JP4434417B2 - プリント配線板の検査装置 - Google Patents
プリント配線板の検査装置 Download PDFInfo
- Publication number
- JP4434417B2 JP4434417B2 JP2000081489A JP2000081489A JP4434417B2 JP 4434417 B2 JP4434417 B2 JP 4434417B2 JP 2000081489 A JP2000081489 A JP 2000081489A JP 2000081489 A JP2000081489 A JP 2000081489A JP 4434417 B2 JP4434417 B2 JP 4434417B2
- Authority
- JP
- Japan
- Prior art keywords
- inspected
- substrate
- hole
- light
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000007689 inspection Methods 0.000 title claims description 91
- 239000000758 substrate Substances 0.000 claims description 90
- 238000005286 illumination Methods 0.000 claims description 60
- 238000003384 imaging method Methods 0.000 claims description 35
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 description 23
- 238000000034 method Methods 0.000 description 14
- 238000012545 processing Methods 0.000 description 8
- 230000002950 deficient Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000009434 installation Methods 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000000873 masking effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Image Analysis (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Processing (AREA)
Description
【発明の属する分野】
本発明は、プリント配線板におけるスルーホール、配線パターン等を検査する検査装置に関する。
【0002】
【従来の技術】
従来、プリント配線基板等の検査には、配線パターン検査とスルーホール孔検査の2種類が行なわれている。配線パターン検査はデザインルール法、パターンマッチング法などで合格基板やCADデータから合格データを取得し検査することが一般的に行なわれている。この場合、被検査基板(以下、単に基板とも言う)の表面配線パターンを検査するため、カメラと同じ側にライン・リング・スポット照明などを設置し、配線パターンを映し出す。一方、スルーホール検査の場合は、透過光をカメラと反対側から照射して、その透過光による画像を取り込むことでスルーホール内に存在する異物の有無を確認できる。この2種類を組み合わせれば、配線パターン検査とスルーホール検査を同時に行なうことができる。しかし、スルーホール検査を一方向のみから行っていたのでは、カメラの焦点深度とプリント配線基板の大きさの関係からスルーホールの奥深くに存在する異物の有無が判断し難い場合がある。このため検査スピード向上も兼ねて表裏両面同時に行おうとすると、裏側に設置するカメラの延長線上において透過光用の照明が干渉するため(裏側にカメラを設置した場合、被検査基板とカメラとの間に照明が位置するため)、片側のみにしかカメラを設置することができなかった。従って、片面のみ検査を行い、裏側の面は検査を行なわないか、もしくは裏返して再度裏側の検査を行なわざるを得なかった。そして、前者の場合には検査精度の低下を招き、後者の場合には検査時間が増大することになっていた。
【0003】
【発明が解決しようとする課題】
本発明の解決すべき課題は、基板配線パターン及びスルーホールの検査において、スルーホールの検査精度を向上し、かつ検査時間を短時間とするような検査装置を提供することにある。
【0004】
【課題を解決するための手段及び作用・効果】
以上のような課題を解決するために、本発明のプリント配線板の検査装置は、
被検査基板両側において垂直方向に同軸に備えられた撮像装置と、
被検査基板両側に備えられてそれぞれ対応するハーフミラーを有し、被検査基板を挟んで反対側に備えられた前記撮像装置方向に落射照明する第1の光源と、
を備え、
前記撮像装置は、反対側からの前記落斜照明によるスルーホールの透過光を両側において同時に受光し、同一スルーホールの検査を表裏両側から行なう機構を有することを前提とする。
【0005】
このように、被検査基板両側に撮像装置を設置し、各撮像装置に対応した第1の光源によってハーフミラーを介して落斜照明し、透過光によってスルーホール状態を鮮明にすることで受光に伴う実像との誤差を軽減することができる。なお、被検査基板両側に備えられた撮像装置によって同一スルーホールの光情報を両側において同時に取り込むことで、表裏両面の検査が同時にできるため検査精度の高い検査方法となる。また、片側ごとの検査と比較して検査時間が短縮され、迅速な検査を行なうことができる。なお、本検査装置では、カメラの焦点深度がスルーホールの深さ以上ある場合には、スルーホールの検査を片側のみから行ない、配線パターンの検査を両側同時に行うようにしてもよい。いずれにしてもスルーホール検査及び配線パターン検査を両側同時に行いうる機構を有していればよい。
【0006】
そして、本発明のプリント配線板の検査装置は、
被検査基板両側において垂直方向に同軸に備えられた撮像装置と、
被検査基板両側に設けられてそれぞれ対応するハーフミラーを有し、被検査基板を挟んで反対側に位置する前記撮像装置方向に落射照明する第1の光源と、
前記被検査基板両側において前記撮像装置と同じ側に設けられ、前記撮像装置の撮像位置を斜方から照射する第2の光源と、
を備え、
前記撮像装置は、反対側からの前記落斜照明によるスルーホールの透過光と、同じ側における前記被検査基板表面からの前記第2の光源による反射光とを両側において同時に受光し、それぞれの撮像位置が前記被検査基板における表裏逆の同位置とされる機構を有することを特徴とする。
【0007】
このように、被検査基板両側に備えられた各撮像装置に対応した第1の光源によってスルーホール状態を鮮明にするとともに、第2の光源によって被検査基板を照射することで、被検査基板の表面状態(配線パターン、樹脂面等)をも鮮明にでき受光に伴う実像との誤差を軽減することができる。また、撮像装置によって被検査基板の表裏逆の同位置における光情報を両側において同時に取り込むことで、例えば同一のスルーホールについて、その近傍のパターン、樹脂面等を両側から同時に検査できるため、検査精度の高い検査方法となる。また、片側ごとの検査と比較して検査時間が短縮され、迅速な検査を行なうことができる。なお、本検査装置では、カメラの焦点深度がスルーホールの深さ以上ある場合には、スルーホールの検査を片側のみから行ない、配線パターンの検査を両側同時に行うようにしてもよい。いずれにしてもスルーホール検査及び配線パターン検査を両側同時に行いうる機構を有していればよい。
【0008】
前記第1の光源は、
1次元的に光を照射する第1のライン照明とされ、該第1のライン照明による前記落斜照明は、被検査基板上を略ライン状に照射し、その照射位置上のスルーホールにおいて前記透過光を反対側に放出し、
さらに、前記撮像装置は1次元的に光情報を受光するラインセンサを有し、そのライン方向は前記第1の光源のライン方向と同方向とされ、該ラインセンサによって反対側からの前記透過光を受光することもできる。
【0009】
このように、第1の光源に1次元的な照射光を放出する第1のライン照明を使用し、その第1のライン照明による落斜照明がスルーホールの透過光となるようにすることで、透過光を集光度の高いものとでき、撮像装置に十分な照度を与えることができる。また、撮像装置に1次元的に光情報を受光するラインセンサを使用することで、集光された光情報が1次元的に受光されることとなり、ライン照明が放出する光エネルギーがセンシングされる割合(ラインセンサによって検知される割合)が高くなり、効率的なものとなる。
【0010】
さらには、前記第1の光源は、
1次元的に光を照射する第1のライン照明とされ、該第1のライン照明による前記落斜照明は、被検査基板上を略ライン状に照射し、その照射位置上のスルーホールにおいて前記透過光を反対側に放出し、
前記第2の光源は、
1次元的に光を照射し、そのライン方向が第1のライン照明と同方向である第2のライン照明とされて同側に備えられた前記撮像装置による撮像位置を略ライン状に照射し、
さらに、前記撮像装置は1次元的に光情報を受光するラインセンサを有し、そのライン方向は前記第1の光源、及び前記第2の光源のライン方向と同方向とされ、前記ラインセンサによって、反対側からの前記透過光及び同側における前記反射光を受光するようにすることもできる。
【0011】
このように、 第2の光源においても1次元的に光を照射する第2のライン照明を使用することで、被検査基板に集光度の高い光を照射でき、反射光が照度の高いものとなる。さらに、反射光をラインセンサによって受光することで、受光効率を高くすることができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を、図面に示す実施例を参照しつつ説明する。
図1に示されるように、撮像装置にはラインセンサを有する5000画素の1次元CCDカメラ10(以下、単にCCDカメラ10とも言う)を用い、被検査基板を挟んで上部に上部CCDカメラ10a、下部に下部CCDカメラ10bが同軸上に位置している。それら上部CCDカメラ10a、下部CCDカメラ10bはセンシング方向を対向させており、その撮像位置は設置台32上に備えられた被検査基板11(図3参照)において表裏逆の同位置となっている。その1次元CCDカメラ10によって取り込んだ1次元画像を、コンピューター等の画像処理装置内部のRAM等の記憶装置に2次元データとして記憶し、画像処理を行なう。1次元CCDカメラ10を使用することにより検査視野を大きくとることができ、さらに、スルーホール検査においてスルーホールを透過する透過光をカメラ側に効率良く入射することができる。また、1次元CCDカメラ10を使用することにより、検出されるスルーホールの径が光の入射角度等の違いによってばらつくことがなく、検出誤差が少なくなる。
【0013】
そして、1次元CCDカメラ10にはテレセントリックレンズを使用することで、焦点を深くすることができるとともに、計測精度を高くできる。さらに、1次元CCDカメラ10の分解能は被検査基板となるプリント配線板の寸法によって最適な設定とすることが望ましく、5μmないし20μm程度に設定する。なお、20μmを超えると、測定精度を十分に確保できなくなる場合が生じ、他方5μm未満となると視野が狭くなりすぎ、例えば単位基板が視野内に収まらなくなる等の不具合が生じる。1次元CCDカメラ10はX方向における所定幅のラインデータを取り込むこととされ、分解能を8.5μmとしている。なお、本実施例のCCDカメラ10においてはラインデータの検査幅は34mmとなっている。また、撮像装置についてはラインセンサを有する1次元CCDカメラ10としているがこれに限定されるものではなく、2次元センサ(例えば2次元CCDセンサを有するもの)としてもよい。
【0014】
以下、画像撮影等を行う撮影ユニットについて説明する。まず、図3及び図4を参照してその概要を説明すると、第2の光源としてとして斜方からハロゲン光のパターン検出用ライン照明9a、9b(以下、単にライン照明9a,9bとも言う)を照射している。このライン照明9a,9bによって、被検査基板11(プリント配線板等)表面部におけるCCDカメラ10による画像取り込み位置付近を、ライン状に両側から照射している。さらに、第1の光源となるスルーホール検出用ライン照明17a,17b(以下、単にライン照明17a,17bとも言う)によって、それぞれハーフミラーを介して落斜照明し、それぞれ反対側のCCDカメラに透過光を照射している。このように第2の光源によって被検査基板11の基板部、配線パターンに、第1の光源によってスルーホールにそれぞれ安定した照度を与えている。
【0015】
次に、上部に備えられた上部CCDカメラ10a、及びそれに対応する光源等による被検査基板表側の画像の取り込みについて説明する。図4の説明図に示されるように、配線パターン検査用光源としてのパターン検出用ライン照明9aによって、被検査基板11(プリント配線板)表面部における上部CCDカメラ10aによる画像取り込み位置近傍を、X方向に延びるライン状に両側から照射し、被検査基板11の基板部36、配線パターン37等に安定した照度を与え、それら要素からの反射光において十分な照度が確保されるようにしている。なお、パターン検出用ライン照明9aの先端部には集光レンズ26aが備えられ、高い照度にて照射可能とされている。また、第1の光源としてはハロゲン光等によるスルーホール検出用ライン照明17bが被検査基板11の裏面側(被検査基板下側)に設置され、その照射光は、同じく裏面側に設置されたハーフミラー12を照射している。なお、図3に示されるようにスルーホール検出用ライン照明17bの先端部においても集光レンズ26bを取り付け、集光することで高い照度とすることができる。さらに、上部ハーフミラー12aの上下には光透過性の高いガラス等のカバー27が備えられ、ハーフミラーを防護するとともに光軸の通過を可能としている。また、スルーホール検出用ライン照明17bは焦点調整手段となる調整ねじ24bによって移動可能とされ、スルーホール検出用ライン照明17bをハーフミラー12bに接近あるいは離間させることで焦点位置を調整する。
【0016】
このように、ライン照明を各所に使用することにより、照度を強くすることができ、検出画像の誤差を少なくすることができる。なお、本実施例においてパターン検出用としての第2の光源、及びスルーホール検出用としての第1の光源についてそれぞれライン照明を使用しているが、これに限定されるというものではない。例えば、1次元的光源(ライン照明等)とせずに2次元的光源を使用してもよく、また、照明の種類、本数等においても検査対象となる被検査基板等に合わせ種々のものとすることができる。例えば、半田等鏡面形状に近いものにはLED照明が有効となるため、これを使用したり、上面からの光源としてはリング照明を用いることもできる。このように、選択する光源は被検査基板の材質、表面状態、使用環境等に合わせたものを使用することが望ましい。
【0017】
図4の説明図に示されるように、下部ハーフミラー12bは、第1の光源となるスルーホール検出用ライン照明17bの照射方向に対し、所定角度傾斜した状態に設置され、その反射光が被検査基板11に垂直に落射照明されるようにする。なお、本実施例においてはスルーホール検出用ライン照明17bによって水平方向に照射され、下部ハーフミラー12bは照射方向に対し45度傾斜することで水平移動する被検査基板11に垂直に反射光を照射している。さらに、被検査基板11に形成されたスルーホール35をその落射照明が透過し、その透過光は反対側に備えられた上部ハーフミラー12aを透過する。そして、その透過光による光情報は、延長線上に位置する上部CCDカメラ10aによって、スルーホール35の形状を示す光情報として受光されることになる。このように、落射照明による透過光によってスルーホール35は十分な照度を与えられ、その形状が基板上において明確になり、光情報取得の際の誤差が軽減される。また、上部CCDカメラ10aはスルーホール35の透過光に加え、被検査基板表面からの反射光をも受光し、その反射光は被検査装置の表面状態を示す画像として認識されることとなる。反射光は樹脂面等を有する基板部36、メッキ等が施された配線パターン37等、個々の要素において固有の色情報(例えば、個々の要素において固有の濃度値範囲を有する濃淡階調情報)となり、さらに、前述したスルーホール35を示す透過光も固有の色情報を有することとなるため、展開された2次元画像においてその固有の色情報によって各要素の形状を明確化し、該要素形状等が正常か否か判定することとなる。
【0018】
また、被検査基板11下部に備えられた下部CCDカメラ10bによる被検査基板裏側の画像の取り込みについても同様の構成にて行なう。その際、被検査基板裏側表面を照射する第2の光源にはパターン検出用ライン照明9bを用い、さらに、第1の光源にはスルーホール検出用ライン照明17aを使用し、上部ハーフミラー12aを介して被検査基板11に垂直に落射照明する。そして、その落射照明による被検査基板下方への透過光が下部ハーフミラー12bを透過して下部CCDカメラ10bに至り、その光情報を下部CCDカメラ10bが取り込むことで画像情報とする。また、パターン検出用の光源はパターン検出用ライン照明9bだけでなく、下部ハーフミラー12bによる落射照明を補助光として利用し、同様に、上部ハーフミラー12aによる落射照明は被検査基板表側におけるパターン検出用の補助光源として利用している。このように、ハーフミラーによる落射照明をスルーホール検出用照明としてのみ使用するだけでなく、パターン検出用照明として利用することで照明の利用が効率的なものとなり、画像抽出のための十分な照度を確保できる。
【0019】
以上のように、上下に備えられたCCDカメラ10のそれぞれに対応した第1の光源、及び第2の光源が被検査基板に対し対称に備えられており、表裏の画像情報を同時に取り込めることとなる。また、CCDカメラ10は同軸上に備えられ、その画像取得位置は被検査基板における表裏逆の同位置となっている。従って、同一スルーホールの状態を表裏同時に取り込めるため、スルーホール検査が精密に行なえ、片面づつの検査と比較するとその検査時間は半分以上に短縮される。なお、ここで半分以上としたのは、片面分の検査時間を短縮できるだけでなく、被検査基板を裏返して設置する手間をも省けるからである。
【0020】
また、検査時間を更に短縮する為、このような照明・カメラ系を複数組配置することもできる。複数組の照明・カメラ系を備えた場合には、一度のセンシングで取得できる映像のデータ量が多くなり、広範囲の画像を一度に取り込むことができるため、検査時間を更に短縮することができる。本実施例においては図1に示されるように2組使用しており、検査範囲を広くし、高速化を可能としている。また、高速処理を行なうため、検査画像取込と、画像処理・測定を並列処理することとなる。
【0021】
以下、検査装置におけるアクチュエーター等の構成及びその作動について説明する。図1に示されるように、検査装置は被検査基板11(図3参照)と撮像装置(1次元CCDカメラ10)との相対的位置調整を行う複数の位置調整手段を有する。1次元CCDカメラ10は、Z方向ステッピングモータ15(位置調整手段)に取り付けられたZテーブル20に固定されてZ方向に移動可能とされ、更に、Z方向ステッピングモータ15はX方向ステッピングモータ13(位置調整手段)に取り付けられたXテーブル16に固定されてX方向に移動可能とされている。即ち、CCDカメラ10は位置調整手段となるXZ両ステッピングモータによってXZの正負両方向に移動され、被検査基板との相対的位置を調整可能とされている。従って、CCDカメラ10をZ正負方向に移動することで焦点調整が可能となり、X正負方向に移動することによってX方向における検査位置を順次変えることができる。
【0022】
また、図2に示されるように、本体フレーム上にはY方向ステッピングモータ14(位置調整手段)によってY正負方向に移動可能とされる台座34が備えられている。そして、その台座34上には、被検査基板11(図3参照)を設置可能とする設置台32が設けられ、被検査基板11が設置された設置台32はエアシリンダー等の駆動手段によって台座34上をY方向に移動された後、エアシリンダー等の駆動手段によってZ方向に移動可能とされたカバー30によって押さえられる。従って、設置台32はカバー30の下部にて台座34上に固定され、Y方向ステッピングモータ14による駆動によって台座34と一体化してY正負方向に移動し、それによって被検査基板11と撮像装置(CCDカメラ10)のY方向における相対的位置関係が調整される。なお、カバー30、設置台32、台座34は被検査基板11の設置部を開口して形成され、被検査基板11は表面を露出した状態で外縁近傍を固定されている。
【0023】
図5に検査装置における主制御部の電気的構成を示す。主制御部100はI/Oポート101とこれに接続されたCPU102、ROM103、及びRAM104等からなるマイクロプロセッサを備え、ROM103には主制御プログラム103aが格納されている。このように構成されたマイクロプロセッサは、ワーク取付機構41(シリンダ等の駆動手段による設置台32の移動及びカバー30による固定等の機構)によってワークを取り付けた後、CPU102が主制御プログラム103aを呼び出し、制御を開始する。そしてCPU102はそのプログラムを受けてI/Oポート101に接続されたX方向ステッピングモータ13及びY方向ステッピングモータ14を駆動させてCCDカメラ10を検査開始位置に相対的に移動させる。そして、X位置を停止した状態において、被検査基板11がY方向ステッピングモータ14によって移動され、順次Y方向の相対的位置を変えてゆくこととなる。そして、CCDカメラ10は変更位置の画像を順次取り込み、XY両方向の位置情報を含んだ2次元画像データを生成する。なお、本検査装置において、CCDカメラ10によって取り込めるラインデータの幅(X方向幅)は34mmである。そして、一般的には被検査基板11は複数の単位基板によって構成されており、その単位基板の一辺が34mm以内であれば、一回のY方向へのセンシングで単位基板全体を網羅できる。また、その一辺が34mmを超えるものであれば、検査幅が広いCCDカメラを使用するか、またはX方向に位置をずらすことで2度に分けてセンシングし、後に画像を合成するようにしてもよい。なお、検査装置においてはアクチュエーター等の駆動処理と、撮影・解析ユニット40による画像取り込み、又はその解析を並列処理で行うことができる。
【0024】
次に、1次元CCDカメラによって取り込まれた画像の処理方法について説明する。その概要は、1次元CCDカメラによって所定のタイミングで取り込まれるX方向のラインデータは、被検査基板がY方向に所定の速度で移動するため、取り込み時のY位置に対応した情報として取り込まれ、1次元のラインデータから2次元データに変換処理されて被検査基板11の表面状態を示す画像情報とされる。その2次元データは、スルーホール、配線パターン、基板部、異物等のそれぞれの位置情報、色情報等を有する画素データを有するため、各画素データを演算処理することで被検査基板11の良否判定を行う。
【0025】
画像撮影及び解析を行う撮影・解析ユニット40について図6に示される電気的構成を示すブロック図を参照して説明する。その制御部(以下画像解析部ともいう)110が、I/Oポート111とこれに接続されたCPU112、ROM113及びRAM114を有するマイクロプロセッサを備え、ROM113には画像解析プログラム113aが格納されている。また、I/Oポート111には撮像装置としての前述のCCDカメラ10(1次元CCDセンサ115とそのセンサ出力を1次元デジタル画像入力信号に変換するためのセンサコントローラ116とを含む)が接続されている。また、RAM114には、CPU112のワークエリア114a、CCDカメラ10による被検査基板11(図4等参照)の撮影画像データを記憶するためのメモリ114bが形成されている。なお、CPU112は、画像解析プログラム113aを受けて解析処理を行い、被検査基板11が正常か否かを判定可能としている。
【0026】
なお、ラインデータを構成する各画素ごとの色情報として、例えばその画素検出位置の被検査基板11に対応した濃淡情報が与え、その濃淡情報を量子化して各画素ごとの濃度値を求めることができる。例えば、濃度値を256段階とされた濃淡階調情報とし、最小値となる0を濃、最大値となる255を淡とすると、孔の部分は濃度値250以上、配線パターン部分は濃度値120前後、樹脂部分は濃度値40以下等、各要素によって示される濃度値が異なるため、濃度値によって明確に区別できることとなる。本実施例においては、スルーホール35の境界となる閾値を濃度値200とし、その濃度値200を超える画素をスルーホール画素とし、2次元画像情報においてスルーホール35が存在する位置と認識し、その形状を明確化する。
【0027】
次に、被検査基板の良否判定を行う画像解析プログラムにおいて、その測定方法例を説明する。予めCADデータ又は良品データから取得して設定されるスルーホールの孔中心データを、パターンマッチング等の手法により二次元的に展開された濃淡画像(1次元CCDカメラ10によるラインデータを2次元的に展開した画像)上に重ね合わせる。さらに、その孔中心からXYの各正負方向(計4方向)に実際の画像メモリ上を走査させ、スルーホール35から被検査基板11又は配線パターンに変化する点(即ち、スルーホール35周部となる点)を求める。その際に、スルーホール35の端部の閾値(本実施例では、濃度値200)以下に変化する変化点を探すようにしてもよいし、被検査基板11を示す画素、又は配線パターンを示す画素が出現する点を探すようにしてもよい。いずれにしろ、Xの正負両方向においてスルーホール35周部と交差する2点の中点のX座標、及び、Yの正負両方向においてスルーホール35周部と交差する2点の中点のY座標、が検出されたスルーホール35の基点の座標となる。なお、孔中心データによる位置を基点50の座標とすることもできる。
【0028】
また、基点50から放射状に走査する方向については、図7では基点50に対して角度45度ごとに8方向(矢印AないしHの方向)を走査することとしている。なお、検査方向となる走査線数は任意に設定できるが、多方向とすると検査を高精度に行なうことができる反面、取得データ量が多くなり検査時間が長時間となる。また、方向数を減らすと検査時間は短時間となるが精度が低下する。よって、検査時間、精度等を考慮し、検査方向を決めることとなる。なお、8方向ないし16方向程度に方向数を設定すると、検査の精度を保ちつつ、検査時間を短時間とすることができる。
【0029】
そして、図8に示されるように、前述した方法等で算出された基点50に対し外周部に向って放射線状にスルーホールを外れる位置までの距離を測定する。なお、形成されたスルーホールの中心点がCADデータ又は良品データから取得して設定される孔中心データと一致し、スルーホール内に異物の存在しない正常なものであるならば、測定される各方向の距離は、すべてスルーホール半径と等しくなる。従って、本検査方法においては、各検査方向ごとスルーホール半径が許容範囲であるか否かを判定することになる。なお、検査方向が中心について対称な2方向により求められるスルーホールの直径を用いても、同様に検査判定することができる。
【0030】
次に、画像情報における距離の測定方法等について説明する。基点50から濃度値が200を超える画素を画素単位でカウントし、濃度値が200以下に変化する点、即ちスルーホールを外れる点までにカウントされる画素数を被検査基板サイズに対応させて距離に変換し、スルーホール半径を算出する。例えば、図8における矢印C方向のように走査線上に異物等が存在せず、スルーホール35の周部の形状も正常である場合には、変換された距離が予め登録されている正規半径と等しくなるため正常であると判定される。しかしながら、矢印E方向のように走査線上に異物51が存在するような場合、基点50から異物51端部の変化点55までの距離をカウントした画素数を基に算出し、測定したスルーホール半径が許容範囲内にあるか否かを判定することとなる。このような場合には、その測定したスルーホール半径が正規半径よりも短くなるため被検査基板は不良と判定される。なお、この検査方法の適用については本実施例のような円形のスルーホールに限定されない。例えば、多角形、楕円、その他の形状等においても、所定の位置(例えば重心)を基点として放射状に距離を測定し、それぞれ許容される距離範囲内にあるか否かを判定すればよい。この場合、各方向ごとに予め許容範囲を設定し、各方向ごとに基準を満たすか否かを判定することになる。
【0031】
また、濃淡画像のまま走査せず、2値化した後に同様の走査をしてもよい。2値化画像において走査する場合の例としては、濃度値200という閾値を1と0のデータに分割する値とし、そのデータが1(画像上では白)の場合には、スルーホール画素としてスルーホール35と認識され、データが0(画像上では黒)の場合には基板部又は配線パターンと認識する。従って、データ値が1から0に変化する部分(画素において1と0が並んだ部分)がスルーホール外周部、異物との境界部等のスルーホール35を外れる部分となる。そして、基点からスルーホール画素を各方向ごとカウントし、その画素数を被検査基板表面に対応した長さに変換する。なお、走査線上に0データが出現した地点で基板部、配線パターン又は異物等のスルーホール35を外れた部分に達したものとしてカウントを中止し、基点からその地点までの距離が許容範囲内にあるか否かを判定する。
【0032】
また、図9には細長の形状の異物51がスルーホール35内部に付着した例を示している。このような細長の異物51の場合には、従来における方法では不良の判定が困難であった。しかしながら、本実施例のような検査方法を用いた場合、図9に示されるように走査線が異物51と交差して変化点55を検知し、基点50から変化点55までの距離が、許容範囲外であることを判定するため、不良と判定される。
【0033】
なお、基点50からスルーホール35を外れた位置までのスルーホール画素数をカウントすることによって距離を測定することとしていたが、検査方向において基点50から所定距離内(所定画素数内)に存在するスルーホール画素をカウントすることによってスルーホール35の良否を判定するようにすることもできる。このようにすると、例えば図10のように、スルーホール35の周部に接しない異物51が存在する場合、走査線は変化点55で異物51を検知した後、再度スルーホール画素を検知することになる。そしてスルーホール画素の総計によって、異物51の走査線における長さを算出することができる。このようにすると、例えば、走査線における少数画素(例えば100画素中の1画素)がノイズとなって混入し、スルーホール画素ではないと判定されても、誤差の範囲であると認識でき、正常なものが誤って不良と判定されることを防止できる。なお、その場合において走査線が走査する検査距離は任意に設定できるが、少なくともスルーホール半径以上は必要であり、必要以上に長く設定すると不必要なデータが多くなって画像データ量が増大するため、基板状態、検査時間等を考慮し設定する必要がある。
【0034】
図11に示されるように、スルーホール35が正円の孔であっても、配線パターン17の大きさ、形が正確でない場合には、走査時にその情報を検出し、異常の判定を下さなければならないため、半径、配線パターン幅の両方を検査することが最も望ましい。スルーホール半径については前述したように走査線ごとに半径を測定するが、配線パターン幅についても同様に走査線ごと測定を行なう。図11のように、中心部から放射状に検査する走査線は、スルーホール外周部に達した後に、次いで配線パターン幅の測定も行なうこととなる。なお、この画像情報においてはスルーホール(濃度値250前後)と配線パターン(濃度値120前後)を区別するための閾値1(濃度値200)、配線パターンと基板部の樹脂面(濃度値40以下)を区別するための閾値2(濃度値80)と、2つの閾値を持つことになる。従って、濃度値200以上の画素をスルーホール画素、濃度値80以上200未満の画素を配線パターン画素、濃度値80未満の画素を基板部画素として各要素に対応した画素をカウントすることになる。
【0035】
そして基点から放射状に延びる走査線によって、配線パターン内周から外周までの配線パターン幅を配線パターン画素の画素数をカウントすることで測定する。図11において、矢印G方向に走査する走査線を例にとると、基点50から変化点52aまでの距離をスルーホール半径として許容範囲を満たすか否かを判定し、変化点52aから変化点52bまでの距離を配線パターン幅として許容範囲を満たすか否かを判定する。なお、許容範囲は全ての方向において一律に設定してもよいし、各方向ごとに設定してもよい。なお、このように配線パターン検査を行なう場合においても、各検査方向ごと所定距離内に存在する画素をカウントすることによって良否を判定してもよい。例えば、基点50より一定距離内に存在するスルーホール画素、配線パターン画素をカウントし、それぞれの画素数を距離に変換した後、その距離がそれぞれ許容範囲外であるならば不良と判定されることとなる。また、配線パターン幅又はスルーホール半径のいずれか一方のうち、一方向でも許容範囲を外れている場合にはその被検査基板は不良と判定されることとなる。
【0036】
なお、本実施形態では、基点20とスルーホールの中心点が一致する場合について説明したが、一致しない場合には、基点20から複数方向確認した距離を基に中心点を算出して、その算出した中心点を基にスルーホール以外の情報を示す位置までの距離を算出することで、同様の検査を行うことができる。
【0037】
なお、被検査基板11のスルーホール及び配線パターンの形成工程として以下に示す2種類がある。第1の形成工程は、両面に銅を張った樹脂製基板に、ドリルによってスルーホールを形成した後、スルーホール内も含めてメッキを行う。そして、スルーホール及び必要な配線部分にマスキングを行って、エッチング等によって配線パターンを形成し、その後マスキングをはがしてスルーホールを埋める。
【0038】
また、第2の形成工程は、両面に銅を張った樹脂製基板に、ドリルによってスルーホールを形成した後、スルーホール内も含めてメッキを行う。そして、スルーホールを埋めた後に必要な配線部分にマスキングを行って、エッチング等によって配線パターンを形成し、その後マスキングをはがす。
【0039】
本発明の実施の形態に示す検査対象は、第1の形成工程による被検査基板11である場合には、配線パターンを形成し、マスキングをはがした後スルーホール埋めを行う前、即ち、スルーホール内にメッキが付いており、さらに配線パターンも形成されている状態の基板であることが望ましい。この場合には、スルーホールの検査と配線パターンの検査を同時に行うことができる。
【0040】
また、第2の形成工程による被検査基板11である場合には、スルーホールも含めてメッキした後スルーホールを埋める前、即ち、スルーホール内にメッキが付いており、配線パターンは形成されていない状態であることが望ましい。この場合には、スルーホールの検査と配線パターンの検査は個別に行うことになる。いずれにしてもスルーホール内にメッキが付いている状態で行うことが望ましい。この理由は、被検査基板にドリルで開けられたスルーホール壁面に付着していた削り屑等が、メッキ時のメッキ液がスルーホール内を通過する際に壁面からわずかにはがれてスルーホール内を横断するような形で異物として存在する可能性が高くなるためである。
【図面の簡単な説明】
【図1】本発明における検査装置の一例を示す正面図。
【図2】図1の側面図。
【図3】図2の要部を示す拡大図。
【図4】図3を概念的に説明する斜視図。
【図5】検査装置における主制御部の電気的構成を示すブロック図。
【図6】撮影・解析ユニットの電気的構成を示すブロック図。
【図7】スルーホールの画像上における検査方向例を示す説明図。
【図8】スルーホール状態の一例及びその解析方法例の説明図。
【図9】図8のスルーホール状態の例2を示す説明図。
【図10】図8のスルーホール状態の例3を示す説明図。
【図11】図8のスルーホール状態の例3を示す説明図。
【符号の説明】
9a,9b パターン検出用ライン照明 (第2の光源)
10 1次元CCDカメラ (撮像装置)
10a 上部CCDカメラ
10b 下部CCDカメラ
11 被検査基板
12a,12b ハーフミラー
13 X方向ステッピングモータ
14 Y方向ステッピングモータ
15 Z方向ステッピングモータ
17a,17b スルーホール検出用ライン照明 (第1の光源)
35 スルーホール
36 基板部
37 配線パターン
Claims (3)
- 被検査基板両側において垂直方向に同軸に備えられた撮像装置と、
被検査基板両側に設けられてそれぞれ対応するハーフミラーを有し、被検査基板を挟んで反対側に位置する前記撮像装置方向に落射照明する第1の光源と、
前記被検査基板両側において前記撮像装置と同じ側に設けられ、前記撮像装置の撮像位置を斜方から照射する第2の光源と、
を備え、
前記撮像装置は、反対側からの前記落斜照明によるスルーホールの透過光と、同じ側における前記被検査基板表面からの前記第2の光源による反射光とを両側において同時に受光し、それぞれの撮像位置が前記被検査基板における表裏逆の同位置とされる機構を有することを特徴とするプリント配線基板の検査装置。 - 前記第1の光源は、
1次元的に光を照射する第1のライン照明とされ、該第1のライン照明による前記落斜照明は、被検査基板上を略ライン状に照射し、その照射位置上のスルーホールにおいて前記透過光を反対側に放出し、
さらに、前記撮像装置は1次元的に光情報を受光するラインセンサを有し、そのライン方向は前記第1の光源のライン方向と同方向とされ、該ラインセンサによって反対側からの前記透過光を受光することを特徴とする請求項1に記載のプリント配線基板の検査装置。 - 前記第1の光源は、
1次元的に光を照射する第1のライン照明とされ、該第1のライン照明による前記落斜照明は、被検査基板上を略ライン状に照射し、その照射位置上のスルーホールにおいて前記透過光を反対側に放出し、
前記第2の光源は、
1次元的に光を照射し、そのライン方向が第1のライン照明と同方向である第2のライン照明とされて同じ側に備えられた前記撮像装置による撮像位置を略ライン状に照射し、
さらに、前記撮像装置は1次元的に光情報を受光するラインセンサを有し、そのライン方向は前記第1の光源、及び前記第2の光源のライン方向と同方向とされ、前記ラインセンサによって、反対側からの前記透過光及び同側における前記反射光を受光することを特徴とする請求項1に記載のプリント配線基板の検査装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000081489A JP4434417B2 (ja) | 2000-03-23 | 2000-03-23 | プリント配線板の検査装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000081489A JP4434417B2 (ja) | 2000-03-23 | 2000-03-23 | プリント配線板の検査装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001266127A JP2001266127A (ja) | 2001-09-28 |
JP4434417B2 true JP4434417B2 (ja) | 2010-03-17 |
Family
ID=18598416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000081489A Expired - Fee Related JP4434417B2 (ja) | 2000-03-23 | 2000-03-23 | プリント配線板の検査装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4434417B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012112688A (ja) * | 2010-11-22 | 2012-06-14 | Seiko Epson Corp | 検査装置 |
CN108956641A (zh) * | 2018-07-24 | 2018-12-07 | 武汉华星光电技术有限公司 | 基板检查装置 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4522570B2 (ja) * | 2000-11-06 | 2010-08-11 | イビデン株式会社 | パターン検査用照明装置 |
JP4714462B2 (ja) * | 2004-12-24 | 2011-06-29 | 株式会社サキコーポレーション | 被検査体の外観検査装置 |
JP4824987B2 (ja) * | 2005-10-28 | 2011-11-30 | 株式会社日立ハイテクノロジーズ | パターンマッチング装置およびそれを用いた半導体検査システム |
KR100576392B1 (ko) | 2005-11-30 | 2006-05-03 | 기가비스주식회사 | 비전 검사 장치 |
JP2008066541A (ja) * | 2006-09-07 | 2008-03-21 | Toshiba Corp | 検査装置システム |
JP2008101926A (ja) * | 2006-10-17 | 2008-05-01 | Toppan Printing Co Ltd | 金属パターンを有する基板の検査方法及び検査装置 |
KR100834113B1 (ko) * | 2006-11-10 | 2008-06-02 | 아주하이텍(주) | 자동 광학 검사 시스템 |
JP4840924B2 (ja) * | 2006-12-08 | 2011-12-21 | 富士機械製造株式会社 | 電子部品実装機 |
JP5015660B2 (ja) * | 2007-05-25 | 2012-08-29 | 日本特殊陶業株式会社 | ワーク検査方法 |
JP5236330B2 (ja) * | 2008-03-27 | 2013-07-17 | オーム電機株式会社 | 貫通孔の検査方法および貫通孔の検査装置 |
US8049878B2 (en) * | 2008-08-22 | 2011-11-01 | Corning Incorporated | Systems and methods for detecting defects in ceramic filter bodies |
JP5549155B2 (ja) * | 2009-09-04 | 2014-07-16 | セイコーエプソン株式会社 | 表面検査方法 |
JP5552779B2 (ja) * | 2009-09-04 | 2014-07-16 | セイコーエプソン株式会社 | 孔内検査方法 |
JP5684550B2 (ja) * | 2010-12-03 | 2015-03-11 | 株式会社日立ハイテクノロジーズ | パターンマッチング装置およびそれを用いた半導体検査システム |
KR101606093B1 (ko) | 2015-06-26 | 2016-03-24 | 주식회사 넥서스원 | 기판 결함 검사장치 및 방법 |
WO2019100182A1 (zh) * | 2017-11-21 | 2019-05-31 | 太仓市何氏电路板有限公司 | 一种用于铝基电路板的多功能影像测试仪 |
WO2021014527A1 (ja) * | 2019-07-22 | 2021-01-28 | 日本電気株式会社 | 照合位置出力システム |
KR102549486B1 (ko) * | 2022-12-29 | 2023-06-29 | 주연티앤에스 주식회사 | Pcb 재활용을 위한 pcb 검사 및 수리장치 |
-
2000
- 2000-03-23 JP JP2000081489A patent/JP4434417B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012112688A (ja) * | 2010-11-22 | 2012-06-14 | Seiko Epson Corp | 検査装置 |
CN108956641A (zh) * | 2018-07-24 | 2018-12-07 | 武汉华星光电技术有限公司 | 基板检查装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2001266127A (ja) | 2001-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4434417B2 (ja) | プリント配線板の検査装置 | |
US7573569B2 (en) | System for 2-D and 3-D vision inspection | |
US6141040A (en) | Measurement and inspection of leads on integrated circuit packages | |
US6671397B1 (en) | Measurement system having a camera with a lens and a separate sensor | |
US6084663A (en) | Method and an apparatus for inspection of a printed circuit board assembly | |
CN101783306A (zh) | 检测晶片的系统和方法 | |
JP4776197B2 (ja) | 配線基板の検査装置 | |
US11982522B2 (en) | Three-dimensional measuring device | |
JP2011158363A (ja) | Pga実装基板の半田付け検査装置 | |
EP0871027A2 (en) | Inspection of print circuit board assembly | |
JP2009092485A (ja) | 印刷半田検査装置 | |
KR101079686B1 (ko) | 영상인식장치 및 영상인식방법 | |
JP7578718B2 (ja) | 実装基板検査装置および検査装置 | |
EP0935135A1 (en) | System for measuring solder bumps | |
KR100710703B1 (ko) | 반도체 리드프레임 도금 선폭 측정 검사장치 및 그 방법 | |
EP1014438A2 (en) | A measurement system | |
JP3162872B2 (ja) | 電子部品の輪郭認識装置及びその輪郭認識方法 | |
JPH07119705B2 (ja) | 電子部品の検査装置 | |
JP2001267722A (ja) | プリント配線板の検査方法 | |
KR100576392B1 (ko) | 비전 검사 장치 | |
JP3402994B2 (ja) | 半田ペースト良否判定方法 | |
KR19990071338A (ko) | 프린트 배선판 어셈블리의 검사 | |
JP2570508B2 (ja) | はんだ付検査装置 | |
KR20070068169A (ko) | 비전 검사 시스템 | |
KR200176165Y1 (ko) | 3디센서를 이용한 아이시 및 패턴드 웨이퍼의 3차원 외관및 대미지 검사장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090824 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20091016 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091019 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091127 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4434417 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |