JP4413987B1 - Tire pressure adjustment method - Google Patents
Tire pressure adjustment method Download PDFInfo
- Publication number
- JP4413987B1 JP4413987B1 JP2009131869A JP2009131869A JP4413987B1 JP 4413987 B1 JP4413987 B1 JP 4413987B1 JP 2009131869 A JP2009131869 A JP 2009131869A JP 2009131869 A JP2009131869 A JP 2009131869A JP 4413987 B1 JP4413987 B1 JP 4413987B1
- Authority
- JP
- Japan
- Prior art keywords
- air pressure
- temperature
- tire
- pressure
- kpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
Abstract
【課題】簡易な計算で調整空気圧を求めて従来よりも高精度にタイヤの空気圧を調整して適正に維持でき、燃費の向上及び二酸化炭素排出量削減に貢献するタイヤの空気圧調整方法を提供する。
【解決手段】車両に装着されているタイヤの空気圧を調整空気圧P0に調整したときから所定期間(1ヶ月)経過後に空気圧を指定空気圧PSに近づけるタイヤの空気圧調整方法であって、温度変化に依存する空気圧の温度変動分PTを、調整時の気温T0および所定期間経過後の日平均気温T2から求め、自然漏れに依存する空気圧の漏れ低下分PLを、所定期間中の期間平均気温TAから求め、温度変動分PT及び漏れ低下分PLを、指定空気圧PSに加えて調整空気圧P0を求める。調整の直前に車両を所定距離以上走行させている場合、走行に依存する空気圧の走行上昇分PRを走行時の平均速度から求め、走行上昇分PRをさらに加えて調整空気圧P0を求める。
【選択図】図1Provided is a tire pressure adjusting method that can obtain an adjusted air pressure by simple calculation and can adjust and maintain the tire air pressure with higher accuracy than before, and contributes to improving fuel efficiency and reducing carbon dioxide emissions. .
A tire pressure adjusting method for bringing the air pressure close to a specified air pressure PS after a predetermined period (one month) has elapsed since the air pressure of the tire mounted on the vehicle is adjusted to the adjusted air pressure P0, and depends on temperature changes. The temperature variation PT of the air pressure to be obtained is obtained from the temperature T0 at the time of adjustment and the daily average temperature T2 after the lapse of a predetermined period, and the air pressure leakage reduction PL depending on natural leakage is obtained from the period average temperature TA during the predetermined period. The adjusted air pressure P0 is obtained by adding the temperature variation PT and the leakage reduction PL to the designated air pressure PS. When the vehicle is traveling more than a predetermined distance immediately before the adjustment, the travel increase PR of the air pressure depending on the travel is obtained from the average speed during travel, and the travel increase PR is further added to obtain the adjusted air pressure P0.
[Selection] Figure 1
Description
本発明は、車両に装着されているタイヤの空気圧調整方法に関し、より詳細には温度変化や自然漏れなどに依存して変動する空気圧の誤差補正方法に関する。 The present invention relates to a method for adjusting the air pressure of a tire mounted on a vehicle, and more particularly to a method for correcting an error in air pressure that varies depending on a temperature change, natural leakage, or the like.
周知のように、タイヤの空気圧を適正に維持することは、車両走行時の安全性、安定性、快適性などの面で極めて重要である。さらに、タイヤの空気圧を適正に維持することにより、燃費を改善して燃料使用量を削減することができ、ひいては、近年問題となっている地球温暖化の原因となる二酸化炭素排出量の削減にも寄与できるという面でも重要である。このために、日常点検でタイヤの空気圧点検を実施し、必要に応じて空気を充填することが推奨されている。タイヤの適正使用方法及び点検方法は、例えば、非特許文献1の「自動車用タイヤの選定、使用、整備基準」に示されている。非特許文献1は、タイヤメーカー5社で構成する協会から発行されたもので、これに準拠して自動車整備工場やガソリンスタンドでタイヤの空気圧の点検や調整が行われている。
As is well known, maintaining the tire pressure properly is extremely important in terms of safety, stability, comfort, etc. when the vehicle is running. Furthermore, by maintaining the tire pressure properly, fuel consumption can be improved and fuel consumption can be reduced, leading to a reduction in carbon dioxide emissions that cause global warming, which has become a problem in recent years. Is also important in that it can contribute. For this reason, it is recommended to carry out a tire pressure check in a daily check and fill with air if necessary. The proper usage method and inspection method of tires are shown in, for example, “Selection, Use and Maintenance Standards for Automobile Tires” in
非特許文献1によれば、「タイヤの空気圧は、走行前の冷えている時(冷間時)にエアゲージで点検し自動車製作者の指定空気圧に調整すること。自然漏洩等により空気圧は低下するので、点検時(最低1ヶ月に1度)に自動車製作者の指定空気圧に調整すること。」とされている。エアゲージにより測定される空気圧は、大気圧を基準とするゲージ圧であり、表記もこれにしたがっている。指定空気圧としては、ゲージ圧200〜250kPaの範囲が示されており、220kPa程度のタイヤが普及している。また、自然漏洩により月当たり10〜20kPaの空気圧低下が生じることや、調整時に指定空気圧+0〜20kPaまたは10%増以内に調整することや、止むを得ず走行途中に調整しなければならない場合は10%または20〜30kPa高めに調整した後再度冷間時に点検を行うこと、などが示されている。基本は冷間時調整である。
According to Non-Patent
タイヤの空気圧が適正に維持されていないと、非特許文献2に解説されているように様々な機能低下が生じる。すなわち、空気圧が低いと、たわみが増加して繰り返される変形疲労の蓄積により損傷が生じやすくなる。また、路面に接する部分が増加して磨耗が促進されてタイヤ寿命が短くなる。さらには、転がり抵抗が増加して燃料を多く消費する。一方、空気圧が高いと、タイヤ表面の張力が増加してパンクしやすくなる。また、路面に接する部分がタイヤ幅の中央に局限されて中央磨耗が生じやすくなる。さらには、クッションの役目がなくなって、乗り心地が悪くなる。
If the tire pressure is not properly maintained, various functional degradations occur as described in
なお、非特許文献3の道路運送車両法によれば、「自家用自動車等については、その技術の進歩及び使用形態の多様化に対応し、使用者自らが自動車の走行距離、運行前の状態などから判断した適切な時期に点検を行い、必要に応じて整備を行う。」こととされ、日常点検が義務づけられている、一般車両については、記録保管義務や罰則の規定はない。また、タイヤの空気圧についての点検方法は規定されておらず、目視点検が基本と考えられている、しかし、近年多用されている扁平タイヤにおいては、目視による撓みの点検では1ヶ月分の空気圧低下を見分けることは不可能である。したがって「月に1度はタイヤ空気圧ゲージを使用して点検して下さい。」と、取扱説明書などに記載されているのが現状である。
In addition, according to the road transport vehicle law of Non-Patent
ところで、非特許文献1及び3などに定められている整備基準は、厳密には運用されていないのが実態である。タイヤの空気圧点検を、月に1度、タイヤ空気圧ゲージを使用して行っている自動車使用者は、ごく一部にしかすぎない。自動車専門家である自動車メーカー、自動車ディーラー、自動車整備士ですら一般使用者とさほど変わりない。来店客が試乗する販売店の試乗車についても日常点検すら行われていない実態を、発明者は確認している。法律で義務化されている点検が実施されていない理由を推測するに、「今の自動車はほとんど故障しない。」「日常点検を怠ってもただちに事故にならない。」「車検、定期点検を1年に一度行っている。」「罰則、罰金規定がない。」からだと思われる。
By the way, the maintenance standards defined in Non-Patent
自動車の消耗部品の消耗程度は、走行距離に概ね比例する。走行しなくても消耗する部品はバッテリーとタイヤの空気圧たけである。バッテリーが上がると自動車を始動できなくなるが、走行できないので危険は生じない。一方、タイヤの空気圧は、正常であっても自然な空気漏れにより徐々に低下するので、漏れ分を補充するというのが空気圧調整の主旨である。しかしながら、タイヤにクギ刺さりやバルブ異常などが生じると、空気漏れが正常時より促進するが、走行していても気がつかない場合もある。これが最も危険であり、いつこのようなことが起きるかは予測できない。定期的な点検、日常点検が必要な最大の理由である。安全と思い込んでいることが最も危険である。 The degree of consumption of consumable parts of an automobile is roughly proportional to the travel distance. Parts that are consumed even when not driving are the battery and tire pressure. If the battery goes up, you can't start the car, but you can't run, so there's no danger. On the other hand, since the tire air pressure gradually decreases due to natural air leakage even if it is normal, the main purpose of the air pressure adjustment is to supplement the leakage. However, when a tire sticks into the tire or abnormalities of a valve occur, air leakage is promoted more than normal, but it may not be noticed even if the vehicle is running. This is the most dangerous and it is impossible to predict when this will happen. This is the main reason why regular inspections and daily inspections are necessary. It is most dangerous to assume safety.
タイヤの点検条件は「走行前の冷えている時に指定空気圧に調整してください。」と決められているが、一般使用者に周知徹底されていない。ボンネットの内側に貼付されて整備者が参照するエンジンサービス情報ラベルには、弁すき間(冷間)吸気・・・mmと書かれているが、運転席のドアを開けたボディ側に貼付されて一般使用者用が参照するタイヤ空気圧ラベルには、「冷間」とは書かれていない。車両の取扱説明書には「冷えている時」と書かれているが、どれだけの一般使用者が読んでいるだろうか、殆ど読まれていないのが実態と思われる。また、走行前の冷えている時といっても、自動車整備工場までの走行は避けることができず、季節や時間帯で変化する気温に依存して空気圧は変動する。自然漏れによる空気圧の低下量も一定ではなく、気温などに依存して変動する。これらの誤差要因は、従来定量的には考慮されていない。 The tire inspection condition is “Please adjust to the specified air pressure when it is cold before driving”, but it is not well known to general users. The engine service information label affixed to the inside of the bonnet and referred to by the maintenance engineer is written as valve clearance (cold) intake air ... mm, but it is affixed to the body side where the driver's seat door is opened. “Cold” is not written on the tire pressure label referred to by general users. The instruction manual of the vehicle says “When it is cold”, but it seems that the number of general users who read it is hardly read. In addition, even when it is cold before traveling, traveling to an automobile maintenance factory cannot be avoided, and the air pressure varies depending on the temperature changing in season and time. The amount of decrease in air pressure due to natural leakage is not constant and varies depending on the temperature. These error factors have not been conventionally considered quantitatively.
また、調整値は指定空気圧と決められている。調整する幅を定義している自動車メーカーや業界団体はない。指定空気圧+0〜20kPaで調整管理すると定めている一部のタイヤメーカーもあるが、全自動車メーカー、業界団体や行政も正式に定めていないため、空気の充填量は車両を整備する者の裁量に任されている。温度による補正を行う際にしても、ボイル・シャルルの法則による計算は煩雑であり、さらには、充填された空気中の含有水蒸気の気相/液相間の相変化の影響で精度が低下する。 The adjustment value is determined to be the designated air pressure. There are no automakers or industry associations that define the range to adjust. Some tire manufacturers stipulate that they are regulated and controlled at a specified air pressure of +0 to 20 kPa, but since all automobile manufacturers, industry groups and governments have not officially established, the amount of air filling is at the discretion of the person who maintains the vehicle. Is entrusted to. Even when correcting for temperature, the calculation based on Boyle-Charles's law is complicated, and the accuracy decreases due to the effect of the phase change between the vapor phase / liquid phase of water vapor contained in the filled air. .
また、自動車整備士は、調整時は空気圧を高めに調整しすぎる傾向にある。自動車製作者の整備書には、タイヤの空気圧は基準値(指定空気圧)に合わせるようにしか書かれていない。しかし、自動車整備士は皆、タイヤの空気が自然に漏れることを知っており、どうせ抜けるからと空気圧を高めに調整するのである。発明者は、指定空気圧よりも極端に高めに調整された販売店所有の貸出し用代車を2例確認している。一例目は、2008年5月11日に貸し出された代車のタイヤの空気圧を調べたところ、指定空気圧220kPaに対して、朝気温11℃の冷間時に4輪で282〜286kPaと、30%(+65kPa)高めになっていた。さらに、午後3時の走行後の空気圧は、気温21℃で310〜312kPaと、40%(+90kPa)高めになっていた。二例目は、2009年3月28日で、冷間時にタイヤの空気圧が25%高めになっていた。非特許文献1では、走行中の空気圧+50kPa以上は空気圧過多と示されていが、自動車整備士の多くはこのことを知らないものと推定される。
Auto mechanics tend to adjust air pressure too high during adjustment. The car manufacturer's maintenance manual only states that the tire air pressure matches the reference value (designated air pressure). However, all auto mechanics know that tire air leaks naturally, and adjust the air pressure higher because it can escape. The inventor has confirmed two examples of rental cars owned by dealers that are adjusted to be extremely higher than the designated air pressure. In the first example, when the tire pressure of a substitute car lent on May 11, 2008 was examined, it was 282 to 286 kPa for 4 wheels when cold at 11 ° C in the morning, compared to the specified air pressure of 220 kPa, 30% It was higher (+65 kPa). Furthermore, the air pressure after running at 3 pm was 310 to 312 kPa at a temperature of 21 ° C., which was 40% (+90 kPa) higher. The second example was March 28, 2009, when the tire pressure was 25% higher when cold.
さらに、全ての自動車整備士がタイヤの空気圧を常時高めに調整している訳ではない。常温時に指定空気圧ちょうどに調整する者、タイヤが冷える前に点検、調整をする者もいる。タイヤが完全に冷えるためには30分〜2時間はかかるため、車両が持ち込まれてからいつ点検するかで空気圧は異なる。また、直射日光が当たっている側のタイヤと日陰側のタイヤとでは温度が異なるため、ここでも誤差が生じる。発明者は、日射側と日陰側とで最大12kPaの差が生じることを確認している。ドイツの一部のメーカーは、直射日光に当たったタイヤの空気圧調整について注意指導をしている。日本のメーカーは注意指導をしていない。 In addition, not all auto mechanics adjust tire pressures constantly. Some people adjust to the specified air pressure at room temperature, and others check and adjust before the tire cools down. Since it takes 30 minutes to 2 hours for the tire to cool down completely, the air pressure varies depending on when the vehicle is inspected. Further, since the temperature is different between the tire on the side exposed to direct sunlight and the tire on the shaded side, an error also occurs here. The inventor has confirmed that a maximum difference of 12 kPa occurs between the solar radiation side and the shade side. Some German manufacturers are giving guidance on adjusting the pressure of tires exposed to direct sunlight. Japanese manufacturers do not give guidance.
空気圧の温度による変動は、指定空気圧220kPaのタイヤの場合、湿度0%の空気(理想気体)にボイル・シャルルの法則を用いて計算でき、気温20℃を中心にして1℃当たり約1.1kPa変動する。気温が低いほど1℃あたりの変動幅は大きくなり、気温が高いほど変動幅は小さくなる。実際にタイヤに充填されている空気には水蒸気が混じっており、水蒸気の相変化の影響も受けてその変動幅は理想気体より大きくなる。発明者が多数のタイヤを調べた結果、後述するように1℃で概ね1.5kPa変動することを確認した。当然、自動車メーカー、タイヤメーカー、自動車整備士も、ボイル・シャルルの法則の知識をもってはいるが、実際の点検、整備には全く利用していない。 Fluctuation due to air temperature can be calculated using Boyle-Charle's law for 0% humidity air (ideal gas) for tires with a specified air pressure of 220 kPa. fluctuate. The lower the temperature, the larger the fluctuation range per 1 ° C, and the higher the temperature, the smaller the fluctuation range. The air actually filled in the tire is mixed with water vapor, and the fluctuation range is larger than the ideal gas due to the influence of the phase change of the water vapor. As a result of examining many tires by the inventor, it was confirmed that the temperature fluctuated approximately 1.5 kPa at 1 ° C. as will be described later. Of course, automakers, tire makers, and auto mechanics have knowledge of Boyle-Charles's law, but they do not use it for actual inspection or maintenance.
ボイル・シャルルの法則を用いたタイヤの空気圧調整が行われない理由は、気象に関する理解不足に起因すると考えられる。日本の場合、1日の気温の変動幅は、日平均気温を概ね中心に晴天時は約10℃(±5℃)、曇天時は約5℃(±2.5℃)、雨天時は約2℃(±1℃)と言われている
そして平均気温は午前8時から9時ごろと夜間に発生し。自動車整備工場が営業している昼間は、通常平均気温を超過している場合が多い。したがって、昼間の整備中に指定空気圧に調整すれば、気温が日平均気温に低下した時点でタイヤの空気圧は指定空気圧未満となってしまう。
The reason why the tire pressure is not adjusted using Boyle-Charles' law is thought to be due to insufficient understanding of the weather. In Japan, the fluctuation range of the daily temperature is about 10 ° C (± 5 ° C) in clear weather, about 5 ° C (± 2.5 ° C) in cloudy weather, and about 5 ° C (± 2.5 ° C) in cloudy weather. It is said to be 2 ° C (± 1 ° C). The average temperature occurs at 8am to 9am at night. The average temperature is often exceeded during the daytime when car maintenance shops are operating. Therefore, if the air pressure is adjusted to the designated air pressure during daytime maintenance, the tire air pressure will be less than the designated air pressure when the temperature falls to the daily average air temperature.
気温は日々変動し、毎日の平均気温が平年並みになる訳ではないが、日本国内では1ヶ月間の平均気温が平年から2℃以上変動することは稀である。しかし、1日の変動幅は晴天時で10〜15℃だが、1ヶ月間の変動幅は20〜25℃にもなる。例えば、2008年5月1日の北海道網走市での最高気温は30.6℃であり、2日後の5月3日の最低気温は2.6℃であり、28℃低下したことになる。ボイル・シャルルの法則で計算すると、30.6℃でタイヤの空気圧を指定空気圧220kPaに調整した場合、2.6℃で空気圧は190.4kPaになり30kPa低下することになる。この時期の日平均気温8.5℃で考えても、空気圧は196.6kPaとなり、23kPaの低下量になる。これは、月平均気温に依存する1ヶ月間の空気圧低下より大きい。このような大きな気温変動は、日本各地でフェーン現象の時などにしばしば発生する。しかし、実際の整備現場では、気温の変動はまったく考慮されていない。気温は、一時的に高温になっても数日後には平年並みに落ち着くことが多く、気象庁が発表している統計的な平均気温を用いて調整を行うことが、最も空気圧を安定させる。今まで、タイヤの空気圧と気象現象との関係は重視されてこなかった。 Although the temperature fluctuates from day to day, the average daily temperature does not become the same as normal, but in Japan, the average temperature for one month rarely fluctuates by more than 2 ° C from normal. However, the daily fluctuation range is 10 to 15 ° C. in fine weather, but the monthly fluctuation range is 20 to 25 ° C. For example, the maximum temperature in Abashiri, Hokkaido on May 1, 2008 was 30.6 ° C, and the minimum temperature on May 3, two days later, was 2.6 ° C, representing a 28 ° C decrease. When calculating according to Boyle-Charles' law, if the tire air pressure is adjusted to 220 kPa at 30.6 ° C., the air pressure becomes 190.4 kPa at 2.6 ° C. and decreases by 30 kPa. Even if the daily average temperature at this time is 8.5 ° C., the air pressure is 196.6 kPa, which is a decrease of 23 kPa. This is greater than a one month air pressure drop that depends on the monthly average temperature. Such large temperature fluctuations frequently occur in Japan, such as during the Fern phenomenon. However, temperature fluctuations are not taken into account at the actual maintenance site. Even if the temperature temporarily becomes high, the air temperature often settles down to a normal level in a few days, and the air pressure is most stabilized by adjusting using the statistical average temperature announced by the Japan Meteorological Agency. Until now, the relationship between tire pressure and weather phenomena has not been emphasized.
また、車検や定期点検は、各県の社団法人自動車整備振興会の点検記録簿に則って行われている。このとき、タイヤの残溝(mm)、ランニングパット残厚(mm)、二酸化炭素排気濃度(ppm)、などは数値の記録が残されるが、タイヤ空気圧については、点検および調整値の結果は、『レ』問題なしまたは『A』アジャスト、とチェックをするだけで実際の空気圧の記録は残されない。さらには、すべての車両に常備されているメンテナンスノートの日常点検のタイヤ空気圧の欄は、タイヤ空気圧ゲージの測定値を記録するようになっていない。発明者は、数値記録による点検を継続した結果、過去の数値記録から4本中の1本だけ僅か1ヶ月で5kPa多く空気圧が低下していることに気付いて、タイヤのバルブ異常を発見した経験がある。たとえ毎月タイヤ空気圧の点検を行っていても、正確な調整と数値記録がなければ異常の早期発見は難しい。 In addition, vehicle inspections and periodic inspections are conducted in accordance with the inspection record book of the association for automobile maintenance in each prefecture. At this time, the remaining groove of the tire (mm), the running pad remaining thickness (mm), the carbon dioxide exhaust concentration (ppm), etc. are recorded as numerical values, but for the tire pressure, the results of inspection and adjustment values are: There is no record of actual air pressure just by checking “No” or “A” adjustment. Furthermore, the tire pressure column of the daily check in the maintenance note that is always provided for all vehicles does not record the measured value of the tire pressure gauge. As a result of continuing the inspection by the numerical record, the inventor noticed that the air pressure decreased by 5 kPa in only one month from the past numerical records in only one month, and found an abnormality in the tire valve. There is. Even if the tire pressure is checked every month, it is difficult to detect abnormalities early without accurate adjustment and numerical recording.
また、アナログ式の一般的なタイヤ空気圧ゲージの最小目盛りは10kPaであり、その測定精度は±10kPaである。表示値も常に一定ではなく、1%程度変動する場合がある。アナログ式の高精度タイプのゲージでも最小目盛りは5kPaであり、その測定精度は±3kPaであり、また読取り誤差±1kPa程度は現実的に避けられない。この高精度タイプのゲージは、一般の整備現場ではあまり使用されていない。最小表示単位が1kPaで読取り誤差を最も小さくできるデジタル式のゲージは、ほとんど普及していない。加えて、日本の法律では、車検などに使用する測定機器には年に1度の校正義務が課せられているが、タイヤ空気圧ゲージとトルクレンチには校正義務は課せられていない。タイヤ空気圧ゲージは精密機器なので、長く使用していると測定誤差が増加し、また衝撃にも弱いため壊れやすい、したがって、タイヤ空気圧ゲージの使用に際しては定期的な点検調整が必要だが、前述のように校正義務が課せられていないため、実際に校正が行われているか否か不明で、多くの自動車整備工場のタイヤ空気圧ゲージは正確なのか否か、またどれくらいの精度を有しているか分からない。 The minimum scale of an analog general tire pressure gauge is 10 kPa, and the measurement accuracy is ± 10 kPa. The display value is not always constant and may vary by about 1%. Even in an analog type high precision type gauge, the minimum scale is 5 kPa, the measurement accuracy is ± 3 kPa, and a reading error of about ± 1 kPa is practically inevitable. This high-accuracy type gauge is not widely used at general maintenance sites. Digital gauges that can minimize the reading error with a minimum display unit of 1 kPa are rarely used. In addition, Japanese law imposes a calibration obligation once a year on measuring instruments used for vehicle inspections, but does not impose a calibration obligation on tire pressure gauges and torque wrenches. The tire pressure gauge is a precision instrument, so if you use it for a long time, the measurement error will increase, and it is also vulnerable to shock, so it is fragile.Therefore, regular inspection and adjustment is necessary when using the tire pressure gauge, but as mentioned above Since there is no obligation to calibrate, it is unclear whether calibration is actually being performed, and it is not known whether or not the tire pressure gauges of many car mechanics are accurate and how accurate they are. .
このように、従来のタイヤの空気圧調整方法は多くの誤差要因を含んで、20kPa程度(約10%)の誤差を生じるおそれがあり、精度を向上することは容易でないと考えられてきた。タイヤの空気圧が適正に維持されていないと前述した様々な機能低下が生じるおそれがある。特に、空気圧の低下によって生じる燃費の低下は、昨今問題となっている二酸化炭素排出量の増加に直結しており、重要な課題である。 As described above, the conventional tire pressure adjustment method includes many error factors and may cause an error of about 20 kPa (about 10%), and it has been considered that it is not easy to improve accuracy. If the tire air pressure is not properly maintained, the above-described various functional degradations may occur. In particular, a reduction in fuel consumption caused by a decrease in air pressure is directly related to an increase in carbon dioxide emissions, which has become a problem in recent years, and is an important issue.
本発明は上記背景に鑑みてなされたものであり、簡易な計算で調整空気圧を求めて従来よりも高精度にタイヤの空気圧を調整して適正に維持でき、燃費の向上及び二酸化炭素排出量削減に貢献するタイヤの空気圧調整方法を提供する。 The present invention has been made in view of the above-mentioned background, and it is possible to obtain the adjusted air pressure by simple calculation and adjust the tire air pressure with higher accuracy than before, and to maintain it appropriately, improving fuel consumption and reducing carbon dioxide emissions. To provide a tire pressure adjustment method that contributes to
上記課題を解決するために、発明者は多数の実測データを収集・分析し、本発明に想到するに至った。すなわち、本発明のタイヤの空気圧調整方法は、車両に装着されているタイヤの空気圧を調整空気圧に調整したときから所定期間経過後に前記空気圧を指定空気圧に近づけるタイヤの空気圧調整方法であって、温度変化に依存する前記空気圧の温度変動分を、調整時の気温および前記所定期間経過後の日平均気温から求め、自然漏れに依存する前記空気圧の漏れ低下分を、前記所定期間中の期間平均気温から求め、前記温度変動分及び前記漏れ低下分を前記指定空気圧に加えて前記調整空気圧を求めることを特徴とする。 In order to solve the above-mentioned problems, the inventor has collected and analyzed a large number of actually measured data, and has arrived at the present invention. That is, the tire pressure adjusting method of the present invention is a tire pressure adjusting method for bringing the air pressure close to the specified air pressure after a predetermined period has elapsed since the pressure of the tire mounted on the vehicle is adjusted to the adjusted air pressure. The temperature variation of the air pressure that depends on the change is obtained from the temperature at the time of adjustment and the daily average temperature after the lapse of the predetermined period, and the decrease in the air pressure that depends on natural leakage is calculated as the period average temperature during the predetermined period. And the adjusted air pressure is obtained by adding the temperature fluctuation and leakage reduction to the designated air pressure.
さらに、前記タイヤに水蒸気含有空気が封入されているとき、前記温度変動分は調整時の前記気温から前記所定期間経過後の前記日平均気温を差し引いた温度差に所定の温度変動係数を乗じて求められる、ことが好ましい。 Further, when steam-containing air is sealed in the tire, the temperature fluctuation amount is obtained by multiplying the temperature difference obtained by subtracting the daily average temperature after the predetermined period from the temperature at the time of adjustment by a predetermined temperature fluctuation coefficient. It is preferable that it is required.
さらに、前記指定空気圧はゲージ圧220kPaであり、前記温度変動係数は調整時の前記気温及び前記所定期間経過後の前記日平均気温が属する温度帯によって定められ、該温度帯が25℃以下で1.5kPa、25〜30℃で1.4kPa、30〜35℃で1.3kPa、35〜40℃で1.2kPaである、ことが好ましい。 Further, the designated air pressure is a gauge pressure of 220 kPa, and the temperature variation coefficient is determined by a temperature zone to which the air temperature at the time of adjustment and the daily average air temperature after the lapse of the predetermined period belong, and the temperature zone is 25 ° C. or less and 1 It is preferable that it is 1.4 kPa at 0.5 kPa, 25-30 degreeC, 1.3 kPa at 30-35 degreeC, and 1.2 kPa at 35-40 degreeC.
また、前記タイヤに乾燥空気が封入されているとき、前記温度変動分はボイル・シャルルの法則に基づいて求められる、ことが好ましい。 Further, when dry air is sealed in the tire, it is preferable that the temperature variation is obtained based on Boyle-Charles' law.
あるいは、前記タイヤに乾燥空気が封入されているとき、前記温度変動分は調整時の前記気温から前記所定期間経過後の前記日平均気温を差し引いた温度差に所定の乾燥時温度変動係数を乗じて求められる、ことでもよい。 Alternatively, when dry air is sealed in the tire, the temperature variation is obtained by multiplying the temperature difference obtained by subtracting the daily average temperature after the predetermined period from the temperature at the time of adjustment by a predetermined temperature variation coefficient during drying. It may be required.
また、調整時及び所定期間経過後の前記日平均気温には、公的気象機関が発表した過去の統計的な日平均気温を用い、または、前記統計的な日平均気温を補正した補正日平均気温を用いる、ようにしてもよい。 In addition, for the daily average temperature after adjustment and after the lapse of a predetermined period, a past statistical daily average temperature announced by a public meteorological agency is used, or a corrected daily average temperature obtained by correcting the statistical daily average temperature is used. You may make it use temperature.
さらに、調整時の気温からその日の日平均気温を差し引いた温度差に所定の温度変動係数を乗じた温度補正分を加えて、前記調整空気圧を表記する、ようにしてもよい。 Further, the adjusted air pressure may be described by adding a temperature correction amount obtained by multiplying the temperature difference obtained by subtracting the daily average temperature of the day from the temperature at the time of adjustment by a predetermined temperature variation coefficient.
また、前記漏れ低下分は、前記期間平均気温が前記タイヤの性状により定まる漏れ開始温度以下のときゼロとみなし、前記期間平均気温が前記漏れ開始温度を超過しているとき超過温度分に所定の漏れ低下係数を乗じて求める、ことが好ましい。 The leakage decrease is regarded as zero when the period average temperature is less than or equal to the leak start temperature determined by the properties of the tire, and when the period average temperature exceeds the leak start temperature, a predetermined amount is added to the excess temperature. It is preferable to calculate by multiplying the leakage reduction coefficient.
さらに、前記所定期間は1ヶ月であり、前記指定空気圧はゲージ圧220kPaであり、前記漏れ開始温度を0℃とみなし、前記漏れ低下係数は前記指定空気圧の0.2%とする、ことが好ましい。 Furthermore, it is preferable that the predetermined period is one month, the designated air pressure is a gauge pressure of 220 kPa, the leak start temperature is regarded as 0 ° C., and the leak reduction coefficient is 0.2% of the designated air pressure. .
また、前記空気圧を調整する直前に前記車両を所定距離以上走行させている場合、走行に依存する前記空気圧の走行上昇分を走行時の平均速度から求め、該走行上昇分をさらに加えて前記調整空気圧を求める、ことが好ましい。 Further, when the vehicle is traveling for a predetermined distance or more immediately before adjusting the air pressure, an increase in travel of the air pressure depending on travel is obtained from an average speed during travel, and the adjustment is further performed by adding the travel increase. It is preferable to determine the air pressure.
さらに、前記所定距離は10kmであり、前輪駆動車の水蒸気含有空気が封入された前輪の前記走行上昇分は、走行時の平均時速に走行上昇係数として前記指定空気圧の0.1%を乗じて求め、前輪駆動車の水蒸気含有空気が封入された後輪の前記走行上昇分は、前記前輪の前記走行上昇分に所定の低減比を乗じて求める、ことが好ましい。 Further, the predetermined distance is 10 km, and the travel increase of the front wheels filled with steam-containing air of the front wheel drive vehicle is obtained by multiplying the average speed during travel by 0.1% of the specified air pressure as the travel increase coefficient. Preferably, the travel increase of the rear wheel in which the steam-containing air of the front wheel drive vehicle is sealed is determined by multiplying the travel increase of the front wheel by a predetermined reduction ratio.
あるいは、前記所定距離は10kmであり、前輪駆動車の乾燥空気が封入された前輪の前記走行上昇分は、走行時の平均時速に走行上昇係数として前記指定空気圧の0.07%を乗じて求め、前輪駆動車の乾燥空気が封入された後輪の前記走行上昇分は、前記前輪の前記走行上昇分に所定の低減比を乗じて求める、ことが好ましい。 Alternatively, the predetermined distance is 10 km, and the travel increase of the front wheels in which the dry air of the front-wheel drive vehicle is sealed is obtained by multiplying the average speed during travel by 0.07% of the specified air pressure as the travel increase coefficient. The travel increase of the rear wheel in which the dry air of the front wheel drive vehicle is sealed is preferably obtained by multiplying the travel increase of the front wheel by a predetermined reduction ratio.
また、前記空気圧の測定をアナログ式のタイヤ空気圧ゲージにより行い、前記空気圧の調整を5kPa単位で行う、ことが好ましい。 The measurement of the air pressure is preferably performed with an analog tire pressure gauge, and the air pressure is adjusted in units of 5 kPa.
また、前記所定期間経過後の実際の空気圧と前記指定空気圧との誤差を求め、該誤差を低減するように前記温度変動係数及び前記乾燥時温度変動係数、前記漏れ開始温度及び前記漏れ低下係数、前記所定距離及び前記走行上昇係数の少なくとも一項目を補正して以降の空気圧調整に用いる、ようにしてもよい。 Further, an error between the actual air pressure after the lapse of the predetermined period and the designated air pressure is obtained, and the temperature fluctuation coefficient and the drying temperature fluctuation coefficient, the leakage start temperature and the leakage reduction coefficient so as to reduce the error, You may make it correct | amend at least 1 item of the said predetermined distance and the said driving | running | working increase coefficient, and you may make it use for subsequent air pressure adjustment.
さらに、前記誤差が6kPa以上生じるときに、前記温度変動係数及び前記乾燥時温度変動係数、前記漏れ開始温度及び前記漏れ低下係数、前記所定距離及び前記走行上昇係数の少なくとも一項目を補正する、ようにしてもよい。 Further, when the error is 6 kPa or more, at least one of the temperature fluctuation coefficient, the temperature fluctuation coefficient during drying, the leak start temperature, the leak reduction coefficient, the predetermined distance, and the travel increase coefficient is corrected. It may be.
本発明のタイヤの空気圧調整方法では、温度変動分及び漏れ低下分を見込んで調整空気圧を求めるようにしているので、所定期間経過後の実際の空気圧を指定空気圧に近づけることができる。また、従来は原則として指定空気圧に調整と決められており、空気圧低下を考慮して+0〜20kPaまたは+10%以内で行われていた調整空気圧の値を、調整時の気温などに基づく温度変動分及び漏れ低下分を用いて正確に求めるようにしたので、誤差要因か取り除かれて空気圧精度が向上する。また、温度変動分及び漏れ低下分は、温度変動係数(水蒸気の混じった水蒸気含有空気に適用)、乾燥時温度変動係数(エアードライヤーを使用した乾燥空気に適用)、漏れ低下係数を用いて簡易に計算でき、かつこれらの係数は実測データから求めることができて実用的精度が高い。 In the tire air pressure adjusting method of the present invention, the adjusted air pressure is obtained in consideration of the temperature fluctuation and the leakage reduction, so that the actual air pressure after the lapse of a predetermined period can be brought close to the designated air pressure. In addition, in the past, it was decided to adjust to the specified air pressure as a rule, and the value of the adjusted air pressure, which was performed within +0 to 20 kPa or + 10% in consideration of the decrease in air pressure, was changed to the temperature based on the temperature during adjustment. Since the fluctuation and the leakage reduction are accurately obtained, the error factor is removed and the air pressure accuracy is improved. In addition, temperature fluctuation and leakage reduction are simplified using temperature fluctuation coefficient (applied to steam-containing air mixed with water vapor), drying temperature fluctuation coefficient (applied to dry air using an air dryer), and leakage reduction coefficient. These coefficients can be calculated from the measured data and have high practical accuracy.
さらに、調整直前の車両走行における空気圧の走行上昇分を求める態様では、走行によるタイヤの発熱の影響を定量的に考慮して調整空気圧の値を正確に求めるようにしたので、空気圧の調整精度が一層向上する。 Furthermore, in the aspect of calculating the increase in the air pressure in the vehicle travel just before the adjustment, the adjustment air pressure value is obtained accurately by quantitatively taking into account the influence of the heat generation of the tire due to the travel. Further improvement.
また、所定期間経過後の実際の空気圧と指定空気圧との差異から温度変動係数などを補正して以降の空気圧調整に用いる態様では、個々の車両及びタイヤに最も適合した係数などを用いることができ、空気圧の調整精度が格段に向上する。 Further, in a mode in which the temperature variation coefficient is corrected from the difference between the actual air pressure and the specified air pressure after the lapse of a predetermined period and used for the subsequent air pressure adjustment, the coefficient most suitable for each vehicle and tire can be used. The air pressure adjustment accuracy is greatly improved.
以上の総合的な効果として、所定期間を通してタイヤの空気圧が低下しないように適正に維持でき、燃費の向上、ひいては二酸化炭素排出量削減に貢献することができる。
さらに、日常点検でタイヤの空気圧調整を実施する者が増加し、付随して下記の諸効果が生じる。
As a comprehensive effect as described above, it is possible to appropriately maintain the tire air pressure so as not to decrease throughout a predetermined period, and it is possible to contribute to the improvement of fuel consumption and the reduction of carbon dioxide emission.
Furthermore, the number of people who adjust the tire pressure during daily inspections increases, and the following effects occur.
(1)人間の心理として、正確にしておかないと心配になるため、タイヤの空気圧調整を定期的(1ヶ月ごと)に正確に行うようになる。 (1) As human psychology, it is worrisome if it is not made accurate, so the tire pressure is adjusted regularly (every month).
(2)自動車使用者及び自動車整備士の双方が、季節により空気圧の低下度合いが違うこと認識し、日常点検、特にタイヤの空気圧調整を重要事項として実施するようになる。 (2) Both car users and car mechanics recognize that the degree of decrease in air pressure varies according to the season, and conduct daily inspections, especially tire pressure adjustment as an important matter.
(3)気象情報によって調整空気圧に注意する旨の広報活動ができる。例えば、平年より一時的に気温が高くなるフェーン現象発生時や気温が低くなる寒波襲来時に、空気圧が高めあるいは低めになる予報を広報できる。 (3) Public relations activities to pay attention to the regulated air pressure can be done according to weather information. For example, it is possible to publicize a forecast that the air pressure will increase or decrease when the Fern phenomenon occurs when the temperature temporarily rises from normal or when a cold wave strikes when the temperature decreases.
(4)車両整備の重要性の認識が向上され、交通事故の減少にもつながる。 (4) The recognition of the importance of vehicle maintenance will be improved, leading to a reduction in traffic accidents.
(5)タイヤの空気圧を予測するという整備手法を修得することにより、自動車整備士の技術向上とさらなる技術の開発につながる。 (5) By learning the maintenance method of predicting tire air pressure, it will lead to the improvement of technology and further development of automobile mechanics.
(6)環境に対する意識がさらに高まり、他の省エネ手法も実施するようになって、二酸化炭素排出量削減が加速される。 (6) Environmental awareness will increase further, and other energy-saving methods will be implemented, and the reduction of carbon dioxide emissions will be accelerated.
(7)自動車販売店、タイヤ販売店、カー用品販売店、ガソリンスタンドなどで空気圧の点検調整を無料で実施すれば、月に1度の定期的な点検によりお客さまの来店回数が増加して、営業のチャンスに結びつく。 (7) If air pressure inspections and adjustments are carried out free of charge at automobile dealers, tire dealers, car supply dealers, gas stations, etc., the number of customer visits will increase due to regular inspections once a month. , Which leads to sales opportunities.
本発明を実施するための形態を、図1を参考にして説明する。図1は本発明の実施形態のタイヤの空気圧調整方法を説明する図である。図1において、(1)気温、(2)空気圧の温度変動分、(3)空気圧の漏れ低下分、(4)タイヤの空気圧をそれぞれ示し、横軸は共通の時間tである。実施形態の調整方法は、調整時に調整空気圧P0を算出してタイヤの空気圧を調整し、所定期間経過後の次回調整時に実際の空気圧を指定空気圧PSに一致させようとする方法である。 An embodiment for carrying out the present invention will be described with reference to FIG. FIG. 1 is a diagram for explaining a tire pressure adjusting method according to an embodiment of the present invention. In FIG. 1, (1) air temperature, (2) air pressure temperature fluctuation, (3) air pressure leakage reduction, and (4) tire air pressure are shown, and the horizontal axis represents a common time t. The adjustment method of the embodiment is a method in which the adjustment air pressure P0 is calculated at the time of adjustment to adjust the tire air pressure, and the actual air pressure is made to coincide with the designated air pressure PS at the next adjustment after a predetermined period.
空気圧の測定には、従来の一般的な最小目盛が10kPa単位のタイヤ空気圧ゲージを用いることができ、測定精度の制約はあるが、誤差は最小目盛の10kPa(約5%)以内に収まる。最小目盛りが5kPa単位の高精度タイプのアナログ式ゲージや、表示が1kPa単位のデジタル式ゲージを用いることができればなおよい。測定される空気圧は、大気圧を基準とするゲージ圧であり、以降の説明もゲージ圧で表記する。なお、本実施形態では、所定期間は1ヵ月、指定空気圧PS=220kPaの例を主に示すが、他の条件についても適宜係数を変更するなどの応用により同様の調整方法を用いることができる。
まず、調整時の調整空気圧P0は、図1(4)に示されるように、次の(式1)に基づいて算出する。
For measurement of the air pressure, a tire pressure gauge having a conventional general minimum scale of 10 kPa can be used, and there is a limitation in measurement accuracy, but the error is within 10 kPa (about 5%) of the minimum scale. It is even better if a high-precision analog gauge with a minimum scale of 5 kPa or a digital gauge with a display of 1 kPa can be used. The measured air pressure is a gauge pressure based on the atmospheric pressure, and the following explanation is also expressed as a gauge pressure. In the present embodiment, an example in which the predetermined period is one month and the designated air pressure PS = 220 kPa is mainly shown, but the same adjustment method can be used for other conditions by application such as changing the coefficient as appropriate.
First, the adjustment air pressure P0 at the time of adjustment is calculated based on the following (Equation 1), as shown in FIG.
調整空気圧P0=指定空気圧PS+温度変動分PT
+漏れ低下分PL+走行上昇分PR (式1)
ここで、温度変動分PT及び漏れ低下分PLを求めるために、図1(1)に示される気温の関係を把握する。調整時気温T0は、実際の調整場所で気温計を用いて測定することができる。次回調整時の日平均気温T2は、公的気象機関例えば気象庁が発表した過去のデータから得ることができる。このとき、近年の地球温暖化の影響を考慮して、過去のデータに1℃を加えた補正日平均気温を採用する(この補正は、地域や過去の変化の実態に即して任意に行うことができる)。そして、調整時気温T0から次回調整時の日平均気温T2を差し引いて温度差Tdを求める。
Adjusted air pressure P0 = designated air pressure PS + temperature fluctuation PT
+ Leakage reduction PL + Running increase PR (Formula 1)
Here, in order to obtain the temperature variation PT and the leakage reduction PL, the relationship between the temperatures shown in FIG. The adjusted temperature T0 can be measured by using a thermometer at the actual adjustment location. The daily average temperature T2 at the next adjustment can be obtained from past data released by a public meteorological agency such as the Japan Meteorological Agency. At this time, in consideration of the influence of global warming in recent years, a corrected daily average temperature obtained by adding 1 ° C. to past data is adopted (this correction is arbitrarily performed in accordance with the actual situation of the region and past changes). be able to). Then, the temperature difference Td is obtained by subtracting the daily average temperature T2 at the next adjustment from the adjustment temperature T0.
温度差Td=T0−T2 (式2)
また、調整時及び次回調整時の日平均気温T1、T2を平均して期間平均気温TAを求める。
Temperature difference Td = T0−T2 (Formula 2)
Also, the average daily temperature T1, T2 at the time of adjustment and the next adjustment is averaged to obtain a period average temperature TA.
期間平均気温TA=(T1+T2)÷2 (式3)
次に、温度差Tdに温度変動係数を乗じて、空気圧の温度変動分PTを求める。ここで、タイヤに水蒸気含有空気が封入されているとき、温度変動係数はタイヤ内の水蒸気量に依存して微妙に変動する。したがって、図2に示されるように調整時気温T0及び日平均気温T2が属する温度帯に応じて温度変動係数CT=1.5〜1.2(kPa/℃)の値を使い分けるようにしてもよく、1.5(kPa/℃)固定としてもよい。いずれにしても、計算誤差は3kPa程度以下であり、高精度タイプのアナログ式ゲージの最小目盛5kPa以内に収まる。逆に言えば、厳密に空気圧を計算しても、測定精度が追随できないのであまり意味がない。また、エアードライヤーを使用して生成した乾燥空気が封入されているときには、理想気体とみなしてボイル・シャルルの法則に基づいた計算をしてもよく、あるいは乾燥時温度変動係数CD=1.1(kPa/℃)を使用した計算でもよい。
Period average temperature TA = (T1 + T2) ÷ 2 (Formula 3)
Next, the temperature variation PT is obtained by multiplying the temperature difference Td by the temperature variation coefficient. Here, when water vapor-containing air is sealed in the tire, the temperature variation coefficient varies slightly depending on the amount of water vapor in the tire. Therefore, as shown in FIG. 2, the value of the temperature variation coefficient CT = 1.5 to 1.2 (kPa / ° C.) may be properly used according to the temperature zone to which the adjusted temperature T0 and the daily average temperature T2 belong. Alternatively, it may be fixed at 1.5 (kPa / ° C.). In any case, the calculation error is about 3 kPa or less and falls within the minimum scale of 5 kPa of the high-precision type analog gauge. In other words, even if the air pressure is strictly calculated, there is not much meaning because the measurement accuracy cannot follow. Further, when dry air generated using an air dryer is enclosed, it may be considered as an ideal gas and may be calculated based on Boyle-Charles' law, or the temperature variation coefficient during drying CD = 1.1 Calculation using (kPa / ° C.) may also be used.
温度変動分PT=Td×CT(水蒸気含有空気封入時) (式4)
または =Td×CD(乾燥空気封入時)
次に、期間平均気温TAから、空気圧の漏れ低下分PLを求める。ここで、期間平均気温TAが漏れ開始温度TLとして設定した0℃以下のとき漏れ低下分PLをゼロとみなす。期間平均気温TAが0℃を超過しているときは、超過温度分となる期間平均気温TAそのものに漏れ低下係数CL(kPa/℃)として指定空気圧の0.2%(220×0.002=0.44)を乗じて求める。
Temperature variation PT = Td × CT (at the time of air containing steam) (Formula 4)
Or = Td × CD (with dry air)
Next, the air pressure leakage reduction PL is obtained from the period average temperature TA. Here, when the period average temperature TA is equal to or lower than 0 ° C. set as the leak start temperature TL, the leak reduction PL is regarded as zero. When the period average temperature TA exceeds 0 ° C., the period average temperature TA itself, which is the excess temperature, is 0.2% of the specified air pressure as a leakage reduction coefficient CL (kPa / ° C.) (220 × 0.002 = 0.44).
漏れ低下分PL=TA×0.44kPa(期間平均気温TA>0℃) (式5)
または =0 (期間平均気温TA≦0℃)
さらに、空気圧を調整する直前に車両を所定距離RLの10km以上走行させている場合、水分含有空気が封入された前輪駆動車の前輪では、走行時の平均時速Vに走行上昇係数CR(%/(km/h))として指定空気圧の0.1%(220×0.001=0.22)を乗じて走行上昇分PRを求める。
Leakage reduction PL = TA × 0.44 kPa (period average temperature TA> 0 ° C.) (Formula 5)
Or = 0 (period average temperature TA ≦ 0 ℃)
Further, when the vehicle is traveling 10 km or more of the predetermined distance RL immediately before the air pressure is adjusted, the front wheel of the front-wheel drive vehicle in which moisture-containing air is enclosed has an average traveling speed CR (% / (Km / h)) is multiplied by 0.1% (220 × 0.001 = 0.22) of the specified air pressure to determine the travel increase PR.
走行上昇分PR=V×0.22kPa(10km以上の走行あり) (式6)
または =0 (走行なし)
なお、前輪駆動車の後輪の走行上昇分PRは、(式6)で得られた値に低減比0.9を乗じて求める。また、乾燥空気が封入されたタイヤの走行上昇分PRは、水分含有空気が封入されたタイヤの走行上昇係数CRに0.7を乗じた走行上昇係数CSを用いて求める。
Travel increase PR = V × 0.22 kPa (with travel of 10 km or more) (Formula 6)
Or = 0 (no driving)
The travel increase PR of the rear wheels of the front wheel drive vehicle is obtained by multiplying the value obtained by (Equation 6) by the reduction ratio 0.9. Further, the travel increase PR of the tire in which dry air is enclosed is obtained using a travel increase coefficient CS obtained by multiplying the travel increase coefficient CR of the tire in which moisture-containing air is enclosed by 0.7.
最後に、(式4)〜(式6)で求めた各量を(式1)に代入することにより、調整空気圧P0を求める。タイヤの空気圧は、図1(4)に破線Zで示されるように変動し、次回点検時にちょうど指定空気圧PSに到達すると予測できる。ここで、調整記録として調整時気温T0及び調整空気圧P0の数値記録を残す。あるいは、調整空気圧P0を調整日の日平均気温で補正して表記する。さらには、(式1)〜(式6)で使用した諸量の数値記録も残すことが好ましい。 Finally, the adjusted air pressure P0 is obtained by substituting the amounts obtained in (Expression 4) to (Expression 6) into (Expression 1). The tire air pressure fluctuates as indicated by a broken line Z in FIG. 1 (4), and it can be predicted that the designated air pressure PS will be reached at the next inspection. Here, numerical records of the adjustment temperature T0 and the adjustment air pressure P0 are left as adjustment records. Alternatively, the adjusted air pressure P0 is expressed by correcting the daily average temperature on the adjustment date. Furthermore, it is preferable to leave numerical records of various amounts used in (Expression 1) to (Expression 6).
次に、モデルケースを設定して調整空気圧P0を算出した例について説明する。モデルケースにおける指定空気圧PS=220kPa、調整時気温T0=20℃、調整時の日平均気温T1=15℃、次回調整時の日平均気温T2=10℃であり、調整直前には車両を走行させていないものとする。すると、(式2)〜(式5)により
温度差Td=20−10=10℃
期間平均気温TA=(15+10)÷2=12.5℃
温度変動分PT=10×1.5=15kPa
漏れ低下分PL=12.5×0.44=5.5kPa
が得られ、(式1)により
調整空気圧P0=220+15+5.5=240.5kPa
が得られる。
Next, an example in which a model case is set and the adjusted air pressure P0 is calculated will be described. The specified air pressure PS in the model case is 220 kPa, the adjustment temperature T0 = 20 ° C., the adjustment daily average temperature T1 = 15 ° C., and the next adjustment daily average temperature T2 = 10 ° C. Shall not. Then, according to (Expression 2) to (Expression 5), the temperature difference Td = 20−10 = 10 ° C.
Period average temperature TA = (15 + 10) ÷ 2 = 12.5 ° C
Temperature fluctuation PT = 10 × 1.5 = 15 kPa
Leakage reduction PL = 12.5 × 0.44 = 5.5 kPa
(Equation 1), adjusted air pressure P0 = 220 + 15 + 5.5 = 240.5 kPa
Is obtained.
また仮に、調整直前に平均時速V=50(km/h)で車両を走行させていた場合には、(式6)により
走行上昇分PR=50×0.22=11kPa
が得られ、調整空気圧P0に上乗せされる。
Also, if the vehicle is traveling at an average speed of V = 50 (km / h) immediately before the adjustment, the traveling increase PR = 50 × 0.22 = 11 kPa according to (Equation 6).
Is obtained and added to the adjusted air pressure P0.
また、調整時気温T0よりも次回調整時の日平均気温T2が高い場合には、温度変動分PTは負値となり、調整空気圧P0を指定空気圧PSよりも小さく調整することになる。
次に、上述の実施形態の調整方法を実際の車両およびタイヤに適用した第1及び第2検証実験の結果について、図3及び図4を参考にして説明する。
When the daily average temperature T2 at the next adjustment is higher than the adjustment temperature T0, the temperature fluctuation PT becomes a negative value, and the adjustment air pressure P0 is adjusted to be smaller than the designated air pressure PS.
Next, the results of the first and second verification experiments in which the adjustment method of the above-described embodiment is applied to actual vehicles and tires will be described with reference to FIGS.
第1検証実験では、乗用車4車種PUR、PAS、WAG、FILの各タイヤ11〜44合計16個(指定空気圧PS=200〜230kPa)を対象とした。そして、水蒸気含有空気を充填して調整空気圧P0に調整し、その1ヶ月後に実際の空気圧を測定して指定空気圧PSとの差を求めることを、2008年8月から2009年1月までの5ヶ月間にわたって繰り返した。図3は、実際の空気圧から指定空気圧PSを差し引いた差PD(kPa)を一覧表にまとめたものであり、正値は実際の空気圧のほうが大きく、負値は指定空気圧PSのほうが大きかったことを示している。図3の一覧表で明らかなように、差PDは大多数の場合±3kPaに収まっており、最大でも+6kPaである。この差PDは、従来20kPa程度の誤差が生じ得ることと比較して、格段に高精度化されている。さらに、差PDの±3kPaは指定空気圧PSの絶対圧321kPaに対して1%に過ぎず、極めて高精度な空気圧調整が行えることを検証できた。 In the first verification experiment, a total of 16 tires 11 to 44 (designated air pressure PS = 200 to 230 kPa) of four passenger car models PUR, PAS, WAG, and FIL were targeted. Then, filling the steam-containing air to adjust the adjusted air pressure P0, and measuring the actual air pressure one month later to obtain the difference from the designated air pressure PS is from August 2008 to January 2009. Repeated for months. FIG. 3 summarizes the difference PD (kPa) obtained by subtracting the designated air pressure PS from the actual air pressure. The positive value is larger for the actual air pressure, and the negative value is larger for the designated air pressure PS. Is shown. As apparent from the list of FIG. 3, the difference PD is within ± 3 kPa in the majority of cases, and is +6 kPa at the maximum. This difference PD is remarkably improved in accuracy as compared with the conventional error of about 20 kPa. Furthermore, the difference PD of ± 3 kPa is only 1% of the absolute pressure 321 kPa of the designated air pressure PS, and it was verified that the air pressure can be adjusted with extremely high accuracy.
第2検証実験では、乗用車PURの右前輪タイヤ(指定空気圧PS=230kPa)を対象とした。そして、空気圧の調整を行わずに1ヶ月後の空気圧の予測値を求め、1ヶ月経過した時点での実測値を予測値と比較することを、2008年1月から8月までの8ヶ月間にわたって繰り返した。予測値は、温度変動分PTを求める(式4)、及び漏れ低下分PLを求める(式5)を用いて算出した。図4は、予測値及び実測値をプロットして結んだグラフであり、横軸は1月から8月までの時間推移、縦軸はタイヤの空気圧を示している。図4に示されるように、予測値と実測値はよく一致して推移しており、両者の差異の予測誤差は最大でも4kPaであった。これにより、(式4)及び(式5)の妥当性が検証できた。 In the second verification experiment, the right front wheel tire (designated air pressure PS = 230 kPa) of the passenger car PUR was targeted. Then, the predicted value of the air pressure after one month is obtained without adjusting the air pressure, and the actual measured value when one month has passed is compared with the predicted value for eight months from January to August 2008. Repeated over. The predicted value was calculated by obtaining the temperature variation PT (Equation 4) and obtaining the leakage reduction PL (Equation 5). FIG. 4 is a graph in which the predicted value and the actual measurement value are plotted and connected. The horizontal axis indicates the time transition from January to August, and the vertical axis indicates the tire air pressure. As shown in FIG. 4, the predicted value and the actually measured value are in good agreement, and the prediction error of the difference between them is 4 kPa at the maximum. Thereby, the validity of (Formula 4) and (Formula 5) was verified.
本実施形態のタイヤの空気圧調整方法は、温度変動係数CT、乾燥時温度変動係数CD、漏れ低下係数CL、走行上昇係数CRを用いた簡易な計算方法であり、かつ1ヶ月後のタイヤの空気圧を指定空気圧PSの概ね±3kPa内に収めることができて実用的精度が高い。これにより、1ヶ月を通してタイヤの空気圧を適正に維持でき、車両走行時の安全性、安定性、快適性を確保するとともに、燃費を向上することができる。さらに、試算によれば、本発明のタイヤの空気圧調整方法が普及したとき、燃料が節約されて全世界における二酸化炭素排出量が0.1%削減される。 The tire pressure adjustment method of the present embodiment is a simple calculation method using the temperature fluctuation coefficient CT, the drying temperature fluctuation coefficient CD, the leakage reduction coefficient CL, and the running increase coefficient CR, and the tire pressure after one month. Can be accommodated within about ± 3 kPa of the designated air pressure PS, and practical accuracy is high. Thereby, the tire air pressure can be properly maintained throughout the month, and safety, stability, and comfort during vehicle travel can be ensured, and fuel efficiency can be improved. Further, according to a trial calculation, when the tire pressure adjustment method of the present invention becomes widespread, fuel is saved and carbon dioxide emissions in the world are reduced by 0.1%.
なお、本発明は、簡易な測定及び計算を人手により行うだけでなく、一部あるいは全部を自動化した装置として実現することもできる。例えば、測定された気温及び空気圧や、気象庁の過去の日平均気温や月平均気温のデータを入力する入力手段と、(式1)〜(式6)の計算を自動的に行う演算手段と、気象庁の過去のデータや各種係数CT、CD、CL,CRなどを記憶する記憶手段と、求めた調整空気圧P0を出力する出力手段と、を備えるコンピュータ応用装置により、本発明のタイヤの空気圧調整方法を行うことができる。また、データの受け渡しが可能な気温センサ及び空気圧センサを組み合わせて測定をも自動化したコンピュータ応用システムを構築することができる。 It should be noted that the present invention can be realized not only as a simple measurement and calculation by hand, but also as a partly or entirely automated device. For example, input means for inputting measured air temperature and air pressure, past daily average temperature and monthly average temperature data of the Japan Meteorological Agency, and arithmetic means for automatically calculating (Equation 1) to (Equation 6), The tire pressure adjusting method of the tire of the present invention by means of a computer application device comprising storage means for storing past data of the Japan Meteorological Agency and various coefficients CT, CD, CL, CR, etc., and output means for outputting the determined adjusted air pressure P0 It can be performed. In addition, it is possible to construct a computer application system in which measurement is automated by combining a temperature sensor and an air pressure sensor that can exchange data.
さらには、IT技術を活用することでいわゆる『顧客空気圧カルテ』を運用することができる。具体的には、タイヤ空気圧ゲージに通信機能を持たせて顧客管理システムとデータ通信を行わせることにより、毎回の点検時におけるタイヤの調整空気圧P0や次回点検時の空気圧予測値を始めとする情報を空気圧カルテとして蓄積する。そして、この空気圧カルテを顧客に分かり易くて提示して、『予測する整備』を行うことができる。また、監視カメラと組み合わせることにより、調整空気圧P0などの数値情報だけでなく車両の整備状況までも、車両から離れた店内の他の場所などで遠隔モニタリングすることができる。これにより、自動車所有者側からみれば『整備の可視化』が行われ、自動車整備工場や整備士側からみれば『見せる整備』を実施できる。 Furthermore, it is possible to operate a so-called “customer pneumatic chart” by utilizing IT technology. Specifically, by providing a communication function to the tire pressure gauge and performing data communication with the customer management system, information including the adjusted air pressure P0 of the tire at each inspection and the predicted air pressure at the next inspection is included. Is stored as a pneumatic chart. Then, this pneumatic chart can be presented to the customer in an easy-to-understand manner and "predicted maintenance" can be performed. Further, by combining with a monitoring camera, not only numerical information such as the adjustment air pressure P0 but also the maintenance status of the vehicle can be remotely monitored at other locations in the store away from the vehicle. Thus, “visualization of maintenance” is performed from the viewpoint of the car owner, and “maintenance to display” can be performed from the viewpoint of the car maintenance factory or the mechanic.
上述のようなコンピャータ応用装置やシステム、IT技術や監視カメラと組み合わせたシステムを、例えば自動車整備工場に備えて利用に供することができる。 The above-described computer application apparatus and system, a system combined with IT technology and a monitoring camera can be used in preparation for an automobile maintenance shop, for example.
さらには、携帯電話やカーナビゲーション装置と組み合わせるシステム展開も可能である。例えば、従来から車両内に貼付されて指定空気圧を表示していたラベルに、車種データや指定空気圧PSのバーコードを表示して、携帯電話からの読み取りを可能としておく。すると、携帯電話では、GPS機能などにより空気圧調整を実施する点検場所を特定でき、気象庁のアメダスから点検場所における調整時気温T0を得ることができ、さらには読み取った指定空気圧PSを用い調整空気圧P0を計算して表示できる。この機能は、通信機能を有するカーナビケーション装置でも同様に実現することができる。したがって、この機能を一般向けサービスとして提供することにより、調整空気圧P0の計算を全国どこでも誰でも簡単に行うことができる。 Furthermore, it is possible to develop a system in combination with a mobile phone or a car navigation device. For example, vehicle type data and a bar code of the designated air pressure PS are displayed on a label that has been pasted in the vehicle and displays the designated air pressure, and can be read from a mobile phone. Then, in the mobile phone, the inspection place where the air pressure adjustment is performed can be specified by the GPS function or the like, the adjustment temperature T0 at the inspection place can be obtained from AMeDAS of the Japan Meteorological Agency, and the adjusted air pressure P0 using the read designated air pressure PS. Can be calculated and displayed. This function can be similarly realized by a car navigation device having a communication function. Therefore, by providing this function as a service for the general public, anyone can easily calculate the adjusted air pressure P0 anywhere in the country.
次に、本発明に想到した動機、及び発明の裏付けとなったデータ収集による基礎実験について説明する。 Next, the motivation conceived of the present invention and the basic experiment by data collection supporting the invention will be described.
発明者は、2003年10月に新車のハイブリッドカーを購入し、走行時に燃費を毎回記録したところ、2004年1月になって非常に燃費が悪いことが判明した。これを疑問に思い、タイヤの空気圧を測定したところ、指定空気圧よりも50kPa低かったので、すぐに適正値に調整した。新車の1か月点検を11月に行ったので、まだ大丈夫と思い込み日常点検を行わなかった結果としてこの事象が発生した。自動車メーカーに「こんなに空気圧は下がるものですか」と訪ねたところ、「販売店で点検して下さい」と言われたので、点検を実施しタイヤに全く問題はないことを確認した。そこで、自分でタイヤ空気圧の低下量について調べ始めたところ。空気圧が気温の変化によりタイヤ空気圧ゲージの一目盛り(10kPa)以上増減することに気がついた。 The inventor purchased a new hybrid car in October 2003 and recorded the fuel consumption every time during traveling, and it turned out that the fuel consumption was very poor in January 2004. I was wondering about this, and when I measured the air pressure of the tire, it was 50 kPa lower than the specified air pressure, so I immediately adjusted it to an appropriate value. This event occurred as a result of not having performed a daily inspection since we conducted a one-month inspection of the new car in November. When I visited an automobile manufacturer and asked, “Is the air pressure so low?” I was told, “Please check at the dealer,” so we inspected and confirmed that there were no problems with the tires. So I started to investigate the amount of tire pressure drop by myself. I noticed that the air pressure increased or decreased by more than one scale (10 kPa) of the tire pressure gauge due to changes in temperature.
これを契機として、2004年2月から第1回目の基礎実験を開始して、まず気温の影響を調査した。図5は、温度変動係数CTを25℃以下で1.5(kPa/℃)と定める根拠となった基礎実験の実測データの散布図である。図中の横軸は104個のサンプル数を示し、縦軸には実測された温度変動係数である。基礎実験は、水蒸気含有空気が封入されたタイヤを対象とし、25℃以下の温度帯で温度が変化したときの空気圧の変化分を実測し、空気圧変化量を温度変化量で除することにより1℃あたりの空気圧変化、すなわち温度変動係数を求めプロットした。図5から明らかなように、温度変動係数は1.5kPaを中心にして散布している。 With this as an opportunity, the first basic experiment was started in February 2004, and the effect of temperature was first investigated. FIG. 5 is a scatter diagram of the actual measurement data of the basic experiment which became the basis for setting the temperature variation coefficient CT to 1.5 (kPa / ° C.) at 25 ° C. or less. The horizontal axis in the figure indicates the number of 104 samples, and the vertical axis indicates the actually measured temperature variation coefficient. The basic experiment is for a tire filled with steam-containing air, and measures the change in air pressure when the temperature changes in a temperature range of 25 ° C. or less, and divides the air pressure change by the temperature change. The change in air pressure per ° C, that is, the temperature variation coefficient was obtained and plotted. As is apparent from FIG. 5, the temperature variation coefficient is dispersed around 1.5 kPa.
一方、理想気体においては、温度変動係数はボイル・シャルルの法則(あるいは気体の状態方程式)から求められ、20℃で1.1kPaである。この値は、水蒸気を殆ど含まない乾燥空気概ね当てはまることを確認した、したがって、タイヤに乾燥空気が封入されているとき、温度変動分はボイル・シャルルの法則に基づいて正確に求めることができる。また、常用の温度帯では、温度変動分は大きく変動しないので、乾燥時温度変動係数CD=1.1(kPa/℃)を定めて、簡易に計算しても大きな誤差は生じない。 On the other hand, in an ideal gas, the temperature variation coefficient is obtained from Boyle-Charles' law (or gas equation of state) and is 1.1 kPa at 20 ° C. This value was confirmed to be generally applicable to dry air containing almost no water vapor. Therefore, when dry air is sealed in the tire, the temperature variation can be accurately obtained based on Boyle-Charles' law. In addition, since the temperature fluctuation does not fluctuate greatly in the normal temperature range, a large error does not occur even if the temperature fluctuation coefficient CD = 1.1 (kPa / ° C.) during drying is determined and calculated simply.
これに比較して、前述の蒸気含有空気の温度変動係数は大きいが、水蒸気が気相と液相の間で相変化し得ることを考慮して、25℃以下の温度変動係数CT=1.5(kPa/℃)を定めた。また、25℃以上では、含有水蒸気の影響が軽減されて温度変動係数CTは理想気体のそれに接近する傾向が確認できたので、これを基に図2の温度帯25〜40℃における温度変動係数CT=1.4〜1.2(kPa/℃)を定めた。
In comparison with this, the temperature variation coefficient of the above-mentioned steam-containing air is large, but considering that the water vapor can change between the gas phase and the liquid phase, the temperature variation coefficient of 25 ° C. or less CT = 1. 5 (kPa / ° C.) was determined. Further, at 25 ° C. or higher, the influence of the contained water vapor was reduced and the temperature variation coefficient CT was confirmed to approach that of the ideal gas. Based on this, the temperature variation coefficient in the
走行の影響を調査する基礎実験は、水蒸気含有空気を指定空気圧230kPaで封入したタイヤを装着した前輪駆動車で行った。まず、走行時の発熱によるタイヤの空気圧の上昇分(走行上昇分)が安定するまでの走行距離を確認した。その結果、10kmの走行で走行上昇分は安定し、5kmの走行で約80%のレベルまで上昇し、1km以内の走行で20%以下(無視できるレベル)であることが判明した。この実験から、所定距離RL=10kmを定めた。 A basic experiment for investigating the influence of running was performed on a front-wheel drive vehicle equipped with a tire in which steam-containing air was sealed at a specified air pressure of 230 kPa. First, the distance traveled until the increase in tire air pressure (travel increase) due to heat generated during travel was stabilized. As a result, it was found that the travel increase was stable after traveling 10 km, increased to about 80% when traveling 5 km, and 20% or less (negligible level) when traveling within 1 km. From this experiment, a predetermined distance RL = 10 km was determined.
次に走行速度と走行上昇分との関係を確認した。この実験では、前輪駆動車の平均時速Vを30〜90(km/h)の5条件とし、高速域は高速道路、低速域は一般道路で所定距離RL=10km以上の走行実験を複数回行って、走行前後にタイヤの空気圧を測定して、空気圧上昇率の平均値を求めた。図7は、走行上昇係数CRを定める根拠となった基礎実験の実測データである。図中の横軸は平均時速V(km/h)を示し、縦軸には前輪駆動車の前輪で実測された空気圧の上昇率をプロットしている。図7から明らかなように、空気圧の上昇率は平均時速Vに概ね比例することが判明した。そして、比例関係を示すグラフの傾きは平均時速100(km/h)で上昇率10%であることから、走行上昇係数CRを指定空気圧の0.1%と定めた。また、前輪駆動車の後輪は、前輪の約90%の空気圧上昇が認められたことから、所定の低減比として0.9を定めた。 Next, the relationship between travel speed and travel increase was confirmed. In this experiment, the driving speed of the front wheel drive vehicle is set to five conditions of 30 to 90 (km / h), a highway is a highway, a lowway is a general road, and a driving test is performed a plurality of times over a predetermined distance RL = 10 km. Then, the tire air pressure was measured before and after running to determine the average value of the air pressure increase rate. FIG. 7 is actual measurement data of a basic experiment that is a basis for determining the travel increase coefficient CR. In the figure, the horizontal axis indicates the average speed V (km / h), and the vertical axis plots the rate of increase in air pressure actually measured on the front wheels of the front-wheel drive vehicle. As is apparent from FIG. 7, it has been found that the rate of increase in air pressure is approximately proportional to the average speed V. Since the slope of the graph indicating the proportional relationship is an average speed of 100 (km / h) and an increase rate of 10%, the travel increase coefficient CR is set to 0.1% of the designated air pressure. In addition, since a 90% increase in air pressure was recognized for the rear wheels of the front wheel drive vehicle, 0.9 was set as a predetermined reduction ratio.
さらに、乾燥空気を封入したタイヤにおける乾燥時走行上昇係数CSは、温度変動係数CTに対する乾燥時温度変動係数CDの比率を準用して、次式により推定することができる。 Further, the dry travel increase coefficient CS in a tire filled with dry air can be estimated by the following equation using the ratio of the dry temperature fluctuation coefficient CD to the temperature fluctuation coefficient CT.
乾燥時走行上昇係数CS=CR×(CD/CT)
この式から、乾燥時走行上昇係数CS≒0.07%と定めた。
Driving increase coefficient during drying CS = CR x (CD / CT)
From this formula, it was determined that the dry running increase coefficient CS≈0.07%.
この他、直射日光の影響が冬から春にかけては最大12kPa、夏には約5kPaあることが判明した。また、走行後にタイヤが冷えて空気圧が冷間時の値に戻るまでに、多湿の夏で2時間以上要し、乾燥した冬で30分以上要することが判明した。さらに、タイヤの空気圧が走行性能や燃費に影響を及ぼすことも確認した。例えば、山岳道路のカーブでは、空気圧が20kPa異なっていると走行に差が生じることが判明した。また、空気圧が50kPa低下すると燃費が約5%低下することが判明した(ハイブリッドカーの例)。なお、財団法人省エネルギーセンタの調べによれば、一般車市街地走行において空気圧50kPaの低下は燃費2.5%の低下に相当するものとされている。 In addition, it was found that the influence of direct sunlight was a maximum of 12 kPa from winter to spring and about 5 kPa in summer. It was also found that it takes 2 hours or more in humid summer and 30 minutes or more in dry winter before the tire cools down after running and the air pressure returns to the cold value. Furthermore, it was confirmed that the tire air pressure affects the running performance and fuel consumption. For example, on a mountain road curve, it has been found that if the air pressure is different by 20 kPa, there is a difference in travel. It was also found that when the air pressure was reduced by 50 kPa, the fuel consumption was reduced by about 5% (example of a hybrid car). According to a study by the Energy Conservation Center, a decrease in air pressure of 50 kPa corresponds to a decrease in fuel consumption of 2.5% when traveling in an ordinary vehicle.
次の第2回目の基礎実験では、タイヤの空気圧を早朝の冷間時に指定空気圧に調整した条件と、(指定空気圧+20kPa)に調整した条件とを比較したり、また、走行直後に(指定空気圧+走行上昇分)に調整したりして、上述の温度の影響や走行の影響を再確認した。 In the second basic experiment, the conditions of adjusting the tire air pressure to the specified air pressure when it was cold in the early morning and the conditions adjusted to (specified air pressure +20 kPa) were compared. The effect of the temperature and the effect of traveling were reconfirmed.
次の第3回目の基礎実験では、4台の屋外駐車車両で1ヶ月毎に点検を行い、漏れの影響を調査した。図6は、漏れ開始温度TLを0℃に設定し、漏れ低下係数CLを指定空気圧の0.2%と定める根拠となった基礎実験の実測データの散布図である。図中の(1)は乗用車車種PUR(指定空気圧PS=230kPa)、(2)は乗用車車種PAS(指定空気圧PS=220kPa)を用いた実験であり、横軸は1ヶ月平均気温、縦軸は1ヶ月間の空気圧低下量を示している。基礎実験では、毎月1回空気圧を測定し前月からの空気圧変化分を温度で補正して純然たる自然漏れに起因する空気圧低下量を求め、当月の平均気温にプロットすることを1年間続けた。図6の回帰線から明らかなように、自然漏れによる空気圧低下は、概ね直線状の温度依存性を示している。したがって、回帰線が空気圧低下量ゼロと交差する0℃を漏れ開始温度TLに設定した。また、回帰線は、30℃で12〜13.5kPs変化する傾きであることから、1℃当たり0.40〜0.45kPa変化し、これは指定空気圧PS(=220〜230kPa)の約0,2%に相当するので、漏れ低下係数CLを指定空気圧の0.2%と定めた。 In the next third basic experiment, four outdoor parked vehicles were inspected every month to investigate the effects of leakage. FIG. 6 is a scatter diagram of actual measurement data of a basic experiment which is a basis for setting the leak start temperature TL to 0 ° C. and setting the leak reduction coefficient CL to 0.2% of the designated air pressure. In the figure, (1) is an experiment using a passenger car model PUR (designated air pressure PS = 230 kPa), (2) is an experiment using a passenger car model PAS (designated air pressure PS = 220 kPa), the horizontal axis is the monthly average temperature, and the vertical axis is The air pressure drop for one month is shown. In the basic experiment, we measured the air pressure once a month, corrected the air pressure change from the previous month with the temperature to determine the amount of air pressure decrease due to pure natural leakage, and plotted it on the average temperature of the month for one year. As apparent from the regression line of FIG. 6, the decrease in air pressure due to natural leakage shows a substantially linear temperature dependence. Therefore, 0 ° C. at which the regression line intersects with the air pressure decrease amount zero was set as the leakage start temperature TL. Moreover, since the regression line is a slope that changes by 12 to 13.5 kPas at 30 ° C., it changes by 0.40 to 0.45 kPa per 1 ° C., which is about 0 of the designated air pressure PS (= 220 to 230 kPa). Since this corresponds to 2%, the leakage reduction coefficient CL is set to 0.2% of the designated air pressure.
なお、漏れ開始温度TLが水の凝固点の0℃に一致している物理的理由は明確でないが、タイヤの材質などの性状に依存するものと考えられる。 The physical reason why the leak start temperature TL coincides with 0 ° C. of the freezing point of water is not clear, but is considered to depend on properties such as the material of the tire.
最後に、前述の第1及び第2検証実験で、計算による空気圧予測を行う本発明の空気圧調整方法を実証するための検証を行い。図3及び図4の結果を得た。以上説明したように、基礎実験を基にして、温度変動係数CT、乾燥時温度変動係数CD、漏れ開始温度TL、漏れ低下係数CL、所定距離RL、走行上昇係数CRを定め、検証実験で有効性を確認した。しかしながら、基礎実験や検証実験は限られた車種、限られたタイヤ種類で行われたものであるのに対し、実用に供される車種及びタイヤ種類は多岐に渡り、1ヶ月あたりの走行距離を始めとする利用形態も様々である。このため、実施形態の各係数を画一的に用いると誤差を生じることも考えられる。したがって、個々の車両及びタイヤに適合するように各係数などを補正して以降の空気圧調整に用いるようにすれば、空気圧の調整精度は格段に向上する。 Finally, in the first and second verification experiments described above, verification for verifying the air pressure adjustment method of the present invention that performs air pressure prediction by calculation is performed. The results of FIGS. 3 and 4 were obtained. As explained above, based on the basic experiment, the temperature fluctuation coefficient CT, the temperature fluctuation coefficient CD during drying, the leakage start temperature TL, the leakage reduction coefficient CL, the predetermined distance RL, and the traveling increase coefficient CR are determined and validated in the verification experiment. The sex was confirmed. However, while basic experiments and verification experiments are conducted with limited vehicle types and limited tire types, there are a wide variety of practical vehicle types and tire types, and the mileage per month is reduced. There are various forms of usage, including the beginning. For this reason, it is conceivable that an error occurs when the coefficients of the embodiment are uniformly used. Therefore, if each coefficient is corrected so as to be adapted to individual vehicles and tires and used for the subsequent air pressure adjustment, the air pressure adjustment accuracy is remarkably improved.
ここで、アナログ式のタイヤ空気圧ゲージは高精度タイプでも測定精度は±3kPaであることを考慮すると、誤差が6kPa以上生じるときに補正した方が望ましい。例えば、温度変動係数CTを1.5から1.4に0.1だけ補正すると、10℃当たり1kPa空気圧が補正される、この補正を採用することで誤差を低減することができ、また、誤差の低減効果は有意な差として測定できる。 Here, considering that the analog tire pressure gauge is a high-precision type and the measurement accuracy is ± 3 kPa, it is desirable to correct when the error is 6 kPa or more. For example, if the temperature variation coefficient CT is corrected from 1.5 to 1.4 by 0.1, the 1 kPa air pressure is corrected per 10 ° C. By adopting this correction, the error can be reduced. The reduction effect can be measured as a significant difference.
また、異なる指定空気圧PSに対して、温度変動係数CTや漏れ低下係数CLを個別に定めることができる。あるいは、タイヤの種類に応じて、漏れ開始温度TLや漏れ低下係数CLを個別に定めることもできる。さらには、10km未満の走行に対する走行上昇係数CRを定めることもできる。上述の実施形態においては、一般乗用車でのデータ収集や検証から得られた結果を基にして諸係数を定めたが、高圧で使用する大型のトラックやバスのタイヤに対しても本発明を応用できる。タイヤの構造、材質、指定空気圧の違い、走行時の荷重変化や走行距離により、諸係数などは異なると考えられる。大型車用タイヤでは、指定空気圧は700〜900kPaと乗用車のそれよりも数倍大きく、温度変動係数CT(kPa/℃)は相対的に大きくなる。この他、本発明は様々な応用が可能である。 Further, the temperature variation coefficient CT and the leakage reduction coefficient CL can be individually determined for different designated air pressure PS. Alternatively, the leakage start temperature TL and the leakage reduction coefficient CL can be individually determined according to the type of tire. Furthermore, the traveling increase coefficient CR for traveling less than 10 km can be determined. In the above-described embodiment, various coefficients are determined based on the results obtained from data collection and verification in a general passenger car, but the present invention is also applied to large truck and bus tires used at high pressure. it can. Various factors are considered to vary depending on the structure of tire, material, designated air pressure, load change during travel and travel distance. In large vehicle tires, the specified air pressure is 700 to 900 kPa, several times larger than that of passenger cars, and the temperature variation coefficient CT (kPa / ° C.) is relatively large. In addition, the present invention can be applied in various ways.
P0:調整空気圧 PS:指定空気圧
PT:温度変動分 PL:漏れ低下分 PR:走行上昇分
T0:調整時気温 T1、T2日平均気温
Td:温度差 TA:期間平均気温
CT:温度変動係数 CD:乾燥時温度変動係数
P0: Adjusted air pressure PS: Designated air pressure PT: Temperature fluctuation PL: Leakage reduction PR: Traveling rise T0: Adjustment temperature T1, T2 day average temperature Td: Temperature difference TA: Period average temperature CT: Temperature fluctuation coefficient CD: Temperature variation coefficient during drying
Claims (15)
温度変化に依存する前記空気圧の温度変動分を、調整時の気温および前記所定期間経過後の日平均気温から求め、
自然漏れに依存する前記空気圧の漏れ低下分を、前記所定期間中の期間平均気温から求め、
前記温度変動分及び前記漏れ低下分を前記指定空気圧に加えて前記調整空気圧を求めることを特徴とするタイヤの空気圧調整方法。 A tire pressure adjusting method for bringing the air pressure close to a designated air pressure after a predetermined period of time has elapsed since the air pressure of the tire mounted on the vehicle is adjusted to the adjusted air pressure,
The amount of temperature fluctuation of the air pressure depending on the temperature change is obtained from the temperature at the time of adjustment and the daily average temperature after the predetermined period has passed,
The amount of decrease in air pressure leakage that depends on natural leakage is determined from the average temperature during the predetermined period,
A method for adjusting tire air pressure, wherein the adjusted air pressure is obtained by adding the temperature fluctuation and the leakage reduction to the designated air pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009131869A JP4413987B1 (en) | 2009-06-01 | 2009-06-01 | Tire pressure adjustment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009131869A JP4413987B1 (en) | 2009-06-01 | 2009-06-01 | Tire pressure adjustment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4413987B1 true JP4413987B1 (en) | 2010-02-10 |
JP2010276570A JP2010276570A (en) | 2010-12-09 |
Family
ID=41739285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009131869A Active JP4413987B1 (en) | 2009-06-01 | 2009-06-01 | Tire pressure adjustment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4413987B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113905914A (en) * | 2019-06-03 | 2022-01-07 | 横滨橡胶株式会社 | Tire failure prediction system and tire failure prediction method |
CN116061612A (en) * | 2023-02-02 | 2023-05-05 | 彩虹无线(北京)新技术有限公司 | Early warning method and system for slow air leakage of automobile tire |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6232314B2 (en) * | 2014-02-27 | 2017-11-15 | 住友ゴム工業株式会社 | Tire condition determination device, server apparatus, tire condition determination method, and tire condition determination program |
JP7574725B2 (en) | 2021-04-20 | 2024-10-29 | 株式会社デンソー | Tire Pressure Monitoring System |
-
2009
- 2009-06-01 JP JP2009131869A patent/JP4413987B1/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113905914A (en) * | 2019-06-03 | 2022-01-07 | 横滨橡胶株式会社 | Tire failure prediction system and tire failure prediction method |
CN116061612A (en) * | 2023-02-02 | 2023-05-05 | 彩虹无线(北京)新技术有限公司 | Early warning method and system for slow air leakage of automobile tire |
CN116061612B (en) * | 2023-02-02 | 2024-05-14 | 彩虹无线(北京)新技术有限公司 | Early warning method and system for slow air leakage of automobile tire |
Also Published As
Publication number | Publication date |
---|---|
JP2010276570A (en) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4413987B1 (en) | Tire pressure adjustment method | |
US9037327B2 (en) | Distance to empty calculation method for electric vehicle | |
JP4179330B2 (en) | Battery information display device for hybrid vehicle | |
Kadijk et al. | Road load determination of passenger cars | |
CN102338677B (en) | Vehicle power testing method and vehicle chassis dynamometer | |
JP2007074891A (en) | Power-train battery life predicting and warning apparatuses | |
CN102947867A (en) | Engine air filter replacement indication system | |
WO2009036547A1 (en) | A method of calculating tire cold inflation pressure in a moving vehicle and system for same | |
CN103679542A (en) | Method for tread selection | |
JP7453531B2 (en) | Tire casing life management system and tire casing life management method | |
JP2022527442A (en) | Effective tire pressure sensing system and method | |
KR20210101284A (en) | A model for predicting tire wear and end-of-life | |
Greiner et al. | A model for prediction of the transient rolling resistance of tyres based on inner-liner temperatures | |
EP3554862B1 (en) | Method and system of estimation of tire severity rate in response to conditions of use of a tire. | |
Mammetti et al. | The influence of rolling resistance on fuel consumption in heavy-duty vehicles | |
GB2531746A (en) | Tyre tread monitoring | |
WO2020156075A1 (en) | Air conditioner for use in parked car, and battery-life warning method and system for vehicle battery | |
CN102506890A (en) | Measurement method for coasting distance of vehicle | |
US8350688B2 (en) | System and method for indirect indication of tire pressure loss | |
CN114370918A (en) | Vehicle load monitoring method, device and system | |
JP3110243U (en) | A system that manages the prediction and implementation of air pressure filling and tire replacement / rotation based on tire pressure inspection and tire groove inspection | |
Komnos et al. | An Experimental Methodology for Measuring Resistance Forces of Light-Duty Vehicles under Real-World Conditions and the Impact on Fuel Consumption | |
KR101334277B1 (en) | Test Apparatus and Test Preparation Method of Electric Mopeds and Motorcycles | |
KR20120019664A (en) | Automatic loadage measuring system for vehicle | |
WO2022039137A1 (en) | Air pressure management device, air pressure management method, and air pressure management program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20091109 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091112 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091118 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4413987 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131127 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |