JP4432938B2 - Power stabilization system using power storage device and control device thereof - Google Patents
Power stabilization system using power storage device and control device thereof Download PDFInfo
- Publication number
- JP4432938B2 JP4432938B2 JP2006158468A JP2006158468A JP4432938B2 JP 4432938 B2 JP4432938 B2 JP 4432938B2 JP 2006158468 A JP2006158468 A JP 2006158468A JP 2006158468 A JP2006158468 A JP 2006158468A JP 4432938 B2 JP4432938 B2 JP 4432938B2
- Authority
- JP
- Japan
- Prior art keywords
- power
- fluctuation component
- time constant
- active power
- active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000006641 stabilisation Effects 0.000 title claims description 25
- 238000011105 stabilization Methods 0.000 title claims description 25
- 238000000605 extraction Methods 0.000 claims description 33
- 230000002457 bidirectional effect Effects 0.000 claims description 13
- 238000010521 absorption reaction Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 4
- 230000007423 decrease Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000001629 suppression Effects 0.000 description 5
- 238000012795 verification Methods 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Description
本発明は、電力貯蔵装置を用いた電力安定化システムに関する。 The present invention relates to a power stabilization system using a power storage device.
電力系統においては発電電力と消費電力とのバランスが崩れると周波数変動が生じる。そのため、電力会社では、負荷の変動周期に応じた各種周波数制御によって、時々刻々変化する消費電力と発電電力を常にバランスさせるように発電機の出力増減の調整を実施している。数分以下の微小変動に対しては、発電機の回転数をガバナフリー制御することにより瞬時に対応する。数分〜数十分の短周期変動に対しては、給電システムのLFC(負荷周波数制御)で発電機出力を制御することで対応するが、ガバナフリー制御と比較すると応答速度はやや遅い。数十分以上の長周期の変動に対してはEDC(経済負荷配分制御)で発電機の経済性を考慮した負荷配分を行っており、対応できる変動幅は大きいが、応答速度は遅いという特徴がある。 In an electric power system, frequency fluctuations occur when the balance between generated power and consumed power is lost. Therefore, the power company adjusts the output increase / decrease of the generator so as to always balance the power consumption and the generated power which change every moment by various frequency control according to the fluctuation period of the load. Minor fluctuations of several minutes or less can be dealt with instantaneously by governor-free control of the generator speed. Short cycle fluctuations of several minutes to several tens of minutes can be dealt with by controlling the generator output with LFC (load frequency control) of the power supply system, but the response speed is slightly slower than governor-free control. For long-period fluctuations of several tens of minutes or more, EDC (Economic Load Allocation Control) performs load distribution considering the economics of the generator, and the fluctuation range that can be handled is large, but the response speed is slow There is.
一方、近年、風力や太陽光など自然エネルギーを利用した分散型電源の電力系統への連系が増加している。しかし、自然エネルギーを利用した分散型電源は、風速などの自然条件に応じて時々刻々と出力が変動するため、特に僻地や離島などの弱い電力系統では系統の周波数や電圧の変動が生じ、問題となる場合がある。 On the other hand, in recent years, interconnection to a power system of a distributed power source using natural energy such as wind power and sunlight has increased. However, since the output of a distributed power source that uses natural energy fluctuates from moment to moment depending on natural conditions such as wind speed, system frequency and voltage fluctuations occur especially in weak power systems such as remote areas and remote islands. It may become.
例えば、風力発電設備においては、風速がカットオフ風速を超えた場合、風車保護のため回転を止め、これによって風力発電機の出力が最大出力からゼロ出力に大きく変化する場合がある。このような過大かつ急激な電力変動が発生した場合、EDCでは制御が追いつかないので(EDCは対応できる変動幅は大きいが応答速度は遅いため、ゆっくりとした変動にしか対応できない)、EDCで対応できない電力変動はLFC及び、ガバナフリーで対応することになる。しかし、LFC及び、ガバナフリーは周波数調整容量が少ないため、周波数を系統運用目標値内に保つことが困難となる可能性が懸念される。 For example, in a wind power generation facility, when the wind speed exceeds the cutoff wind speed, the rotation is stopped for wind turbine protection, and the output of the wind power generator may change greatly from the maximum output to zero output. When such an excessive and sudden power fluctuation occurs, the EDC cannot keep up with the control (the EDC has a large fluctuation range, but the response speed is slow, so it can only deal with slow fluctuations). The power fluctuation that cannot be done will be handled by LFC and governor-free. However, since LFC and governor-free have a small frequency adjustment capacity, there is a concern that it may be difficult to keep the frequency within the system operation target value.
そこで従来より、フライホイールや二次電池などの電力貯蔵装置を用いて、電力の吸収または放出を行うことにより、出力変動、負荷変動、潮流変動等の電力変動分を補償するシステムが開発されている。例えば、風力発電機の出力変動補償を行う場合、風力発電機の発電出力が増加した場合には、電力貯蔵装置の電力放出を減少または電力吸収を増大させ、風力発電機の発電出力が減少した場合には、電力貯蔵装置の電力吸収を減少または電力放出を増大させることにより、風力発電機と電力貯蔵装置の連系点の電力変動を補償することができる。 Therefore, a system has been developed that compensates for power fluctuations such as output fluctuations, load fluctuations, power fluctuations, etc., by absorbing or discharging power using a power storage device such as a flywheel or a secondary battery. Yes. For example, when compensating for fluctuations in the output of a wind power generator, if the power output of the wind power generator increases, the power output of the power storage device decreases or power absorption increases, and the power output of the wind power generator decreases. In some cases, power fluctuations at the interconnection point between the wind power generator and the power storage device can be compensated by reducing the power absorption of the power storage device or increasing the power release.
ただし、電力貯蔵装置の容量は有限であり、なおかつ運転許容範囲が存在する。このため、運転許容範囲を逸脱すると、例えば二次電池では過充電・過放電による電池寿命の低下、フライホイールでは回転数オーバーによる装置の停止や回転数不足による運転の不安定化につながる。また、電力貯蔵量が上限、或いは下限に達するとそれ以上の電力補償ができなくなる。そこで、装置の保護・長寿命化を図るため、電力貯蔵装置の電力貯蔵量管理・制御に関する各種方式が提案されている。 However, the capacity of the power storage device is finite, and there is an allowable operating range. For this reason, deviating from the allowable operating range leads to, for example, a reduction in battery life due to overcharge / overdischarge in a secondary battery, and an operation instability due to an overspeed in a flywheel or an insufficient rotation speed in a flywheel. Further, when the power storage amount reaches the upper limit or the lower limit, no more power compensation can be performed. In view of this, various methods relating to power storage amount management / control of the power storage device have been proposed in order to protect and extend the life of the device.
電力貯蔵装置として二次電池を用いる例として特許文献1、フライホイールを用いる例として特許文献2等が挙げられる。
上記特許文献1では、二次電池の制御装置において、二次電池の端子電圧(電力貯蔵量に相当)を検出し、その端子電圧に応じて補償指令値のリミッタを可変制御する。端子電圧が高くなる(電力貯蔵量が大きくなる)につれて、放電方向のリミッタは大きく、充電方向のリミッタは小さくする。端子電圧が低くなる(電力貯蔵量が小さくなる)につれてその逆にリミッタを設定する。これにより二次電池の過充電・過放電の防止を実現している。
As an example of using a secondary battery as a power storage device, Patent Document 1 and as an example of using a flywheel include Patent Document 2 and the like.
In Patent Document 1, a secondary battery control device detects a terminal voltage (corresponding to a power storage amount) of a secondary battery, and variably controls a limiter of a compensation command value according to the terminal voltage. As the terminal voltage increases (the amount of stored power increases), the limiter in the discharge direction increases and the limiter in the charge direction decreases. Conversely, the limiter is set as the terminal voltage decreases (the amount of stored power decreases). This realizes prevention of overcharge / overdischarge of the secondary battery.
上記特許文献2では、フライホイールの制御装置において、有効電力制御ループと速度制御ループを有し、各制御ループのゲインを可変制御する。フライホイールの回転速度(電力貯蔵量に相当)が所定の安定範囲にある時には、有効電力制御ループのゲインを高めることで有効電力を目標値に一致させ、フライホイールの回転速度が所定の安定範囲の上限或いは下限を超える時には、速度制御ループのゲインを高めることでフライホイールのオーバースピード或いは失速を防止し安定運転を実現している。
特許文献1では、過大かつ急激な電力変動が発生した場合、二次電池の端子電圧が上昇(或いは下降)し、ついには可変リミッタにより補償量は制限される。これにより、運転許容範囲の逸脱は防止できるが、可変リミッタにより補償量が制限されている間、電力変動に対しては補償ができないという問題があった。別の見方をすれば、過大かつ急激な電力変動まで補償しようとすると、大容量の電力貯蔵装置が必要になり、設置コスト、メンテナンスコストが増大するという問題があった。 In Patent Document 1, when an excessive and rapid power fluctuation occurs, the terminal voltage of the secondary battery increases (or decreases), and finally the compensation amount is limited by the variable limiter. Thus, the deviation of the allowable operating range can be prevented, but there is a problem that compensation for power fluctuation cannot be made while the compensation amount is limited by the variable limiter. From another point of view, if an attempt is made to compensate for excessive and rapid power fluctuations, a large-capacity power storage device is required, resulting in an increase in installation cost and maintenance cost.
特許文献2では、過大かつ急激な電力変動が発生した場合、フライホイールの回転速度が所定の安定範囲の上限或いは下限を超える。この時、有効電力制御ループのゲインが低くなることにより、運転許容範囲の逸脱は防止できるが、速度制御ループのゲインを高めることにより、電力変動に必要な電力変動補償量が得られないだけでなく、かえって電力変動を増大させる可能性があった。また、有効電力制御ループのゲインがゼロになった時には電力補償動作を全く行わなくなるという問題があった。また上記と同様、過大かつ急激な電力変動まで補償しようとすると、大容量の電力貯蔵装置が必要になり、設置コスト、メンテナンスコストが増大するという問題があった。 In Patent Document 2, when an excessive and rapid power fluctuation occurs, the rotational speed of the flywheel exceeds the upper limit or lower limit of a predetermined stable range. At this time, the active power control loop gain can be reduced to prevent the deviation from the allowable operating range, but the speed control loop gain can be increased to obtain the power fluctuation compensation amount necessary for power fluctuation. On the contrary, there was a possibility of increasing the power fluctuation. In addition, there is a problem that the power compensation operation is not performed at all when the gain of the active power control loop becomes zero. Similarly to the above, if an attempt is made to compensate for an excessive and rapid power fluctuation, a large-capacity power storage device is required, and there is a problem that the installation cost and the maintenance cost increase.
この様に、従来技術では電力貯蔵装置の運転許容範囲逸脱は防止できても、運転許容範囲の中で、効率的・効果的な電力変動補償を実現しているとは言い難く、過大かつ急激な電力変動まで補償する場合、大容量の電力貯蔵装置が必要であった。 Thus, even if the conventional technology can prevent the power storage device from deviating from the allowable operating range, it cannot be said that efficient and effective power fluctuation compensation is realized within the allowable operating range. When compensating for power fluctuations, a large-capacity power storage device is required.
補償点電力変動量に対し、電力貯蔵装置の容量が十分ではなく、運転許容範囲の逸脱が問題になる場合であって、特に過大かつ急激な電力変動を効果的に抑制するための理想的な電力補償動作は以下の通りである。 This is a case where the capacity of the power storage device is not sufficient with respect to the compensation point power fluctuation amount, and the deviation of the allowable operating range becomes a problem, especially ideal for effectively suppressing excessive and rapid power fluctuations. The power compensation operation is as follows.
・電力貯蔵装置の運転許容範囲で安定運転を継続する。
・短周期の電力変動(特に周波数調整容量が少ないガバナフリー領域、LFC領域における変動)に対しては、必要な補償量を確保する。
-Continue stable operation within the allowable operating range of the power storage device.
• Ensure the necessary amount of compensation for short-cycle power fluctuations (especially fluctuations in the governor-free and LFC areas where the frequency adjustment capacity is small).
・過大かつ急激な電力変動に対しては、系統の周波数制御で対応可能な程度にまで変動を抑制する。つまり、系統側の周波数制御で対応可能な電力変動(特に周波数調整容量が大きいEDC領域におけるゆっくりとした変動)は許容する。 • To suppress excessive and sudden power fluctuations, the fluctuations are suppressed to a level that can be handled by system frequency control. That is, power fluctuations that can be handled by frequency control on the system side (especially slow fluctuations in the EDC region where the frequency adjustment capacity is large) are allowed.
本発明の課題は、上記のような電力補償動作を実現し、少ない容量の電力貯蔵装置で、過大かつ急激な電力変動まで、効率的・効果的に抑制可能な、電力貯蔵装置を用いた電力安定化システム、その制御装置等を提供することである。 An object of the present invention is to realize the power compensation operation as described above, and to use the power storage device that can efficiently and effectively suppress an excessive and rapid power fluctuation with a small capacity power storage device. It is to provide a stabilization system, its control device and the like.
本発明による電力貯蔵装置を用いた電力安定化システムは、交流電力系統の有効電力変動を抑制する電力安定化システムであって、電力を貯蔵し、前記交流電力系統の電力の吸収または前記交流電力系統に対する電力の放出を行う電力貯蔵装置と、該電力貯蔵装置の貯蔵電力の吸収・放出に伴う電力の入出力を、前記交流電力系統と前記電力貯蔵装置の間で相互に変換する双方向電力変換器と、前記交流電力系統の有効電力変動に応じて該双方向電力変換器の変換動作を制御することにより、前記交流電力系統の有効電力変動を抑制する制御装置とから成り、前記制御装置は、前記交流電力系統の有効電力から、設定されるフィルタ時定数に応じた所定の周波数領域における有効電力変動成分を抽出する有効電力変動成分抽出フィルタと、前記有効電力変動成分の大きさに応じた電力変動補償量によって前記双方向電力変換器の変換動作を制御する電力変動補償量調整手段と、前記有効電力変動成分を入力し、該有効電力変動成分の絶対値の大きさに基づいて前記有効電力変動成分抽出フィルタの前記フィルタ時定数を設定するフィルタ時定数設定手段とを有し、該フィルタ時定数設定手段は、前記有効電力変動成分の絶対値が小さいときには前記有効電力変動成分抽出フィルタにおける前記周波数領域が狭くなるように前記フィルタ時定数を設定することで該フィルタにおいてカットする低周波数領域が広くなるようにし、前記有効電力変動成分の絶対値が大きくなったときには前記有効電力変動成分抽出フィルタにおける前記周波数領域が広くなるように前記フィルタ時定数を設定することで該フィルタにおいてカットする低周波数領域が狭くなるようにする。 A power stabilization system using a power storage device according to the present invention is a power stabilization system that suppresses fluctuations in active power of an AC power system, and stores power and absorbs power of the AC power system or the AC power. A power storage device that discharges power to the grid, and bidirectional power that mutually converts input / output of power accompanying absorption / release of stored power of the power storage device between the AC power system and the power storage device The control device comprises: a converter; and a control device that suppresses the active power fluctuation of the AC power system by controlling the conversion operation of the bidirectional power converter according to the active power fluctuation of the AC power system. Is an active power fluctuation component extraction filter that extracts an active power fluctuation component in a predetermined frequency region according to a set filter time constant from the active power of the AC power system; Power fluctuation compensation amount adjusting means for controlling the conversion operation of the bidirectional power converter according to the power fluctuation compensation amount according to the magnitude of the active power fluctuation component, and the active power fluctuation component are input, and the active power fluctuation component Filter time constant setting means for setting the filter time constant of the active power fluctuation component extraction filter based on the magnitude of the absolute value, the filter time constant setting means having an absolute value of the active power fluctuation component When the frequency is small, the filter time constant is set so that the frequency region in the active power fluctuation component extraction filter is narrowed so that the low frequency region to be cut in the filter is widened, and the absolute value of the active power fluctuation component is When it becomes larger, the filter time constant is set so that the frequency region in the active power fluctuation component extraction filter becomes wider. So that the low frequency range is narrowed to cut in the filter by a constant.
上記構成の電力貯蔵装置を用いた電力安定化システムによれば、有効電力変動成分の絶対値が小さいうちは、補償周波数領域を必要最小限(短周期の電力変動に対してのみ)にとどめることで、過大かつ急激な電力変動(特にEDC制御が追従できず周波数調整容量に影響するような過大かつ急激な変動)に備えて十分な補償余力を確保することができる。そして、有効電力変動成分の絶対値が大きくなった場合、つまり過大かつ急激な電力変動に対しては、補償周波数領域を短周期の電力変動から長周期の電力変動にまで広げることにより、確保した補償余力を用いて最大限の補償を行うことができる。 According to the power stabilization system using the power storage device configured as described above, the compensation frequency region should be kept to the minimum necessary (only for short-period power fluctuations) while the absolute value of the active power fluctuation component is small. Thus, it is possible to secure a sufficient compensation margin in preparation for excessive and rapid power fluctuations (particularly excessive and rapid fluctuations that cannot be followed by EDC control and affect the frequency adjustment capacity). And when the absolute value of the active power fluctuation component becomes large, that is, for excessive and sudden power fluctuation, it is secured by expanding the compensation frequency range from short cycle power fluctuation to long cycle power fluctuation. Maximum compensation can be performed using the compensation margin.
この様にして、少ない容量の電力貯蔵装置で、過大かつ急激な電力変動まで抑制するのに最適な、電力貯蔵装置の効率的・効果的運用が可能となる。
尚、設定するフィルタ時定数には下限値が設けられている。この下限値は、上記周波数領域を、少なくとも短周期の電力変動は抽出できるようにする値となっている。これによって、短周期の電力変動(特に周波数調整容量が少ないガバナフリー領域、LFC領域における変動)に対しては、常に補償周波数領域内であるため、必要な補償量を確保できる。
In this way, it is possible to efficiently and effectively operate the power storage device that is optimal for suppressing excessive and rapid power fluctuations with a power storage device having a small capacity.
The filter time constant to be set has a lower limit value. This lower limit value is a value that enables extraction of at least short-period power fluctuations in the frequency region. As a result, for short-period power fluctuations (particularly, fluctuations in the governor-free area and LFC area where the frequency adjustment capacity is small), it is always within the compensation frequency area, so that the necessary compensation amount can be ensured.
本発明の電力貯蔵装置を用いた電力安定化システム、その制御装置等によれば、少ない容量の電力貯蔵装置で、過大かつ急激な電力変動まで、効率的・効果的に電力変動補償を行うことが可能となる。 According to the power stabilization system using the power storage device of the present invention, its control device, etc., it is possible to efficiently and effectively compensate for power fluctuations to an excessive and rapid power fluctuation with a power storage device having a small capacity. Is possible.
以下、図面を参照して、本発明の実施の形態について説明する。
尚、本発明は、交流電力系統の有効電力変動を抑制する電力安定化システムに関するものであり、以下の説明では、上記自然エネルギーを利用した分散型電源が接続された交流電力系統を例にするが、この例に限らない。本発明の電力安定化システムは、負荷変動やマイクログリッド連系運転時の連系点潮流変動等、交流電力系統の有効電力変動を抑制する目的であれば適用できる。また、以下の説明では、上記自然エネルギーを利用した分散型電源の一例として、風力発電機を例にして説明するが、この例に限らず、例えば太陽光発電等であってもよい。
Embodiments of the present invention will be described below with reference to the drawings.
The present invention relates to a power stabilization system that suppresses fluctuations in the active power of an AC power system. In the following description, an AC power system to which a distributed power source using the natural energy is connected is taken as an example. However, it is not limited to this example. The power stabilization system of the present invention can be applied as long as it is intended to suppress fluctuations in the active power of the AC power system, such as load fluctuations and interconnection point power fluctuations during microgrid interconnection operation. In the following description, a wind power generator will be described as an example of the distributed power source using the natural energy. However, the present invention is not limited to this example, and may be solar power generation, for example.
図1は本実施の形態による、電力貯蔵装置を用いた電力安定化システムの構成図である。
図示の電力安定化システムは、電力貯蔵装置1、双方向電力変換器2、制御装置10からなり、変圧器3を介して電力系統6に接続する。
FIG. 1 is a configuration diagram of a power stabilization system using a power storage device according to the present embodiment.
The illustrated power stabilization system includes a power storage device 1, a bidirectional power converter 2, and a control device 10, and is connected to a power system 6 via a transformer 3.
電力貯蔵装置1は、例えばフライホイール、二次電池、キャパシタ等である。
双方向電力変換器2は、制御装置10からの電力変動補償信号PO(ここでは、電力貯蔵装置1から電力を放出する方向を、“正”とする)に基づいて、電力系統6と電力貯蔵装置1との間で電力の授受を行う。電力貯蔵装置1がフライホイールである場合は、フライホイール側の交流電力と電力系統6側の交流電力を双方向に変換し、電力貯蔵装置1が二次電池・キャパシタ等である場合には、二次電池・キャパシタ側の直流電力と電力系統6側の交流電力を双方向に変換する。
The power storage device 1 is, for example, a flywheel, a secondary battery, a capacitor, or the like.
The bidirectional power converter 2 is connected to the power system 6 based on the power fluctuation compensation signal PO from the control device 10 (here, the direction in which the power is discharged from the power storage device 1 is “positive”). Power is exchanged with the device 1. When the power storage device 1 is a flywheel, the AC power on the flywheel side and the AC power on the power system 6 side are converted bidirectionally, and when the power storage device 1 is a secondary battery, a capacitor, or the like, The DC power on the secondary battery / capacitor side and the AC power on the power system 6 side are converted bidirectionally.
またここでは自然エネルギーを利用した分散型電源の出力変動補償を行う場合を想定し、風力発電機4が変圧器5を介して電力系統6に接続されているとする。(上記の通り、図1においてマイクログリッド連系点の有効電力を検出することにより、連系点潮流変動の抑制等にも応用できる。)
制御装置10は、動作温度検出器11、電力貯蔵量検出器12、電力変動補償量調整部13、有効電力検出器14、有効電力変動成分抽出フィルタ15、フィルタ時定数設定部16、及び位相調整部17等を有する。
Here, it is assumed that the output fluctuation compensation of the distributed power source using natural energy is performed, and the wind power generator 4 is connected to the power system 6 via the transformer 5. (As described above, by detecting the effective power at the microgrid interconnection point in FIG. 1, it can also be applied to the suppression of fluctuations in the interconnection point power flow, etc.)
The control device 10 includes an operating temperature detector 11, a power storage amount detector 12, a power fluctuation compensation amount adjustment unit 13, an active power detector 14, an active power fluctuation component extraction filter 15, a filter time constant setting unit 16, and a phase adjustment. Part 17 and the like.
制御装置10は、特に図示しないが、CPU等と、メモリや各種記憶媒体(ハードディスク等)等の記憶装置等を備えており、上記電力変動補償量調整部13、有効電力変動成分抽出フィルタ15、フィルタ時定数設定部16、位相調整部17による処理(後述する)は、ハードウェアによって実現してもよいし、CPUが記憶装置に記憶されている所定のアプリケーションプログラムを読出し・実行することにより実現してもよい。また、ハードウェアによって実現する場合、デジタルの制御装置(プログラマブルコントローラ)を用いて制御してもよいし、オペアンプ等によるアナログ制御回路で実現してもよい。 Although not particularly shown, the control device 10 includes a CPU and the like, a storage device such as a memory and various storage media (such as a hard disk), and the like, and includes the power fluctuation compensation amount adjusting unit 13, the active power fluctuation component extraction filter 15, Processing (to be described later) by the filter time constant setting unit 16 and the phase adjustment unit 17 may be realized by hardware, or by a CPU reading and executing a predetermined application program stored in the storage device. May be. Further, when realized by hardware, it may be controlled using a digital control device (programmable controller), or may be realized by an analog control circuit such as an operational amplifier.
有効電力検出器14は、風力発電機4の出力端の電圧・電流値に基づいて風力発電機有効電力PGを検出する。
有効電力変動成分抽出フィルタ15は、ハイパスフィルタ等の変動分を抽出するフィルタにより、風力発電機有効電力PGから補償周波数領域における有効電力変動成分信号ΔPGを抽出する(換言すれば、補償周波数領域以外の周波数領域の変動成分は除去(カット)する)。補償周波数領域は、当該ハイパスフィルタ等のフィルタ時定数によって決まり、通常は、短周期の電力変動のみ抽出するようにフィルタ時定数が設定されるが、後述する過大で急激な電力変動があるときには、長周期変動をも抽出するようにフィルタ時定数が設定される。このフィルタ時定数の設定は、フィルタ時定数設定部16によって随時行われる。
The active power detector 14 detects the wind power generator active power PG based on the voltage / current value at the output end of the wind power generator 4.
The active power fluctuation component extraction filter 15 extracts the active power fluctuation component signal ΔPG in the compensation frequency domain from the wind power generator active power PG by a filter that extracts fluctuations such as a high-pass filter (in other words, other than the compensation frequency domain). The frequency domain fluctuation component is removed (cut). The compensation frequency region is determined by a filter time constant such as the high-pass filter, and normally the filter time constant is set so as to extract only a short-cycle power fluctuation, but when there is an excessive and rapid power fluctuation described later, A filter time constant is set so as to extract long-period fluctuations. The setting of the filter time constant is performed by the filter time constant setting unit 16 as needed.
なお、有効電力変動成分抽出フィルタ15は、有効電力変動成分を抽出する機能を有していれば、何次のハイパスフィルタを用いても良く、あるいは、ハイパスフィルタを何段か直列させる構成でも良い。あるいは、ローパスフィルタ等の変動分を除去するフィルタ(有効電力変動成分を除去する機能を有していれば、何次のローパスフィルタを用いても良く、あるいは、ローパスフィルタを何段か直列させる構成でも良い。)や、移動平均等の平滑化処理等により風力発電機有効電力PGから有効電力変動成分を除去して補償目標値PAを演算し、さらに有効電力計測値PGから補償目標値PAを減算することにより補償電力ΔPGを演算する構成としても良い。 The active power fluctuation component extraction filter 15 may use any number of high-pass filters or may have a configuration in which several high-pass filters are connected in series as long as the active power fluctuation component extraction filter 15 has a function of extracting an active power fluctuation component. . Alternatively, a filter that removes fluctuations such as a low-pass filter (any number of low-pass filters may be used as long as it has a function of removing active power fluctuation components, or a configuration in which several stages of low-pass filters are connected in series. Or the compensation target value PA is calculated by removing the active power fluctuation component from the wind power generator active power PG by smoothing processing such as moving average, and the compensation target value PA is further calculated from the active power measurement value PG. The compensation power ΔPG may be calculated by subtraction.
フィルタ時定数設定部16は、予め定められたフィルタ時定数の上限値・下限値と、有効電力変動成分信号ΔPGとに応じて、フィルタ時定数指令値TOを決定し、このフィルタ時定数指令値TOを用いて有効電力変動成分抽出フィルタ15のフィルタ時定数を設定する。 The filter time constant setting unit 16 determines the filter time constant command value TO according to the upper limit value / lower limit value of the predetermined filter time constant and the active power fluctuation component signal ΔPG, and this filter time constant command value The filter time constant of the active power fluctuation component extraction filter 15 is set using TO.
フィルタ時定数設定部16の構成・原理の詳細は後述する。
位相調整部17は、進み遅れフィルタ、ゲイン等で構成し、制御系等の遅れを考慮して位相調整を行うと共に、ゲインを-1.0とする(放電する方向をプラスとするため)ことにより位相を反転して電力変動補償信号POの元となる制御信号を生成する。
Details of the configuration and principle of the filter time constant setting unit 16 will be described later.
The phase adjustment unit 17 is composed of an advance / delay filter, a gain, etc., adjusts the phase in consideration of the delay of the control system, etc., and sets the gain to -1.0 (to make the discharge direction positive). Is inverted to generate a control signal that is a source of the power fluctuation compensation signal PO.
電力貯蔵量検出器12は、電力貯蔵装置1の電力貯蔵量ESを、直接あるいは間接的に検出/算出する。例えば電力貯蔵装置1がフライホイールである場合は、フライホイール回転数を検出し、二次電池・キャパシタ等である場合は端子電圧を検出して、該検出結果に基づいて電力貯蔵量ESを算出する。 The power storage amount detector 12 detects / calculates the power storage amount ES of the power storage device 1 directly or indirectly. For example, when the power storage device 1 is a flywheel, the rotational speed of the flywheel is detected. When the power storage device 1 is a secondary battery, a capacitor, or the like, the terminal voltage is detected, and the power storage amount ES is calculated based on the detection result. To do.
動作温度検出器11は、電力貯蔵装置1の動作温度TSを、直接あるいは間接的に検出/算出する。
尚、電力貯蔵量又は動作温度に関して単に「検出する」と記したときは、上記「直接あるいは間接的に検出/算出する」(直接検出するか、あるいは算出処理を行うことで間接的に検出する)ことを意味するものとする。
The operating temperature detector 11 detects / calculates the operating temperature TS of the power storage device 1 directly or indirectly.
In addition, when it is simply described as “detect” regarding the power storage amount or the operating temperature, “directly or indirectly detected / calculated” (directly detected or indirectly detected by performing a calculation process) ).
電力変動補償量調整部13は、ゲイン、可変リミッタ等で構成され、基本的には有効電力変動成分の大きさに応じて双方向変換器への指令値である電力変動補償量POを生成するが、電力貯蔵装置が運転許容範囲(貯蔵電力量ESや動作温度等TSの上下限値)を逸脱しそうな場合には、電力貯蔵量ES或いは動作温度TS等の検出信号に応じて電力貯蔵量ES或いは動作温度TS等が運転許容範囲を超えない様に上記電力変動補償量POの大きさを調整・制限する。 The power fluctuation compensation amount adjustment unit 13 includes a gain, a variable limiter, and the like, and basically generates a power fluctuation compensation amount PO that is a command value to the bidirectional converter according to the magnitude of the active power fluctuation component. However, if the power storage device is likely to deviate from the allowable operating range (upper and lower limits of the stored power ES and operating temperature TS), the stored power will depend on the detection signal such as the stored power ES or operating temperature TS. The power fluctuation compensation amount PO is adjusted / restricted so that the ES or the operating temperature TS does not exceed the allowable operating range.
例えば、電力貯蔵量ESが上限値(電力貯蔵量最大)に達した時は可変リミッタの下限値をゼロとすることで、電力貯蔵装置1への電力吸収を防止する。一方、電力貯蔵量ESが下限値(電力貯蔵量最小)に達した時は可変リミッタの上限値をゼロとすることで、電力貯蔵装置1からの電力放出を防止する。また、電力貯蔵量ESの上下限値間における可変リミッタの制御に関しては、電力貯蔵量ESが多い時には可変リミッタの下限値を小さく、上限値を大きくすることにより、電力吸収方向の補償信号は大きく抑制し、電力放出方向の補償信号の抑制は小さくすることができる。逆に、電力貯蔵量ESが少ない時には可変リミッタの下限値を大きく、上限値を小さくすることにより、電力放出方向の補償信号は大きく抑制し、電力吸収方向の補償信号の抑制は小さくすることができる。なお、電力変動補償量調整部13の制御特性は、電力貯蔵装置1の種類とその特性、フィルタ時定数設定部16の制御特性等を考慮しながら調整する。 For example, when the power storage amount ES reaches the upper limit value (maximum power storage amount), the lower limit value of the variable limiter is set to zero to prevent the power storage device 1 from absorbing power. On the other hand, when the power storage amount ES reaches the lower limit value (the minimum power storage amount), the upper limit value of the variable limiter is set to zero, thereby preventing the power storage device 1 from discharging power. As for the control of the variable limiter between the upper and lower limits of the power storage amount ES, the compensation signal in the power absorption direction is increased by decreasing the lower limit value of the variable limiter and increasing the upper limit value when the power storage amount ES is large. It is possible to suppress the suppression of the compensation signal in the power discharge direction. Conversely, when the power storage amount ES is small, increasing the lower limit value of the variable limiter and decreasing the upper limit value greatly suppresses the compensation signal in the power discharge direction and reduces the suppression of the compensation signal in the power absorption direction. it can. The control characteristics of the power fluctuation compensation amount adjusting unit 13 are adjusted in consideration of the type and characteristics of the power storage device 1, the control characteristics of the filter time constant setting unit 16, and the like.
上記構成の制御装置10の特徴は、フィルタ時定数設定部16にある。図1において、フィルタ時定数設定部16以外の構成は、上記従来技術と略同様である。すなわち、例えば特許文献2を例にすると、有効電力変動成分抽出フィルタ15は「有効電力目標値演算(32a)」と「減算器(32b)」とをまとめたものに相当する。同様に、位相調整部17は「位相補償回路(32d)」に相当する。また、電力変動補償量調整部13は「ゲイン(32c)」、「有効電力リミッタ(32f)」、及び補正信号を生成する「速度制御ループ(34)」とその「減算器(32e)」をまとめた部分に相当し、有効電力変動成分の大きさに応じて双方向変換器への指令値である電力変動補償量を生成すると共に、電力貯蔵量が運転許容範囲を超えない様に電力変動補償信号の大きさを制御する部分と言える。 The characteristic of the control device 10 configured as described above is the filter time constant setting unit 16. In FIG. 1, the configuration other than the filter time constant setting unit 16 is substantially the same as that of the conventional technique. That is, for example, in Patent Document 2, the active power fluctuation component extraction filter 15 corresponds to a collection of “active power target value calculation (32a)” and “subtracter (32b)”. Similarly, the phase adjustment unit 17 corresponds to a “phase compensation circuit (32d)”. The power fluctuation compensation amount adjustment unit 13 includes a “gain (32c)”, an “active power limiter (32f)”, a “speed control loop (34)” that generates a correction signal, and a “subtracter (32e)”. It corresponds to the summarized part, and it generates power fluctuation compensation amount that is a command value to bidirectional converter according to the size of active power fluctuation component, and power fluctuation so that power storage amount does not exceed allowable operating range It can be said that this is the part that controls the magnitude of the compensation signal.
よって、フィルタ時定数設定部16以外の構成については、基本的には、上記説明のみとし、それ以上詳細に説明しない。
以下、フィルタ時定数設定部16の構成・動作について詳細に説明する。
Therefore, the configuration other than the filter time constant setting unit 16 is basically only described above, and will not be described in further detail.
Hereinafter, the configuration and operation of the filter time constant setting unit 16 will be described in detail.
有効電力変動成分抽出フィルタ15、フィルタ時定数設定部16の構成例を図2に示す。この例では、有効電力変動成分抽出フィルタ15(ハイパスフィルタ)が図示の構成(sT0/(1+sT0))であった場合に対応するフィルタ時定数設定部16の構成例を示す。尚、これは一例であり、他の構成であってよい。すなわち、以下の条件を満たすようにする構成であれば何でもよい。
・入力信号の絶対値|X|が大 ⇒ フィルタ時定数指令値TOが大
⇒補償周波数領域が広くなる(カットする低周波領域が狭くなる)。
・入力信号の絶対値|X|が小 ⇒ フィルタ時定数指令値TOが小
⇒補償周波数領域が狭くなる(カットする低周波領域が広くなる)。
A configuration example of the active power fluctuation component extraction filter 15 and the filter time constant setting unit 16 is shown in FIG. In this example, a configuration example of the filter time constant setting unit 16 corresponding to the case where the active power fluctuation component extraction filter 15 (high-pass filter) has the illustrated configuration (sT0 / (1 + sT0)) is shown. This is merely an example, and other configurations may be used. That is, any configuration that satisfies the following conditions is acceptable.
-Input signal absolute value | X | is large ⇒ Filter time constant command value TO is large
⇒ The compensation frequency region becomes wider (the low frequency region to be cut becomes narrower).
-Input signal absolute value | X | is small ⇒ Filter time constant command value TO is small
⇒ The compensation frequency region becomes narrower (the low frequency region to be cut becomes wider).
<各ブロックの意味・動作・整定方法>
入力信号である有効電力変動成分信号ΔPGは、絶対値演算部21に入り、有効電力変動成分信号ΔPGの絶対値|ΔPG|が計算される。有効電力変動成分信号絶対値|ΔPG|は、制御ゲイン部22に入り、制御ゲインK(K>0)によって大きさが調整され、フィルタ制御信号となる。そして、フィルタ時定数下限リミッタ24によってフィルタ制御信号の下限値Tminを制限することで、フィルタ時定数指令値TOが生成・出力される。フィルタ時定数設定部16の出力であるフィルタ時定数指令値TOに基づき、有効電力変動成分抽出フィルタ15のフィルタ時定数TOが設定される。これは、基本的には、指令値TOを新たなフィルタ時定数TOとして設定するものである。
<Meaning / operation / setting method of each block>
The active power fluctuation component signal ΔPG, which is an input signal, enters the absolute value calculator 21 and the absolute value | ΔPG | of the active power fluctuation component signal ΔPG is calculated. The active power fluctuation component signal absolute value | ΔPG | enters the control gain unit 22, is adjusted in magnitude by the control gain K (K> 0), and becomes a filter control signal. Then, the filter time constant command value TO is generated and output by limiting the lower limit value Tmin of the filter control signal by the filter time constant lower limiter 24. Based on the filter time constant command value TO that is the output of the filter time constant setting unit 16, the filter time constant TO of the active power fluctuation component extraction filter 15 is set. This basically sets the command value TO as a new filter time constant TO.
なお、図2では、有効電力変動成分抽出フィルタ15内に示す分母のTOのみを設定するように見えるかもしれないが、当然、分子、分母の両方のTOを設定する。
これにより、有効電力変動成分信号ΔPGの絶対値|ΔPG|が小さい場合には、フィルタ時定数指令値TOはフィルタ時定数下限リミッタ24における下限値Tminとなり、この状態では短周期の変動成分のみが補償周波数領域内となる。
In FIG. 2, it may seem that only the denominator TO shown in the active power fluctuation component extraction filter 15 is set, but naturally both TO of the numerator and denominator are set.
Thereby, when the absolute value | ΔPG | of the active power fluctuation component signal ΔPG is small, the filter time constant command value TO becomes the lower limit value Tmin in the filter time constant lower limiter 24, and in this state, only the short cycle fluctuation component is present. Within the compensation frequency region.
なお、フィルタ時定数下限リミッタ24における下限値Tminは補償周波数領域が必要最小限となるように決定する。これは系統連系協議や、電力安定化システムの仕様により決定し、短周期(例えば20分以下(0.0008Hz以上))の変動周期については必ず補償するとした場合、フィルタ時定数下限リミッタ24における下限値Tminは約191秒となる。 Note that the lower limit value Tmin in the filter time constant lower limiter 24 is determined so that the compensation frequency region becomes a necessary minimum. This is determined by the grid interconnection discussion and the specifications of the power stabilization system, and if the fluctuation period of a short period (for example, 20 minutes or less (0.0008 Hz or more)) is necessarily compensated, the lower limit in the filter time constant lower limiter 24 The value Tmin is about 191 seconds.
そして、有効電力変動成分信号ΔPGの絶対値|ΔPG|が大きくなり、制御ゲイン部22からの出力であるフィルタ制御信号がフィルタ時定数下限リミッタ24における下限値Tminより大きくなると、フィルタ時定数指令値TOは大きくなり、有効電力変動成分抽出フィルタ15のハイパスフィルタ時定数(ハイパスフィルタの時定数TO)が大きくなる。これより、有効電力変動成分抽出フィルタ15においてカットする低周波数領域が狭くなり(すなわちより低い周波数成分まで抽出されるようになる)、短周期の変動成分から長周期の変動成分までが補償周波数領域内となる。 When the absolute value | ΔPG | of the active power fluctuation component signal ΔPG increases and the filter control signal output from the control gain unit 22 becomes greater than the lower limit value Tmin in the filter time constant lower limiter 24, the filter time constant command value TO increases, and the high-pass filter time constant of the active power fluctuation component extraction filter 15 (time constant TO of the high-pass filter) increases. As a result, the low frequency region to be cut in the active power fluctuation component extraction filter 15 is narrowed (that is, the lower frequency component is extracted), and the compensation frequency region is from the short cycle fluctuation component to the long cycle fluctuation component. Inside.
なお、制御ゲイン部22における制御ゲインK(K>0)は、有効電力変動成分信号絶対値|ΔPG|に対するフィルタ時定数設定部16の制御感度を決定する調整項である。制御ゲインKを大きくすると、有効電力変動成分信号絶対値|ΔPG|の増加に対し、補償周波数領域が広がり易くなるため、補償量は増加する。一方、制御ゲインKを小さくすると、有効電力変動成分信号絶対値|ΔPG|の増加に対し、補償周波数領域が広がりにくくなるため、補償量は抑えぎみとなる。実際の装置では、各現場毎に、短周期の電力変動に対しては、必要な補償量を確保しつつ、過大かつ急激な電力変動に備えて十分な補償余力を確保するように適宜調整する。 The control gain K (K> 0) in the control gain unit 22 is an adjustment term that determines the control sensitivity of the filter time constant setting unit 16 with respect to the active power fluctuation component signal absolute value | ΔPG |. When the control gain K is increased, the compensation frequency region is easily expanded with respect to the increase in the active power fluctuation component signal absolute value | ΔPG |, and the compensation amount is increased. On the other hand, when the control gain K is decreased, the compensation frequency region is not easily expanded with respect to the increase in the active power fluctuation component signal absolute value | ΔPG |, so that the compensation amount is suppressed. In actual devices, for each short-term power fluctuation, the actual equipment is adjusted appropriately to ensure a sufficient amount of compensation in preparation for excessive and sudden power fluctuations while securing the necessary compensation amount. .
上記図2の構成により、有効電力変動成分信号絶対値|ΔPG|が小さいほど、有効電力変動成分抽出フィルタ15におけるハイパスフィルタ時定数は小さくなり、有効電力変動成分抽出フィルタ15においてカットする低周波数領域が広くなる(すなわち、より高い周波数成分のみが抽出される)。 With the configuration of FIG. 2, the smaller the active power fluctuation component signal absolute value | ΔPG | is, the smaller the high-pass filter time constant in the active power fluctuation component extraction filter 15 is. Becomes wider (ie, only higher frequency components are extracted).
逆に、有効電力変動成分信号絶対値|ΔPG|が大きいほど、有効電力変動成分抽出フィルタ15におけるハイパスフィルタ時定数は大きくなり、有効電力変動成分抽出フィルタ15においてカットする低周波数領域が狭くなる(すなわち、より低い周波数成分まで抽出される)。 Conversely, as the active power fluctuation component signal absolute value | ΔPG | increases, the high-pass filter time constant in the active power fluctuation component extraction filter 15 increases, and the low frequency region to be cut in the active power fluctuation component extraction filter 15 becomes narrower ( That is, even lower frequency components are extracted).
<効果>
上記のように、有効電力変動成分信号絶対値|ΔPG|が大きくなるにつれて低い周波数まで補償周波数領域が広がるように、有効電力変動成分抽出フィルタのフィルタ時定数をフィードバック制御することにより、有効電力変動成分信号絶対値|ΔPG|が小さい内は、補償周波数領域を必要最小限(短周期の電力変動に対してのみ)にとどめることで、過大かつ急激な電力変動(特にEDC制御が追従できず周波数調整容量に影響するような過大かつ急激な変動)に備えて十分な補償余力を確保することができる(理由は、後述する<検証結果>で述べる)。そして、有効電力変動成分信号絶対値|ΔPG|が大きくなった場合、つまり過大かつ急激な電力変動に対しては、補償周波数領域を短周期の電力変動から長周期の電力変動にまで広げることにより、確保した補償余力を用いて最大限の補償を行うことができる。
<Effect>
As described above, the active power fluctuation is controlled by feedback control of the filter time constant of the active power fluctuation component extraction filter so that the compensation frequency region is expanded to a lower frequency as the active power fluctuation component signal absolute value | ΔPG | increases. While the component signal absolute value | ΔPG | is small, excessive and rapid power fluctuations (especially EDC control cannot follow up) by limiting the compensation frequency region to the necessary minimum (only for short-period power fluctuations). It is possible to secure a sufficient compensation margin in preparation for an excessive and sudden fluctuation that affects the adjustment capacity (the reason will be described in <Verification Result> described later). When the active power fluctuation component signal absolute value | ΔPG | becomes large, that is, for excessive and sudden power fluctuations, the compensation frequency region is expanded from short cycle power fluctuations to long cycle power fluctuations. Thus, the maximum compensation can be performed using the secured compensation margin.
尚、下限値Tminにより、短周期の電力変動(特に周波数調整容量が少ないガバナフリー領域、LFC領域における変動)に対しては、常に補償周波数領域内であるため、必要な補償量を確保できる。 Note that the lower limit value Tmin ensures that a necessary amount of compensation can be ensured because power fluctuations in a short cycle (particularly fluctuations in the governor-free region and LFC region where the frequency adjustment capacity is small) are always within the compensation frequency region.
なお、EDCは応答速度が遅いため、過大かつ急激な負荷変動には制御が追いつかない可能性があるが、ゆっくりした変動に対しては対応できる変動幅が大きい。従って、上記本手法において過大かつ急激な電力変動のみ抑制すれば、ゆっくりした長周期変動成分を補償領域から外しても、EDCにより対応可能であり問題を生ずることはない。 Since EDC has a slow response speed, control may not be able to catch up with excessive and rapid load fluctuations, but the fluctuation range that can cope with slow fluctuations is large. Therefore, if only excessive and rapid power fluctuations are suppressed in the present method, even if a slow long-period fluctuation component is removed from the compensation region, it can be handled by EDC and does not cause a problem.
また、電力変動に対し電力貯蔵量の容量を抑制する方法として、ゲインを可変制御する方法も考えられる。しかし、ゲインを制御すると変動周期によらず一律に大きさが制限されてしまい、短周期変動に対して必要な補償量が得られなくなるため、適切ではない。 Further, as a method of suppressing the capacity of the power storage amount against power fluctuation, a method of variably controlling the gain can be considered. However, when the gain is controlled, the size is uniformly limited regardless of the fluctuation period, and a necessary amount of compensation for short-period fluctuation cannot be obtained, which is not appropriate.
ここで、上記有効電力変動成分抽出フィルタ15の構成は、図2に示す例に限らず、例えば図3に示す様な構成であってもよい。図3に示す例では、ローパスフィルタを利用した構成により全体としてハイパスフィルタと同等の特性を実現しており、ローパスフィルタにより低周波数領域の成分を抽出し、それを元信号から減算することで、高周波数領域の成分、即ち変動成分を抽出することができる。フィルタ時定数指令値TOが大きくなると、上記ローパスフィルタの時定数が大きくなるので、ローパスフィルタにおける通過領域、すなわちカットする低周波数領域が狭くなり、より低い周波数成分まで抽出される。 Here, the configuration of the active power fluctuation component extraction filter 15 is not limited to the example illustrated in FIG. 2, and may be configured as illustrated in FIG. 3, for example. In the example shown in FIG. 3, the same characteristics as the high-pass filter are realized as a whole by the configuration using the low-pass filter. By extracting the component in the low-frequency region by the low-pass filter and subtracting it from the original signal, A component in a high frequency region, that is, a fluctuation component can be extracted. When the filter time constant command value TO increases, the time constant of the low-pass filter increases, so the pass region in the low-pass filter, that is, the low-frequency region to be cut becomes narrower, and even lower frequency components are extracted.
<検証結果>
以上説明した電力貯蔵装置を用いた電力安定化システムの上記効果について、以下、本発明者による検証結果について示す。
<Verification results>
About the effect of the electric power stabilization system using the electric power storage apparatus demonstrated above, the verification result by this inventor is shown below.
ここでは、フィルタ時定数設定部16の制御を有効とした場合の安定化後出力(風力発電機出力と電力安定化システム出力の合計値)の実測波形を図4、フィルタ時定数設定部16の制御を無効とした場合の安定化後出力のシミュレーション結果を図5に示す。なお比較のため、図4、図5それぞれに風力発電機出力の実測波形(補償前の波形)を併せて示す。 Here, the measured waveform of the stabilized output (the total value of the wind power generator output and the power stabilization system output) when the control of the filter time constant setting unit 16 is validated is shown in FIG. FIG. 5 shows a simulation result of the output after stabilization when the control is invalidated. For comparison, FIGS. 4 and 5 also show the actual measured waveforms of the wind power generator output (the waveforms before compensation).
実機においてフィルタ時定数設定部16の制御を無効にすることは難しく、仮にフィルタ時定数制御を無効にしたとしても、補償対象である風力発電の出力は風任せで再現できないため、ここでは、フィルタ時定数制御を無効とした電力貯蔵装置を用いた電力安定化システムをモデル化し、実機(制御有効)において計測した風力発電出力データを入力することで(つまり、同じデータを入力する)、上記シミュレーション結果を得ている。 Since it is difficult to invalidate the control of the filter time constant setting unit 16 in an actual machine, even if the filter time constant control is invalidated, the output of the wind power generation to be compensated cannot be reproduced due to wind. Modeling a power stabilization system using a power storage device with time constant control disabled, and inputting the wind power output data measured in the actual machine (control enabled) (that is, inputting the same data), the above simulation I'm getting results.
また、フィルタ時定数設定部16の制御を有効とした場合のフィルタ時定数は20分〜250分の間で可変とする。また、フィルタ時定数設定部16の制御を無効とした場合のフィルタ時定数は120分で固定とする。 Further, the filter time constant when the control of the filter time constant setting unit 16 is validated is variable between 20 minutes and 250 minutes. Further, the filter time constant when the control of the filter time constant setting unit 16 is disabled is fixed at 120 minutes.
図4、図5より12:30から13:00近くにかけて風力発電機出力が1500kWから0kWそして1500kWと急激に変化していることが分かる。これに対し、電力安定化システムはフィルタ時定数設定部16の制御の有効、無効によらず良好に電力変動を抑制していることが分かる。この時の電力変動縮小率(20分間の最大電力変動が補償前後でどれだけ縮小したかを示す)はフィルタ時定数設定部16の制御の有効、無効によらず88%程度である。なお、フィルタ時定数設定部16の制御を有効とした場合、この間のフィルタ時定数は250分程度である。 4 and 5, it can be seen that the wind power generator output changes rapidly from 1500 kW to 0 kW and 1500 kW from 12:30 to 13:00. In contrast, it can be seen that the power stabilization system satisfactorily suppresses power fluctuations regardless of whether the control of the filter time constant setting unit 16 is valid or invalid. The power fluctuation reduction rate at this time (which indicates how much the maximum power fluctuation for 20 minutes has been reduced before and after compensation) is about 88% regardless of whether the control of the filter time constant setting unit 16 is valid or invalid. When the control of the filter time constant setting unit 16 is enabled, the filter time constant during this period is about 250 minutes.
ところで、図4より、フィルタ時定数設定部16の制御を有効とした場合、1:00から8:00近くにかけて、若干電力変動は残るが、風力発電機出力に遅れ無く追従しながら電力変動を良好に抑制していることが分かる。風力発電機出力に遅れ無く追従しているのは、この間の有効電力変動成分信号絶対値|ΔPG|が小さく、フィルタ時定数設定部によりフィルタ時定数が小さく設定されたことによるものである。 By the way, as shown in FIG. 4, when the control of the filter time constant setting unit 16 is enabled, the power fluctuation remains slightly from 1:00 to nearly 8:00, but the power fluctuation is followed while following the wind power generator output without delay. It turns out that it suppresses favorably. The reason why the output of the wind power generator is followed without delay is that the active power fluctuation component signal absolute value | ΔPG | during this period is small and the filter time constant is set small by the filter time constant setting unit.
一方、図5より、フィルタ時定数設定部16の制御を無効とした場合、1:00から8:00近くにかけて、電力変動を良好に抑制しているが、風力発電機出力に若干遅れて追従していることが分かる。風力発電機出力に対して遅れて追従しているのは、過大かつ急激な電力変動も補償できるようにするために、時定数を120分と大きく設定したことによるものである。 On the other hand, as shown in FIG. 5, when the control of the filter time constant setting unit 16 is disabled, the power fluctuation is suppressed well from 1:00 to nearly 8:00, but follows the wind power generator output with a slight delay. You can see that The reason for following the wind power generator with a delay is that the time constant is set to a large value of 120 minutes in order to compensate for excessive and rapid power fluctuations.
ここで、風力発電機出力と安定化後出力の差は電力安定化システムが補償する電力量となるため、風力発電機出力に対する追従特性が悪くなるほど、電力安定化システムが必要とする電力量は増大する。図4、図5において電力貯蔵装置に必要な容量を計算した結果、フィルタ時定数設定部16の制御を有効とした場合、電力貯蔵装置に必要な容量は26000kWhであるのに対し、フィルタ時定数設定部16の制御を無効とした場合、電力貯蔵装置に必要な容量は39000kWhとなった。 Here, since the difference between the wind power generator output and the stabilized output is the amount of power that the power stabilization system compensates for, the less the tracking characteristics with respect to the wind power generator output, the less the power required by the power stabilization system. Increase. As a result of calculating the capacity required for the power storage device in FIGS. 4 and 5, when the control of the filter time constant setting unit 16 is enabled, the capacity required for the power storage device is 26000 kWh, whereas the filter time constant is When the control of the setting unit 16 is disabled, the capacity required for the power storage device is 39000 kWh.
つまり、過大かつ急激な電力変動に対し同等な抑制効果を得るために、フィルタ時定数設定部16の制御を無効とした場合のほうが、より大きな容量の電力貯蔵装置を必要とする。逆に、フィルタ時定数設定部16の制御を有効とした場合、有効電力変動成分の絶対値が小さいうちは、補償周波数領域を必要最小限にとどめることで、過大かつ急激な電力変動に備えて十分な補償余力を確保し、有効電力変動成分の絶対値が大きくなった場合、つまり過大かつ急激な電力変動に対しては、補償周波数領域を短周期の電力変動から長周期の電力変動にまで広げ、確保した補償余力を用いて最大限の補償を行うことで、より小さな容量の電力貯蔵装置で、過大かつ急激な電力変動に対し同等な抑制効果を得ることができる。 That is, in order to obtain an equivalent suppression effect against excessive and rapid power fluctuations, a power storage device having a larger capacity is required when the control of the filter time constant setting unit 16 is disabled. On the contrary, when the control of the filter time constant setting unit 16 is enabled, the compensation frequency region is kept to the minimum necessary as long as the absolute value of the active power fluctuation component is small, thereby preparing for excessive and rapid power fluctuation. When sufficient compensation capacity is secured and the absolute value of the active power fluctuation component increases, that is, for excessive and rapid power fluctuations, the compensation frequency range is changed from short-period power fluctuations to long-period power fluctuations. By performing the maximum compensation using the expanded and secured compensation margin, it is possible to obtain the same suppression effect against excessive and rapid power fluctuations with a power storage device having a smaller capacity.
上記の結果、少ない容量の電力貯蔵装置で、過大かつ急激な電力変動まで、効率的・効果的に電力変動補償を行うことが可能な、電力貯蔵装置を用いた電力変動補償システムを提供できる。 As a result of the above, it is possible to provide a power fluctuation compensation system using a power storage apparatus that can efficiently and effectively compensate for power fluctuations until an excessive and rapid power fluctuation with a power storage device having a small capacity.
1 電力貯蔵装置
2 双方向電力変換器
3 変圧器
4 風力発電機
5 変圧器
6 電力系統
10 制御装置
11 動作温度検出器
12 電力貯蔵量検出器
13 電力変動補償量調整部
14 有効電力検出器
15 有効電力変動成分抽出フィルタ
16 フィルタ時定数設定部
17 位相調整部
21 絶対値演算部
22 制御ゲイン部
24 フィルタ時定数下限リミッタ
DESCRIPTION OF SYMBOLS 1 Power storage device 2 Bidirectional power converter 3 Transformer 4 Wind generator 5 Transformer 6 Electric power system 10 Control apparatus 11 Operation temperature detector 12 Power storage amount detector 13 Power fluctuation compensation amount adjustment part 14 Active power detector 15 Active power fluctuation component extraction filter 16 Filter time constant setting unit 17 Phase adjustment unit 21 Absolute value calculation unit 22 Control gain unit 24 Filter time constant lower limit limiter
Claims (2)
電力を貯蔵し、前記交流電力系統の電力の吸収または前記交流電力系統に対する電力の放出を行う電力貯蔵装置と、
該電力貯蔵装置の貯蔵電力の吸収・放出に伴う電力の入出力を、前記交流電力系統と前記電力貯蔵装置の間で相互に変換する双方向電力変換器と、
前記交流電力系統の有効電力変動に応じて該双方向電力変換器の変換動作を制御することにより、前記交流電力系統の有効電力変動を抑制する制御装置とから成り、
前記制御装置は、
前記交流電力系統の有効電力から、設定されるフィルタ時定数に応じた所定の周波数領域における有効電力変動成分を抽出する有効電力変動成分抽出フィルタと、
前記有効電力変動成分の大きさに応じた電力変動補償量によって前記双方向電力変換器の変換動作を制御する電力変動補償量調整手段と、
前記有効電力変動成分を入力し、該有効電力変動成分の絶対値の大きさに基づいて前記有効電力変動成分抽出フィルタの前記フィルタ時定数を設定するフィルタ時定数設定手段とを有し、
該フィルタ時定数設定手段は、前記有効電力変動成分の絶対値が小さいときには前記有効電力変動成分抽出フィルタにおける前記周波数領域が狭くなるように前記フィルタ時定数を設定することで該フィルタにおいてカットする低周波数領域が広くなるようにし、前記有効電力変動成分の絶対値が大きくなったときには前記有効電力変動成分抽出フィルタにおける前記周波数領域が広くなるように前記フィルタ時定数を設定することで該フィルタにおいてカットする低周波数領域が狭くなるようにすることを特徴とする電力貯蔵装置を用いた電力安定化システム。 A power stabilization system that suppresses fluctuations in the active power of an AC power system,
A power storage device for storing power and absorbing power of the AC power system or discharging power to the AC power system;
A bi-directional power converter that mutually converts power input / output accompanying absorption / release of stored power of the power storage device between the AC power system and the power storage device;
By controlling the conversion operation of the bidirectional power converter according to the active power fluctuation of the AC power system, the control device suppresses the active power fluctuation of the AC power system,
The controller is
An active power fluctuation component extraction filter that extracts an active power fluctuation component in a predetermined frequency region according to a set filter time constant from the active power of the AC power system;
A power fluctuation compensation amount adjusting means for controlling a conversion operation of the bidirectional power converter by a power fluctuation compensation amount according to the magnitude of the active power fluctuation component;
Filter time constant setting means for inputting the active power fluctuation component and setting the filter time constant of the active power fluctuation component extraction filter based on the magnitude of the absolute value of the active power fluctuation component;
The filter time constant setting means sets the filter time constant so that the frequency region in the active power fluctuation component extraction filter becomes narrow when the absolute value of the active power fluctuation component is small. When the absolute value of the active power fluctuation component is increased, the filter time constant is set so that the frequency domain becomes wider when the absolute value of the active power fluctuation component is increased. A power stabilization system using a power storage device, characterized in that a low frequency region to be narrowed.
前記交流電力系統の有効電力から、設定されるフィルタ時定数に応じた所定の周波数領域における有効電力変動成分を抽出する有効電力変動成分抽出フィルタと、
前記有効電力変動成分の大きさに応じた電力変動補償量によって前記双方向電力変換器の変換動作を制御する電力変動補償量調整手段と、
前記有効電力変動成分を入力し、該有効電力変動成分の絶対値の大きさに基づいて前記有効電力変動成分抽出フィルタの前記フィルタ時定数を設定するフィルタ時定数設定手段とを有し、
該フィルタ時定数設定手段は、前記有効電力変動成分の絶対値が小さいときには前記有効電力変動成分抽出フィルタにおける前記周波数領域が狭くなるように前記フィルタ時定数を設定することで該フィルタにおいてカットする低周波数領域が広くなるようにし、前記有効電力変動成分の絶対値が大きくなったときには前記有効電力変動成分抽出フィルタにおける前記周波数領域が広くなるように前記フィルタ時定数を設定することで該フィルタにおいてカットする低周波数領域が狭くなるようにすることを特徴とする電力安定化システムにおける制御装置。 A power stabilization system for suppressing fluctuations in active power of an AC power system, the power storage device storing power and absorbing power in the AC power system or discharging power to the AC power system, and the power storage Bidirectional power converter that mutually converts power input / output accompanying absorption / release of stored power of the device between the AC power system and the power storage device, and according to active power fluctuation of the AC power system In the control device in the power stabilization system comprising the control device that suppresses the active power fluctuation of the AC power system by controlling the conversion operation of the bidirectional power converter,
An active power fluctuation component extraction filter that extracts an active power fluctuation component in a predetermined frequency region according to a set filter time constant from the active power of the AC power system;
A power fluctuation compensation amount adjusting means for controlling a conversion operation of the bidirectional power converter by a power fluctuation compensation amount according to the magnitude of the active power fluctuation component;
Filter time constant setting means for inputting the active power fluctuation component and setting the filter time constant of the active power fluctuation component extraction filter based on the magnitude of the absolute value of the active power fluctuation component;
The filter time constant setting means sets the filter time constant so that the frequency region in the active power fluctuation component extraction filter becomes narrow when the absolute value of the active power fluctuation component is small. The frequency range is widened, and when the absolute value of the active power fluctuation component becomes large, the filter time constant is set so that the frequency area in the active power fluctuation component extraction filter is widened, thereby cutting the filter. A control device in a power stabilization system, characterized in that a low frequency region to be narrowed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006158468A JP4432938B2 (en) | 2006-06-07 | 2006-06-07 | Power stabilization system using power storage device and control device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006158468A JP4432938B2 (en) | 2006-06-07 | 2006-06-07 | Power stabilization system using power storage device and control device thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007330017A JP2007330017A (en) | 2007-12-20 |
JP4432938B2 true JP4432938B2 (en) | 2010-03-17 |
Family
ID=38930099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006158468A Active JP4432938B2 (en) | 2006-06-07 | 2006-06-07 | Power stabilization system using power storage device and control device thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4432938B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102150318B (en) * | 2008-09-30 | 2013-11-06 | 日本碍子株式会社 | Secondary battery power control method |
JP5384155B2 (en) * | 2009-03-17 | 2014-01-08 | 三洋電機株式会社 | Power generation system |
BRPI0905744A2 (en) | 2009-05-20 | 2015-07-14 | Mitsubishi Heavy Ind Ltd | Wind turbine generator and method of controlling the same |
JP5507582B2 (en) * | 2010-01-27 | 2014-05-28 | 三洋電機株式会社 | Power supply method, computer-readable recording medium, and power generation system |
WO2011093419A1 (en) * | 2010-01-28 | 2011-08-04 | 三洋電機株式会社 | Power supply method, computer-readable recording medium, and power generation system |
JP5386444B2 (en) * | 2010-06-30 | 2014-01-15 | 株式会社日立製作所 | Storage battery control device, storage battery control method, and storage battery specification determination method |
JP5481305B2 (en) | 2010-07-30 | 2014-04-23 | 株式会社東芝 | Output distribution controller |
JP5738220B2 (en) * | 2012-02-28 | 2015-06-17 | 三菱重工業株式会社 | Output smoothing apparatus, output smoothing method and program |
KR101455265B1 (en) * | 2012-12-31 | 2014-11-13 | 한국전기연구원 | Method and Apparatus for controlling active power of wind power generation complex |
JP6573546B2 (en) * | 2015-12-25 | 2019-09-11 | 株式会社日立製作所 | Electric power fluctuation control device for renewable energy power generator |
JP6768571B2 (en) * | 2017-03-23 | 2020-10-14 | 株式会社日立製作所 | Power controller, method and power generation system |
JP7189045B2 (en) * | 2019-02-21 | 2022-12-13 | 株式会社日立インダストリアルプロダクツ | power conversion system |
-
2006
- 2006-06-07 JP JP2006158468A patent/JP4432938B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007330017A (en) | 2007-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4432938B2 (en) | Power stabilization system using power storage device and control device thereof | |
JP4715624B2 (en) | Power stabilization system, power stabilization control program, and power stabilization control method | |
JP4782245B1 (en) | Wind turbine generator control device and control method | |
JP4518002B2 (en) | Power stabilization system using power storage device and control device thereof | |
WO2019035760A1 (en) | Virtual power system inertia apparatus and methods of operation thereof | |
JP6232899B2 (en) | Power compensation device | |
US20150008743A1 (en) | Power Supply System | |
JP2014527387A (en) | Method and apparatus for controlling the operation of a photovoltaic power plant | |
WO2013142553A2 (en) | System and method for islanding detection and protection | |
TWI599135B (en) | Method and regulation and/or control device for operating a wind turbine and/or a wind farm, and wind turbine and wind farm | |
CN111564888A (en) | Charging control method and device based on temperature feedback | |
JP4764982B2 (en) | Power stabilization system using power storage device | |
US10951039B2 (en) | Multi-input PV inverter system and method | |
JP2018161041A (en) | Power stabilization system using power storage device and controller | |
US10916944B2 (en) | Solar and/or wind inverter | |
WO2011045263A1 (en) | Damping of drive train oscillations by dc-link absorption means | |
JP6923296B2 (en) | Wind farms and their operation methods and wind farms | |
JP5239767B2 (en) | System stabilization device | |
JP2009112175A (en) | Power stabilization system | |
US20240162711A1 (en) | Methods and systems for damping power oscillations during frequency fluctuations | |
JP7537089B2 (en) | Prediction Device | |
JP5752529B2 (en) | Control device and control method for wind turbine generator facility | |
JP2015077022A (en) | Charge/discharge control device and charge/discharge control method | |
WO2019068295A1 (en) | Generator protection during high-wind operation | |
JP4665831B2 (en) | Power stabilization system, control device, and control program thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080415 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4432938 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |