), and the gelation time (Ta) of the chemical solution after passing through the injected chemical solution were examined by the following methods.
〔実験方法〕
・現場砂 pH6.46
・薬液配合
〔experimental method〕
・ In-situ sand pH6.46
・ Combination of chemicals
漏斗の中に敷いた濾紙上に現場砂200mlを入れて水を通したものを20個用意し、No.1〜No.20まで付番する。これは、浸透試験2mに対し10cmの浸透距離に相当する現場砂量である。No.1が注入孔に最も近く、No.20は最も遠い。 Prepare 20 pieces of sand with 200ml of sand on the filter paper laid in the funnel, and number them No.1 to No.20. This is the amount of sand on site corresponding to a penetration distance of 10 cm for a penetration test of 2 m. No. 1 is the closest to the injection hole and No. 20 is the farthest.
注入薬液約100mlをNo.1の現場砂に加え、通過液を100ml取り、No.2の現場砂に通す。同じ操作をNo.20まで繰返し、それぞれの薬液通過後の現場砂のpH即ち土中pH(浸透通過薬液のpH:pHsf)を測定する。同じ操作を薬液15回分繰り返した。 Add about 100 ml of the injected drug solution to No. 1 on-site sand, take 100 ml of passing solution, and pass it through No. 2 on-site sand. The same operation is repeated up to No. 20, and the pH of the in-situ sand after passing through each chemical solution, that is, the pH in the soil (pH of the permeation chemical solution: pHs f ) is measured. The same operation was repeated 15 times.
〔結果〕
薬液が現場砂を通過した後の、薬液のpH(浸透薬液のpH:pHsf)、通過後の薬液のゲル化時間(浸透薬液の浸透土中ゲル化時間:Tsf)を、表7に示す。
〔result〕
Table 7 shows the pH of the chemical solution after passing through the sand in the field (pH of the penetrating chemical solution: pHs f ) and the gelation time of the chemical solution after passing (gelation time of the penetrating chemical solution in the osmotic soil: Ts f ). Show.
表7の各現場砂の通液量におけるpHの関係より、No.1においては薬液の影響を大きく受け、薬液の浸透後はほぼ薬液(pHa)と同じ浸透中土中pH(pHsf)になることがわかった。それに対し、No.20においては、最初の通液においてpHは大幅に上昇したものの硬化せず、したがって中和反応の進行でpHが上昇したが、希釈が大きくシリカ濃度が低下して固結しないことが判った。その後の通液においては、薬液の影響を受け、浸透中土中pH(pHsf)は下がったが、通液後のpHは内部ほど、又、通過回数が大きいほどpHa値に近くなった。 From the relationship between the pH of each site sand flow rate in Table 7, No. 1 is greatly affected by the chemical solution, and after penetration of the chemical solution, it is almost the same infiltration soil pH (pHs f ) as the chemical solution (pHa). I found out that On the other hand, in No. 20, although the pH increased greatly at the first liquid passage, it did not harden. Therefore, the pH increased due to the progress of the neutralization reaction, but the dilution was large and the silica concentration was decreased, so that it did not solidify. I found out. In the subsequent flow, the pH in the infiltrated soil (pHs f ) decreased due to the influence of the chemical solution, but the pH after the flow became closer to the pHa value as the inside and as the number of passages increased.
この原因として、薬液の通液量が増えるごとに、地盤のpHが低下し、また、浸透距離が少ないほど初期の浸透薬液の影響を受け、pHsfがpHaのpHに近くなることがわかる。このことから、実際の地盤においては、注入孔に近い地盤ほど薬液と反応しきった地盤に更に注入液に相当する薬液が填充される事になり、そのpHsfはpHaに近い値を呈し、浸透距離が長いほど、先行している浸透薬液のpHの酸性分は中和して失われ、pHsfも内部ほどpHが酸性側となっている。 As a cause of this, it can be seen that the pH of the ground decreases as the amount of the chemical solution passed increases, and that the shorter the permeation distance, the more affected by the initial penetrating chemical solution, the pHs f approaches the pH of pHa. For this reason, in the actual ground, the ground closer to the injection hole is filled with the chemical solution equivalent to the injection solution to the ground that has reacted with the chemical solution, and its pHs f exhibits a value close to pHa and penetrates. As the distance is longer, the acidic content of the pH of the previous penetrant solution is neutralized and lost, and the pHs f is also more acidic toward the inside.
又、浸透距離が長くなる程希釈が大きくなり固結が不十分になる。そして、後続するシリカ溶液は酸性の地盤中を通過するため、浸透中薬液のpH(pHsf)は注入液のpH(pHa)に近づき、内部ほど、浸透距離が長いほど、注入時間が長いほど、注入量が多いほど酸性が強くなり、したがって浸透薬液のゲル化時間は長いままになっている。 In addition, the longer the permeation distance, the greater the dilution and the insufficient consolidation. Then, since the subsequent silica solution passes through the acidic ground, the pH (pHs f ) of the chemical solution during infiltration approaches the pH (pHa) of the infusion solution, and the inside, the longer the permeation distance, the longer the infusion time. The larger the injection amount, the stronger the acidity, and thus the gelation time of the osmotic drug solution remains long.
次に地盤中を浸透後の薬液の通液量とゲル化時間の関係は、注入初期の薬液(浸透薬液)は2m浸透後のゲル化時間が長く、先行注入液が300ml以下の通液量ではゲル化しなかった。これは初期の浸透注入液が土中水により希釈されたものと思われる。通液量が多くなると(注入後期の後続注入液)においては地盤との反応により地盤との反応によりゲル化時間(浸透注入液のゲル化時間:pHsf)が400分と短く、注入液のゲル化時間(Ta)の約1000分と比べて短縮が見られた。 Next, the relationship between the flow rate of the chemical solution after penetrating the ground and the gelation time is as follows. For the chemical solution at the initial stage of the injection (penetration chemical solution), the gelation time after 2 m penetration is long, and the previous injection solution is 300 ml or less. Then, it did not gel. This is probably because the initial infusion solution was diluted with soil water. When the flow rate increases (subsequent injection solution in the later stage of injection), the gelation time (gelation time of the osmotic injection solution: pHs f ) is as short as 400 minutes due to the reaction with the ground due to the reaction with the ground. The gelation time (Ta) was shorter than about 1000 minutes.
図7に4〜6%の注入液のpH(pHa)と気中ゲル化時間(Ta)との関係を示す。表7のシリカ濃度5%の場合のNo.20、即ち一番端部における通過回数6〜12回の通過した注入液のpH(pHsf)とゲル化時間(Ts)の関係を重ねて示す。 FIG. 7 shows the relationship between the pH (pHa) of the injection solution of 4 to 6% and the air gelation time (Ta). No. 20 in the case of silica concentration of 5% in Table 7, that is, the relationship between the pH (pHs f ) and the gelation time (Ts) of the injected solution having passed through 6 to 12 times at the end is shown. .
これより、初期の通液ほど通過した薬液はpHが高くなるが希釈されることによりゲル化時間は長くなることが判り、後期に通過した注入液のpHは気中ゲル化時間(Ta)に近くなり、シリカ濃度もpHも5%の注入液のpHとゲル化時間のグラフとほぼ重なり、注入液の配合液そのものに近い通過液になっていることがわかる。 From this, it can be seen that the drug solution that passed through the initial liquid passage has a higher pH, but the gelation time becomes longer due to dilution, and the pH of the injection solution that passed in the latter period is the air gelation time (Ta). It can be seen that it almost overlaps the graph of the pH and gelation time of the injection solution with 5% silica concentration and pH, and it is a passing solution close to the mixture solution of the injection solution itself.
以上より次のことがわかる。地盤において浸透距離を長くし、改良地盤を広げるためには、シリカ溶液を地盤中に広範囲に注入する必要があるが、通常の注入圧力で注入を行うと、固結地盤の外周部では圧力勾配が低下するので、注入範囲が広くなると注入が不十分になり、充分な圧力勾配が得られず拡散による浸透に近くなってしまう。このため希釈によって固結体は外周部に行くほど強度低下が起こる。 From the above, the following can be understood. In order to increase the penetration distance and expand the improved ground in the ground, it is necessary to inject the silica solution into the ground extensively. However, when the normal injection pressure is used, the pressure gradient is generated at the outer periphery of the consolidated ground. Therefore, when the injection range is widened, the injection becomes insufficient, and a sufficient pressure gradient cannot be obtained, which is close to penetration by diffusion. For this reason, the strength of the solidified body decreases as it goes to the outer periphery due to dilution.
これを防ぐために、従来は薬液のシリカ濃度を高く設定する方法が用いられてきた。また、液状化防止等注入孔間隔を1〜4mにして大きな注入受持土量に対して、土粒子間浸透させるために注入速度を小さくすると非常に注入時間が長くなるが、土中ゲル化時間が注入時間以上になるように注入液の酸性反応剤の量を多くしてpHを低くしたシリカ溶液を用いてきた。 In order to prevent this, conventionally, a method of setting the silica concentration of the chemical solution high has been used. In addition, if the injection speed is reduced to infiltrate between the soil particles for a large amount of soil supported by setting the injection hole interval, such as liquefaction prevention, to 1 to 4 m, the injection time will become very long. A silica solution has been used in which the pH is lowered by increasing the amount of acidic reactant in the injection so that the time is longer than the injection time.
これは、従来では気中ゲル化時間に比べ土中ゲル化時間が短くなると、地盤中に注入された薬液は地盤に土粒子間浸透しないと考えられてきたからである。よって、注入液は注入時間に相当する土中ゲル化時間と同じかそれより長く設定した。このため前述のような問題が生じた。また、或いは注入液の酸性値を高くしてゲル化時間を長くすると地盤中に反応生成物である酸根を多く残すことになった。これは地下水の水質上好ましくなく、地中構造物にも好ましくないことになる。 This is because, conventionally, it has been considered that when the gelation time in the soil is shorter than the gelation time in the air, the chemical solution injected into the ground does not penetrate between the soil particles. Therefore, the injection solution was set to be equal to or longer than the soil gelation time corresponding to the injection time. For this reason, the above-mentioned problem occurred. Alternatively, when the acid value of the injection solution is increased to increase the gelation time, a large amount of acid radicals as reaction products are left in the ground. This is not preferable in terms of groundwater quality, and is not preferable for underground structures.
本発明はpHが非アルカリ領域のシリカグラウトを用いて注入孔間隔が1〜4mの好ましくは1.5〜4mの浸透固結径を得、逸脱することなく均等にかつ固結体のpHがほぼ中性で固結せしめるために1ステージ当りの注入時間(H)、注入液の気中ゲル化時間(Ta)、土中ゲル化時間(Ts)の関係を解明し本発明を完成した。 The present invention uses a silica grout having a non-alkaline pH range to obtain a permeation-consolidated diameter of 1 to 4 m, preferably 1.5 to 4 m, with a uniform pH of the consolidated body without deviating. Thus, the present invention was completed by elucidating the relationship between the injection time per stage (H), the in-air gelation time (Ta), and the soil gelation time (Ts).
〔実施例2〕
実施例1の結果をふまえて、実際地盤の浸透試験を行った。
[Example 2]
Based on the results of Example 1, an actual ground penetration test was conducted.
(1) 注入方法
本発明により注入する薬液の配合は土中ゲル化時間と注入時間の比式(1)の範囲で設計し地盤改良する場合と、本発明が設定する範囲外の比較例1、2の方法において地盤を改良する場合とを比較した。
尚、注入率は40%とした。
注入速度は、現場注入速度試験を行い決定した。
(1) Injection method The composition of the chemical solution to be injected according to the present invention is designed within the range of the ratio formula (1) between the gelation time and the injection time in the soil and the ground is improved, and Comparative Example 1 outside the range set by the present invention. Compared with the case of improving the ground in the method of 2.
The injection rate was 40%.
The injection rate was determined by performing an in-situ injection rate test.
○現場注入速度試験
注入を行う地盤において浸透により薬液が注入する注入速度を求める実験を行った。まず、注入を行う地盤において薬液を注入する速度と注入圧力の関係を実測し、図8に注入しない場合をゼロとし、縦軸に注入圧力、横軸に注入速度を記録した。
○ In-situ injection rate test An experiment was conducted to determine the injection rate at which the chemical solution was injected by infiltration in the ground where injection was performed. First, the relationship between the injection rate of the chemical solution and the injection pressure on the ground where injection is performed was measured, and the case where no injection was performed in FIG. 8 was zero, the injection pressure was recorded on the vertical axis, and the injection speed was recorded on the horizontal axis.
注入速度を上げると注入圧力も上がり、比例関係にある図8の初期直線勾配領域と、初期直線勾配から破壊勾配領域までの漸移領域の注入速度の範囲では、地盤中の空隙が薬液に置き換わっていると考えられる。しかし、注入速度と注入圧力がこの領域から外れると地盤中に乱れが生じ、脈状に注入されたり、亀裂が入るなどして浸透注入が行われていないことがわかる。これより、注入圧力と注入速度による初期直線勾配が求められ、比例関係から外れる注入速度を限界注入速度11(l/min)とし、漸移領域をq=11〜16(l/min)とした。 When the injection speed is increased, the injection pressure also increases, and in the initial linear gradient region shown in FIG. 8 in the proportional relationship and in the range of the injection speed in the transition region from the initial linear gradient to the fracture gradient region, the voids in the ground are replaced with the chemical solution. It is thought that. However, it can be seen that when the injection speed and the injection pressure deviate from this region, turbulence occurs in the ground, and the osmotic injection is not performed due to injection in a pulse shape or cracks. From this, the initial linear gradient based on the injection pressure and the injection speed is obtained, the injection speed deviating from the proportional relationship is the limit injection speed 11 (l / min), and the transition region is q = 11 to 16 (l / min). .
この結果より、本実験の注入速度qは限界注入速度以下の10(l/min)で行った。 From this result, the injection rate q in this experiment was 10 (l / min) which is lower than the limit injection rate.
本発明と比較例1、2を、表8にて比較する。 The present invention and Comparative Examples 1 and 2 are compared in Table 8.
表8の算出方法
1)本発明の地盤改良方法
改良地盤の体積=(4m/2)3×3/4×π=18.840m3=18840l
※改良地盤の体積は注入孔間隔より直径4mの固結体が作成されるものと考える。
注入量Q=改良地盤の体積×注入率=18840×0.4=7536l
注入時間H=注入量Q/注入速度q=7536/10=753.6分
注入時間比A=土中ゲル化時間Ts/注入時間H=14.5/251.2=0.058
これより本発明の地盤改良方法では式(1)の0.01≦A<1の範囲に入るので本発明の範囲である。
Calculation method of Table 8 1) Ground improvement method of the present invention Volume of improved ground = (4 m / 2) 3 × 3/4 × π = 18.840 m 3 = 18840 l
* The volume of the improved ground is considered to produce a consolidated body with a diameter of 4m from the injection hole interval.
Injection quantity Q = Volume of improved ground x Injection rate = 18840 x 0.4 = 7536 l
Injection time H = Injection amount Q / Injection speed q = 7536/10 = 753.6 minutes Injection time ratio A = Soil gelation time Ts / Injection time H = 14.5 / 251.2 = 0.058
Thus, the ground improvement method of the present invention falls within the range of 0.01 ≦ A <1 in the formula (1), and therefore is within the scope of the present invention.
2)比較例1:薬液の土中ゲルタイムTsが長く、注入時間比がA>1の場合の例を示す。
注入時間比A=土中ゲル化時間Ts/注入時間H=1000/753.6=1.327
2) Comparative Example 1: An example is shown in which the gel time Ts of the chemical solution is long and the injection time ratio is A> 1.
Injection time ratio A = Soil gelation time Ts / Injection time H = 1000 / 753.6 = 1.327
3)比較例2:薬液の土中ゲルタイムTsが短く、注入時間比がA<0.01の場合の例を示す。
注入時間比A=土中ゲル化時間Ts/注入時間H=7/753.6=0.009
3) Comparative Example 2: An example is shown in which the gel time Ts in the soil of the chemical solution is short and the injection time ratio is A <0.01.
Injection time ratio A = Soil gelation time Ts / Injection time H = 7 / 753.6 = 0.09
(2) 結果
表8に設定した注入条件で注入を行った後、それぞれの固結地盤よりサンプルを採取し土中pHと土中ゲル化時間を測定した。また、一週間後の一軸圧縮強度を測定した。サンプルの採取位置は改良地盤の図9において、サンプル1は隣接する注入固結体と接触する地盤、サンプル2は注入液の吐出口付近の地盤、サンプル3は固結体外周部の地盤とした。同様に比較例1、2においてもサンプルを採取し、改良地盤の比較を行った。その結果を表9に示す。データは3つの資料の平均値である。
(2) Results After injection under the injection conditions set in Table 8, samples were taken from each consolidated ground, and the pH in the soil and the gelation time in the soil were measured. Moreover, the uniaxial compressive strength after one week was measured. In FIG. 9 of the improved ground,
本発明を用いた固結地盤は吐出口付近の地盤(サンプル2)、固結地盤の外周部(サンプル3)、隣接固結地盤の接触部分(サンプル1)のすべてのサンプル位置で1日経過後にゲル化が見られた。また一軸圧縮強度もほぼ一定に発現することがわかった。 The consolidated ground using the present invention is one day at all sample positions of the ground near the discharge port (sample 2), the outer periphery of the consolidated ground (sample 3), and the contact portion of the adjacent consolidated ground (sample 1). Later gelation was observed. Moreover, it turned out that uniaxial compressive strength also expresses substantially constant.
比較例1においては、固結地盤の外周部(サンプル3)および、隣接固結地盤の接触部分(サンプル2)では1日後のゲル化が確認でき、十分な一軸圧縮強度が発現したものの、固結地盤は吐出口付近の地盤(サンプル2)ではpHが低くゲル化に約4日を要し、一軸圧縮強度も低かった。これは、吐出口付近で初期の注入液と反応し、後期の注入液が地盤と反応の終わった地盤に注入されるため、注入液はホモゲルのゲル化と同じ挙動を示し、ゲル化時間が長くなるものと思われる。また、ゲル化時間が長くなるため、強度発現が遅くなり、十分な一軸圧縮強度が得られなかったと思われる。 In Comparative Example 1, gelation after 1 day was confirmed at the outer peripheral portion of the consolidated ground (Sample 3) and the contact portion of the adjacent consolidated ground (Sample 2), and sufficient uniaxial compressive strength was expressed. In the ground near the discharge port (sample 2), the pH was low, and it took about 4 days for gelation, and the uniaxial compressive strength was also low. This is because it reacts with the initial injection solution near the discharge port, and the latter injection solution is injected into the ground and the ground after the reaction, so the injection solution shows the same behavior as the gelation of the homogel, and the gelation time is It seems to be long. Moreover, since gelation time becomes long, strength expression becomes slow and it seems that sufficient uniaxial compressive strength was not obtained.
比較例2においては吐出口付近の地盤(サンプル2)では、1日後にゲル化が見られ、十分な一軸圧縮強度が得られたものの、固結地盤の外周部(サンプル3)、隣接固結地盤の接触部分(サンプル1)では部分的に固結し、脈状にゲル化したため、均一な固結地盤が得られず、一軸圧縮強度が低下した。これは、ホモゲル中の酸量が少なく、地盤中のアルカリ成分と接触した際反応してしまい、注入液が固結地盤を形成する前に十分に浸透すること無く固結し固結地盤が得られないものと思われる。 In Comparative Example 2, the ground near the discharge port (Sample 2) showed gelation after 1 day and sufficient uniaxial compressive strength was obtained, but the outer periphery of the consolidated ground (Sample 3) and adjacent consolidated Since the ground contact portion (Sample 1) was partially consolidated and gelled in a vein shape, a uniform consolidated ground could not be obtained, and the uniaxial compressive strength decreased. This is because the amount of acid in the homogel is small and reacts when it comes into contact with the alkaline component in the ground, and the infused solution is solidified without sufficiently penetrating before forming the solid ground, and a solid ground is obtained. It seems to be impossible.
これより実際の施工現場において注入する際、本発明を用いれば土中ゲル化時間より長く地盤中に送液することができ、地盤改良地盤の注入孔間隔が長く薬液浸透距離が長くても充分浸透し均等に固結することが確認できた。 From this, when injecting at the actual construction site, if the present invention is used, it can be fed into the ground longer than the gelation time in the soil, and even if the distance between the injection holes of the ground improved ground is long and the chemical penetration distance is long enough It was confirmed that it penetrated and consolidated uniformly.
本発明の条件下では土中ゲル化時間が注入時間より短くても、地盤中では初期の薬液が短い浸透距離でゲル化し送液できなくなるのでは無く、初期の薬液は始めに浸透して外周がゲル化してくるにつれ、次から次へ送られてくる薬液によってpHが下がり、地盤中で固結することなく浸透し、浸透距離は長く1〜4mの注入径が可能となり、注入時間がゲル化時間を過ぎても注入圧の上昇はほとんどないことから本発明を見出した。 Under the conditions of the present invention, even if the gelation time in the soil is shorter than the injection time, the initial chemical solution gels at a short penetration distance and cannot be delivered in the ground. As the gel becomes gelled, the pH is lowered by the chemical solution sent from one to the next, and it penetrates without solidifying in the ground, the penetration distance is long and the injection diameter of 1 to 4 m is possible, and the injection time is gel The present invention was found because the injection pressure hardly increased even after the control time was exceeded.
土中ゲル化時間が注入時間より短い場合でもその浸透条件を設定することで、注入孔間隔が長くても均質に固結する注入を行うことが出来る事が判った。気中ゲル化時間が注入時間よりも長い場合でも、注入後地盤に浸透している薬液は地盤との反応により影響を受けるため、その効果は土中ゲル化時間と注入時間によってきまり、土中ゲル化時間が注入時間よりも短い事が必要であるが、短すぎても浸透しなく、その比率が0.001より大きいことが必要である。 It was found that even when the gelation time in the soil is shorter than the injection time, by setting the permeation conditions, it is possible to perform injection that solidifies uniformly even if the injection hole interval is long. Even if the gelation time in the air is longer than the injection time, the chemical solution penetrating the ground after injection is affected by the reaction with the ground, so the effect depends on the gelation time in the soil and the injection time. It is necessary that the gelation time is shorter than the injection time, but if the gelation time is too short, it does not penetrate and the ratio needs to be greater than 0.001.
更に又、気中pHが1.5〜8であって更に気中ゲルタイムTsが4000分以内であり、土中ゲルタイムTsは10分以上が好ましい。勿論、地表面に逸脱した場合土中ゲルタイム(Ts)が10分以内の配合を併用して急速にゲル化して逸脱を防ぐことが出来る。 Further, the air pH is 1.5 to 8, the air gel time Ts is preferably within 4000 minutes, and the soil gel time Ts is preferably 10 minutes or more. Of course, when it deviates to the ground surface, the gel time in the soil (Ts) can be rapidly gelled by using a combination having a gel time (Ts) within 10 minutes to prevent the deviation.
本発明における注入時間は1500分から15分の間が好ましい。1500分以上になると注入液が注入対象範囲へ分散しやすくなる。また15分以下だと目的の浸透距離を得られず、土中で注入液がゲル化してしまい、後続の注入液が逸脱し、脈状に固結してしまうため均一な改良地盤が得られないことが判った。 The injection time in the present invention is preferably between 1500 minutes and 15 minutes. When the time is 1500 minutes or longer, the injection solution is easily dispersed into the injection target range. Also, if it is less than 15 minutes, the desired penetration distance cannot be obtained, and the injected solution will gel in the soil, the subsequent injected solution will deviate and solidify in a vein shape, and a uniform improved ground can be obtained. I found that there was no.
〔実施例3〕
注入液の気中ゲル化時間(Ta)をその注入ステージにおける注入液の注入時間よりも長く、土中ゲル化時間(Ts)を上記注入時間より短く設定する方法について実地盤に注入した実施例を挙げ、以下に説明する。
Example 3
Example in which the gelation time (Ta) in the air of the injection solution is set longer than the injection time of the injection solution in the injection stage and the gelation time (Ts) in the soil is set shorter than the injection time. Will be described below.
本実施例に使用される薬液は次のものを用いた(pH1.51、シリカ濃度8%の薬液)。
水ガラス:比重(20℃)1.32、SiO2濃度25.5%、Na2O濃度7.23%、モル比3.75、pH11.5のものを使用。
コロイダルシリカ:陽イオン交換樹脂で処理せしめた水ガラス水溶液にアルカリを添加し、過熱して縮合安定化せしめ、濃縮したシリカコロイド溶液であって、SiO2濃度約30%、Na2O濃度0.7%以下、比重(20℃)1.21〜1.22、pH9〜10の物性を呈するコロイダルシリカ。
75%リン酸:
The following chemical solutions were used in this example (chemical solution with a pH of 1.51 and a silica concentration of 8%).
Water glass: Specific gravity (20 ° C) 1.32, SiO2 concentration 25.5%, Na2O concentration 7.23%, molar ratio 3.75, pH 11.5.
Colloidal silica: A colloidal silica solution that has been condensed and stabilized by adding alkali to a water glass aqueous solution treated with a cation exchange resin. It has a SiO 2 concentration of about 30% and a Na 2 O concentration of 0.7%. Hereinafter, colloidal silica having physical properties of specific gravity (20 ° C.) of 1.21 to 1.22 and pH of 9 to 10.
75% phosphoric acid:
(1) 地盤条件
本発明では改良地盤の土質、Fc値、地盤中のカルシウム量、土懸濁液のpHを測定する必要がある。土質としてカルシウムを多く含む地盤は薬液のゲル化が早まり浸透時間が短くなる傾向がある。Fc値の高い地盤は固結土量に対し薬液の浸透時間が遅くなる傾向がある。また土懸濁液のpHが高い場合、薬液のゲル化が早まる場合がある。
(1) Ground conditions In the present invention, it is necessary to measure the soil quality of the improved ground, the Fc value, the amount of calcium in the ground, and the pH of the soil suspension. The ground that contains a lot of calcium as the soil has a tendency that gelation of the chemical solution is accelerated and the permeation time is shortened. The ground having a high Fc value tends to delay the penetration time of the chemical solution relative to the amount of consolidated soil. Further, when the pH of the soil suspension is high, gelation of the chemical solution may be accelerated.
〔測定方法〕
Fc値:JIS A 1223「土の細粒分含有率試験方法」により求める。本実施例ではFc=4.5〜8.6であった。
地盤中のカルシウム量:現場砂をアルカリまたは水で抽出し、ICP法分析を行った。
〔Measuring method〕
Fc value: Determined according to JIS A 1223 “Soil fine grain content test method”. In this example, Fc = 4.5 to 8.6.
Calcium content in the ground: In-situ sand was extracted with alkali or water and analyzed by ICP method.
土懸濁液のpH:粒径が10mm以上の土粒子を取り除いた土を試料とする。固結した砂はときほぐしてから用いる。適量の試料をビーカーに入れ、試料の乾燥質量に対する水(試料中の水を含む)の質量比が5になるように蒸留水を加える。試料を攪拌棒で攪拌させ、30分以上、3時間以内静置したものを測定用の試料液とする。pH計にて測定する。本実施例では土質は貝殻交じり砂、水溶性カルシウム量105mg/kg、土懸濁液のpHは10.61であった。 PH of the soil suspension: The sample is a soil from which soil particles having a particle size of 10 mm or more are removed. Use the consolidated sand after loosening it. An appropriate amount of sample is placed in a beaker, and distilled water is added so that the mass ratio of water (including water in the sample) to the dry mass of the sample is 5. The sample is stirred with a stir bar and allowed to stand for 30 minutes or longer and within 3 hours to obtain a sample solution for measurement. Measure with a pH meter. In this example, the soil was sand mixed with shells, the amount of water-soluble calcium was 105 mg / kg, and the pH of the soil suspension was 10.61.
(2) 薬液の気中ゲル化時間(Ta)測定と、現場砂を用いた土中ゲル化時間(Ts)の測定
1)気中ゲル化時間(Ta)
薬液を配合してから薬液の粘度が100Mpa・sを超えるまでの時間を気中ゲル化時間とする(B型粘度計による)。本実施例では約3000分であった。
2)土中ゲル化時間(Ts)
注入対象地盤の代表的な土を採取し、これを必要に応じ乾燥(気乾)する。ゲル化時間測定用のカップに、この土100g(つき固める)を計り取る。これに薬液25〜30mlを入れよく混合する。貫入試験機の針かこれに類似するものをさし、これを引き抜いたとき孔が塞がらない状態になった時点をもって土中ゲル化時間とする。本実施例では24分であった。
(2) In-air gelation time (Ta) measurement of chemicals and in-soil gelation time (Ts) using in-situ sand
1) Air gelation time (Ta)
The time from when the chemical solution is blended until the viscosity of the chemical solution exceeds 100 Mpa · s is defined as the air gelation time (by B-type viscometer). In this example, it was about 3000 minutes.
2) Gelation time in soil (Ts)
A representative soil of the ground to be injected is collected and dried (air-dried) as necessary. Weigh 100 g of this soil (consolidate) into a cup for gelation time measurement. Add 25-30 ml of the drug solution to this and mix well. The penetration tester's needle or something similar to this is used, and when it is pulled out, the time when the hole is not blocked is taken as the gel time in the soil. In this example, it was 24 minutes.
(3) 現場砂を用いた固結砂の強度試験
室内試験にて施工現場にて採取した砂を用い、実際に注入する薬液と同じ配合にて供試体を作成し、強度試験を行った。供試体は直径5cm長さ10cmのモールドに現場砂と薬液を混合し作成した。
(3) Strength test of consolidated sand using on-site sand Using the sand collected at the construction site in the laboratory test, a specimen was prepared with the same composition as the chemical solution to be actually injected, and the strength test was performed. A specimen was prepared by mixing in-situ sand and a chemical solution in a mold having a diameter of 5 cm and a length of 10 cm.
現場砂は貝殻を多く含み、砂中のカルシウム量が多いため、薬液と混合すると薬液中の硬化剤と反応し発泡してしまい、作成した供試体には空洞が多くみられ、強度発現がみられず強度は0.13MN/m2であった。 In-situ sand contains a lot of shells and the amount of calcium in the sand is large, so when mixed with the chemical solution, it reacts with the curing agent in the chemical solution and foams, and the created specimen has many cavities and exhibits strength. The strength was 0.13 MN / m 2 .
そこで、試料(現場砂)に上載圧をかけ、薬液タンクから現場砂に薬液を浸透させ供試体を作成する方法により、施工地盤と同じ条件で供試体を作成した。作成された供試体は上載圧により供試体内部の空洞の発生が抑えられ、一軸圧縮試験により強度発現がみられ、強度は0.36MN/m2であった。 Therefore, a specimen was prepared under the same conditions as the construction ground by applying a pressure on the sample (on-site sand) and infiltrating the chemical from the chemical tank into the in-situ sand. In the prepared specimen, the generation of cavities inside the specimen was suppressed by the mounting pressure, and the strength was observed in the uniaxial compression test. The strength was 0.36 MN / m 2 .
よって、本発明において薬液を配合する場合、現場砂に多く貝殻等のカルシウム分を含む場合、上載圧をかけ実地盤と同じ条件により供試体を作成し強度を確認する必要がある。 Therefore, in the case where a chemical solution is blended in the present invention, when a lot of calcium such as shells is included in the on-site sand, it is necessary to apply a top pressure and prepare a specimen under the same conditions as the actual ground to confirm the strength.
(4) 注入条件より土中ゲル化時間と注入時間の比を求める。
注入孔間隔=2.0m
注入ステージ長=0.5m
改良地盤体積=(2.0m÷2)2×π×0.5=1.57m3
※改良地盤を直径2.0m深さ0.5mの直径として算出した。
注入率=40%
注入量=1.57m3×0.4=628l
注入速度=5l/分
注入時間=注入量/注入速度=125.6分
注入時間係数A=土中ゲル化時間/注入時間=24/125.6=0.19より、(式1)の範囲に当てはまる。
(4) The ratio of the gelation time in the soil and the injection time is determined from the injection conditions.
Injection hole interval = 2.0m
Injection stage length = 0.5m
Improved ground volume = (2.0m ÷ 2) 2 x π x 0.5 = 1.57m 3
* The improved ground was calculated as a diameter of 2.0m in diameter and 0.5m in depth.
Injection rate = 40%
Injection volume = 1.57m 3 × 0.4 = 628l
Injection rate = 5 l / min Injection time = injection amount / injection rate = 125.6 minutes Injection time coefficient A = Soil gelation time / injection time = 24 / 125.6 = 0.19, so that it falls within the range of (Equation 1).
(5) 施工結果
施工後の地盤をスウェーデン式貫入試験を行い、改良後の一軸圧縮試験の結果を調べ室内試験と比較を行った結果0.38MN/m2と室内試験と同様の強度が得られた。
(5) Construction results Swedish ground penetration test was conducted on the ground after construction, and the results of the improved uniaxial compression test were examined and compared with the laboratory test. As a result, 0.38 MN / m 2 was obtained, which was the same strength as the laboratory test. It was.
同様の条件で、比較例3として気中ゲル化時間(Ta)が5000分、土中ゲル化時間(Ts)1800分、A=14.33ものと、比較例4気中ゲル化時間(Ta)が1000分、土中ゲル化時間(Ts)7分、A=0.055ものとを注入し比較した。 Under the same conditions, Comparative Example 3 has an air gelation time (Ta) of 5000 minutes, soil gelation time (Ts) of 1800 minutes, A = 14.33, and Comparative Example 4 air gelation time (Ta). 1000 minutes, soil gelation time (Ts) 7 minutes, and A = 0.055 were injected and compared.
比較例3では注入後の地盤において、注入孔付近で強度の低下が見られ、1日経過後地盤を掘削した時点では部分的に固結していない地盤が見られた。比較例4では地盤中において脈状に注入され、均一に地盤改良することが出来なかった。 In Comparative Example 3, a decrease in strength was observed in the vicinity of the injection hole in the ground after injection, and a ground that was not partially consolidated was observed when the ground was excavated after one day. In Comparative Example 4, it was injected in a vein shape in the ground, and the ground could not be improved uniformly.
よって、本発明において特に地盤改良後に掘削工事を行う場合や、薬液の強度発現を早めるためには本発明の請求項1の(3)、請求項5の(3)に記載される15分〜1500分の注入時間が好ましく、また土中ゲルタイム(Ts)は請求項1の(2)、請求項5の(2)に記載される10分〜1500分の間に設定することで、地盤改良後の強度発現が早く、改良範囲を均一に改良できることがわかった。
Therefore, in the present invention, in particular, when excavation work is performed after ground improvement, or in order to speed up the development of the strength of the chemical solution, 15 minutes to (3) of
〔実施例4〕
本発明を以下の条件で柱状浸透方式により地盤改良を行った。
Example 4
The ground improvement of the present invention was performed by a columnar infiltration method under the following conditions.
柱状浸透方式は本出願人による特許文献1(特許第3509744号)に示される薬液の注入により地盤中に固結体をつくり、それを数ステージ行い地盤中に固結体を積み上げることで地盤改良する方法である。 Columnar infiltration method improves the ground by creating a solid body in the ground by injecting the chemical solution shown in Patent Document 1 (Patent No. 3509744) by the applicant, and stacking the solid body in the ground by performing several stages. It is a method to do.
本実施例に使用される薬液はpH3.3、シリカ濃度6%のものを用いた。
水ガラス:実施例3と同じ。
コロイダルシリカ:実施例3と同じ。
75%リン酸:
The chemical solution used in this example was one having a pH of 3.3 and a silica concentration of 6%.
Water glass: Same as Example 3.
Colloidal silica: Same as Example 3.
75% phosphoric acid:
(1) 地盤条件
土質は貝殻交じり砂、Fc値4.2〜9.2、水溶性カルシウム量40900mg/kg、土懸濁液のpHは9.3であった。
(1) Ground conditions Soil was mixed with shells, Fc value 4.2-9.2, water-soluble calcium content 40900mg / kg, and pH of soil suspension was 9.3.
(2) 薬液のゲル化時間測定と、現場砂を用いた土中ゲル化時間の測定
ゲル化時間は約2000分、土中ゲル化時間は30分であった。
(2) Measurement of gel time of chemicals and measurement of gel time in soil using in-situ sand
The gelation time was about 2000 minutes, and the gelation time in soil was 30 minutes.
(3) 注入条件より、土中ゲル化時間と注入時間の比を求める。
注入孔間隔=3m
注入ステージ長=1.5m
改良地盤体積=10.6m3
注入率=55%
注入量=5829l
注入速度=10l/分
注入時間=注入量/注入速度=582.9分
注入時間係数A=土中ゲル化時間/注入時間=30/582.9=0.051より、(式1)の範囲に当てはまるため、注入が可能である。
(3) From the injection conditions, find the ratio between the gelation time in the soil and the injection time.
Injection hole interval = 3m
Injection stage length = 1.5m
Improved ground volume = 10.6m 3
Injection rate = 55%
Injection volume = 5829 l
Injection rate = 10 l / min Injection time = injection amount / injection rate = 582.9 minutes Injection time factor A = soil gelation time / injection time = 30 / 582.9 = 0.051 Is possible.
(4) 施工結果
施工前と比較し、透水係数は1/100に下がった。
(4) Construction results The hydraulic conductivity decreased to 1/100 compared to before construction.
〔実施例5〕
本発明を以下の条件で多点浸透注入工法により地盤改良を行った。
Example 5
The ground improvement of the present invention was performed by the multi-point infiltration method under the following conditions.
本実施例に使用される薬液は施工地盤に隣接し、コンクリート構造物があるため、金属イオン封鎖剤として75%リン酸を使用し、またコロイダルシリカを使用することでpH3.3に設定し、シリカ濃度6%のものを用いた。
水ガラス:実施例3と同じ。
コロイダルシリカ:実施例3と同じ。
75%リン酸:
Since the chemical used in this example is adjacent to the construction ground and there is a concrete structure, 75% phosphoric acid is used as a metal ion sequestering agent, and colloidal silica is used to set the pH to 3.3. A silica having a silica concentration of 6% was used.
Water glass: Same as Example 3.
Colloidal silica: Same as Example 3.
75% phosphoric acid:
(1) 地盤条件
土質は砂、土懸濁液のpH7.5であった。
(1) Ground conditions The soil was sand, soil suspension pH 7.5.
(2) 薬液のゲル化時間測定と、現場砂を用いた土中ゲル化時間の測定。 (2) Measurement of chemical solution gelation time and soil gelation time using in-situ sand.
ゲル化時間は約1000分、土中ゲル化時間は97分であった。 The gel time was about 1000 minutes and the gel time in soil was 97 minutes.
(3) 室内試験により混合法で0.25MN/m2の強度が確認できた。 (3) A strength of 0.25 MN / m 2 was confirmed by a mixing method in laboratory tests.
(4) 注入条件より土中ゲル化時間と注入時間の比を求める。
注入孔間隔=3m
注入ステージ長=0.5m
改良地盤体積=3.53m3
注入率=40%
注入量=1412l
注入速度=5l/分
注入時間=注入量/注入速度=282.4分
注入時間係数A=土中ゲル化時間/注入時間=97/282.4=0.34より、(式1)の範囲に当てはまるため、注入が可能である。
(4) The ratio of the gelation time in the soil and the injection time is determined from the injection conditions.
Injection hole interval = 3m
Injection stage length = 0.5m
Improved ground volume = 3.53m 3
Injection rate = 40%
Injection volume = 1412 l
Injection rate = 5 l / min Injection time = Injection amount / Injection rate = 282.4 minutes Injection time factor A = Soil gelation time / Injection time = 97 / 282.4 = 0.34 Is possible.
(5) 施工結果
施工後の地盤をスウェーデン式貫入試験を行い、改良後の一軸圧縮試験の結果を調べ室内試験と同様の0.28 MN/m2の強度が得られた。また、施工後の地盤の注入孔付近の土中pHは5.1、構造物に接する地盤ではpH7.6であった。これより構造物に対する影響を抑えることが出来た。
(5) Construction results A Swedish penetration test was conducted on the ground after construction, and the results of the improved uniaxial compression test were examined. A strength of 0.28 MN / m 2 was obtained, similar to the laboratory test. Moreover, the pH in the soil near the injection hole of the ground after construction was 5.1, and the pH in the ground in contact with the structure was 7.6. From this, the influence on the structure could be suppressed.
1 コンプレッサー
2 圧力計
3 圧力計
4 活性シリカ溶液タンク
5 硬化剤タンク
6 水タンク
7 ポンプ
8 流量計
9 水槽
10 攪拌器
11 アクリルモード
12 試料砂
13 メスシリンダー
DESCRIPTION OF
10 Stirrer
11 Acrylic mode
12 Sample sand
13 Measuring cylinder
Claims (15)
(1) 注入液の配合と気中pH(pHa)と気中ゲル化時間(Ta)の関係を確認する。
(2) 改良対象地盤からの採取土と注入液を用いて、注入液の配合と、土中ゲル化時間(Ts)と土中pH(pHs)の関係を確認する。
(3) 採取土と注入液を用いて、注入液の配合と固結採取土の強度(qu)の関係を確認する。
(4) 要求される地盤改良強度から注入液の配合のシリカ濃度を決定する。
(5) 注入対象土層における改良土の単位体積あたりの注入量を算出する。
(6) 注入孔間隔と注入ステージ長を決定し、単位ステージあたりの受持土量から1ステージあたりの注入量(Ql)を算出する。
(7) 毎分吐出量(ql)を設定し、1注入ステージ当たりの注入時間(H)を設定する。
(8) 注入時間(H)と土中ゲル化時間(Ts)の関係から注入液の反応剤濃度を設定する。 A ground injection method for injecting silica injection solution into the ground, and the ground improvement method is characterized in that the composition of the injection solution is set according to the following methods (1) to (8) on the ground to be improved. .
(1) Check the relationship between Blend and aerial pH of the infusate (pHa) and aerial gelation time (Ta).
(2) Using the soil collected from the ground to be improved and the injection solution, check the composition of the injection solution and the relationship between the gel time in the soil (Ts) and the pH in the soil (pHs).
(3) Using the collected soil and the injected solution, check the relationship between the composition of the injected solution and the strength (qu) of the consolidated collected soil.
(4) Determine the silica concentration of the injection solution from the required ground improvement strength.
(5) Calculate the injection volume per unit volume of improved soil in the soil layer to be injected.
(6) The injection hole interval and the injection stage length are determined, and the injection amount (Ql) per stage is calculated from the amount of soil per unit stage.
(7) Set the discharge amount (ql) per minute and set the injection time (H) per injection stage.
(8) to set the reactant concentration of the infusate from the relationship between the injection time (H) and soil gelation time (Ts).
(1) 0.01≦A<1
(2) Ts<H<Ta
(3) 15分<H<1500分
(4) pHaが1.5〜8
ここで、
A :土中ゲル化時間Ts(分)と注入時間H(分)の比(=Ts/H)
Ta:注入液の気中ゲル化時間(20℃)
Ts:現物採取土と注入液の混合土のゲル化時間(分)
H :1ステージ当たりの注入時間(分)
pHa:気中pH The ground improvement construction method according to claim 1, 2 or 3, wherein the injection time (H) and the gelation time (Ts) of the injection solution are set so as to satisfy the following conditions.
(1) 0.01 ≦ A <1
(2) Ts <H <Ta
(3) 15 minutes <H <1500 minutes (4) pHa is 1.5-8
here,
A: Ratio of soil gelation time Ts (min) to injection time H (min) (= Ts / H)
Ta: In-air gelation time of injection solution (20 ° C)
Ts: Gelation time (min) of mixed soil of in-situ collected soil and injected solution
H: Injection time per stage (minutes)
pHa: Air pH
(1) 0.01≦A<1
(2) 10分<Ts<H<Ta<4000分
(3) 15分<H<1500分
(4) 2<pHa<8
(5) 3<pHs<9
ここで、
pHs:土中pH The ground improvement construction method according to claim 4, wherein the ground improvement construction method is set so as to satisfy the following conditions.
(1) 0.01 ≦ A <1
(2) 10 minutes <Ts <H <Ta <4000 minutes
(3) 15 minutes <H <1500 minutes
(4) 2 <pHa <8
(5) 3 <pHs <9
here,
pHs: pH in soil
(1) Q≧400l
(2) H≧60分 The ground improvement construction method according to any one of claims 1 to 5, wherein the injection amount (Q) and the injection time (H) per stage satisfy the following injection conditions.
(1) Q ≧ 400l
(2) H ≧ 60 minutes
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006234511A JP4437481B2 (en) | 2006-08-30 | 2006-08-30 | Ground improvement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006234511A JP4437481B2 (en) | 2006-08-30 | 2006-08-30 | Ground improvement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008057191A JP2008057191A (en) | 2008-03-13 |
JP4437481B2 true JP4437481B2 (en) | 2010-03-24 |
Family
ID=39240271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006234511A Active JP4437481B2 (en) | 2006-08-30 | 2006-08-30 | Ground improvement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4437481B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020020159A (en) * | 2018-07-31 | 2020-02-06 | 強化土エンジニヤリング株式会社 | Ground injection method and injection material |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5156928B1 (en) * | 2011-12-07 | 2013-03-06 | 強化土株式会社 | Durable ground improvement method |
JP2014092020A (en) * | 2012-11-07 | 2014-05-19 | Shimizu Corp | Grout injection method |
-
2006
- 2006-08-30 JP JP2006234511A patent/JP4437481B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020020159A (en) * | 2018-07-31 | 2020-02-06 | 強化土エンジニヤリング株式会社 | Ground injection method and injection material |
JP2021185301A (en) * | 2018-07-31 | 2021-12-09 | 強化土エンジニヤリング株式会社 | Ground injection method and injection material |
JP6995328B2 (en) | 2018-07-31 | 2022-01-14 | 強化土エンジニヤリング株式会社 | Ground injection method and injection material |
JP6992981B2 (en) | 2018-07-31 | 2022-02-03 | 強化土エンジニヤリング株式会社 | Ground injection method and injection material |
Also Published As
Publication number | Publication date |
---|---|
JP2008057191A (en) | 2008-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5578642B2 (en) | Ground injection agent and ground injection method | |
JP4437481B2 (en) | Ground improvement method | |
JP2008063495A (en) | Method for treating soil or building skeleton | |
JP4679811B2 (en) | Silica solution for ground injection and ground injection method | |
JP2008138069A (en) | Method for treating soil or construction skeleton | |
JP4753265B2 (en) | Ground injection material and ground injection method | |
JP4097664B2 (en) | Ground injection method | |
KR20030032847A (en) | Sealing composition and its use | |
JP5158390B2 (en) | Liquefaction prevention method | |
JP7212423B1 (en) | Ground injection method and ground injection device | |
JP3072346B2 (en) | Ground injection material | |
JP6998025B1 (en) | Silica grout and ground injection method using it | |
JP4212315B2 (en) | Soil consolidation method and concrete frame processing method | |
JPS6118593B2 (en) | ||
JP6712828B1 (en) | Ground injection material and ground injection method | |
JPS60144382A (en) | Grouting method and grouting apparatus | |
JP2020070559A (en) | Ground injection material and ground improvement method | |
JP2006226014A (en) | Grouting construction method | |
JP3437084B2 (en) | Injected material for ground consolidation and ground injection method using this injected material | |
JP4757428B2 (en) | Alkaline silica for solidification of ground, apparatus for producing the same, and ground consolidation material | |
JP7506442B1 (en) | Ground injection method and ground injection device | |
JP3776268B2 (en) | Chemical solution for ground injection | |
JPS59152986A (en) | Impregnation method for ground | |
JPH0662953B2 (en) | Ground injection with excellent durability | |
JP3714589B2 (en) | Chemical solution for ground injection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20090306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090402 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20090407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090421 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091222 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091222 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4437481 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |