JP4417869B2 - 情報記憶媒体、再生方法及び記録方法 - Google Patents
情報記憶媒体、再生方法及び記録方法 Download PDFInfo
- Publication number
- JP4417869B2 JP4417869B2 JP2005072580A JP2005072580A JP4417869B2 JP 4417869 B2 JP4417869 B2 JP 4417869B2 JP 2005072580 A JP2005072580 A JP 2005072580A JP 2005072580 A JP2005072580 A JP 2005072580A JP 4417869 B2 JP4417869 B2 JP 4417869B2
- Authority
- JP
- Japan
- Prior art keywords
- recording
- area
- light
- data
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24062—Reflective layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/002—Recording, reproducing or erasing systems characterised by the shape or form of the carrier
- G11B7/0037—Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0045—Recording
- G11B7/00455—Recording involving reflectivity, absorption or colour changes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0045—Recording
- G11B7/00456—Recording strategies, e.g. pulse sequences
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/007—Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
- G11B7/00736—Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/125—Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
- G11B7/126—Circuits, methods or arrangements for laser control or stabilisation
- G11B7/1267—Power calibration
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24035—Recording layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/246—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
- G11B7/2467—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes azo-dyes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/246—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
- G11B7/247—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
- G11B7/2472—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes cyanine
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/249—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0045—Recording
- G11B7/00454—Recording involving phase-change effects
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/005—Reproducing
- G11B7/0052—Reproducing involving reflectivity, absorption or colour changes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/006—Overwriting
- G11B7/0062—Overwriting strategies, e.g. recording pulse sequences with erasing level used for phase-change media
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/007—Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
- G11B7/00745—Sectoring or header formats within a track
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/0901—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
- G11B7/0906—Differential phase difference systems
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/095—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
- G11B7/0956—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2407—Tracks or pits; Shape, structure or physical properties thereof
- G11B7/24073—Tracks
- G11B7/24076—Cross sectional shape in the radial direction of a disc, e.g. asymmetrical cross sectional shape
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2407—Tracks or pits; Shape, structure or physical properties thereof
- G11B7/24073—Tracks
- G11B7/24079—Width or depth
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2407—Tracks or pits; Shape, structure or physical properties thereof
- G11B7/24073—Tracks
- G11B7/24082—Meandering
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/246—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/249—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
- G11B7/2492—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds neutral compounds
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/249—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
- G11B7/2495—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds as anions
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
- G11B7/2533—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
- G11B7/2533—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
- G11B7/2534—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/146—Laser beam
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Optical Recording Or Reproduction (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Description
(1)トラックピッチ/ビットピッチと最適記録パワーの関係
… 従来のように基板形状変化を伴う記録原理の場合、トラックピッチが詰まると“クロスライト”“クロスイレーズ”が発生し、ビットピッチを詰めると符号間クロストークが発生する。本実施形態のように基板形状変化を伴わない記録原理を考案する事で、トラックピッチ/ビットピッチを詰められて高密度化が可能となる。また、同時に上記の記録原理では記録感度が向上し、最適記録パワーを小さく設定できるため高速記録化と記録膜の多層化が可能となる
(2)620nm以下の短波長光記録で、ECCブロックが複数の小ECCブロックの組み合わせで構成されると共に連続する2セクター内の各データID情報が互いに異なる小ECCブロック内に配置
… 本実施形態に依れば、図1(b)に示すように、記録層3-2内での局所的な光学特性変化を記録原理とするため、記録時の記録層3-2内での到達温度が透明基板2-2の塑性変形又は有機色素記録材料の熱分解や気化(蒸発)による従来の記録原理よりも低い。従って、再生時の記録層3-2内での到達温度と記録温度の差が小さい。本実施形態では1ECCブロック内で小ECCブロック間のインターリーブ処理とデータIDの配置を工夫する事で繰り返し再生時に記録膜が万一劣化した場合の再生信頼性を向上させている。
… 一般的な有機色素材料の吸収分光特性の影響で620nmよりも短い波長の光では大幅に光吸収率が低下して記録感度が下がる。そのため従来のDVD−Rの記録原理である基板変形を発生させるには非常に大きな露光量を必要とする。本実施形態のように記録された部分(記録マーク)内で非記録部分より反射率が上がる“L→H”有機色素記録材料を採用する事で、“電子結合の分離による脱色作用”を用いた記録マークの形成により基板変形を不要とし、記録感度が向上する。
… 再生時のウォブル同期が取り易く、ウォブルアドレスの再生信頼性が向上する
5.“L→H”有機色素記録膜と再生信号変調度規定
… 記録マークからの再生信号に関する高いC/N比が確保でき、記録マークからの再生信頼性が向上
6.“L→H”有機色素記録膜とミラー部での光反射率範囲
… システムリードイン領域SYLDIからの再生信号に関する高いC/N比が確保でき、高い再生信頼性が確保できる
7.“L→H”有機色素記録膜とオントラック時の未記録領域からの光反射率範囲
… 未記録領域内でのウォブル検出信号に関する高いC/N比が確保でき、ウォブルアドレス情報に対する高い再生信頼性を確保できる
8.“L→H”有機色素記録膜とウォブル検出信号振幅範囲
… ウォブル検出信号に関する高いC/N比が確保でき、ウォブルアドレス情報に対する高い再生信頼性を確保できる
《 目 次 》
第0章 使用波長と本実施形態との関係説明
… 本実施形態適用範囲の使用波長説明
第1章 本実施形態における情報記憶媒体構成要素の組み合わせ説明
表1に本実施形態における情報記憶媒体構成要素内容と組み合わせ方法を示す。
2-1)記録原理/記録膜構造の違いと再生信号生成に関する基本的な考え方の違い…λmax writeの定義
2-2)プリピット/プリグルーブ領域内での光反射層形状の違い
光反射層形状(スピンコートとスパッタ蒸着の違い)、再生信号に及ぼす影響
第3章 本実施形態における有機色素記録膜の特徴説明
3-1)従来の有機色素材料を用いた追記記録膜(DVD−R)での高密度化に対する問題点
3-2)本実施形態における有機色素記録膜に共通する基本的特徴説明
… 記録層厚みの下限値、本実施形態で効果が生まれるチャネルビット長/トラックピッチ、繰り返し再生可能回数、最適な再生パワー、
グルーブ幅とランド幅の比率…ウォブルアドレスフォーマットとの関係、
グルーブ部とランド部での記録層厚みの関係、
記録情報のエラー訂正能力の向上技術やPRMLとの組み合わせ
3-3)本実施形態における有機色素記録膜に共通する記録特性…最適記録パワーの上限値
3-4)本実施形態における“H→L”記録膜に関する特徴説明
… 未記録での反射率の上限値、
λmax writeの値とλlmaxの値(未記録/既記録位置での吸光度最大波長)の関係
未記録/既記録位置での反射率と変調度と再生波長での吸光値の相対値範囲…n・k範囲
要求解像度特性と記録層厚みの上限値の関係
第4章 再生装置または記録再生装置と記録条件/再生回路の説明
4-1)本実施形態での再生装置もしくは記録再生装置の構造と特徴説明
… 使用波長範囲、NA値、RIM Intensity
4-2)本実施形態での再生回路の説明
4-3)本実施形態での記録条件の説明
第5章 本実施形態における有機色素記録膜の具体的実施形態説明
5-1)本実施形態における“L→H”記録膜に関する特徴説明
… 記録原理、未記録/既記録位置での反射率と変調度
5-2)本実施形態の“L→H”記録膜に関する光吸収スペクトルの特徴
… 最大吸収波長λmax writeの値、Al405の値とAh405の値の設定条件
5-3)アニオン部:アゾ金属錯体+カチオン部:色素
5-4)アゾ金属錯体+中心金属として“銅”使用
… 記録後での光吸収スペクトルが“H→L”記録膜では広がり、“L→H”記録膜では狭くなる
記録前後での極大(最大)吸収波長変化量の上限値
記録前後での極大(最大)吸収波長変化量が少なく極大(最大)吸収波長での吸光度が変化する
5-5)中心金属が4個の酸素原子とイオン結合するアゾ金属錯体
第6章 塗布形有機色素記録膜と光反射層界面でのプリグルーブ形状/プリピット形状に関する説明
6-1)光反射層(材質と厚み)
… 厚み範囲と不動態化構造 … 記録原理と劣化防止(基板変形や空洞より信号劣化し易い)
6-2)塗布形有機色素記録膜と光反射層界面でのプリピット形状に関する説明
… システムリードイン領域でトラックピッチ/チャネルビットピッチを広げた効果
システムリードイン領域での再生信号振幅値と解像度
光反射層4-2でのランド部とプリピット部での段差量の規定
6-3)塗布形有機色素記録膜と光反射層界面でのプリグルーブ形状に関する説明
… 光反射層4-2でのランド部とプリグルーブ部での段差量の規定
プッシュプル信号振幅範囲
ウォブル信号振幅範囲 … ウォブル変調方式との組み合わせ
第7章 第1の次世代光ディスク:HD DVD方式(以下、Hフォーマットと称する)の説明
… 記録原理と再生信号劣化対策(基板変形や空洞より信号劣化し易い)… 誤り訂正符号(Error correction code)ECC構造、PRML(Partial Response Maximum Likelihood)方式
グルーブ領域内広い平坦領域とウォブルアドレスフォーマットの関係
追加記録時には非データ部であるVFO領域で多重書きする
… 多重書き領域でのDC成分変化の影響が軽減。特に“L→H”記録膜で効果が顕著。
… 記録原理と再生信号劣化対策(基板変形や空洞より信号劣化し易い)
グルーブ領域内広い平坦領域とウォブルアドレスフォーマットの関係
追加記録時には非データ部であるVFO領域で多重書きする
… 多重書き領域でのDC成分変化の影響が軽減。特に“L→H”記録膜で効果が顕著。
有機色素材料を記録材料に用いた追記形情報記憶媒体として、記録/再生用レーザ光源波長780nmを用いたCD−Rディスクと、記録/再生用レーザ光源波長650nmを用いたDVD−Rディスクが既に市販されている。さらに、高密度化した次世代の追記形情報記憶媒体では、後述する表1のHフォーマット(D1)またはBフォーマット(D2)のいずれのフォーマットでも記録または再生用のレーザ光光源波長は405nm近傍(つまり355nmから455nmの範囲)が使われる事を想定している。有機色素材料を用いた追記形情報記憶媒体では、使用光源波長がわずかに変化するだけで記録/再生特性が敏感に変化する。原理的には記録/再生用レーザ光源波長の二乗に反比例して密度が上げられるので、記録/再生用に用いられるレーザ光源波長は短い方が望ましいが、上記の理由からCD−RディスクやDVD−Rディスクに利用される有機色素材料を405nm用の追記形情報記憶媒体として使うことができない。しかも、405nmは紫外線波長に近いので、“405nm光で容易に記録可能”な記録材料は紫外線照射により特性変化し易く、長期安定性に欠ける欠点が生じやすい。利用される有機色素材料により特性が大幅に異なるので一般論として断定し辛いが、一例として具体的な波長で上記の特徴を説明する。650nm光で最適化された有機色素記録材料は使用する光が620nmより短くなると、記録/再生特性が歴然と変化する。従って、620nmよりも短い光で記録/再生を行う場合には、記録光または再生光の光源波長に最適な有機色素材料の新規開発が必要となる。530nmより短い光で記録が容易な有機色素材料は紫外線照射による特性劣化を起こし易く、長期安定性に欠ける。本実施形態では、405nm近傍での使用に適した有機記録材料に付いての実施形態について説明を行うが、半導体レーザ光源のメーカーによる発光波長の変動も考慮に入れた355〜455nmの範囲で安定に使用可能な有機記録材料に関する実施形態を説明する。すなわち、本実施形態の適応範囲は、620nm以下の光源に適合したもの、望ましくは530nmより短い光(最も狭い範囲の定義では355〜455nmの範囲)に対応している。
本実施形態では620nm以下の光源に適合した有機記録材料(有機色素材料)を考案した所に大きな技術的特徴が有るが、その有機記録材料(有機色素材料)には記録マーク内で光反射率が増加すると言う従来のCD−RディスクやDVD−Rディスクには存在しない独自な特徴(Low to High特性)を有している。従って、本実施形態に示す有機記録材料(有機色素材料)の特徴をより効果的に生かす情報記憶媒体の構造、寸法あるいはフォーマット(情報記録形式)を組み合わせた所にも本実施形態の技術的な特徴とそれにより発生する新規な効果が生まれる。本実施形態での新たな技術的特徴と効果を生み出す組み合わせを表1に示す。すなわち、本実施形態における情報記憶媒体では構成要素としては
A〕有機色素記録膜、
B〕プリフォーマット(プリグルーブ形状/寸法やプリピット形状/寸法など)、
C〕ウォブル条件(ウォブル変調方法やウォブル変化形状、ウォブル振幅、ウォブル配置方法など)
D〕フォーマット(情報記憶媒体に記録する/予め記録されたデータの記録形式など)
などが有り、各構成要素毎の具体的な実施形態が表1の各列に記載された内容となっている。そして、表1に示した各構成要素毎の具体的な実施形態の組み合わせ方に本実施形態の技術的な特徴と独自な効果が発生している。以下に実施形態を説明する段階で個々の実施形態の組み合わせ状態を記載するが、特に組み合わせを指定しない構成要素に関しては
A5)任意の塗布記録膜、
B3)任意グルーブ形状と任意ピット形状、
C4)任意変調方式、
C6)任意振幅量と、
D4)任意の追記方法とフォーマット
を採用している事を意味する。
2−1)記録原理/記録膜構造の違いと再生信号生成に関する基本的な考え方の違い
図1(a)に標準的な相変化記録膜構造(主に書替え形情報記憶媒体に使用されている)を示し、図1(b)に標準的な有機色素記録膜構造(主に追記形情報記憶媒体に使用されている)を示す。本実施形態の説明文内では図1に示した透明基板2−1、2−2を除いた記録膜構造全体を(光反射層4−1、4−2を含めて)“記録膜”と定義し、記録材料が配置されている記録層単体3−1、3−2とは区別する。相変化を用いた記録材料では一般的に既記録領域(記録マーク内)と未記録領域(記録マーク外)での光学的な特性変化量が小さいので、再生信号の相対的な変化率を強調するためのエンハンス構造を採用している。そのため相変化記録膜構造では図1(a)に示すように透明基板2−1と相変化形記録層3−1との間に下地中間層5を配置し、光反射層4−2と相変化形記録層3−1との間に上側中間層6を配置している。本実施形態では透明基板2−1、2−2の材料として透明プラスチック材料であるポリカーボネートPCあるいはアクリルPMMA(ポリ・メチル・メタクリレート)を採用している。本実施形態で使用されるレーザ光7の中心波長は405nmであり、この波長におけるポリカーボネートPCの屈折率n21、n22は1.62近傍になっている。相変化形記録材料として最も一般的に用いられているGeSbTe(ゲルマニウム・アンチモン・テルル)での405nmにおける標準的な屈折率n31と吸収係数k31は結晶領域ではn31≒1.5、k31≒2.5に対して非晶質領域ではn31≒2.5、k31≒1.8となっている。このように相変化形記録材料における(非晶質領域内での)屈折率は透明基板2−1の屈折率と大きく異なり、相変化記録膜構造では各層の界面でのレーザ光7の反射が起こり易くなっている。上記のように(1)相変化記録膜構造がエンハンス(強調)構造を取っている、(2)各層間の屈折率差が大きいなどの理由から相変化記録膜に記録された記録マークからの再生時における光反射量変化(記録マークからの光反射量と未記録領域からの光反射量の差分値)は下地中間層5、記録層3−1、上側中間層6、光反射層4−2のそれぞれの界面で発生する多重反射光の干渉結果として得られる。図1(a)ではレーザ光7が下地中間層5と記録層3−1との間の界面、記録層3−1と上側中間層6との間の界面、上側中間層6と光反射層4−2との間の界面のみで反射しているように見えるが、実際には複数回の多重反射光間の干渉結果で光反射光量変化が得られている。
(1)記録層3−2の気化エネルギーによる局所的に透明基板2−2が塑性変形や
(2)記録層3−2から熱が透明基板2−2に伝わり、その熱により局所的に透明基板2−2が塑性変形
が原因と言われている。透明基板2−2が局所的に塑性変形すると、透明基板2−2を通過して光反射層4−2で反射し、再度透明基板2−2を通過して戻って来るレーザ光7の光学的距離が変化する。局所的に塑性変形した透明基板2−2の部分を通過して戻ってくる記録マーク内からのレーザ光7と、変形して無い透明基板2−2の部分を通過して戻ってくる記録マーク周辺部からのレーザ光7との間に位相差が生じるので、両社間の干渉により反射光の光量変化が生じる。また、特に、上記(1)のメカニズムが生じた場合には、記録層3−2の記録マーク内が気化(蒸発)により空洞化して生じる実質的な屈折率n32の変化、あるいは記録マーク内での有機色素記録材料の熱分解により生じる屈折率n32の変化も上記の位相差発生に寄与する。現行DVD−Rディスクでは、透明基板2−2が局所的に変形するまで記録層3−2が高温(上記(1)のメカニズムでは記録層3−2の気化温度、(2)のメカニズムでは透明基板2−2を塑性変形させるために必要な記録層3−2内温度)になる必要や、記録層3−2の一部を熱分解または気化(蒸発)させるために高温にする必要が有り、記録マークを形成させるためにはレーザ光7の大きなパワーが必要となる。
Ar≡−log10(Ir/Io) (A−1)
At≡−log10(It/Io) (A−2)
で表される。今後特に断らない限り吸光度としては(A−1)式で表させる反射形の吸光度Arの事を示して説明を行うが、本実施形態においてはそれに限らず、(A−2)式で表させる透過形の吸光度Atとして考える事も出来る。図2に示した実施形態では発色領域8を含む光吸収領域が複数存在しているため、吸光度が極大になる位置が複数存在する。この場合には、吸光度が極大値を取る時の最大吸収波長λmaxが複数存在する。現行DVD−Rディスクにおける記録用レーザ光の波長は650nmになっている。本実施形態において最大吸収波長λmaxが複数存在した場合には、記録用レーザ光の波長に最も波長が近い最大吸収波長λmaxの値が重要になって来る。従って、本実施形態説明文中に限り、記録用レーザ光の波長に最も近い位置にある最大吸収波長λmaxの値を“λmax write”と定義し、他のλmax(λmax 0)と区別する。
プリピット領域またはプリグルーブ領域10での記録膜の形成形状比較を図3に示す。図3(a)は相変化記録膜に対する形状を示している。下地中間層5、記録層3−1、上側中間層6、光反射層4−1いずれの層を形成する場合にも真空中でスパッタ蒸着、真空蒸着またはイオンプレーティングのいずれかの方法を用いる。その結果、全ての層で透明基板2−1の凹凸形状を比較的忠実に複製する。例えば、透明基板2−1のプリピット領域またはプリグルーブ領域10での断面形状が矩形または台形になっていた場合には、記録層3−1と光反射層4−1の断面形状も概略矩形または台形となる。
(1)プリピット領域からの光再生信号の変調度が小さく、プリピット領域からの信号再生信頼性が悪い
(2)プリグルーブ領域からのプッシュプル法による充分大きなトラックずれ検出信号が得辛い
(3)プリグルーブ領域がウォブリング(蛇行)した場合の充分に大きなウォブル検出信号が得辛い
と言う特徴が有る。
3−1)従来の有機色素材料を用いた追記記録膜(DVD−R)での高密度化に対する問題点
“2−1)記録原理/記録膜構造の違いと再生信号生成に関する基本的な考え方の違い”で既に説明したように、従来の有機色素材料を用いた追記形情報記憶媒体である現行のDVD−RとCD−Rの一般的な記録原理は“透明基板2−2の局所的な塑性変形”あるいは“記録層3−2内の局所的な熱分解や気化”を伴っている。従来の有機色素材料を用いた追記形情報記憶媒体における記録マーク9位置での具体的な透明基板2−2の塑性変形状況を図4に示す。代表的な塑性変形状況は2種類存在し、図4(a)に示すように記録マーク9位置でのプリグルーブ領域の底面14の深さ(隣接するランド領域12との間の段差量)が未記録領域でのプリグルーブ領域11の底面の深さと異なる場合(図4(a)に示した例では記録マーク9位置でのプリグルーブ領域の底面14の深さが未記録領域よりも浅くなっている)と、図4(b)に示すように記録マーク9位置でのプリグルーブ領域の底面14が歪み微少に湾曲する(底面14の平坦性が崩れる:図4(b)に示した例では記録マーク9位置でのプリグルーブ領域の底面14が下側に向かって微少に湾曲している)場合が有る。いずれの場合でも記録マーク9位置での透明基板2−2の塑性変形範囲が広い領域に及ぶ特徴が有る。従来技術である現行のDVD−Rディスクではトラックピッチが0.74μm、チャネルビット長が0.133μmとなっている。この程度の大きな値の場合には記録マーク9位置での透明基板2−2の塑性変形範囲が広い領域に及んでも比較的安定な記録処理と再生処理が行える。
3−2−A〕本実施形態の技術の適用を必要とする範囲
図4に示すように透明基板2−2の塑性変形あるいは記録層3−2内の局所的な熱分解や気化現象を伴う従来の追記形情報記憶媒体(CD−RやDVD−R)においてどの程度トラックピッチを詰めると悪影響が現れるか、あるいはどの程度チャネルビット長を詰めると悪影響が現れるか、及びその理由について技術的な検討を行った結果を以下に説明する。従来の記録原理を利用した場合に悪影響が出始める範囲が本実施形態に示す新規の記録原理により効果を発揮する(高密度化に適した)範囲を示している。
許容チャネルビット長の下限値や許容トラックピッチの下限値を理論的に割り出すために熱解析を行おうとすると、実質的に可能な記録層3−2の厚みDgの範囲が重要となる。図4に示すような透明基板2−2の塑性変形を伴う従来の追記形情報記憶媒体(CD−RやDVD−R)において、情報再生用集光スポットが記録マーク9内に有る場合と、記録層3−2の未記録領域内に有る場合の光反射量の変化は“記録マーク9内と未記録領域内での光学的距離の違いによる干渉効果”の要因が最も大きい。また、その光学的距離の違いは主に“透明基板2−2の塑性変形による物理的な記録層3−2の厚みDg(透明基板2−2と記録層3−2の界面から記録層3−2と光反射層4−2の界面までの物理的な距離)の変化”と、“記録マーク9内での記録層3−2の屈折率n32の変化”が起因している。従って、記録マーク9内と未記録領域内との間で充分な再生信号(光反射量の変化)を得るためには、レーザ光の真空中の波長をλとした時、未記録領域での記録層3−2の厚みDgの値がλ/n32と比較して有る程度の大きさを持っている必要が有る。そうで無いと、記録マーク9内と未記録領域内との間での光学的距離の差(位相差)が現れず、光の干渉効果が薄くなる。実際には最低でも
Dg≧λ/8n32 (1)
望ましくは
Dg≧λ/4n32 (2)
の条件が必要となる。
Dg≧25nm (3)
が必須の条件となる。なお、ここでは透明基板2−2の塑性変形を伴う従来の追記形情報記憶媒体(CD−RやDVD−R)の有機色素記録層を405nmの光に対応させた時の条件について検討を行っている。後述するように本実施形態では透明基板2−2の塑性変形を起こさず、吸収係数k32の変化を記録原理の主要因として説明するが、記録マーク9からDPD(Differential Phase Detection)法を用いてトラックずれ検出をする必要が有るので、実際には記録マーク9内で屈折率n32の変化を起こしている。従って、(3)式の条件は透明基板2−2の塑性変形を起こさない本実施形態に於いても満たすべき条件となっている。
Dg≧31nm (4)
と言う条件も満足する必要が有る。(4)式の条件も透明基板2−2の塑性変形を起こさない本実施形態に於いても満たすべき条件となっている。(3)式、(4)式で下限値の条件を示したが、熱解析に用いた記録層3−2の厚みDgとしては(2)式の等号部にn32=1.8を代入して得た値Dg≒60nmを利用した。
記録パワーを変化させた時の記録層3−2に接する透明基板2−2側の熱変形温度に達する領域のトラックに沿った方向での長さ変化を調べ、再生時のウィンドマージンも考慮した許容チャネルビット長さの下限値を検討した。その結果、チャネルビット長を105nmより小さくするとわずかな記録パワーの変化に応じて透明基板2−2側の熱変形温度に達する領域のトラックに沿った方向での長さ変化が発生して充分なウィンドマージンが取れないと考えられる。熱解析の検討上ではNAの値として0.60、0.65、0.85いずれの場合も類似した傾向を示している。NA値を変える事で集光スポットサイズは変化するが、熱の広がり範囲が広い(記録層3−2に接する透明基板2−2側の温度分布の勾配が比較的なだらか)のが原因と考えられる。上記熱解析では記録層3−2に接する透明基板2−2側の温度分布を検討しているため、記録層3−2の厚みDgの影響は現れない。
記録パワーで記録層3−2を露光すると、記録層3−2内でエネルギーを吸収して高温になる。従来の追記形情報記憶媒体(CD−RやDVD−R)では透明基板2−2側が熱変形温度に達するまで記録層3−2内でエネルギーを吸収させる必要が有る。記録層3−2内で有機色素記録材料の構造変化が起こり屈折率n32や吸収係数k32の値が変化を開始する温度は透明基板2−2が熱変形を開始するための到達温度より遙かに低い。従って、透明基板2−2側が熱変形している記録マーク9の周辺の記録層3−2内の比較的広い領域で屈折率n32や吸収係数k32の値が変化し、これが隣接トラックへの“クロスライト”や“クロスイレーズ”の原因と思われる。透明基板2−2側が熱変形温度を超えた時の記録層3−2内での屈折率n32や吸収係数k32を変化させる温度に到達する領域の広さで“クロスライト”や“クロスイレーズ”を起こさないトラックピッチの下限値を設定できる。上記の視点からトラックピッチが500nm以下の所で“クロスライト”や“クロスイレーズ”が生じる考えられる。更に、情報記憶媒体の反りや傾きの影響や記録パワーの変化(記録パワーマージン)も考慮すると、透明基板2−2側が熱変形温度に達するまで記録層3−2内でエネルギーを吸収させる従来の追記形情報記憶媒体(CD−RやDVD−R)ではトラックピッチを600nm以下にするのは難しいと結論できる。上述したようにNA値を0.60、0.65、0.85と変化させても、中心部で透明基板2−2側が熱変形温度に達した時の周囲の記録層3−2内での温度分布の勾配が比較的なだらかで熱の広がり範囲が広いためほぼ同様の傾向を示している。従来の追記形情報記憶媒体(CD−RやDVD−R)での他の記録原理(記録マーク9の形成メカニズム)として透明基板2−2の塑性変形が非常にわずかで記録層3−2内での有機色素記録材料の熱分解や気化(蒸発)が中心の場合でも、既に“(2)チャネルビット長の下限値条件”の所で説明したように“クロスライト”や“クロスイレーズ”が始まるトラックピッチの値はほぼ類似した結果が得られる。以上の理由からトラックピッチを600nm(500nm)以下にする時に本実施形態に示す新規記録原理を用いる事の効果が発揮される。
上述したように従来の追記形情報記憶媒体(CD−RやDVD−R)での記録原理(記録マーク9の形成メカニズム)として透明基板2−2の塑性変形を伴う場合や記録層3−2内で局所的に熱分解や気化(蒸発)が発生する場合には、記録マーク9の形成時に記録層3−2内部や透明基板2−2表面が高温に達するためにチャネルビット長やトラックピッチを狭くできないと言う問題が発生する。上記問題の解決策として本実施形態では基板変形や記録層3−2内での気化(蒸発)を起こす事無く
『比較的低温で発生する記録層3−2内での局所的な光学特性変化を記録原理とする』
“有機色素材料の発明”と上記記録原理が生じ易い“環境(記録膜構造や形状)の設定”を行った所に大きな特徴が有る。本実施形態の具体的な特徴として以下の内容を上げることができる。
・発色特性変化
… 発色領域8(化1)の質的変化による光吸収断面積の変化やモル分子吸光係数の変化
発色領域8が部分的に破壊されたり、発色領域8のサイズが変わる事により実質的な光吸収断面積が変化する事で光吸収スペクトル(図2)プロファイル(特性)自体は保存されたままλmax write位置での振幅(吸光度)が記録マーク9内で変化する
・発色現象に寄与する電子に対する電子構造(電子軌道)の変化
… 局所的な電子軌道の切断(局所的な分子結合の解離)による脱色作用や発色領域8(化1)の寸法や構造の変化に基付く光吸収スペクトル(図2)変化
・分子内(または分子間)の配向や配列の変化
… 例えば、化1に示したアゾ金属錯体内部の配向変化に基付く光学特性変化
・分子内部での分子構造変化
… 例えば、アニオン部とカチオン部との間の結合解離や、アニオン部またはカチオン部のどちらか一方の熱分解、あるいは分子構造自体が破壊され、炭素原子が析出するタール化(黒色のコールタールに変質する)のいずれかを起こす有機色素材料を考案する。その結果、記録マーク9内の屈折率n32や吸収係数k32を未記録領域に対して変化させて光学的再生を可能にする。
… この技術に関する具体的内容については“3−2−C〕本実施形態に示した記録原理を発生させ易い理想的な記録膜構造”以降で詳細に説明する。
… 上記〔α〕で示す光学特性変化は透明基板2−2の変形温度や記録層3−2内での気化(蒸発)温度より低い温度で生じる。そのため、記録時の露光量(記録パワー)を低くして透明基板2−2表面で変形温度を越えたり記録層3−2内で気化(蒸発)温度を越えるのを防止する。この内容については“3−3)本実施形態における有機色素記録膜に共通する記録特性”で詳細に後述する。また、逆に記録時の最適パワーの値を調べる事で上記〔α〕で示す光学特性変化が起きているかの判定も可能となる。
… 記録層3−2に対して紫外線を照射したり、再生時に再生光を記録層3−2に照射すると記録層3−2内の温度上昇が起きる。その温度上昇に対する特性劣化を防止すると共に、基板変形温度や記録層3−2内での気化(蒸発)温度より低い温度で記録すると言う温度特性上は一見矛盾する性能が要求される。本実施形態では“発色領域での電子構造を安定化”させる事で上記の一見矛盾する性能を確保する。この具体的技術内容については“第4章 本実施形態における有機色素記録膜の具体的実施形態説明”の所で説明を行う。
… 本実施形態では“発色領域での電子構造を安定化”させるための技術的工夫を行っているが、透明基板2−2表面の塑性変形や気化(蒸発)により生じた記録層3−2内の局所的な空洞から比べると本実施形態に示した記録原理で形成される記録マーク9の信頼性は原理的に低下すると言わざるを得ない。その対策として本実施形態では“第7章 Hフォーマットの説明”と“第8章 Bフォーマットの説明”で後述するように強力なエラー訂正能力(新規なECCブロック構造)との組み合わせにより高密度化と記録情報の信頼性確保を同時に達成する効果を発揮する。更に、本実施形態では“4−2)本実施形態での再生回路の説明”で説明するように再生方法としてPRML(Pertial Response Maximum Likelyhood)法を採用し、ML復調時のエラー訂正技術と組み合わせる事でより一層の高密度化と記録情報の信頼性確保を同時に達成している。
35.4×60×60≒13万回転
しており、集光スポットはその間中ずっと同一トラック上をトレース(13万回繰り返し再生)する。もしその間に記録層3−2が繰り返し再生劣化して映像情報の再生が不可能になると、1時間後で戻って来たユーザーは一部分の映像が見れ無いので怒り心頭に発し、最悪の場合には裁判沙汰になる危険性が有る。従って、1時間程度放置(同一トラック内の連続再生)しても録画した映像情報が破壊され無い条件として最低でも10万回繰り返し再生しても再生劣化しない事を保証する必要が有る。一般的なユーザー使用状況として同一場所に対して1時間のポーズ放置(繰り返し再生)を10回繰り返す事はほとんど無い。従って、本実施の追記形情報記憶媒体として望ましくは100万回の繰り返し再生が保証されれば、一般的なユーザー利用には問題が生じず、記録層3−2が劣化しない繰り返し再生回数の上限値としては100万回程度に設定すれば充分と考えられる。繰り返し再生回数の上限値を100万回を大幅に越えた値に設定すると、“記録感度が低下する”とか“媒体価格が上昇する”などの不都合が発生する。
[最適な再生パワー]
>0.19×(0.65/NA)2×(V/6.6) (B−1)
[最適な再生パワー]
>0.19×(0.65/NA)2×(V/6.6)1/2 (B−2)
に設定している。
ΔTread/ΔTwrite≦20 (B−3)
になるように再生パワーを設定する必要が有る。記録時の記録パルスのデューティ比を仮に50%と見積もると
[最適な再生パワー]≦[最適な記録パワー]/10 (B−4)
が要求される。従って、後述する(8)式〜(13)式と上記(B−4)式を加味すると最適な再生パワーは
[最適な再生パワー]
<3×(0.65/NA)2×(V/6.6) (B−5)
[最適な再生パワー]
<3×(0.65/NA)2×(V/6.6)1/2 (B−6)
[最適な再生パワー]
<2×(0.65/NA)2×(V/6.6) (B−7)
[最適な再生パワー]
<2×(0.65/NA)2×(V/6.6)1/2 (B−8)
[最適な再生パワー]
<1.5×(0.65/NA)2×(V/6.6) (B−9)
[最適な再生パワー]
<1.5×(0.65/NA)2×(V/6.6)1/2 (B−10)
(各パラメーターの定義は“3−2−E〕本実施形態における記録層の厚み分布に関する基本的特徴”を参照。)
で与えられる。例えば、NA=0.65、V=6.6m/sの時には
[最適な再生パワー]<3mW、
[最適な再生パワー]<2mW、
または
[最適な再生パワー]<1.5mW
となる。実際には情報記憶媒体は回転して相対的に移動しているのに比べて光検出器は固定されているので、更に、それを考慮に入れて最適な再生パワーを上記式の1/3程度以下にする必要が有る。本実施形態における情報記録再生装置では再生パワーの値として0.4mWに設定している。
本実施形態において上記記録原理が生じ易い“環境(記録膜構造や形状)の設定”方法に付いて説明する。
『記録マーク9形成領域内では光学特性変化が発生する臨界温度を超えると共に記録マーク9の中心部では気化(蒸発)温度を越えず、記録マーク9の中心部近傍の透明基板2−2表面が熱変形温度を超えない』
ように記録膜構造や形状に技術的工夫を行っている所に本実施形態の次の特徴が有る。
図6(a)に示すようにCD−RやDVD−Rなどの従来の追記形情報記憶媒体ではプリグルーブ領域11が“V溝”形状をしている場合が多かった。この構造の場合には、図5(b)で説明したようにレーザ光7のエネルギー吸収効率が低く、記録層3−2内の温度分布ムラが非常に大きく出る。図5(a)の理想状態に近付けるため、少なくとも“透明基板2−2側にプリグルーブ領域11内に入射レーザ光7の進行方向に直行する平面領域を設ける”所に本実施形態の特徴が有る。図5(a)を用いて説明したように、この平面領域はなるべく広くする事が望ましい。従って、プリグルーブ領域11内に平面領域を設けるだけでなく、プリグルーブ領域の幅Wgをランド領域の幅Wlよりも広くする(Wg>Wl)所に本実施形態の次の特徴が有る。本説明上ではプリグルーブ領域の幅Wgとランド領域の幅Wlをプリグルーブ領域の平面位置での高さとランド領域の最も高くなった位置での高さとの中間高さを持つ平面とプリグルーブ内の斜面とが交差する位置でのそれぞれの幅として定義する。
本説明では図6(b)、(c)に示すようにランド領域12内での最も記録層3−2が厚い部分での厚みをランド領域での記録層厚みDlと定義し、プリグルーブ領域11内での最も記録層3−2が厚い部分での厚みをプリグルーブ領域での記録層厚みDgと定義する。既に図5(c)を用いて説明したように、相対的にランド領域での記録層厚みDlを厚くする事で記録時に記録層3−2内で局所的な光学特性変化を安定に起こし易くなる。
“3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴”の一つとして〔γ〕で記載したように記録パワー制御が本実施形態における大きな特徴になっている。
◎30mWでほとんどの有機色素記録材料で気化(蒸発)し、記録マーク内に空洞が生じる
… 記録層3−2近傍位置での透明基板2−2温度はガラス転移温度を大幅に超えている
◎20mWで記録層3−2近傍位置での透明基板2−2温度が塑性変形温度(ガラス転移温度)に達する
◎情報記憶媒体の面ブレ・反りや記録パワー変動などのマージンを見越して15mW以下が望ましい
と言う事が分かった。
[異なるNAにも適応可能な記録パワー]
=[NA=0.65時の記録パワー]×0.652/NA2 (5)
の関係式を用いて後述するBフォーマットや表1(D3)に示した別のフォーマット(別のNA値)での最適な記録パワーの値に換算できる。
[一般的な記録パワー]
=[NA=0.65;6.6m/s時の記録パワー]
×(0.65/NA)2×(V/6.6) (6)
または
[一般的な記録パワー]
=[NA=0.65;6.6m/s時の記録パワー]
×(0.65/NA)2×(V/6.6)1/2 (7)
で得られる。以上の検討結果をまとめると本実施形態に示した記録原理を保証するための記録パワーとして
[最適な記録パワー]
<30×(0.65/NA)2×(V/6.6) (8)
[最適な記録パワー]
<30×(0.65/NA)2×(V/6.6)1/2 (9)
[最適な記録パワー]
<20×(0.65/NA)2×(V/6.6) (10)
[最適な記録パワー]
<20×(0.65/NA)2×(V/6.6)1/2 (11)
[最適な記録パワー]
<15×(0.65/NA)2×(V/6.6) (12)
[最適な記録パワー]
<15×(0.65/NA)2×(V/6.6)1/2 (13)
と言う上限値を設定する事が望ましい。上記各式の内、(8)式または(9)式の条件は必須条件となり、(10)式または(11)式が目標条件、(12)式または(13)式が望ましい条件となる。
記録マーク9内の光反射量が未記録領域での光反射量よりも低くなる特性を有した記録膜を“H→L”記録膜と呼び、逆に高くなる記録膜を“L→H”記録膜と呼ぶ。この中で“H→L”記録膜は
(1)光吸収スペクトルのλmax write位置での吸光度に対する再生波長での吸光度の比に上限値を設ける
(2)光吸収スペクトルプロファイルを変化させて記録マークを形成させる
所に本実施形態の大きな特徴が有る。
Ah405≦0.6 (14)
とすれば良い事が直感的に理解できる。上記(14)式を満足する場合には未記録位置での光反射率を40%以上にできる事が容易に理解できるので、本実施形態では未記録場所において(14)式を満足する有機色素記録材料を選定している。上記(14)式は図7においてλmax writeの波長光で記録層3−2越しに光反射層4−2を反射させた時の光反射率が0%になる事を仮定している。しかし、実際にはこの時の光反射率は0%にならず、有る程度の光反射率を持つので、厳密には(14)式に対する補正が必要となる。図7においてλmax writeの波長光で記録層3−2越しに光反射層4−2を反射させた時の光反射率をRλmax writeで定義すると、未記録位置での光反射率を40%以上に設定する厳密な条件式は
1−Ah405×(1−Rλmax write)≧0.4 (15)
となる。“H→L”記録膜では多くの場合、Rλmax write≧0.25なので(15)式は
Ah405≦0.8 (16)
となる。本実施形態の“H→L”記録膜では(16)式を満足する事が必須条件となる。上記(14)式の特性を持たせ、更に、記録層3−2の膜厚として(3)式または(4)式の条件を満足する事を条件として詳細な光学的な膜設計を行った結果、膜厚変動や再生光の波長変動などの各種マージンを考慮に入れると
Ah405≦0.3 (17)
が望ましい。(14)式を前提とすると、
Ah455≦0.6 (18)
あるいは
Ah355≦0.6 (19)
に設定すると、一層記録/再生特性が安定する。なぜなら(14)式が成り立つ上で少なくとも(18)式と(19)式のいずれかを満足する場合には、355nmから405nmの範囲、又は405nmから455nmの範囲に亘り(場合によっては355nmから455nmの範囲で)Ahの値が0.6以下になるので記録用レーザ光源(または再生用レーザ光源)の発光波長にばらつきが生じても吸光度の値が大きく変化しないためである。
I11/I11H≧0.4 (20)
望ましくは
I11/I11H>0.2 (21)
を満足する必要が有る事が分かった。本実施形態では高密度に記録された信号再生時にPRML法を利用し、図13〜図15に示す(詳細説明は後述する)信号処理回路と状態遷移図を使用する。PRML法で精度良く検出するためには再生信号の線形性(リニアリティー)が要求される。図15に示した状態遷移図を基に図13、図14に示した信号処理回路特性を解析した結果、上記再生信号の線形性(リニアリティー)を確保するためには3Tの長さを持つ記録マークと未記録スペースの繰り返し信号からの再生信号振幅をI3とした時のこの値の上記I11に対する比率が
I3/I11≧0.35 (22)
望ましくは
I3/I11>0.2 (23)
を満足する必要が有る事も分かった。上記(16)式の条件を視野に入れながら(20)式、(21)式を満足するようにAl405の値を設定した所に本実施形態の技術的特徴が有る。(16)式を参照し
1−0.3=0.7 (24)
となる。(24)式を視野に入れ、(20)式との対応関係から
(Al405−0.3)/0.7≧0.4 すなわち、
Al405≧0.58 (25)
の条件が導かれる。(25)式は非常に粗い検討結果から導かれた式で基本的な考え方を示したに過ぎない。Ah405の設定範囲を(16)式で規定しているので、本実施形態ではAl405の条件として少なくとも
Al405>0.3 (26)
が必須となる。
9T≧Dg≧λ/8n32 (27)
望ましい条件としては
3T≧Dg≧λ/4n32 (28)
で与えられる範囲で記録層3−2の厚みDgを設定している。それに限らず、最も厳しい条件としては
T≧Dg≧λ/4n32 (29)
とする事も可能である。後述するようにチャネルビット長Tの値はHフォーマットでは102nm、Bフォーマットでは69nm〜80nmになっているので、3Tの値はHフォーマットでは306nm、Bフォーマットでは207nm〜240nm、9Tの値はHフォーマットでは918nm、Bフォーマットでは621nm〜720nmとなる。ここでは“H→L”記録膜に関して説明しているが、(27)式〜(29)式の条件はそれに限らず、“L→H”記録膜に対しても適用できる。
4−1)本実施形態での再生装置もしくは記録再生装置の構造と特徴説明
情報記録再生装置の実施形態における構造説明図を図9に示す。図9において制御部143より上側が主に情報記憶媒体への情報記録制御系を表し、情報再生装置の実施形態では図9における前記情報記録制御系を除いた構造が該当する。図9に於いて太い実線矢印が再生信号または記録信号を意味するメイン情報の流れを示し、細い実線矢印が情報の流れ、一点鎖線矢印が基準クロックライン、細い破線矢印がコマンド指示方向を意味する。
4−2)本実施形態での再生回路の説明
図11にシステムリードイン領域、システムリードアウト領域での再生時に使用されるスライスレベル検出方式を用いた信号再生回路の実施形態を示す。図11における4分割光検出器302は図9における情報記録再生部141内に存在する光学ヘッド内に固定されている。4分割光検出器302の各光検出セル1a、1b、1c、1dから得られる検出信号の総和を取った信号をここでは“リードチャンネル1信号”と呼ぶ。図11のプリアンプ304からスライサ310までが図9のスライスレベル検出回路132内の詳細構造に対応し、情報記憶媒体から得られた再生信号は再生信号周波数帯よりも低い周波数成分を遮断するハイパスフィルタ306を通過後にプリイコライザ308により波形等化処理が行われる。実験によると、このプリイコライザ308は7タップのイコライザを用いると最も回路規模が少なく、かつ精度良く再生信号の検出が出来る事が分かったので、本実施形態でも7タップのイコライザを使用している。図11のVFO回路・PLL312部分が図9のPLL回路に対応し、図11の復調回路、ECCデコーディング回路314が図9の復調回路152とECCデコーディング回路162に対応する。
“3−3)本実施形態における有機色素記録膜に共通する記録特性”で本実施形態における最適な記録パワー(ピークパワー)の説明を行ったが、その最適な記録パワーを調べる時に使用した記録波形(記録時の露光条件)に付いて図16を用いて説明する。
0.25T≦TSFP≦1.50T (30)
0.00T≦TELP≦1.00T (31)
1.00T≦TEFP≦1.75T (32)
−0.10T≦TSLP≦1.00T (33)
0.00T≦TLC ≦1.00T (34)
0.15T≦TMP ≦0.75T (35)
とする。さらに本実施形態では記録マークの長さ(Mark length)とその直前/直後のスペース長(Leading/Trailing space length)に応じて表2に示すように上記各パラメーターの値を変化できるようにしている。既に“3−3)本実施形態における有機色素記録膜に共通する記録特性”の所で説明した、本実施形態に示した記録原理で記録される追記形情報記憶媒体の最適な記録パワーを調べた時の各パラメーターの値を表3に示す。この時のバイアスパワー1(Bias power 1)、バイアスパワー2(Bias power 2)、バイアスパワー3(Bias power 3)の値は2.6mW、1.7mW、1.7mWであり、再生パワーは0.4mWだった。
5−1)本実施形態における“L→H”記録膜に関する特徴説明
未記録領域に比べて記録マーク内で光反射量が低下する特性を有する“L→H”記録膜に関する説明を行う。この記録膜を用いた場合の記録原理としては“3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴”で説明した記録原理の中で主に
・発色特性変化
・発色現象に寄与する電子に対する電子構造(電子軌道)の変化〔脱色作用など〕
・分子間の配列変化
のいずれかを利用し、吸光スペクトルの特性を変化させる。“L→H”記録膜に関しては、特に未記録場所と既記録場所での反射量範囲を片面2層構造を持った再生専用情報記憶媒体の特性を視野に入れて規定した所に大きな特徴が有る。本実施形態で規定している“H→L”記録膜と“L→H”記録膜の未記録領域(非記録部)における光反射率範囲を図18に示す。本実施形態では“H→L”記録膜の非記録部での反射率下限値δが“L→H”記録膜の非記録部での上限値γより高くなるように規定している。情報記録再生装置あるいは情報再生装置に上記情報記憶媒体を装着した時、図9のスライスレベル検出部132またはPR等化回路130で非記録部の光反射率を測定し、瞬時に“H→L”記録膜か“L→H”記録膜の判別が出来るので、記録膜の種別判別が非常に容易になる。多くの製造条件を変えて作成した“H→L”記録膜と“L→H”記録膜を作成して測定した結果、“H→L”記録膜の非記録部での反射率下限値δと“L→H”記録膜の非記録部での上限値γの間の光反射率αを32%〜40%の範囲以内にすると、記録膜の製造性が高く、媒体の低価格化が容易である事が分かった。“L→H”記録膜非記録部(“L”部)の光反射率範囲801を再生専用形情報記憶媒体における片面2記録層の光反射率範囲803に一致させ、“H→L”記録膜の非記録部(“H”部)の光反射率範囲802を再生専用形情報記憶媒体における片面単層の光反射率範囲804に一致させると、再生専用形情報記憶媒体との互換性が良く情報再生装置の再生回路を兼用化出来るので情報再生装置を安価に作ることができる。多くの製造条件を変えて作成した“H→L”記録膜と“L→H”記録膜を作成して測定した結果、記録膜の製造性を高めて媒体の低価格化を容易にするために本実施形態では“L→H”記録膜の非記録部(“L”部)の光反射率の下限値βを18%、上限値γを32%とし、“H→L”記録膜の非記録部(“H”部)の光反射率下限値δを40%、上限値εを85%にした。
“3−4)本実施形態における“H→L”記録膜に関する特徴説明”で説明したように“H→L”記録膜では未記録領域での相対的な吸光度が基本的に低いため、再生時に再生光を照射された時にその再生光のエネルギーを吸収して生じる光学特性変化が起こりにくい。仮に吸光度が高い記録マーク内で再生光のエネルギーを吸収して光学特性変化(記録作用の更新)が生じたとしても記録マーク内からの光反射率が下がる一方なので、再生信号の振幅(I11≡I11H−I11L)が増加する方向に働き、再生信号処理への悪影響は少ない。
Al405≧68% (36)
を満足すべきなのが直感的に理解できる。図1における光反射層4−2の405nmにおける光反射率は100%より若干低下するが、説明の簡略化のためほぼ100%に近いと仮定する。従って、吸光度Al=0の時の光反射率はほぼ100%になる。図20においてλmax writeの波長での記録膜全体としての光反射率をRλmax writeで表す。この時の光反射率がゼロ(Rλmax write≒0)と仮定して(36)式を導いているが、実際には“0”とはならないので、より厳密な式を導く必要が有る。“L→H”記録膜の非記録部(“L”部)の光反射率の上限値γを32%に設定する厳密な条件式は
1−Al405×(1−Rλmax write)≦0.32 (37)
で与えられる。従来の追記形情報記憶媒体は全て“H→L”記録膜を使用しており、“L→H”記録膜に関する情報の蓄積が無いが、“5−3)アニオン部:アゾ金属錯体+カチオン部:色素”と“5−4)アゾ金属錯体+中心金属として“銅”使用”で後述する本実施形態を使用した場合には(37)式を満たす最も厳しい条件として
Al405≧80% (38)
となる。上記実施形態で後述する有機色素記録材料を使用した場合には、製造時の特性ばらつきや記録層3−2の厚み変化などのマージンも含めて記録膜の光学設計を行うと“5−1)本実施形態における“L→H”記録膜に関する特徴説明”で説明した反射率を満足する最低限の条件としては
Al405≧40% (39)
を満足すれば良い事が分かった。さらに
Al355≧40% (40)
Al455≧40% (41)
のいずれかを満足する事で355nmから405nmの範囲あるいは405nmから455nmの範囲(両方の式が同時に満足する場合には355nmから455nmの範囲)で光源の波長が変化しても安定な記録特性または再生特性を確保できる。
I11/I11H≡(I11H−I11L)/I11H≧0.4 (42)
を変形すると
I11H≧/I11L/0.6 (43)
となる。既に説明したように本実施形態において“L→H”記録膜の未記録部(“L”部)の光反射率の下限値βを18%に設定しており、この値がI11Lに対応する。更に、概念的に
I11H≒1−Ah405×(1−Rλmax write) (44)
と対応するので、(43)式と(44)式から
1−Ah405×(1−Rλmax write)≧0.18/0.6 (45)
となる。1−Rλmax write≒0の時は(45)式は
Ah405≦0.7 (46)
で得られる。上記(46)式と(36)式を比較すると吸光度の値として68%〜70%近傍を境にAl405とAh405の値を設定すれば良さそうな事が分かる。更に、Al405の値として(39)式の範囲になる場合と、信号処理回路の性能安定性を考えると、厳しい条件として
Ah405≦0.4 (47)
がある。なお、可能で有れば
Ah405≦0.3 (48)
を満足する事が望ましい。
“5−1)本実施形態における“L→H”記録膜に関する特徴説明”で説明した特徴を有し、“5−2)本実施形態の“L→H”記録膜に関する光吸収スペクトルの特徴”で示した条件を満足する本実施形態における具体的に有機色素材料について説明する。記録層3−2の厚みは(3)、(4)、(27)、(28)の各式で示した条件を満足し、スピナーコーティング(スピンコーティング)により形成する。比較のために一例を上げると、“食塩”の結晶はプラスに帯電する“ナトリウムイオン”とマイナスに帯電する“塩素イオン”との間の“イオン結合”で組み立てられている。それと同様、高分子においても“イオン結合”に近い形で異なる複数の高分子が組み合わさり有機色素材料を構成する場合が有る。本実施形態における有機色素記録膜3−2はプラス側に帯電する“カチオン部”とマイナス側に帯電する“アニオン部”で構成されている。特にプラス側に帯電する“カチオン部”に発色特性を有する“色素”を利用し、対イオン部を意味しマイナス側に帯電する“アニオン部”に有機金属錯体を利用する事で結合の安定性を高め、“3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴”の中で示した“δ〕発色領域での電子構造を安定化させ、紫外線や再生光照射に対する構造分解が生じ辛くする”の条件を満足させた所に技術的な大きな特徴が有る。具体的な内容として本実施形態では有機金属錯体として化1に一般構造式を示した“アゾ金属錯体”を利用している。アニオン部とカチオン部の組み合わせからなる本実施形態においてこのアゾ金属錯体の中心金属Mとしてコバルトまたはニッケルを使用して光安定性を高めているが、それに限らずスカンジウム、イットリウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金、銅、銀、金、亜鉛、カドミウム、水銀などを使っても良い。本実施形態ではカチオン部に使用する色素として化3に一般構造式を示したシアニン色素、化4に一般構造式を示したスチリル色素、化5に一般構造式を示したモノメチンシアニン色素のいずれかを使用する。本実施形態ではアニオン部にアゾ金属錯体を使用しているが、それに限らず例えば、化6に一般構造式を示すホルマザン金属錯体を使用しても良い。上記アニオン部とカチオン部からなる有機色素記録材料は最初粉末状になっている。記録層3−2を形成する場合にはこの粉末状の有機色素記録材料を有機溶剤に溶かした後、透明基板2−2上にスピンコーティングを行う。この時に使用する有機溶剤として例えば、フッ素アルコール系のTFP(テトラフルオロプロパノール)やペンタン、ヘキサン、シクロヘキサン、石油エーテル、石油ベンジンなどの炭化水素類、アルコール類、フェノール類、エーテル類、ニトリル類、ニトロ化合物や含硫化合物のいずれかかまたはそれらの組み合わせを使用する。
記録原理として本実施形態の光学特性変化を用いた“H→L”記録膜と“L→H”記録膜における記録(記録マーク形成)前後での光吸収スペクトル変化の一例を図40と図41に示す。記録前(未記録領域内で)のλmax write波長をλbmax write、このλbmax writeを中心とした光吸収スペクトル(b)の半値幅(λbmax writeでの吸光度Aを“1”とした時の“A≧0.5”の範囲を満足する波長領域の幅)をWas、記録後(記録マーク内で)の光吸収スペクトル(a)のλmax write波長をλamax writeと定義する。図40と図41に示した特性を有する記録膜3−2は“3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴”の〔α〕に示した記録原理の内、“発色現象に寄与する電子に対する電子構造(電子軌道)の変化”と“分子内部での分子構造変化”を利用している。“発色現象に寄与する電子に対する電子構造(電子軌道)の変化”が生じると、例えば、化1に示すような発色領域8の寸法や構造が変化する。例えば、発光領域8の寸法が変化すると、そこの局在電子の共鳴吸収波長が変化するので、光吸収スペクトルの極大(最大)吸収波長がλbmax writeからλamax writeに変化する。同様に“分子内部での分子構造変化”が生じると発色領域8の構造も変化するので、同様に光吸収スペクトルの極大(最大)吸収波長が変化する。ここで極大(最大)吸収波長の変化量をΔλmaxと定義すると
Δλmax≡|λamax write−λbmax write| (49)
の関係が成り立つ。このように光吸収スペクトルの極大(最大)吸収波長が変化すると、連動して光吸収スペクトルの半値幅Wasも変化する。このように光吸収スペクトルの極大(最大)吸収波長と光吸収スペクトルの半値幅Wasが同時に変化した時に、記録マーク位置から得られる再生信号への影響を説明する。図40(図41)において記録前/未記録領域における光吸収スペクトルは(b)で与えられるので、405nm再生光での吸光度はAh405(Al405)になっている。もし仮に記録後(記録マーク内)の光スペクトルとして極大(最大)吸収波長のみがλamax writeに変化し、半値幅Wasの変化が無かった場合には光吸収スペクトルは図40(図41)(c)のようになり、405nm再生光での吸光度はA*405に変化するが、実際には半値幅が変化するために記録後(記録マーク内)の吸光度はAl405(Ah405)になってしまう。記録前後での吸光度の変化量|Al405−Ah405|は再生信号振幅値に比例するので、図40(図41)に示した例では極大(最大)吸収波長変化と半値幅変化が再生信号振幅増加に対する相殺作用をするため、再生信号のC/N比を悪化させるという問題が生じる。その問題を解消するための本実施形態の第1の応用例として極大(最大)吸収波長変化と半値幅変化が再生信号振幅増加に対して相乗的に働くように記録層3−2の特性を設定(膜設計)する所に大きな特徴が有る。すなわち、図40(図41)での変化から容易に予想が付くように
“H→L”記録膜では記録前のλbmax writeに対する記録後のλamax writeの移動方向に依らず
半値幅が広がり、
“L→H”記録膜では記録前のλbmax writeに対する記録後のλamax writeの移動方向に依らず
半値幅が狭くなる方向に変化するように記録層3−2の特性を設定(膜設計)する。
Δλmax≦100nm (50)
の条件を満足する事を意味している。さらに極大(最大)吸収波長変化量Δλmaxが(50)式の1/3
Δλmax≦30nm (51)
の条件になると(b)の特性から得られる吸光度Ah405(Al405)と(c)の特性から得られる吸光度A*405との間の差は非常に少なくなり、量産した時に媒体間の再生信号特性のばら付きが小さくできる。
Na>Mg>Al>Zn>Fe>Ni>Cu>Hg>Ag>Au
となっている。この金属原子のイオン化傾向は“金属が電子を放出して陽イオンになる性質”を表している。
化1に示した中心金属に対して2個の酸素原子がイオン結合している構造の場合には、記録原理として化2(a)、(b)に示すようにベンゼン核グループが作るU平面とD平面間のお互いの配列角度により、記録原理が行われている。
Δλmax ≦ 100nm
の条件を満足するように工夫している。
Δλmax ≦ 100nm
の範囲を満足する記録特性を有した記録材料を用いることにより数多く追記形情報記憶媒体を量産した場合、媒体間の特性のばらつきを小さくでき、安定に生産することができる。
6−1)光反射層
“第0章 使用波長と本実施形態との関係説明”に記載したように本実施形態では405nmを中心とした特に355〜455nmの範囲を考えている。この波長帯での光反射率の高い金属材料は光反射率の高い順に並べるとAgが96%前後、Alが80数%前後、Rhが80数%前後となっている。有機色素記録材料を用いた追記形情報記憶媒体では図1(b)に示すように光反射層4−2からの反射光が基本になっているので光反射層4−2では光反射率の高い特性が要求される。特に本実施形態の“H→L”記録膜の場合には未記録領域での光反射率が低いので、光反射層4−2単体での光反射率が低いと特にプリピット(エンボス)領域からの再生信号C/N比が低く再生時の安定性に欠けてしまうので、特に光反射層4−2単体での光反射率が高い事が必須となる。従って、本実施形態では上記波長帯において最も反射率の高いAg(銀)を中心とした材料を使用する。光反射層4−2の材料として銀単体では“原子が移動し易い”、“腐食し易い”と言う問題が生じる。最初の問題点に対し別の原子を添加して一部合金化すると銀原子が移動し辛くなる。別原子を入れる第1の実施形態として光反射層4−2の材質をAgNdCuにする。AgNdCuは固溶状態になるので銀単体の状態よりは若干反射率が下がる。別原子を入れる第2の実施形態では光反射層4−2の材質をAgPdにして電位を変える事で電気化学的に腐食し辛くする。銀の酸化などにより光反射層4−2が腐食すると光反射率が低下する。図1の(b)に示す記録膜構造を有する有機色素記録膜で特に“第3章 本実施形態における有機色素記録膜の特徴説明”で示す有機色素記録膜の場合には、特に記録層3−2と光反射層4−2との間の界面での光反射率が非常に重要となる。この界面で腐食が発生すると光反射率が低下し光学的な界面形状がぼやけ、そこでの反射光によるトラックずれ検出信号(プッシュプル信号)やウォブル信号、プリピット(エンボス)領域からの検出信号特性が劣化する。特に、図6の(b)、(c)に示すようにプリグルーブ領域11の幅Wgがランド領域幅Wlよりも広い場合には、トラックずれ検出信号(プッシュプル信号)やウォブル信号が出辛いので腐食による記録層3−2と光反射層4−2との間の界面での光反射率の劣化の影響は大きくなる。この界面での光反射率の劣化を防止するため、第3の実施形態として光反射層4−2にAgBiを使用する。AgBiは表面(記録層3−2と光反射層4−2との間の界面)に不動態皮膜を形成するため非常に安定相を形成し、上記界面での光反射率の劣化を防止する。すなわち、AgにBi(ビスマス)をわずかに添加させると、Biが上記界面に浮き上がり、それが酸化して酸化ビスマスと言う非常に緻密な膜(不動態皮膜)を形成し、内部での酸化を食い止める働きが有る。この不動態皮膜は上記界面上に形成されて非常に安定な相を形成するため光反射率の劣化が起きず長期に亘ってトラックずれ検出信号(プッシュプル信号)やウォブル信号、プリピット(エンボス)領域からの検出信号特性の安定性を保証する。355〜455nm範囲の波長帯において銀単体が最も光反射率が高く、別原子の添加量を上げるに従って光反射率が低下する。そのため、本実施形態でのAgBi内のBi原子の添加量は5at%以下が望ましい(at%はatomic percentを意味し、例えば、AgBiの合計原子数100の中でBi原子が5個存在する事を示している)。実際に作成して特性評価した所、Bi原子の添加量が0.5at%以上有れば不動態皮膜化が可能な事が分かった。その評価結果に基付き本実施形態での光反射層4−2内のBi原子添加量を1att%としている。この第3の実施形態では添加原子がBiのみなので第1の実施形態AgNdCu(Ag内にNdとCuの2種類の原子を添加する)と比べると添加原子量を少なくでき、AgNdCuよりAgBiの方が光反射率を上げる事が出来る。その結果、本実施形態の“H→L”記録膜や図6の(b)、(c)に示すようにプリグルーブ領域11の幅Wgがランド領域幅Wlよりも広い場合でも、安定して精度の良いトラックずれ検出信号(プッシュプル信号)やウォブル信号、プリピット(エンボス)領域からの検出信号が得られる。上記第3の実施形態はAgBiに限らず、他に不動態皮膜を作る銀合金としてAgMg、AgNi、AgGa、AgNx、AgCo、AgAlもしくは前記記載された原子を含む3元系を用いても良い。この光反射層4−2の厚みとしては5nm〜200nmの範囲に設定している。厚みが5nmより薄いと光反射層4−2が均一にならずランド状に形成されてしまう。そのため光反射層4−2の厚みは5nmにしている。AgBi膜は厚みが80nm以下にすると裏側に透過し出すので、片面1記録層の場合には厚みを80nm〜200nm、好ましくは100nm〜150nmとし、片面2記録層の場合には厚みを5nm〜15nmの範囲に設定する。
本実施形態のHフォーマットでは図23に示すようにシステムリードイン領域SYLDIを持ち、この中ではエンボスピット領域211になっており、図43に示すようにプリピットの形で事前に情報が記録されている。この領域での再生信号は再生専用情報記憶媒体からの再生信号特性に合わせ、図9に示す情報再生装置または情報記録再生装置内の信号処理回路を再生専用情報記憶媒体と追記形情報記憶媒体で兼用させている。この領域から検出される信号に対する定義は“3−4)本実施形態における“H→L”記録膜に関する特徴説明”の定義に合わせる。すなわち、充分に長い長さ(11T)のスペース領域14からの再生信号量をI11Hと定義し、前記I11Hと充分に長い長さ(11T)を持つプリピット(エンボス)領域13からの再生信号をI11Lと定義すると共に両者の差分値をI11≡I11H−I11Lとする。本実施形態ではこの領域での再生信号を再生専用情報記憶媒体からの再生信号特性に合わせて
I11/I11H≧0.3 (54)
望ましくは
I11/I11H>0.5 (55)
とする。2T長さのプリピット(エンボス)領域13とのスペース領域14の繰り返し信号振幅をI2とした時
I2/I11≧0.5 (56)
望ましくは
I2/I11>0.7 (57)
にしている。
る。既に図1の(b)で説明したように、プリピットからの信号特性は主に光反射層4−2での反射光により支配される。従って、光反射層4−2でのスペース領域14とプリピット(エンボス)領域13間の段差量Hprにより再生信号振幅値I11が決まる。光学的な近似計算を行うとこの段差量Hprは再生光波長λ、記録層3−2内の屈折率n32に対して
I11∝sin2{(2π×Hpr×n32)/λ} (58)
の関係が有り、(58)式からHpr≒λ/(4×n32)の時にI11が最大となることがわかる。(54)式または(55)式を満たすには(58)式から最低でも
Hpr≧λ/(12×n32) (59)
望ましくは
Hpr>λ/(6×n32) (60)
を満足している必要が有る。“第0章 使用波長と本実施形態との関係説明”で説明したように本実施形態ではλ=355nm〜455nmを利用しており、“2−1)記録原理/記録膜構造の違いと再生信号生成に関する基本的な考え方の違い”で説明したようにn32=1.4〜1.9なので、この値を(59)式または(60)式に代入すると
Hpr≧15.6nm (62)
望ましくは
Hpr>31.1nm (63)
の条件を満たすように段差を作っている。従来の追記形情報記憶媒体では図43(b)に示すようにスペース領域14で記録層3−2の厚みが薄かったために光反射層4−2と記録層3−2との界面での段差が小さく、(62)式を満足できなかった。それに対して本実施形態ではプリピット(エンボス)領域13での記録層3−2の厚みDgとスペース領域14での記録層3−2の厚みDlの関係が“3−2−E〕本実施形態における記録層の厚み分布に関する基本的特徴”に記載した条件に合うように工夫した結果、図43(b)に示すように(62)式または(63)式を満足させる充分に大きな段差Hprを確保する事ができた。
第7章 Hフォーマットの説明
以下に本実施形態におけるHフォーマットの説明を行う。
・再生専用で記録が不可能な“再生専用形情報記憶媒体”
・1回のみの追記記録が可能な“追記形情報記憶媒体”
・何回でも書き替え記録が可能な“書替え形情報記憶媒体”
の3種類の情報記憶媒体実施形態を明示する。図22に示すように、上記3種類の情報記憶媒体では大部分の構造と寸法が共通化されている。3種類の情報記憶媒体いずれも内周側からバーストカッティング領域BCA、システムリードイン領域SYLDI、コネクション領域CNA、データリードイン領域DTLDI、データ領域DTAが配置された構造になっている。OPT形再生専用媒体以外は全て外周部にデータリードアウト領域DTLDOが配置されている。後述するように、OPT形再生専用媒体では外周部にミドル領域MDAが配置される。システムリードイン領域SYLDIではエンボス(プリピット)の形で情報が記録されており、追記形および書替え形のいずれもこの領域内は再生専用(追記不可能)となっている。再生専用形情報記憶媒体ではデータリードイン領域DTLDI内もエンボス(プリピット)の形で情報が記録されているのに対し、追記形および書替え形情報記憶媒体ではデータリードイン領域DTLDI内は記録マーク形成による新規情報の追記(書替え形では書替え)が可能な領域となっている。後述するように、追記形および書替え形情報記憶媒体ではデータリードアウト領域DTLDO内は新規情報の追記(書替え形では書替え)が可能な領域とエンボス(プリピット)の形で情報が記録されている再生専用領域の混在になっている。前述したように、図22に示すデータ領域DTA、データリードイン領域DTLDI、データリードアウト領域DTLDO、ミドル領域MDAではそこに記録されている信号の再生にPRML(Partial Response Maximum Likelihood)方式を使う事で情報記憶媒体の高密度化(特に線密度が向上する)を達成すると共に、システムリードイン領域SYLDI、システムリードアウト領域SYLDOでは、そこに記録されている信号の再生にスライスレベル検出方式を使う事で現行DVDとの互換性を確保するとともに再生の安定化を確保している。
(1)バーストカッティング領域BCA内の情報の再生
→(2)システムリードイン領域SYLDI内の情報データゾーンCDZ内の情報の再生
→(3)データリードイン領域DTLDI内の情報の再生(追記形または書替え形の場合)
→(4)参照コード記録ゾーンRCZ内での再生回路定数の再調整(最適化)
→(5)データ領域DTA内に記録された情報の再生もしくは新たな情報の記録
の順で処理を行うため、バーストカッティング領域BCA内に形成されたデータからの再生信号振幅レベルとシステムリードイン領域SYLDIからの再生信号振幅レベルに大きな段差が有ると情報再生の信頼性が低下すると言う問題が生じる。その問題を解決するため、この実施形態としては記録膜に“L→H”記録膜を使用する場合には、このバーストカッティング領域BCAに予め微細な凹凸形状を形成しておく所に特徴が有る。予め微細な凹凸形状を形成しておくと、局所的なレーザ露光によりデータ(バーコードデータ)を記録する前の段階で光の干渉効果により光反射レベルが鏡面210からの光反射レベルよりも低くなり、バーストカッティング領域BCA内に形成されたデータからの再生信号振幅レベル(検出レベル)とシステムリードイン領域SYLDIからの再生信号振幅レベル(検出レベル)の段差が大きく減り、情報再生の信頼性が向上し、上記の(1)から(2)へ移行する際の処理が容易になると言う効果が生まれる。“L→H”記録膜を使用する場合には、バーストカッティング領域BCAに予め形成する微細な凹凸形状の具体的内容としてシステムリードイン領域SYLDI内と同様にエンボスピット領域211とする方法が有るが、他の実施形態としてデータリードイン領域DTLDIやデータ領域DTAと同様にグルーブ領域214あるいはランド領域及びグルーブ領域213にする方法もある。システムリードイン領域SYLDIとバーストカッティング領域BCAを分離配置させる実施形態の説明の所に説明したように、バーストカッティング領域BCA内とエンボスピット領域211が重なると不要な干渉によるバーストカッティング領域BCA内に形成されたデータからの再生信号へのノイズ成分が増加する事を既に説明した。バーストカッティング領域BCA内の微細な凹凸形状の実施形態としてエンボスピット領域211にせずにグルーブ領域214あるいはランド領域及びグルーブ領域213にすると、不要な干渉によるバーストカッティング領域BCA内に形成されたデータからの再生信号へのノイズ成分が減少して再生信号の品質が向上すると言う効果が有る。バーストカッティング領域BCA内に形成するグルーブ領域214あるいはランド領域及びグルーブ領域213のトラックピッチをシステムリードイン領域SYLDIのトラックピッチに合わせると情報記憶媒体の製造性が向上する効果が有る。すなわち、情報記憶媒体の原盤製造時に原盤記録装置の露光部の送りモータ速度を一定にしてシステムリードイン領域内のエンボスピットを作成している。この時、バーストカッティング領域BCA内に形成するグルーブ領域214あるいはランド領域及びグルーブ領域213のトラックピッチをシステムリードイン領域SYLDI内のエンボスピットのトラックピッチに合わせる事でバーストカッティング領域BCAとシステムリードイン領域SYLDIとで引き続き送りモータ速度を一定に保持できるため、途中で送りモータの速度を変える必要が無いのでピッチムラが生じ辛く情報記憶媒体の製造性が向上する。
(1)参照コード記録ゾーン(Reference code zone)RCZ内で情報再生装置の回路定数を最適化する
→(2)データ領域DTA内の参照コード記録ゾーンRCZに最も近い部分を再生しながら情報再生装置の回路定数を再度最適化する
→(3)データ領域DTA内の目的位置と(2)で最適化した位置との中間位置で情報再生しながら回路定数を再々度最適化する
→(4)目的位置に移動して信号再生する
のステップを経る事で非常に精度良く目的位置での信号再生が可能となる。
(1)“未記録状態”の予約領域273が無くなり、DPD(Differential Phase Detection)検出法によるトラッキング補正の安定化を保証する
(2)かつての予約領域273に最後の記録位置管理データRMDを多重書きする事になり、最後の記録位置管理データRMDに関する再生時の信頼性が大幅に向上する
(3)誤って未記録状態の予約領域273に異なった記録位置管理データRMDを記録する事件を防止できる
と言う効果が有る。
・RMDフィールド0 …ディスク状態に関する情報とデータエリアアロケーション(データ領域内の各種データの配置場所に関する情報)
・RMDフィールド1 …使用したテストゾーンに関する情報と推奨の記録波形に関する情報
・RMDフィールド2 …ユーザが使用できるエリア
・RMDフィールド3 …ボーダーエリアの開始位置情報と拡張RMZ位置に関する情報
・RMDフィールド4〜21…Rゾーンの位置に関する情報
となっている。
(1)バーストカッティング領域BCA内の情報の再生
→(2)システムリードイン領域SYLDI内の情報データゾーンCDZ内の情報の再生
→(3)データリードイン領域DTLDI内の情報の再生(追記形または書替え形の場合)
→(4)参照コード記録ゾーンRCZ内での再生回路定数の再調整(最適化)
→(5)データ領域DTA内に記録された情報の再生もしくは新たな情報の記録
の順で処理を行う。
1.拡張ドライブテストゾーンEDRTZの設定(枠取り)は外周方向(データリードアウト領域DTLDOに近い方)から内周側にむけて順次まとめて設定する
… 図25(e)に示すようにデータ領域内の最も外周に近い場所(データリードアウト領域DTLDOに最も近い場所)からまとまった領域として拡張ドライブテストゾーン1 EDRTZ1を設定し、その拡張ドライブテストゾーン1 EDRTZ1を使い切った後で、それより内周側に存在するまとまった領域として拡張ドライブテストゾーン2 EDRTZ2を次に設定可能とする。
… 拡張ドライブテストゾーンEDRTZの中で試し書きを行う場合には内周側から外周側に沿ってスパイラル状に配置されたグルーブ領域214に沿って行い、前回試し書きをした(既に記録された)場所のすぐ後ろの未記録場所に今回の試し書きを行う。
… 図25(e)にデータ領域DTA内に2箇所拡張代替え領域1 ESPA1、拡張代替え領域2 ESPA2を設定し、2箇所の拡張ドライブテストゾーン1 EDRTZ1、拡張ドライブテストゾーン2 EDRTZ2を設定した例を示す。この場合に本実施形態では図25(f)に示すように拡張ドライブテストゾーン2 EDRTZ2までを含めた領域に対してデーターリードアウト領域DTLOとして再設定出来る所に特徴が有る。これに連動して範囲を狭めた形でデータ領域DTAの範囲の再設定を行うことになり、データ領域DTA内に存在するユーザデータの追記可能範囲205の管理が容易になる。図25(f)のように再設定した場合には図25(e)に示した拡張代替え領域1 ESPA1の設定場所を“既に使い切った拡張代替え領域”と見なし、拡張ドライブテストゾーンEDRTZ内の拡張代替え領域2 ESPA2内のみに未記録領域(追記の試し書きが可能な領域)が存在すると管理する。この場合、拡張代替え領域1 ESPA1内に記録され、代替えに使われた非欠陥の情報はそっくりそのまま拡張代替え領域2 ESPA2内の未代替え領域の場所に移され、欠陥管理情報が書き替えられる。この時再設定されたデータリードアウト領域DTLDOの開始位置情報は表11に示すように記録位置管理データRMD内のRMDフィールド0の最新の(更新された)データ領域DTAの配置位置情報内に記録される。
(1)次のボーダー領域が来ない場合には“次のボーダーを示す目印NBMを記録すべき場所”には予め特定パターンのデータを記録しておく
(2)次のボーダー領域が来る場合には上記予め特定パターンのデータが記録されている“次のボーダーを示す目印NBM”の場所には部分的かつ離散的に特定の記録パターンで『重ね書き処理』を行う事で“次のボーダー領域が来る事”を示す識別情報として利用すると言う方法を新規に採用している。
(3)1物理セグメントブロックサイズの“次のボーダーを示す目印NBM”の位置に重ね書きする時に同一データセグメント内の場所により重ね書き状況を変化させる方法と
(4)シンクデータ432内に部分的に重ね書きを行い、シンクコード431上での重ね書きを禁止する
(5)データIDとIEDを除いた場所に重ね書きする
と言う方法を更に、新規に採用している。後で詳細に説明するように、ユーザデータを記録するデータフィールド411〜418とガード領域441〜448が交互に情報記憶媒体上に記録される。データフィールド411〜418とガード領域441〜448を組み合わせた組をデータセグメント490と呼び、1個のデータセグメント長は1個の物理セグメントブロック長に一致する。図9に示したPLL回路はVFO領域471、472内で特にPLLの引き込みがし易くなっている。従って、VFO領域471、472の直前ならばPLLが外れてもVFO領域471、472を用いてPLLの再引き込みが容易に行われるので、情報記録再生装置または情報再生装置内でのシステム全体としての影響は軽減される。この状況を利用し上記のように(3)データセグメント内の場所により重ね書き状況を変化させ、同一データセグメント内のVFO領域471、472に近い後ろの部分で特定パターンの重ね書き量を増やす事で“次のボーダーを示す目印”の判別を容易にすると共に再生時の信号PLLの精度劣化を防止できると言う効果が有る。図55と図38を用いて詳細に説明するように1個の物理セクタ内はシンクコード433(SY0〜SY3)が配置されている場所と、そのシンクコード433の間に配置されたシンクデータ434の組み合わせで構成されている。情報記録再生装置あるいは情報再生装置は情報記憶媒体上に記録されているチャネルビット列の中からシンクコード433(SY0〜SY3)を抽出し、チャネルビット列の切れ目を検出している。後述するようにデータIDの情報から情報記憶媒体上に記録されているデータの位置情報(物理セクタ番号または論理セクタ番号)を抽出している。その直後に配置されたIEDを用いてデータIDのエラーを検知している。従って、本実施形態では(5)データIDとIED上での重ね書きを禁止するとともに(4)シンクコード431を除いたシンクデータ432内に部分的に重ね書きを行う事で、“次のボーダーを示す目印NBM”内でもシンクコード431を用いたデータID位置の検出とデータIDに記録された情報の再生(内容判読)を可能にしている。
0バイト目から127バイト目までの128バイトに媒体製造社名(Disc Manufacturer's name)が記録され、
128バイト目から255バイト目までの128バイトに媒体製造者が存在する場所情報(何処でこの媒体が製造されたかを示す情報)が記録される。
『入射光強度分布の中心強度を“1”とした時の対物レンズ周辺位置(瞳面外周位置)での強度値』
で定義される。対物レンズへの入射光強度分布は点対称ではなく、楕円分布をし、情報記憶媒体の半径方向と円周方向でリムインテンシティ値が異なるので2通りの値が記録される。リムインテンシティ値が大きいほど情報記憶媒体の記録面上での集光スポットサイズが小さくなるので、このリムインテンシティ値により最適な記録パワー条件が大きく変わる。情報記録再生装置は自分が持っている光学ヘッドのリムインテンシティ値情報を事前に知っているので、まず情報記憶媒体内に記録されている円周方向と半径方向に沿った光学系のリムインテンシティ値を読み取り、自分が持っている光学ヘッドの値と比較する。比較した結果に大きな違いが無ければ後ろ側に記録されている記録条件を適用できるが、比較した結果で大きな食い違いが有れば後ろ側に記録されている記録条件を無視し、図23または図25に記載されているドライブテストゾーンDRTZを利用して記録再生装置自ら試し書きをしながら最適な記録条件の割り出しを始める必要が有る。
(1)特に未記録領域へのアクセスが高速化する
… 記録位置管理データRMD内の位置情報単位とウォブル変調により予め記録されたデータセグメントアドレスの情報単位が一致するため差分の計算処理が容易となるため
(2)記録位置管理データRMD内の管理データサイズを小さくできる
… アドレス情報記述に必要なビット数が1アドレス当たり5ビット節約できるため
と言う効果が生まれる。後述するように1物理セグメントブロック長は1データセグメント長に一致し、1データセグメント内に1ECCブロック分のユーザデータが記録される。従って、アドレスの表現として“ECCブロックアドレス番号”とか“ECCブロックアドレス”あるいは“データセグメントアドレス”、“データセグメント番号”、“物理セグメントブロック番号”などの表現を行うが、これらは全て同義語の意味を持つ。
[RMZの設定されたサイズ情報]
=[現在の記録位置管理データ番号]+[RMZ内での残量]
の関係が成立する。記録位置管理ゾーンRMZ内の記録位置管理データRMDの既使用量または残量情報を記録位置管理データRMDの記録領域内に記録する所に本実施形態の特徴が有る。
→(2)情報記録再生部141でバーストカッティング領域BCAに形成されたデータを再生し、制御部143へ送る→制御部143内で転送された情報を解読し、次のステップへ進めるか判定する
→(3)情報記録再生部141でシステムリードイン領域SYLDI内の制御データゾーンCDZに記録されて有る情報を再生し、制御部143へ転送する
→(4)制御部143内で推奨記録条件を割り出した時のリムインテンシティの値(表8の194、195バイト目)と情報記録再生部141で使われている光学ヘッドのリムインテンシティの値を比較し、試し書きに必要な領域サイズを割り出す
→(5)情報記録再生部141で記録位置管理データ内の情報を再生し、制御部143へ送る。制御部ではRMDフィールド4内の情報を解読し、(4)で割り出した試し書きに必要な領域サイズの余裕の有無を判定し、余裕が有る場合には(6)へ進み、余裕が無い場合には(9)へ進む
→(6)RMDフィールド4内から試し書きに使用するドライブテストゾーンDRTZまたは拡張ドライブテストゾーンEDRTZ内の既に試し書きに使用した場所の最後の位置情報から今回試し書きを開始する場所を割り出す
→(7) (6)で割り出した場所から(4)で割り出したサイズ分試し書きを実行する
→(8) (7)の処理により試し書きに使用した場所が増えたので、既に試し書きに使用した場所の最後の位置情報を書き替えた記録位置管理データRMDをメモリー部175に一時保存し、(12)へ進む
→(9)RMDフィールド0に記録されて有る“最新のユーザデータの記録可能範囲205の最終位置”の情報または表9に示した物理フォーマットPFI内のデータ領域DTAの配置場所情報内に記録されている“ユーザデータの追記可能範囲の最後の位置情報”を情報記録再生部141で読み取り、制御部143内で更に、新たに設定する拡張ドライブテストゾーンEDRTZの範囲を設定する
→(10) (9)の結果に基付きRMDフィールド0に記録されて有る“最新のユーザデータの記録可能範囲205の最終位置”の情報を更新すると共にRMDフィールド4内の拡張ドライブテストゾーンEDRTZの追加設定回数情報を1だけインクリメント(回数を1だけ加算)し、さらに新たに設定する拡張ドライブテストゾーンEDRTZの開始/終了位置情報を付け加えた記録位置管理データRMDをメモリー部175に一時保存する
→(11) →(7)→(12)へ移動する
→(12) (7)で行った試し書きの結果得られた最適な記録条件でユーザデータの追記可能範囲205内に必要なユーザ情報を追記する
→(13) (12)に対応して新たに発生したRゾーン内の開始/終了位置情報(表13)を追記して更新された記録位置管理データRMDをメモリー部175に一時保存する
→(14)制御部143が制御して情報記録再生部141がメモリー部175に一時保存されている最新の記録位置管理データRMDを記録位置管理ゾーンRMZ内の予約領域273(例えば、図24(b))内に追加記録する
表13に示すようにRMDフィールド5内は拡張代替え領域ESPAの位置情報が記録される。追記形情報記憶媒体において代替え領域が拡張可能となっており、その代替え領域の位置情報が位置管理データRMDで管理される。図25(e)に示す実施形態では拡張代替え領域1ESPA1と拡張代替え領域2ESPA2の2箇所に拡張代替え領域ESPAを設定しているので、RMDフィールド5内の最初に記載されている“拡張代替え領域ESPAの追加設定回数”は“2”となる。最初に設定した拡張代替え領域ESPAの開始位置情報はδ点位置、最初に設定した拡張代替え領域ESPAの終了位置情報はγ点の直前の位置、2番目に設定した拡張代替え領域ESPAの開始位置情報はζ点の位置、2番目に設定した拡張代替え領域ESPAの終了位置情報はε点の直前位置に対応する。
(1)次に代替え処理する時にユーザデータの追記可能範囲205内で見つかった欠陥領域に対する新たに設定すべき代替え場所が即座に分かる
… 代替えへの使用済み場所の最後の位置の直後に新たな代替えを行う
(2)計算により代替え領域SPAまたは拡張代替え領域ESPA内の残量が求められ、(残量が足りない場合には)新たな拡張代替え領域ESPAの設定の必要性有無が分かる
が出来るという効果が有る。データリードイン領域DTLDIに隣接した代替え領域SPAのサイズは事前に知られているので、代替え領域SPA内で既に代替えに使用したECCブロックの数に関する情報が有れば代替え領域SPA内での残量を計算できるが、代替え領域SPA内での残量情報である今後代替えに使用可能な未使用場所のECCブロックの数情報または物理セグメントブロック数情報の記録枠を設けることで即座に残量が分かり、更なる拡張代替え領域ESPAに関する設定必要性の有無判定に必要な時間の短縮化が図れる。同様な理由から“最初に設定した拡張代替え領域ESPA内での残量情報”と“2番目に設定した拡張代替え領域ESPA内での残量情報”も記録できる枠が設けられている。本実施形態では追記形情報記憶媒体において代替え領域SPAを拡張可能とし、その位置情報を記録位置管理データRMD内で管理する形となっている。図25(e)に示すように、ユーザデータの追記可能範囲204内に必要に応じて任意の開始位置、任意のサイズで拡張代替え領域1 ESPA1、拡張代替え領域2 ESPA2などが拡張設定できる。従って、RMDフィールド5内に拡張代替え領域ESPAの追加設定回数情報が記録され、最初に設定した拡張代替え領域ESPAの開始位置情報や2番目に設定した拡張代替え領域ESPAの開始位置情報が設定可能となっている。これらの開始位置情報は物理セクタ番号またはECCブロックアドレス番号(あるいは物理セグメントブロック番号、データセグメントアドレス)で記述される。表10、表11の実施形態では拡張代替え領域ESPAの範囲を規定する情報として“最初に設定した拡張代替え領域ESPAの終了位置情報”や“2番目に設定した拡張代替え領域ESPAの終了位置情報”が記録される形になっているが他の実施形態としてそれら終了位置情報の変わりに拡張代替え領域ESPAのサイズ情報がECCブロック数または物理セグメントブロック数、データセグメント数、ECCブロック数あるいは物理セクタ数で記録される事も可能である。
(1)欠陥場所に記録を予定していた情報を代替え場所に記録する従来の“交替モード”と
(2)同じ内容の情報を情報記憶媒体上の異なる場所に2回記録して信頼性を上げる“多重化モード”
の2種類の方法が対応できるようにし、どちらのモードで処理するかの情報を表14に示すように記録位置管理データRMD内の2次欠陥リストエントリ情報内の“欠陥管理処理の種別情報”内に記録される。2次欠陥リストエントリ情報内の内容は
(1)交替モードの場合には
・欠陥管理処理の種別情報を“01”に設定し(従来のDVD−RAMと同様)、
・“交替元ECCブロックの位置情報”とはユーザデータの追記可能範囲205の中で欠陥場所として発見されたECCブロックの位置情報を意味し、本来ここへ記録予定の情報が記録されず代替え領域内などに記録される。
(2)多重化モードの場合には
・欠陥管理処理の種別情報を“10”に設定し、
・“交替元ECCブロックの位置情報”とは非欠陥の場所であり、記録予定の情報が記録されると共にここに記録された情報は正確に再生できる場所の位置情報を表す。
◎欠陥ブロックの代替えブロックへの交替処理有無情報SLRが“0”の時には
… “交替元ECCブロックの位置情報”で指定された欠陥ECCブロックに対して交替処理がなされ、
“交替先ECCブロックの位置情報”で指定された場所に再生可能な情報が記録されている。
… “交替元ECCブロックの位置情報”で指定された欠陥ECCブロックは交替処理前の段階で事前に検出された欠陥ブロックを意味し、
“交替先ECCブロックの位置情報”の欄はブランク(何も情報が記録されて無い)となっている。
… 図24(b)に示す記録位置管理ゾーンRMZ内でも欠陥場所が発生する場合が有る。記録位置管理ゾーンRMZ内で新たに追記した記録位置管理データRMDの内容を追記直後に確認(ベリファイ)する事で欠陥による記録不可能な状態を検知でき、その場合にはその隣に記録位置管理データRMDを書き直す事で記録位置管理データRMDを高い信頼性を保証した形で記録する事が出来る。
… 例えば、図24(b)の例を取った場合、記録位置管理データRMD#2を記録した後でユーザのミス等で情報記憶媒体表面に傷が付き、記録位置管理データRMD#2の再生が不可能になった状態を例として想定する。この場合、代わりに記録位置管理データRMD#1の情報を再生する事で有る程度過去の欠陥管理情報(RMDフィールド6内の情報)を修復できる。
1)ボーダーインBRDI内に設定された拡張記録位置管理ゾーンRMZと
2)Rゾーンを利用して設定された拡張記録位置管理ゾーンRMZ
の2種類存在するが、表16、表17に示した実施形態ではその2種類を区別することなく拡張記録位置管理ゾーンRMZの開始位置情報(物理セクタ番号で表示)とサイズ情報(占有する物理セクタの数情報)の組をRMDフィールド3内に記録することで管理している。表16、表17の実施形態では拡張記録位置管理ゾーンRMZの開始位置情報(物理セクタ番号で表示)とサイズ情報(占有する物理セクタの数情報)の組の情報が記録されているが、それに限らず拡張記録位置管理ゾーンRMZの開始位置情報(物理セクタ番号で表示)と終了位置情報(物理セクタ番号で表示)の組で記録されても良い。表16、表17の実施形態では追記形情報記憶媒体上に設定された順番に拡張記録位置管理ゾーンRMZの番号が付けられているが、それに限らず開始位置として物理セクタ番号の若い順に拡張記録位置管理ゾーンRMZの番号を付ける事も出来る。そして、最新の記録位置管理データRMDが記録され、現在使用中(オープンになってRMDの追記が可能な)記録位置管理ゾーンの指定をこの拡張記録位置管理ゾーンRMZの番号で指定している。従って、情報記録再生装置または情報再生装置はこれらの情報から現在使用中(オープンになっている)記録位置管理ゾーンの開始位置情報を知り、そこからどれが最新の記録位置管理データRMDで有るかの識別を行う。拡張記録位置管理ゾーンを追記形情報記憶媒体上に分散配置しても表16、表17に示したデータ構造を取る事で情報記録再生装置または情報再生装置はどれが最新の記録位置管理データRMDで有るかの識別を容易に行う事が出来る。これらの情報から現在使用中(オープンになっている)記録位置管理ゾーンの開始位置情報が分かり、その場所にアクセスして何処まで既に記録位置管理データRMDが記録されているかを知ることで情報記録再生装置または情報再生装置は何処に更新された最新の記録位置管理データを記録すれば良いかか容易に分かる。また、上記の
2)Rゾーンを利用して設定された拡張記録位置管理ゾーンRMZ
の設定をした場合には1個のRゾーン全体がそのまま1個の拡張記録位置管理ゾーンRMZに対応するので、RMDフィールド3内に記載した対応する拡張記録位置管理ゾーンRMZの開始位置を表す物理セクタ番号がRMDフィールド4〜21内に記載される対応したRゾーンの開始位置を表す物理セクタ番号に一致する。
(1)RMDフィールド4内に記載されているオープン形Rゾーンに対応するRゾーンの番号を調べ
(2)RMDフィールド4〜21内に記載されているオープン形Rゾーン内での最後の記録位置を表す物理セクタ番号を調べて追記可能な最終記録位置を割り出し
(3)上記割り出した追記可能な最終記録位置NWAから追記を開始する
と言う手順で処理を行う。このようにRMDフィールド4内のオープン形Rゾーン情報を利用して新たな追記開始位置を割り出す事で簡単かつ高速に新たな追記開始位置の抽出が可能となる。
1b:ゾーン構成を表す
・トラッキング方法932 … 0b:ピット対応で、本実施形態ではDPD(Differential Phase Detect)法を使用する
1b:プリグルーブ対応で、Push-Pull法またはDPP(Differential Push-Pull)法を使用する
・記録膜の反射率933 … 0b:40%以上
1b:40%以下
・レコーディングタイプ情報934 … 0b:一般データ
1b:リアルタイムデータ(Audio Videoデータ)
・領域タイプ情報935 … 00b:データ領域DTA
01b:システムリードイン領域SYLDIかデータリードイン領域DTLDI
10b:データリードアウト領域DTLDOかシステムリードアウト領域SYLDO
・データタイプ情報936 … 0b:再生専用データ
1b:書き替え可能データ
・レイヤー番号937 … 0b:レイヤー0
1b:レイヤー1
図34(a)は、スクランブル後のフレームを作成するときに、フィードバックシフトレジスタに与える初期値の例を示し、図34(b)は、スクランブルバイトを作成するためのフィードバックシフトレジスタの回路構成を示している。r7(MSB)からr0(LSB)が、8ビットずつシフトし、スクランブルバイトとして用いられる。図34(a)に示すように本実施形態では16種類のプリセット値が用意されている。図34(a)の初期プリセット番号は、データIDの4ビット(b7(MSB)〜b4(LSB))に等しい。データフレームのスクランブルの開始時には、r14〜r0の初期値は、図34(a)のテーブルの初期プリセット値にセットしなければならない。16個の連続するデータフレームに対して、同じ初期プリセット値が用いられる。次には、初期プリセット値が切り換えられ、16個の連続するデータフレームに対しては、切り換わった同じプリセット値が用いられる。
(1)物理セクタの最初の2232チャネルビットデータが属する小ECCブロック(右側か左側か)が異なる
(2)セクタ毎に交互に異なるPOグループのデータが挿入される構造になっている
その結果、ECCブロックを構成した後でも全ての物理セクタの先頭位置にデータIDが配置される構造を保証するため、アクセス時のデータ位置確認が高速で行える。また、同一物理セクタ内に異なる小ECCブロックに属するPOを混在挿入するより図37のようなPO挿入方法を採る方法が構造が簡単になり、情報再生装置内でのエラー訂正処理後の各セクタ毎の情報抽出が容易になると共に、情報記録再生装置内でのECCブロックデータの組立て処理の簡素化が図れる。
図38に示した同期コード(シンクコード)“SY0”から“SY3”までの具体的なパターン内容の実施形態を表20に示す。本実施の形態の変調規則(詳細説明は後述)に対応してState0からState2までの3状態(State)を有する。SY0からSY3までのそれぞれ4種類のシンクコードが設定され、各状態に応じて表20の左右のグループから選択される。現行DVD規格では変調方式として8/16変調(8ビットを16チャネルビットに変換)のRLL(2,10)(Run Length Limited:d=2、k=10:“0”が連続して続く範囲の最小値が2、最大値が10)を採用しており、変調にState1からState4までの4状態、SY0からSY7までの8種類のシンクコードが設定されている。それに比べると本実施の形態は同期コード(シンクコード)の種類が減少している。情報記録再生装置または情報再生装置では情報記憶媒体からの情報再生時にパターンマッチング法によりシンクコードの種別を識別する。本実施の形態のようにシンクコードの種類を大幅に減らすことにより、マッチングに必要な対象パターンを減らし、パターンマッチングに必要な処理を簡素化して処理効率を向上させるばかりで無く、認識速度を向上させることが可能となる。
全てのシンクコードで共通なパターンを持ち、固定コード領域を形成する。このコードを検出することでシンクコードの配置位置を検出出来る。具体的には表20の各シンクコードにおける最後の18チャネルビット“010000 000000 001001”の所を意味している。
可変コード領域の一部を形成し、変調時のState番号に対応して変化するコードである。表20の最初の1チャネルビットのところが該当する。すなわち、State1、State2のいずれかを選択する場合にはSY0からSY3までのいずれのコードでも最初の1チャネルビットが“0”となり、State0選択時にはシンクコードの最初の1チャネルビットが“1”となっている。但し、例外としてState0でのSY3の最初の1チャネルビットは“0”となる。
シンクコード内でのSY0からSY3までの各種類を識別するコードで、可変コード領域の一部を構成する。表20の各シンクコードにおける最初から1番目から6番目までのチャネルビット部がこれに相当する。後述するように連続して検出される3個ずつのシンクコードのつながりパターンから同一セクタ内の相対的な位置を検出できる。
表20における“#”位置でのチャネルビットが該当し、上述したようにここのビットが反転もしくは非反転することで前後のフレームデータを含めたチャネルビット列のDSV値が“0”に近付くように働く。
(1)ガード領域442〜448を跨った場所でも同期コードの出現頻度を一致させて同期コード位置検出の検出精度を向上させる
(2)ガード領域442〜448も含めた物理セクタ内の位置の判別を容易にする
を目的として本実施形態ではガード領域内に同期コード(シンクデータ)を配置する。具体的には図47に示すように各ガード領域442〜468の開始位置にはポストアンブル領域(Postamble field)481が形成され、そのポストアンブル領域481には表20に示したシンクコード番号“1”の同期コード“SY1”が配置されている。図38から分かるように物理セクタ内の3個の連続する同期コードのシンクコード番号の組み合わせは全ての場所で異なっている。更に、ガード領域442〜448内のシンクコード番号“1”まで加味した3個の連続する同期コードのシンクコード番号の組み合わせも全ての場所で異なっている。従って、任意の領域内での連続する3個の同期コードのシンクコード番号組み合わせにより物理セクタ内の位置情報のみならず、ガード領域の場所も含めた物理セクタ内の位置の判別が可能となる。
833=7×17×7
に素因数分解できるので、この特徴を生かした構造配置にしている。すなわち、1個のガード領域と1個のECCブロックを足した領域の長さに等しい領域を書き替え可能なデータの基本単位としてデータセグメント531と定義(図47に示したデータセグメント490内の構造は再生専用形情報記憶媒体と書替え形情報記憶媒体、追記形情報記憶媒体の別に依らず全て一致している)し、1個のデータセグメント490の物理的な長さと同じ長さの領域を“7個”の物理セグメントに分割し、各物理セグメント毎にウォブル変調の形でアドレス情報を事前に記録しておく。データセグメント490の境界位置と物理セグメントの境界位置は一致せずに後述する量だけずれている。さらに、各物理セグメント毎にそれぞれ17個のウォブルデータユニット(WDU:Wobble Data Unit)に分割する。上記の式から1個のウォブルデータユニットの長さにはそれぞれ7個のシンクフレーム分が割り当てられる事が分かる。このように17ウォブルデータユニットで物理セグメントを構成し、7物理セグメント長をデータセグメント長に合わせる事でガード領域442〜468を跨った範囲でシンクフレーム境界を確保しシンクコードの検出を容易にしている。
(1)図9のウォブル信号検出部135内で行っているウォブルのスロット位置512(図48)に関するPLLが崩れる事無く安定にウォブル検出(ウォブル信号の判定)を継続できる
(2)図9のウォブル信号検出部135内で行っているアドレスビット境界位置のずれにより容易にウォブルシンク領域580と変調開始マーク561、582の検出が行える
と言う効果が生まれる。図50に示すようにウォブルシンク領域580を12ウォブル周期で形成してウォブルシンク領域580の長さを3アドレスビット長に一致させているする所にも本実施形態の特徴が有る。これにより、1個のウォブルデータユニット#0560内での変調領域(16ウォブル分)全てをウォブルシンク領域580に割り当てる事で、ウォブルアドレス情報610の開始位置(ウォブルシンク領域580の配置位置)の検出容易性を向上させている。このウォブルシンク領域580は物理セグメント内の最初のウォブルデータユニットに配置されている。このようにウォブルシンク領域580を物理セグメント内の先頭位置に配置する事で、ウォブルシンク領域580の位置を検出するだけで容易に物理セグメントの境界位置を抽出できると言う効果が生じる。
(1)物理セグメントアドレス601
… トラック内(情報記憶媒体221内での1周内)での物理セグメント番号を示す情報。
… 情報記憶媒体221内のゾーン番号を示している。
… ウォブルアドレス情報610からの再生時のエラー検出用に設定された物で、予約情報604からゾーンアドレス602までの14アドレスビットを各アドレスビット単位で個々に加算し、加算結果が偶数か奇数かの表示を行う情報で、このアドレスパリティ情報605の1アドレスビットも含めた合計15アドレスビットに対して各アドレスビット単位で排他的OR(Exclusive OR)を取った結果が“1”になるようにパリティー情報605の値を設定する。
… 前述したように各ウォブルデータユニットの中は16ウォブル分の変調領域598と68ウォブル分の無変調領域592、593から構成されように設定し、変調領域598に対する無変調領域592、593の占有比を大幅に大きくしている。更に、無変調領域592、593の占有比を広げて再生用基準クロックまたは記録用基準クロックの抽出(生成)の精度と安定性をより向上させている。ユニティー領域608内は全てNPW領域が連続しており、均一位相の無変調領域になっている。
・物理セグメントのタイプ識別情報721が“0”の時は図53(b)に示す物理セグメント内全てが1次配列場所(Primary Position)になっているか、あるいは図53(d)に示す1次配置場所と2次配置場所の混合状態を表し、
・物理セグメントのタイプ識別情報721が“1”の時は図53(c)に示すように物理セグメント内全てが2次配置場所(Secondary Position)になっている事を示す。
・“0”の時には片面1記録層媒体か片面2記録層の場合の“L0層”(レーザ光入射側の手前層)
・“1”の時には片面2記録層の“L1層”(レーザ光入射側の奥側の層)
を意味する。
“0b”の場合は後述する図53(b)の状態を表し、
“1b”の場合には後述する図53(c)または(d)の状態を表している。
67+4+77376+2+4+16=77469(データバイト)
となる。1個のウォブルデータユニット560は
6+4+6+68=84(ウォブル)
で構成されており、17個のウォブルデータユニットで1個の物理セグメント550を構成し、7個の物理セグメント550〜556の長さが1個のデータセグメント531の長さに一致しているので1個のデータセグメント531の長さ内には
84×17×7=9996(ウォブル)
が配置される。従って、上記の式から1個のウォブルに対して
77496÷9996=7.75(データバイト/ウォブル)が対応する。
8バイト×(0.143μm÷0.090μm)=12.7バイト
となる。本実施形態では再生信号検出処理の容易性を確保するため、ランダムなずらし量の単位を変調後の“チャネルビット”に合わせた。本実施形態では変調に8ビットを12ビットに変換するETM変調(Eight to Twelve modulation)を用いているので、ランダムなずらし量を表す数式表現としてデータバイトを基準として
Jm/12(データバイト)
で表す。Jmの取り得る値としては上式の値を用いて
12.7×12=152.4
なので、Jmは0から152となる。以上の理由から上式を満足する範囲で有ればランダムなずらしの範囲長さは現行DVD−RAMディスクと一致し、現行DVD−RAMディスクと同様な書き替え回数を保証できる。本実施形態では現行以上の書き替え回数を確保するため、最低限必要な長さに対してわずかにマージンを持たせ、
ランダムなずらし範囲の長さを14(データバイト)
に設定した。これらの式から14×12=168なので
Jmの取り得る値は0〜167
と設定した。上記のようにランダムシフト量をJm/12(0≦Jm≦154)より大きな範囲とする事で、ランダムシフト量に対する物理的な範囲の長さが現行DVD−RAMと一致するため、現行DVD−RAMと同様な繰り返し記録回数を保証できると言う効果が有る。
±1データバイト”までのずれ量
を許容している。
バッファ領域537の長さは15データバイト以上
必要となる。図55に示した実施形態では1データバイトの余裕を加味し、バッファ領域537のデータサイズを16データバイトに設定している。
拡張ガードフィールド528の長さを(15+8=)23データバイト以上
に設定している。図55に示した実施形態ではバッファ領域537と同様に1データバイトの余裕を加味し、拡張ガードフィールド528の長さを24データバイトに設定している。
Bフォーマットの光ディスク仕様
表21は青紫色レーザ光源を使うBフォーマットの光ディスクの仕様を示す。Bフォーマットの光ディスクは書き換え型(REディスク)と、再生専用(ROMディスク)と、追記型(Rディスク)に分類されるが、表21に示すように、標準のデータ転送速度以外はどのタイプでも共通の仕様であり、異なるタイプに共通の互換性のあるドライブの実現が容易である。現行DVDでは厚さが0.6nmのディスク基板2枚を張り合わせているのに対して、Bフォーマットでは、ディスクでは厚さが1.1nmのディスク基板上に記録層を設け、0.1nmの透明なカバー層で覆う構造である。片面2層媒体も規定されている。
Bフォーマットではピケット(picket)コードと呼ばれるバースト誤りを効率的に検知できる誤り訂正方式を採用している。ピケットは一定間隔でメインデータ(ユーザデータ)の列に挿入される。メインデータは強力で効率的なリードソロモン符号により保護されている。ピケットはメインデータとは別の第2の非常に強力で効率的なリードソロモン符号により保護されている。復号の際は、先ずピケットが誤り訂正される。訂正情報はメインデータ内のバーストエラーの位置を推定するために使うことができる。これらの位置のシンボルはメインデータのコードワードを訂正する時に利用されるErasureと呼ばれるフラグが立てられる。
REディスクにはCD−Rディスクと同様に記録トラックとして渦巻気のように極めて細い溝が刻まれている。記録マークを書き込むのは、その凹凸のうち、レーザ光の入射方向から見て凸の部分だけである(オングルーブ記録)。
各物理クラスタは16個のアドレスユニットを含む。各アドレスユニットは31個の記録フレームを含む。各記録フレームは30チャンネルビットのフレームシンクで始まる。フレームシンクの最初の24ビットは1−7PP変調規則に違反する(9Tの2倍のランレングスを含む)。1−7PP変調規則とは(1,7)PLL変調方式を用い、Parity Preserve/ProhibitPMTR(repeated minimum transition runlength)を行うものである。Parity Preserveは符号のいわゆるDC(直流)成分の制御(符号のDC成分を減らす)を行う。フレームシンクの残りの6ビットは変化し、7フレームシンクFS0、FS1、…FS6を識別する。これらの6ビットの記号は偏移量に関する距離が2以上であるように選ばれる。
1ADIPユニット=56NWL=2記録フレーム
83ADIPユニット=1ADIPワード(1ADIPアドレスを含む)
3ADIPワード=3×83ADIPユニット
3ADIPワード=3×83×2=498記録フレーム
追記型のディスクではデータを記録する際に、既に記録されているデータに連続して次のデータを記録することが必要である。データの間に隙間が生じると、再生できなくなる。そこで、後続記録フレームの最初のデータ・ラン・イン領域を先行記録フレームの最後のデータ・ラン・アウト領域に重ねて記録(上書き)するために、図67に示すようにデータ・ラン・アウト領域の最後にガード3領域を配置する。同図(a)は1個の物理クラスタだけ記録する場合であり、同図(b)は複数の物理クラスタを連続して記録する場合であり、最後のクラスタのラン・アウトの後だけガード3領域を設ける。このように、単独で記録された各記録ユニットブロック、あるいは連続して記録された複数の記録ユニットブロックはガード3領域で終結される。ガード3領域は2つの記録ユニットブロック間に未記録領域がないことを保証する。
Claims (3)
- 光反射膜と、
前記光反射膜の上に形成される記録膜と、
前記記録膜の上に形成される透明層と、を具備し、
前記記録膜の最大吸収波長は405nmよりも長く、未記録領域での波長405nmにおける吸光度は最大吸収波長における吸光度の68%以上であり、
波長405nmの光で情報が記録され、光が前記透明層を介して前記記録層に入射される構造を有し、L→H特性を持つ情報記録媒体。 - 光反射膜と、
前記光反射膜の上に形成される記録膜と、
前記記録膜の上に形成される透明層と、を具備し、
前記記録膜の最大吸収波長は405nmよりも長く、未記録領域での波長405nmにおける吸光度は最大吸収波長における吸光度の68%以上であり、
L→H特性を持つ情報記録媒体から情報を再生する方法において、
波長が450nmの光を前記透明層を介して前記記録層に入射することにより情報を再生する再生方法。 - 光反射膜と、
前記光反射膜の上に形成される記録膜と、
前記記録膜の上に形成される透明層と、を具備し、
前記記録膜の最大吸収波長は405nmよりも長く、未記録領域での波長405nmにおける吸光度は最大吸収波長における吸光度の68%以上であり、
L→H特性を持つ情報記録媒体に情報を記録する方法において、
波長が450nmの光を前記透明層を介して前記記録層に入射することにより情報を記録する記録方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005072580A JP4417869B2 (ja) | 2005-03-15 | 2005-03-15 | 情報記憶媒体、再生方法及び記録方法 |
TW095108436A TWI331754B (en) | 2005-03-15 | 2006-03-13 | Storage medium, reproducing method, and recording method |
US11/373,275 US20060210925A1 (en) | 2005-03-15 | 2006-03-13 | Storage medium, reproducing method, and recording method |
US12/354,411 US7960093B2 (en) | 2005-03-15 | 2009-01-15 | Storage medium, reproducing method, and recording method |
US13/102,646 US20110212287A1 (en) | 2005-03-15 | 2011-05-06 | Storage medium, reproducing method, and recording method |
US13/855,432 US20130215729A1 (en) | 2005-03-15 | 2013-04-02 | Storage medium, reproducing method, and recording method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005072580A JP4417869B2 (ja) | 2005-03-15 | 2005-03-15 | 情報記憶媒体、再生方法及び記録方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009185424A Division JP4982536B2 (ja) | 2009-08-10 | 2009-08-10 | 情報記憶媒体、再生方法、再生装置、記録方法、記録装置及び材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006255913A JP2006255913A (ja) | 2006-09-28 |
JP4417869B2 true JP4417869B2 (ja) | 2010-02-17 |
Family
ID=37010766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005072580A Active JP4417869B2 (ja) | 2005-03-15 | 2005-03-15 | 情報記憶媒体、再生方法及び記録方法 |
Country Status (3)
Country | Link |
---|---|
US (4) | US20060210925A1 (ja) |
JP (1) | JP4417869B2 (ja) |
TW (1) | TWI331754B (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7876666B2 (en) * | 2004-04-02 | 2011-01-25 | Kabushiki Kaisha Toshiba | Write-once information recording medium and coloring matter material therefor |
JP4660217B2 (ja) * | 2005-01-31 | 2011-03-30 | 株式会社東芝 | 記憶媒体、再生方法、記録方法、再生装置及び記録装置 |
JP4417869B2 (ja) * | 2005-03-15 | 2010-02-17 | 株式会社東芝 | 情報記憶媒体、再生方法及び記録方法 |
JP4575211B2 (ja) * | 2005-03-31 | 2010-11-04 | 株式会社東芝 | 記憶媒体、再生方法及び記録方法 |
JP4473768B2 (ja) * | 2005-04-14 | 2010-06-02 | 株式会社東芝 | 情報記憶媒体、再生方法及び記録方法 |
JP2006289877A (ja) * | 2005-04-14 | 2006-10-26 | Toshiba Corp | 情報記憶媒体、再生方法及び記録方法 |
JP2008299987A (ja) * | 2007-06-01 | 2008-12-11 | Victor Co Of Japan Ltd | 情報記録方法及び情報記録装置 |
JP5386820B2 (ja) * | 2007-12-19 | 2014-01-15 | 富士ゼロックス株式会社 | 情報読取装置及びプログラム |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2557686A1 (de) * | 1975-12-20 | 1977-06-30 | Basf Ag | Farbbildner fuer kopierverfahren |
JPS5856239A (ja) * | 1981-09-28 | 1983-04-02 | Tdk Corp | 光記録媒体 |
US4650745A (en) * | 1985-06-04 | 1987-03-17 | Philip A. Hunt Chemical Corporation | Method of forming a resist pattern by radiation exposure of positive-working resist coating comprising a dye and a trihydroxybenzophenone compound and subsequent aqueous alkaline development |
JPS63259852A (ja) * | 1987-04-17 | 1988-10-26 | Hitachi Ltd | 薄板情報記録担体 |
EP0546403B1 (en) * | 1991-11-29 | 1997-05-28 | Sony Corporation | Thermal transfer recording medium |
JPH0644608A (ja) | 1992-02-21 | 1994-02-18 | Nippon Columbia Co Ltd | 光情報記録媒体 |
JPH0643147A (ja) | 1992-03-27 | 1994-02-18 | Tokico Ltd | 金属成分分析装置 |
US5855979A (en) * | 1996-08-08 | 1999-01-05 | Mitsui Chemicals, Inc. | Optical recording medium |
US6333907B1 (en) * | 1998-03-17 | 2001-12-25 | Kabushiki Kaisha Toshiba | Disk processing apparatus for reproducing information from a plurality of optical disks having different recording densities |
US6335144B1 (en) * | 1999-04-27 | 2002-01-01 | Fuji Photo Film Co., Ltd. | Photopolymerizable composition for short wavelength semiconductor laser exposure |
US6519213B1 (en) * | 1999-06-29 | 2003-02-11 | Oak Technology, Inc. | Method and apparatus for reading data from a disk |
EP1429324A1 (en) * | 1999-12-17 | 2004-06-16 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Monomethine cyanine dyes suitable for the use in optical recording media |
WO2001057833A1 (fr) * | 2000-02-01 | 2001-08-09 | Mitsui Chemicals Inc. | Filtre pour affichage, afficheur et procede de production a cet effet |
JP2001214084A (ja) * | 2000-02-02 | 2001-08-07 | Mitsubishi Chemicals Corp | 金属キレート色素及びこれを用いた光学記録媒体 |
TW572969B (en) * | 2000-02-10 | 2004-01-21 | Hayashibara Biochem Lab | Trimethine cyanine dye, light absorbent, light-resistant improver and optical recording medium containing same, and process for producing same |
JP4046955B2 (ja) | 2000-06-16 | 2008-02-13 | 三菱化学メディア株式会社 | 光学的情報記録用媒体 |
JP2002206061A (ja) | 2000-07-05 | 2002-07-26 | Hayashibara Biochem Lab Inc | スチリル色素 |
JP4743994B2 (ja) * | 2000-10-27 | 2011-08-10 | 株式会社林原生物化学研究所 | 耐光性改善剤 |
CN1545700A (zh) * | 2001-03-28 | 2004-11-10 | 在信息层中包括阳离子胺基杂环染料作为光吸收剂化合物的光学数据载体 | |
EP1446800A1 (en) * | 2001-11-15 | 2004-08-18 | Ciba SC Holding AG | Writable high-capacity optical storage media containing metal complexes |
US6815033B2 (en) * | 2001-12-06 | 2004-11-09 | Mitsubishi Chemical Corporation | Compound, optical recording medium and optical recording method |
JP4101666B2 (ja) * | 2002-01-22 | 2008-06-18 | 松下電器産業株式会社 | 情報記録媒体、記録装置、再生装置、記録方法、再生方法 |
EP1484191A4 (en) * | 2002-02-15 | 2005-03-02 | Sony Corp | Rewritable optical data recording medium and logging / reproducing method, logging / retrofusion device |
DE60334584D1 (de) * | 2002-02-18 | 2010-11-25 | Koninkl Philips Electronics Nv | Optisches Aufzeichnungsmedium und dessen Wiedergabeverfahren |
JP3844704B2 (ja) * | 2002-03-12 | 2006-11-15 | 株式会社リコー | 多値記録可能な追記型光記録媒体及び多値記録方法 |
EP1369872A2 (en) * | 2002-06-05 | 2003-12-10 | Kabushiki Kaisha Toshiba | Reproduced signal evaluation method, information recording medium, information reproducing apparatus, information reproducing method, and information recording method |
CN1326125C (zh) | 2002-06-18 | 2007-07-11 | 皇家飞利浦电子股份有限公司 | 光学数据存储介质及其应用 |
DE60315239T2 (de) * | 2002-11-21 | 2008-04-17 | Matsushita Electric Industrial Co., Ltd., Kadoma | Verfahren und Vorrichtung, um einen Aufzeichnungspuls mittles Daten aus dem Benutzerfeld einer optischen Scheibe zu justieren. |
JP3897695B2 (ja) | 2002-12-27 | 2007-03-28 | 株式会社リコー | 短波長対応のロー・ツー・ハイ記録極性を有する追記型光記録媒体 |
JP3967691B2 (ja) * | 2003-03-31 | 2007-08-29 | 株式会社東芝 | 情報記憶媒体と情報再生装置と情報記録再生装置 |
TW593561B (en) * | 2003-05-14 | 2004-06-21 | Ind Tech Res Inst | Bis-styryl dye and method for manufacturing the same and its use for a high density optical recording medium |
JP4060771B2 (ja) * | 2003-09-16 | 2008-03-12 | 株式会社東芝 | 光ディスク装置及びその制御方法 |
TWI238159B (en) * | 2003-09-23 | 2005-08-21 | Ind Tech Res Inst | Indolestyryl compounds and use thereof for a high density recording medium and method for producing the same |
US20050094506A1 (en) * | 2003-10-29 | 2005-05-05 | Tetsuya Shihara | Recording and reproducing method, recording and reproducing device and semiconductor circuit |
JP2005166122A (ja) * | 2003-11-28 | 2005-06-23 | Toshiba Corp | 光ディスク装置及び情報再生方法 |
JP2005293773A (ja) * | 2004-04-02 | 2005-10-20 | Toshiba Corp | 追記型情報記録媒体 |
US7876666B2 (en) * | 2004-04-02 | 2011-01-25 | Kabushiki Kaisha Toshiba | Write-once information recording medium and coloring matter material therefor |
JP4482701B2 (ja) | 2004-04-13 | 2010-06-16 | 株式会社東芝 | 追記型情報記録媒体 |
CN101714369B (zh) * | 2004-07-16 | 2013-04-24 | 三菱化学媒体株式会社 | 光记录介质及光记录介质的光记录方法 |
TW200634099A (en) * | 2004-12-08 | 2006-10-01 | Clariant Int Ltd | Pyridine n-oxide based azo dyes and their metal complexes for use in optical layers for optical data recording |
JP4660217B2 (ja) * | 2005-01-31 | 2011-03-30 | 株式会社東芝 | 記憶媒体、再生方法、記録方法、再生装置及び記録装置 |
JP2006236418A (ja) * | 2005-02-22 | 2006-09-07 | Toshiba Corp | 記憶媒体、再生方法及び記録方法 |
JP2006236419A (ja) * | 2005-02-22 | 2006-09-07 | Toshiba Corp | 記憶媒体、再生方法及び記録方法 |
JP2006236421A (ja) * | 2005-02-22 | 2006-09-07 | Toshiba Corp | 記憶媒体、再生方法及び記録方法 |
JP2006236416A (ja) * | 2005-02-22 | 2006-09-07 | Toshiba Corp | 記憶媒体、再生方法及び記録方法 |
JP4417869B2 (ja) * | 2005-03-15 | 2010-02-17 | 株式会社東芝 | 情報記憶媒体、再生方法及び記録方法 |
JP2006289877A (ja) * | 2005-04-14 | 2006-10-26 | Toshiba Corp | 情報記憶媒体、再生方法及び記録方法 |
JP4473768B2 (ja) * | 2005-04-14 | 2010-06-02 | 株式会社東芝 | 情報記憶媒体、再生方法及び記録方法 |
JP2007035222A (ja) * | 2005-07-29 | 2007-02-08 | Toshiba Corp | 情報記録媒体、再生方法及び記録方法 |
JP2007042152A (ja) * | 2005-07-29 | 2007-02-15 | Toshiba Corp | 追記形情報記憶媒体(透明基板上に形成された記録層を内側にして接着された構造を持つ記録形情報記憶媒体のディスク構造)、および情報再生方法または情報記録方法ならびに記憶媒体製造装置 |
WO2007118784A2 (en) * | 2006-04-13 | 2007-10-25 | Clariant International Ltd | Uses of phthalimide based azo metal complex dyes in optical layers for optical data recording |
JP2007328873A (ja) * | 2006-06-08 | 2007-12-20 | Toshiba Corp | 追記型多層光ディスク、記録方法、再生方法、および記録装置 |
-
2005
- 2005-03-15 JP JP2005072580A patent/JP4417869B2/ja active Active
-
2006
- 2006-03-13 TW TW095108436A patent/TWI331754B/zh not_active IP Right Cessation
- 2006-03-13 US US11/373,275 patent/US20060210925A1/en not_active Abandoned
-
2009
- 2009-01-15 US US12/354,411 patent/US7960093B2/en not_active Expired - Fee Related
-
2011
- 2011-05-06 US US13/102,646 patent/US20110212287A1/en not_active Abandoned
-
2013
- 2013-04-02 US US13/855,432 patent/US20130215729A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20130215729A1 (en) | 2013-08-22 |
TW200703320A (en) | 2007-01-16 |
US20060210925A1 (en) | 2006-09-21 |
US20110212287A1 (en) | 2011-09-01 |
US20090129232A1 (en) | 2009-05-21 |
JP2006255913A (ja) | 2006-09-28 |
TWI331754B (en) | 2010-10-11 |
US7960093B2 (en) | 2011-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4660217B2 (ja) | 記憶媒体、再生方法、記録方法、再生装置及び記録装置 | |
JP4473768B2 (ja) | 情報記憶媒体、再生方法及び記録方法 | |
JP4417869B2 (ja) | 情報記憶媒体、再生方法及び記録方法 | |
JP2006236419A (ja) | 記憶媒体、再生方法及び記録方法 | |
JP2006289877A (ja) | 情報記憶媒体、再生方法及び記録方法 | |
JP2006236418A (ja) | 記憶媒体、再生方法及び記録方法 | |
JP4945624B2 (ja) | 記録材料及び材料 | |
JP4703772B2 (ja) | 情報記憶媒体、情報再生方法 | |
JP5085761B2 (ja) | 情報記憶媒体、再生方法、記録方法及び記録材料 | |
JP4982536B2 (ja) | 情報記憶媒体、再生方法、再生装置、記録方法、記録装置及び材料 | |
JP5659110B2 (ja) | 情報記憶媒体及び情報再生方法 | |
JP2006236416A (ja) | 記憶媒体、再生方法及び記録方法 | |
JP4810599B2 (ja) | 情報記憶媒体、再生方法及び記録方法 | |
JP4469916B2 (ja) | 記憶媒体、再生方法、記録方法、再生装置及び記録装置 | |
JP4630935B2 (ja) | 記憶媒体、再生方法、再生装置、記録方法及び記録装置 | |
JP5532353B2 (ja) | 記憶媒体、再生方法、記録方法、再生装置及び記録装置 | |
JP5619121B2 (ja) | 記憶媒体、再生方法、記録方法、再生装置及び記録装置 | |
JP4929391B2 (ja) | 記憶媒体、再生方法及び記録方法 | |
JP2010267377A (ja) | 情報記憶媒体、再生方法、記録方法及び再生装置 | |
JP2011243286A (ja) | 記憶媒体、再生方法、記録方法、再生装置及び記録装置 | |
JP2012009138A (ja) | 記憶媒体、再生方法、記録方法、再生装置及び記録装置 | |
JP2014139863A (ja) | 情報記憶媒体、再生方法、再生装置、記録方法及び記録装置 | |
JP2014112458A (ja) | 情報記憶媒体、情報再生方法、情報再生装置、情報記録方法及び情報記録装置 | |
JP2010080055A (ja) | 情報記憶媒体、再生方法及び記録方法 | |
JP2010267378A (ja) | 情報記憶媒体、再生方法、記録方法及び再生装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071011 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090609 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091126 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4417869 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121204 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121204 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131204 Year of fee payment: 4 |