JP4413958B2 - Hard coating for cutting tools - Google Patents
Hard coating for cutting tools Download PDFInfo
- Publication number
- JP4413958B2 JP4413958B2 JP2007225987A JP2007225987A JP4413958B2 JP 4413958 B2 JP4413958 B2 JP 4413958B2 JP 2007225987 A JP2007225987 A JP 2007225987A JP 2007225987 A JP2007225987 A JP 2007225987A JP 4413958 B2 JP4413958 B2 JP 4413958B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- layer
- coating
- coating layer
- hard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000576 coating method Methods 0.000 title claims description 42
- 239000011248 coating agent Substances 0.000 title claims description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 43
- 239000002184 metal Substances 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 239000011247 coating layer Substances 0.000 claims description 128
- 239000010410 layer Substances 0.000 claims description 65
- 239000000463 material Substances 0.000 claims description 34
- 229910052752 metalloid Inorganic materials 0.000 claims description 30
- 239000002245 particle Substances 0.000 claims description 20
- 239000013078 crystal Substances 0.000 claims description 12
- 150000002738 metalloids Chemical class 0.000 claims description 11
- 150000004767 nitrides Chemical group 0.000 claims description 9
- 239000002344 surface layer Substances 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 4
- 229910052755 nonmetal Inorganic materials 0.000 claims description 3
- 238000005256 carbonitriding Methods 0.000 claims 1
- 239000010408 film Substances 0.000 description 129
- 230000008020 evaporation Effects 0.000 description 21
- 238000001704 evaporation Methods 0.000 description 21
- 239000011651 chromium Substances 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000002114 nanocomposite Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000010891 electric arc Methods 0.000 description 6
- 238000007733 ion plating Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 229910010037 TiAlN Inorganic materials 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 208000013201 Stress fracture Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/044—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/40—Coatings including alternating layers following a pattern, a periodic or defined repetition
- C23C28/42—Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Drilling Tools (AREA)
Abstract
Description
本発明は、エンドミル,ドリル等の切削工具に被覆して耐摩耗性を向上させるための切削工具用硬質皮膜に関するものである。 The present invention relates to a hard coating for a cutting tool for coating a cutting tool such as an end mill or a drill to improve wear resistance.
従来、金属切削工具に被覆する硬質皮膜としては、TiN,TiCN,TiAlNが使用されてきた。特に、特許文献1,2に代表されるTiAlN系皮膜はTiNにAlを添加することで硬度と耐熱性を改良させたもので、耐摩耗性の良さから、焼入れ鋼を含む鉄鋼材料を加工するための切削工具用硬質皮膜として広く用いられている。 Conventionally, TiN, TiCN, and TiAlN have been used as hard coatings for coating metal cutting tools. In particular, TiAlN-based coatings represented by Patent Documents 1 and 2 have improved hardness and heat resistance by adding Al to TiN, and work on steel materials including hardened steel because of their good wear resistance. Widely used as a hard coating for cutting tools.
しかしながら、近年では鉄鋼材料に対する耐摩耗性をさらに向上させることが工具に求められてきており、TiNの代わりにCrNをベースとすることでTiAlN皮膜よりも耐熱性をより向上させたAlCrN皮膜が特許文献3等で提案されている。 However, in recent years, there has been a demand for tools to further improve the wear resistance against steel materials, and an AlCrN coating whose heat resistance is improved more than a TiAlN coating by using CrN as a base instead of TiN is patented. It is proposed in the literature 3 etc.
しかしながら、AlCrN皮膜はTiAlN皮膜に比べて耐熱性は良いものの硬度がやや小さく、そのため、鉄鋼材料に対する耐摩耗性が十分とは言えない。 However, although the AlCrN film has better heat resistance than the TiAlN film, it has a slightly lower hardness, so that it cannot be said that the wear resistance against the steel material is sufficient.
本発明は、上述のような現状に鑑み、本発明者等が皮膜組成と皮膜層構成について研究した結果、硬質皮膜の硬度及び潤滑性を向上させることにより上記課題を解決できるとの知見を得て完成したもので、硬質皮膜を所定の組成及び積層構造とすることにより、硬質皮膜の硬度及び潤滑性を改善することができ、従来のAlCrN膜よりも飛躍的に耐摩耗性を向上させることが可能な極めて実用性に秀れた切削工具用硬質皮膜を提供するものである。 In view of the present situation as described above, the present inventors have studied the coating composition and the coating layer configuration, and as a result, obtained the knowledge that the above problems can be solved by improving the hardness and lubricity of the hard coating. By completing the hard coating with a predetermined composition and laminated structure, the hardness and lubricity of the hard coating can be improved, and the wear resistance can be dramatically improved over conventional AlCrN films. Therefore, the present invention provides a hard coating for a cutting tool that is extremely practical and capable of being used.
本発明の要旨を説明する。 The gist of the present invention will be described.
切削工具用基材上に形成される切削工具用硬質皮膜であって、この硬質皮膜は、第一皮膜層と第二皮膜層とを交互に各2層以上積層して成る第一多層皮膜層を含み、前記第一皮膜層は金属及び半金属成分が原子%で、
Al(100−x−y−z)Cr(x)V(y)B(z)
ただし、20≦x≦40,2≦y≦15,5≦z≦15
で表され、非金属元素としてNを含むと共に、不可避不純物を含むものであり、前記第二皮膜層は金属及び半金属成分が原子%で、
Al(100−u−v−w)Cr(u)V(v)B(w)
ただし、20≦u≦40,0≦v≦5,0≦w≦5
で表され、非金属元素としてNを含むと共に、不可避不純物を含むものであり、前記第一皮膜層のVの含有割合yと前記第二皮膜層のVの含有割合vとがy≧vの関係を満たし、更に、前記第一皮膜層のBの含有割合zと前記第二皮膜層のBの含有割合wとがz−5≧wの関係を満たすものであり、
前記第一多層皮膜層の表層側には、第五皮膜層と第六皮膜層とを交互に各2層以上積層して成る第二多層皮膜層が設けられ、前記第五皮膜層の金属元素,半金属元素及び非金属元素は前記第一皮膜層の金属元素,半金属元素及び非金属元素と同一であり、前記第六皮膜層は金属元素及び半金属元素が原子%で、
Si (100−t) M (t)
ただし、0≦t≦30,Mは周期律表の4a,5a,6a,3b族のうちのいずれか1
種以上の元素
で表され、非金属元素としてNを含むと共に、不可避不純物を含むものであり、前記第五皮膜層の膜厚は40nm以下に設定され、前記第六皮膜層の膜厚は0.2nm〜4nmに設定され、更に、前記第五皮膜層が前記第六皮膜層の4倍以上の厚さとなるように前記第五皮膜層及び前記第六皮膜層の膜厚が設定されていることを特徴とする切削工具用硬質皮膜に係るものである。
A hard coating for a cutting tool formed on a base material for a cutting tool, wherein the hard coating is a first multi-layer coating in which two or more first coating layers and second coating layers are alternately laminated. The first coating layer is atomic% metal and metalloid components,
Al (100-x-yz) Cr (x) V (y) B (z)
However, 20 ≦ x ≦ 40, 2 ≦ y ≦ 15, 5 ≦ z ≦ 15
In addition to N as a non-metallic element and unavoidable impurities, the second coating layer has an atomic% metal and metalloid component,
Al (100-u-v-w) Cr (u) V (v) B (w)
However, 20 ≦ u ≦ 40, 0 ≦ v ≦ 5, 0 ≦ w ≦ 5
The non-metallic element contains N as well as an inevitable impurity, and the content ratio y of V in the first film layer and the content ratio v of V in the second film layer satisfy y ≧ v. Satisfying the relationship, and further, the content ratio z of B in the first coating layer and the content ratio w of B in the second coating layer satisfy the relationship of z-5 ≧ w ,
On the surface layer side of the first multilayer coating layer, there is provided a second multilayer coating layer formed by alternately laminating two or more fifth coating layers and sixth coating layers, The metal element, the metalloid element, and the nonmetal element are the same as the metal element, the metalloid element, and the metalloid element of the first coating layer, and the sixth film layer is an atomic% of the metal element and the metalloid element,
Si (100-t) M (t)
However, 0 ≦ t ≦ 30, M is any one of groups 4a, 5a, 6a, and 3b of the periodic table.
More than species
In addition to containing N as a non-metallic element and unavoidable impurities, the thickness of the fifth coating layer is set to 40 nm or less, and the thickness of the sixth coating layer is 0.2 nm to 4 nm. And the film thickness of the fifth film layer and the sixth film layer is set so that the fifth film layer has a thickness four times or more that of the sixth film layer. It relates to a hard film for a cutting tool.
また、請求項1記載の切削工具用硬質皮膜において、前記第一多層皮膜層と前記基材との間には第三皮膜層が設けられ、この第三皮膜層の金属元素及び半金属元素は前記第二皮膜層の金属元素及び半金属元素と同一であることを特徴とする切削工具用硬質皮膜に係るものである。 The hard film for a cutting tool according to claim 1, wherein a third film layer is provided between the first multilayer film layer and the base material, and the metal element and the metalloid element of the third film layer. Is the same as the metal element and metalloid element of the second film layer, and relates to a hard film for a cutting tool.
また、請求項1,2いずれか1項に記載の切削工具用硬質皮膜において、前記基材直上には第四皮膜層が設けられ、この第四皮膜層はTiを主成分とする窒化物若しくは炭窒化物であり、この第四皮膜層の膜厚は0.01μm〜0.5μmに設定されていることを特徴とする切削工具用硬質皮膜に係るものである。 Further, in the hard film for a cutting tool according to any one of claims 1 and 2, a fourth film layer is provided immediately above the base material, and the fourth film layer is a nitride mainly composed of Ti or It is carbonitride, and the film thickness of the fourth coating layer is related to a hard coating for a cutting tool, which is set to 0.01 μm to 0.5 μm.
また、請求項1,2いずれか1項に記載の切削工具用硬質皮膜において、前記基材直上には第四皮膜層が設けられ、この第四皮膜層はCrを主成分とする窒化物若しくは炭窒化物であり、この第四皮膜層の膜厚は0.01μm〜0.5μmに設定されていることを特徴とする切削工具用硬質皮膜に係るものである。 Further, in the hard coating for a cutting tool according to any one of claims 1 and 2, a fourth coating layer is provided immediately above the base material, and the fourth coating layer is a nitride containing Cr as a main component or It is carbonitride, and the film thickness of the fourth coating layer is related to a hard coating for a cutting tool, which is set to 0.01 μm to 0.5 μm.
また、請求項1〜4いずれか1項に記載の切削工具用硬質皮膜において、前記第一多層皮膜層はNaCl型結晶構造を有するものであることを特徴とする切削工具用硬質皮膜に係るものである。 The hard film for a cutting tool according to any one of claims 1 to 4 , wherein the first multilayer film layer has a NaCl-type crystal structure. Is.
また、請求項1〜5いずれか1項に記載の切削工具用硬質皮膜において、前記基材は、WCを主成分とする硬質粒子とCoを主成分とする結合材とから成る超硬合金製であって、前記WC粒子の平均粒径が0.1μm〜2μmに設定され、前記Coの含有量が重量%で5〜15%に設定されたものであることを特徴とする切削工具用硬質皮膜に係るものである。 The hard film for a cutting tool according to any one of claims 1 to 5 , wherein the base material is made of a cemented carbide alloy including hard particles mainly containing WC and a binder mainly containing Co. The hard particle for a cutting tool, wherein the average particle diameter of the WC particles is set to 0.1 μm to 2 μm, and the Co content is set to 5 to 15% by weight. It concerns the film.
本発明は上述のように構成したから、硬質皮膜の硬度及び潤滑性を改善することができ、従来のAlCrN膜よりも飛躍的に耐摩耗性を向上させることが可能な極めて実用性に秀れた切削工具用硬質皮膜となる。 Since the present invention is configured as described above, the hardness and lubricity of the hard coating can be improved, and the wear resistance can be drastically improved as compared with the conventional AlCrN film. Hard coating for cutting tools.
好適と考える本発明の実施形態を、本発明の作用を示して簡単に説明する。 The preferred embodiment of the present invention will be briefly described by showing the operation of the present invention.
Vが添加されることで潤滑性が向上することになり、また、Bが添加されることで硬度が向上することになる。よって、従来のAlCrN系皮膜より潤滑性及び硬度を向上させることが可能となる。 Lubricity is improved by adding V, and hardness is improved by adding B. Therefore, it becomes possible to improve lubricity and hardness compared with the conventional AlCrN-based film.
ここで、Bを含有させると皮膜の硬度が増大する一方、靱性がやや低下してしまうが、本発明においては、第一皮膜層に比べてB含有量を5at%(原子%)以上少なくして靭性の低下を抑えた第二皮膜層を第一皮膜層と交互に積層することで、硬度と靭性を両立させている。即ち、B含有量が多い第一皮膜層が主に硬度の向上作用を担い、この第一皮膜層間のB含有量の少ない第二皮膜層が主に靱性の向上作用を担うことで、硬く且つ粘り強い皮膜となり、それだけチッピングの生じ難い耐摩耗性に秀れたものとなる。 Here, when B is contained, the hardness of the film increases, but the toughness slightly decreases. However, in the present invention, the B content is reduced by 5 at% (atomic%) or more compared to the first film layer. In addition, the second coating layer that suppresses the decrease in toughness is laminated alternately with the first coating layer, thereby achieving both hardness and toughness. That is, the first coating layer having a large B content is mainly responsible for improving the hardness, and the second coating layer having a small B content between the first coating layers is mainly responsible for improving the toughness. It becomes a tenacious film, and it is excellent in wear resistance that hardly causes chipping.
また、第二皮膜層のV含有量は第一皮膜層と同じでも良いが、B含有量が少なくやや硬度が低くなっているため、硬度が低くなり過ぎないようにV含有量を第一皮膜層より少なくすることが望ましい。 The V content of the second coating layer may be the same as that of the first coating layer, but since the B content is low and the hardness is slightly low, the V content is set so that the hardness does not become too low. It is desirable to have fewer layers.
本発明の具体的な実施例について説明する。 Specific examples of the present invention will be described.
本実施例は、切削工具用基材上に形成される切削工具用硬質皮膜であって、この硬質皮膜は、第一皮膜層と第二皮膜層とを交互に各2層以上積層して成る第一多層皮膜層を含み、前記第一皮膜層は金属及び半金属成分が原子%で、
Al(100−x−y−z)Cr(x)V(y)B(z)
ただし、20≦x≦40,2≦y≦15,5≦z≦15
で表され、非金属元素としてNを含むと共に、不可避不純物を含むものであり、前記第二皮膜層は金属及び半金属成分が原子%で、
Al(100−u−v−w)Cr(u)V(v)B(w)
ただし、20≦u≦40,0≦v≦5,0≦w≦5
で表され、非金属元素としてNを含むと共に、不可避不純物を含むものであり、前記第一皮膜層のVの含有割合yと前記第二皮膜層のVの含有割合vとがy≧vの関係を満たし、更に、前記第一皮膜層のBの含有割合zと前記第二皮膜層のBの含有割合wとがz−5≧wの関係を満たすものである。
The present embodiment is a cutting tool hard film formed on a cutting tool base material, and the hard film is formed by alternately laminating two or more layers of a first film layer and a second film layer. Including a first multilayer coating layer, wherein the first coating layer is atomic% of metal and metalloid components,
Al (100-x-yz) Cr (x) V (y) B (z)
However, 20 ≦ x ≦ 40, 2 ≦ y ≦ 15, 5 ≦ z ≦ 15
In addition to N as a non-metallic element and unavoidable impurities, the second coating layer has an atomic% metal and metalloid component,
Al (100-u-v-w) Cr (u) V (v) B (w)
However, 20 ≦ u ≦ 40, 0 ≦ v ≦ 5, 0 ≦ w ≦ 5
The non-metallic element contains N as well as an inevitable impurity, and the content ratio y of V in the first film layer and the content ratio v of V in the second film layer satisfy y ≧ v. In addition, the B content ratio z of the first coating layer and the B content ratio w of the second coating layer satisfy the relationship of z-5 ≧ w.
各部を具体的に説明する。 Each part will be specifically described.
基材は、WC(タングステンカーバイド)を主成分とする硬質粒子とCo(コバルト)を主成分とする結合材とから成る超硬合金製のものが採用されている。具体的には、前記WC粒子の平均粒径が0.1μm〜2μmに設定され、前記Coの含有量が重量%で5〜15%に設定されたものが採用されている。 As the base material, a cemented carbide alloy composed of hard particles mainly composed of WC (tungsten carbide) and a binder mainly composed of Co (cobalt) is employed. Specifically, the average particle diameter of the WC particles is set to 0.1 μm to 2 μm, and the Co content is set to 5 to 15% by weight.
この基材の直上には、Ti(チタン)を主成分とする窒化物若しくは炭窒化物から成る第四皮膜層が設けられている。この第四皮膜層の膜厚は0.01μm〜0.5μmに設定されている。尚、第四皮膜層として、Cr(クロム)を主成分とする窒化物若しくは炭窒化物を採用しても良い。この場合も膜厚は0.01μm〜0.5μmに設定すると良い。 A fourth coating layer made of a nitride or carbonitride containing Ti (titanium) as a main component is provided immediately above the base material. The film thickness of the fourth coating layer is set to 0.01 μm to 0.5 μm. Note that a nitride or carbonitride containing Cr (chromium) as a main component may be employed as the fourth coating layer. In this case, the film thickness is preferably set to 0.01 μm to 0.5 μm.
この第四皮膜層の上には、第三皮膜層が設けられている。この第三皮膜層の金属元素及び半金属元素は前記第二皮膜層の金属元素及び半金属元素と同一に設定されている。 A third coating layer is provided on the fourth coating layer. The metal element and metalloid element of the third film layer are set to be the same as the metal element and metalloid element of the second film layer.
本実施例においては、この第三皮膜層の上に前記第一皮膜層と第二皮膜層とを交互に積層して成る第一多層皮膜層が設けられている。尚、第一多層皮膜層はNaCl型結晶構造を有する構成としている。 In this embodiment, a first multilayer coating layer formed by alternately laminating the first coating layer and the second coating layer is provided on the third coating layer. The first multilayer coating layer has a NaCl type crystal structure.
この第一多層皮膜層の表層側には、第五皮膜層と第六皮膜層とを交互に各2層以上積層して成る第二多層皮膜層が設けられ、前記第五皮膜層の金属元素,半金属元素及び非金属元素は前記第一皮膜層の金属元素,半金属元素及び非金属元素と同一であり、前記第六皮膜層は金属元素及び半金属元素が原子%で、
Si(100−t)M(t)
ただし、0≦t≦30,Mは周期律表の4a,5a,6a,3b族のうちのいずれか1
種以上の元素
で表され、非金属元素としてN(窒素)を含むと共に、不可避不純物を含むものであり、前記第五皮膜層の膜厚は0.8nm〜40nmに設定され、前記第六皮膜層の膜厚は0.2nm〜4nmに設定され、更に、前記第五皮膜層が前記第六皮膜層の4倍以上の厚さとなるように前記第五皮膜層及び前記第六皮膜層の膜厚が設定されている。
On the surface layer side of the first multilayer coating layer, there is provided a second multilayer coating layer formed by alternately laminating two or more fifth coating layers and sixth coating layers, The metal element, the metalloid element, and the nonmetal element are the same as the metal element, the metalloid element, and the metalloid element of the first coating layer, and the sixth film layer is an atomic% of the metal element and the metalloid element,
Si (100-t) M (t)
However, 0 ≦ t ≦ 30, M is any one of groups 4a, 5a, 6a, and 3b of the periodic table.
It is represented by an element of a species or more, contains N (nitrogen) as a nonmetallic element, and contains inevitable impurities, and the film thickness of the fifth film layer is set to 0.8 nm to 40 nm, and the sixth film The film thickness of the layer is set to 0.2 nm to 4 nm, and further, the film of the fifth film layer and the sixth film layer so that the fifth film layer has a thickness four times or more that of the sixth film layer. The thickness is set.
上記構成を採用した理由及び上記構成による作用効果を以下に説明する。 The reason why the above configuration is adopted and the operation and effect of the above configuration will be described below.
第一多層皮膜層について、その皮膜構成を上述のように設定した理由を述べる。先ず、第一皮膜層の組成について述べる。本発明者等は、AlCrNに種々の第3元素を入れた皮膜について研究し、V(バナジウム)及びB(ボロン)を所定量含有させることで鉄鋼材料に対する耐摩耗性を向上できることを発見した。これは、皮膜の硬度と潤滑性が改善されたためと考えられる。 The reason for setting the coating configuration of the first multilayer coating layer as described above will be described. First, the composition of the first coating layer will be described. The inventors of the present invention have studied a film in which various third elements are added to AlCrN, and have found that the wear resistance of a steel material can be improved by containing a predetermined amount of V (vanadium) and B (boron). This is presumably because the hardness and lubricity of the film were improved.
具体的には、金属及び半金属のみの原子%でB量が5%に満たない場合その効果は小さいが、5%以上で硬度の向上効果が現れ、そして、B含有量が15%を超えると硬度の値はあまり変化しなくなることを確認した。また、BはAl(アルミニウム)やCrに比べて高価な元素であるので、皮膜硬度と経済性を考慮して、第一皮膜層の組成範囲として、金属及び半金属のみの原子%でB量が5%以上15%以下とした。 Specifically, the effect is small when the amount of B is less than 5% with atomic% of only metals and metalloids, but the effect of improving hardness appears at 5% or more, and the B content exceeds 15%. It was confirmed that the hardness value did not change much. In addition, since B is an element more expensive than Al (aluminum) or Cr, considering the film hardness and economy, the composition range of the first film layer is the amount of B in atomic% of only metal and metalloid. Of 5% or more and 15% or less.
また、Vは、その含有量を多くすると皮膜の潤滑性が向上する。具体的には、金属及び半金属のみの原子%でV量が2%に満たない場合その効果は小さいが、2%以上で潤滑性の向上効果が現れ、その皮膜を被覆した工具の鉄鋼材料に対する耐摩耗性が向上することを確認した。一方、V含有量を多くしすぎると皮膜の硬度が低下し、鉄鋼材料に対する耐摩耗性が低下してくることも確認した。また、VはAlやCrに比べて極めて高価な元素であるので、皮膜の潤滑性および硬度と経済性とを考慮して、第一皮膜層の組成範囲として、金属及び半金属のみの原子%でV量が2%以上15%以下とした。 Further, when the content of V is increased, the lubricity of the film is improved. Specifically, the effect is small when the amount of V is less than 2% with only atomic% of metal and metalloid, but the effect of improving lubricity appears at 2% or more, and the steel material of the tool coated with the film It has been confirmed that the wear resistance against is improved. On the other hand, it was also confirmed that if the V content is increased too much, the hardness of the film is lowered and the wear resistance against the steel material is lowered. Further, since V is an extremely expensive element compared to Al and Cr, the composition range of the first coating layer is considered to be atomic% of only metal and metalloid in consideration of the lubricity, hardness, and economy of the coating. Thus, the V amount is set to 2% to 15%.
第一皮膜層を基材直上に形成して切削工具を作成し、鉄鋼材料に対して切削テストを行ったところ、送り速度や切り込み深さの小さい仕上げ加工条件下ではAlCrN皮膜の場合に比べて摩耗の少ない良好な切削性能が得られるものの、送り速度や切り込み深さの大きい荒加工条件下では切れ刃に微小チッピングが生じる場合があることが判明した。これはBを含有させた効果により、皮膜の硬度は増大したものの皮膜の靭性がやや低下したためと考えられる。 A cutting tool was created by forming the first coating layer directly on the base material, and a cutting test was performed on the steel material. Compared to the case of the AlCrN coating under finishing conditions with a small feed rate and cutting depth. Although it was possible to obtain good cutting performance with little wear, it was found that fine chipping may occur on the cutting edge under roughing conditions with a large feed rate and cutting depth. This is considered to be because the toughness of the film was slightly lowered due to the effect of containing B, although the hardness of the film was increased.
そこで、第一皮膜層に比べてB含有量を5at%以上少なくして靭性の低下を抑えた第二皮膜層を設け、第一皮膜層と第二皮膜層を交互に各2層以上積層する(第一多層皮膜層)ことによって硬度と靭性を両立させることを考案した。第二皮膜層のV含有量は第一皮膜層と同じでも良いが、B含有量が少なくやや硬度が低くなっているため、硬度が低くなり過ぎないようV含有量を第一皮膜層より少なくすることが望ましい。 Therefore, a second coating layer is provided in which the B content is reduced by 5 at% or more compared with the first coating layer to suppress a decrease in toughness, and two or more layers of the first coating layer and the second coating layer are alternately laminated. It was devised to achieve both hardness and toughness by (first multilayer coating layer). The V content of the second coating layer may be the same as that of the first coating layer, but since the B content is small and the hardness is slightly low, the V content is less than that of the first coating layer so that the hardness does not become too low. It is desirable to do.
次に、第一多層皮膜層の結晶構造について述べる。種々の成膜条件で成膜して結晶構造と硬度を調べた結果、第一皮膜層及び第二皮膜層ともに、成膜条件によりNaCl型結晶構造を取る場合とウルツ鉱型結晶構造を取る場合があることがわかった。硬度を比較すると、後者の硬度が前者に比べて極端に低くなった。そのため、第一多層皮膜層の結晶構造をNaCl型結晶構造にすることが望ましい。 Next, the crystal structure of the first multilayer coating layer will be described. As a result of film formation under various film formation conditions and examining the crystal structure and hardness, both the first film layer and the second film layer have an NaCl type crystal structure and a wurtzite type crystal structure depending on the film formation conditions. I found out that Comparing the hardness, the latter hardness was extremely low compared to the former. Therefore, it is desirable that the crystal structure of the first multilayer coating layer be an NaCl type crystal structure.
第一皮膜層を基材直上に形成して作成した切削工具では、切削中に皮膜の微小剥離が生じる場合があることも判明した。そこで、基材直上に第二皮膜層と同一の元素成分で構成される第三皮膜層を形成し、その上に第一多層皮膜層を形成して切削工具を作成し、切削テストを行ったところ、切削中の皮膜の微小剥離が低減し、より安定した切削が可能になった。第一多層皮膜層と基材の間に第三皮膜層を形成することで膜剥離が低減した理由は、次のように説明できると考えられる。即ち、皮膜の厚さ方向では基材直上近傍の膜応力が最も大きくなりやすいことが知られているが、その部分の皮膜の靭性が低いと皮膜の微小破壊が生じやすくなり、それが膜剥離につながったものと考えられる。従って、基材直上に靭性のより高い第三皮膜層を形成することで、皮膜の微小破壊が生じにくくなり、膜剥離の低減につながったものと思われる。 It has also been found that in a cutting tool created by forming the first coating layer directly on the substrate, micro-peeling of the coating may occur during cutting. Therefore, a third coating layer composed of the same elemental components as the second coating layer is formed directly on the base material, and then a first multilayer coating layer is formed thereon to create a cutting tool, and a cutting test is performed. As a result, the minute peeling of the film during cutting was reduced, and more stable cutting was possible. The reason why the film peeling is reduced by forming the third coating layer between the first multilayer coating layer and the substrate can be explained as follows. In other words, it is known that in the thickness direction of the film, the film stress in the vicinity of the substrate is likely to be the largest, but if the toughness of the film at that part is low, the film is liable to break down, which causes film peeling. It is thought that it led to. Therefore, it seems that forming the third coating layer with higher toughness directly on the base material makes it difficult for microdestruction of the coating to occur, leading to a reduction in film peeling.
膜剥離や皮膜の微小破壊を低減するための別の方策として、基材との密着性に優れたTi系あるいはCr系の窒化物もしくは炭窒化物(第四皮膜層)を基材直上に形成させても良い。基材の直上に第四皮膜層を形成しその上に第一多層皮膜層を形成しても、膜剥離や皮膜の微小破壊が大幅に低減する。より好ましい皮膜構成は、基材の直上に第四皮膜層を形成し、その上に第三皮膜層を形成し、さらにその上に第一多層皮膜層を形成するのが良い。第四皮膜層の膜厚は、その上に第三皮膜層を形成する場合には比較的膜厚が薄くても基材との密着性向上の効果が現れるが、その場合でも0.01μm以上の厚さがあることが望ましい。また、第四皮膜層の目的は基材との密着性向上効果にあるので、膜厚を厚くしすぎる必要もなく、膜厚を0.5μm以下にすることが望ましい。 Forming Ti or Cr nitride or carbonitride (fourth coating layer) with excellent adhesion to the substrate directly on the substrate as another measure to reduce film peeling and coating microfracture You may let them. Even if the fourth coating layer is formed directly on the substrate and the first multilayer coating layer is formed on the fourth coating layer, film peeling and micro-destruction of the coating are greatly reduced. A more preferable film configuration is such that a fourth film layer is formed directly on the substrate, a third film layer is formed thereon, and a first multilayer film layer is further formed thereon. The film thickness of the fourth film layer is such that when the third film layer is formed thereon, the effect of improving the adhesion with the substrate appears even if the film thickness is relatively thin. It is desirable to have a thickness of In addition, since the purpose of the fourth coating layer is to improve the adhesion to the substrate, it is not necessary to make the film thickness too thick, and it is desirable to make the film thickness 0.5 μm or less.
次に第二多層皮膜層について述べる。本発明者等は、AlCrVBNの組織について研究し、Si(シリコン)系窒化物の極薄い皮膜(第六皮膜層)をAlCrVBNの皮膜(第五皮膜層)と積層することで、AlCrVBN皮膜の組織が柱状組織から50nm以下の微細結晶(NaCl型結晶構造)と非晶質部が混在した、所謂、ナノコンポジット組織に変化することを突き止めた。柱状組織からナノコンポジット組織に変化する理由については今後の研究が待たれるところであるが、Si系窒化物皮膜が非晶質化し易い物質であることから、薄いAlCrVBN膜(第五皮膜層)を極薄い非晶質皮膜(第六皮膜層)で挟むように積層することによって、AlCrVBN膜内のBNが非晶質化して、ナノコンポジット組織になったものと思われる。第六皮膜層はSiN膜でも良いが、DCタイプのアークイオンプレーティング法やスパッタリング法でSiN膜を成膜する場合Siターゲットを蒸発源として用いることになるが、Siターゲットの導電性が低いため安定的に成膜を続けることが比較的難しい。そこで、ターゲット材の導電率を上げて成膜の安定化を容易にするために、金属元素Mを少量添加しても良い。第六皮膜層の中で非晶質化し易いのはSiNなので、非晶質領域を多く確保するため、第六皮膜層の金属元素及び半金属元素に占めるMの割合は原子%で30%以下にすることが望ましい。元素Mの種類は周期律表の4a,5a,6a,3b族のうちの1種以上で、特に限定するものではないが、第五皮膜層に含まれるAl,Cr,V,Bの中の1種類若しくは2種類以上を元素Mとして採用しても良い。 Next, the second multilayer coating layer will be described. The present inventors have studied the structure of AlCrVBN, and by laminating a very thin film (sixth film layer) of Si (silicon) -based nitride with a film of AlCrVBN (fifth film layer), the structure of the AlCrVBN film Was found to change from a columnar structure to a so-called nanocomposite structure in which fine crystals of 50 nm or less (NaCl-type crystal structure) and amorphous portions were mixed. The reason for the change from the columnar structure to the nanocomposite structure is awaiting further research. However, since the Si-based nitride film is a substance that is easily amorphized, a thin AlCrVBN film (fifth film layer) is extremely used By laminating so as to be sandwiched between thin amorphous films (sixth film layers), it is considered that the BN in the AlCrVBN film has become amorphous and has a nanocomposite structure. The sixth coating layer may be a SiN film, but when a SiN film is formed by a DC type arc ion plating method or sputtering method, a Si target is used as an evaporation source, but the conductivity of the Si target is low. It is relatively difficult to continue film formation stably. Therefore, a small amount of the metal element M may be added in order to increase the conductivity of the target material and facilitate the stabilization of the film formation. Since SiN is likely to become amorphous in the sixth coating layer, the proportion of M in the metal elements and metalloid elements of the sixth coating layer is 30% or less in atomic% in order to secure a large number of amorphous regions. It is desirable to make it. The type of the element M is one or more of the groups 4a, 5a, 6a, and 3b in the periodic table, and is not particularly limited, but is included in Al, Cr, V, and B included in the fifth coating layer. One type or two or more types may be adopted as the element M.
また、皮膜結晶の大きさが微細化すると硬度が高くなることが知られている。同一成分の皮膜でも、柱状組織の皮膜よりもナノコンポジット組織の皮膜の方が高い硬度になる。第五皮膜層は厚すぎるとナノコンポジット組織に変化しづらくなるため、厚さを40nm以下にすることが望ましい。また、第六皮膜層は、薄すぎると第五皮膜層がナノコンポジット組織に変化しづらくなり、厚すぎると第二多層皮膜層が脆くなるため、厚さを4nm以下0.2nm以上にすることが望ましい。更に、第二多層皮膜層を積層構成にした目的がAlCrVBN皮膜をナノコンポジット組織にすることであるので、第二多層皮膜層内に占める第五皮膜層の体積割合が80%以上となるように、第五皮膜層は第六皮膜層より4倍以上の厚さとすることが望ましい。 In addition, it is known that the hardness increases as the size of the film crystal becomes finer. Even with a film of the same component, a film of a nanocomposite structure has a higher hardness than a film of a columnar structure. If the fifth coating layer is too thick, it is difficult to change into a nanocomposite structure, and thus it is desirable that the thickness be 40 nm or less. Further, if the sixth coating layer is too thin, the fifth coating layer is difficult to change into a nanocomposite structure, and if it is too thick, the second multilayer coating layer becomes brittle, so that the thickness is 4 nm or less and 0.2 nm or more. It is desirable. Furthermore, since the purpose of the laminated structure of the second multilayer coating layer is to make the AlCrVBN coating a nanocomposite structure, the volume ratio of the fifth coating layer in the second multilayer coating layer is 80% or more. Thus, it is desirable that the fifth coating layer has a thickness that is at least four times that of the sixth coating layer.
本実施例の硬質皮膜は鉄鋼材料用切削工具向けに発明されたものであるが、その基材としては、WCを主成分とする硬質粒子とCoを主成分とする結合材からなる超硬合金が、鉄鋼材料用切削工具として硬度と靭性のバランスが取れた材料であることから望ましい。WC粒子の平均粒径を小さくしすぎると、結合材中にWC粒子を均一に分散させることが難しくなり、超硬合金の抗折力低下を引き起こしやすい。一方、WC粒子を大きくしすぎると超硬合金の硬度が低下する。また、Co含有量を少なくしすぎると超硬合金の抗折力が低下し、逆にCo含有量を多くしすぎると超硬合金の硬度が低下する。そのため、WC粒子の平均粒径が0.1μm〜2μmであり、Co含有量が重量%で5〜15%の超硬合金を基材とすることが望ましい。 The hard coating of this example was invented for a cutting tool for steel materials, and the base material thereof is a cemented carbide alloy composed of hard particles mainly composed of WC and a binder mainly composed of Co. However, it is desirable because it is a material having a balance between hardness and toughness as a cutting tool for steel materials. If the average particle size of the WC particles is too small, it will be difficult to uniformly disperse the WC particles in the binder, which tends to cause a reduction in the bending strength of the cemented carbide. On the other hand, if the WC particles are too large, the hardness of the cemented carbide decreases. Further, if the Co content is too small, the bending strength of the cemented carbide decreases, and conversely if the Co content is excessively increased, the hardness of the cemented carbide decreases. Therefore, it is desirable to use a cemented carbide having a mean particle size of WC particles of 0.1 μm to 2 μm and a Co content of 5 to 15% by weight as a base material.
本実施例は上述のように構成したから、Vが添加されることで潤滑性が向上することになり、また、Bが添加されることで硬度が向上することになる。よって、従来のAlCrN系皮膜より潤滑性及び硬度を向上させることが可能となる。 Since the present embodiment is configured as described above, the lubricity is improved by adding V, and the hardness is improved by adding B. Therefore, it becomes possible to improve lubricity and hardness compared with the conventional AlCrN-based film.
ここで、Bを含有させると皮膜の硬度が増大する一方、靱性がやや低下してしまうが、本発明においては、第一皮膜層に比べてB含有量を5at%(原子%)以上少なくして靭性の低下を抑えた第二皮膜層を第一皮膜層と交互に積層することで、硬度と靭性を両立させている。即ち、B含有量が多い第一皮膜層が主に硬度の向上作用を担い、この第一皮膜層間のB含有量の少ない第二皮膜層が主に靱性の向上作用を担うことで、硬く且つ粘り強い皮膜となり、それだけチッピングの生じ難い耐摩耗性に秀れたものとなる。 Here, when B is contained, the hardness of the film increases, but the toughness slightly decreases. However, in the present invention, the B content is reduced by 5 at% (atomic%) or more compared to the first film layer. In addition, the second coating layer that suppresses the decrease in toughness is laminated alternately with the first coating layer, thereby achieving both hardness and toughness. That is, the first coating layer having a large B content is mainly responsible for improving the hardness, and the second coating layer having a small B content between the first coating layers is mainly responsible for improving the toughness. It becomes a tenacious film, and it is excellent in wear resistance that hardly causes chipping.
また、第二皮膜層のV含有量は第一皮膜層と同じでも良いが、B含有量が少なくやや硬度が低くなっているため、硬度が低くなり過ぎないようにV含有量を第一皮膜層より少なくすることが望ましい。 The V content of the second coating layer may be the same as that of the first coating layer, but since the B content is low and the hardness is slightly low, the V content is set so that the hardness does not become too low. It is desirable to have fewer layers.
特に、本実施例は、基材上に、第四皮膜層、第三皮膜層、第一多層皮膜層、第二多層皮膜層を順次積層し、第一多層皮膜層の基材側及び表層側に夫々更に所定の特性を有する皮膜層を設けている。即ち、膜応力が大きくなる皮膜の基材側に靱性に秀れた皮膜層を配すると共に、被切削物と接触する表層側に硬度に秀れた皮膜層を配することで、皮膜が基材から剥離し難く且つ表層が摩耗し難くなり、極めてチッピングが生じ難いものとなる。 In particular, in this example, a fourth coating layer, a third coating layer, a first multilayer coating layer, and a second multilayer coating layer are sequentially laminated on the substrate, and the substrate side of the first multilayer coating layer is A coating layer having predetermined characteristics is further provided on the surface layer side. In other words, a coating layer having excellent toughness is disposed on the base material side of the coating film where the film stress is increased, and a coating layer having excellent hardness is disposed on the surface layer side in contact with the work to be cut. It is difficult to peel off from the material and the surface layer is difficult to wear, and chipping is extremely difficult to occur.
従って、本実施例は、AlCrN皮膜に対してVとBを添加することで皮膜の硬度と潤滑性を向上させるとともに、積層の仕方を工夫して高い硬度と潤滑性を維持しながら高い靭性を確保でき、鉄鋼材料に対する耐摩耗性を向上させた秀れた性能を発揮する切削工具用硬質皮膜となる。 Therefore, this example improves the hardness and lubricity of the film by adding V and B to the AlCrN film, and improves the toughness while maintaining high hardness and lubricity by devising the way of lamination. It is a hard coating for cutting tools that can be secured and exhibits excellent performance with improved wear resistance to steel materials.
以下、本実施例の効果を裏付ける実験例について説明する。 Hereinafter, experimental examples supporting the effects of the present embodiment will be described.
実験では、成膜装置としてアーク放電式イオンプレーティング蒸発源とスパッタリング蒸発源をそれぞれ2つずつ持つ複合型成膜装置を用いた。アーク放電式イオンプレーティング蒸発源(蒸発源A)、スパッタリング蒸発源(蒸発源B)、アーク放電式イオンプレーティング蒸発源(蒸発源C)、スパッタリング蒸発源(蒸発源D)の順に4つの蒸発源が90度の間隔を置いて装置内のサイドに配置されている。装置内の中央部に回転ステージがあり、そこに成膜基材をセットしバイアス電圧を加えながら回転させる。金属及び半金属成分の蒸発源として各種組成のターゲットを成膜装置内に取り付け、また、反応ガスとしてN2ガス,CH4ガス,Arガスのうち少なくとも1種類を成膜装置内に導入して、成膜基材としての超硬合金製2枚刃ボールエンドミル(外径2mm)に所定の皮膜を成膜した。第四皮膜層の成膜には蒸発源D(スパッタリング蒸発源)を用い、第三皮膜層と第一多層皮膜層の成膜には蒸発源Aと蒸発源C(アーク放電式イオンプレーティング蒸発源)を用い、第二多層皮膜層の成膜には蒸発源A(アーク放電式イオンプレーティング蒸発源)と蒸発源B(スパッタリング蒸発源)を用いた。第四皮膜層と第二多層皮膜層の成膜時にはArガスをガス流量全体の1/2の割合で成膜装置内に導入し、第三皮膜層と第一多層皮膜層の成膜時にはArガスを導入しなかった。また、アーク放電電流を100A、スパッタリング電力を1.5kWとして成膜を行った。基材の超硬合金はWCを主成分とする硬質粒子とCoを主成分とする結合材からなり、WC粒子の平均粒径が1μm、Co含有量が8重量%のものを使用した。成膜に当たっては、全皮膜の膜厚が2.0〜2.8μmになるようにして、第四皮膜層,第三皮膜層,第一多層皮膜層,第二多層皮膜層の順番で基材エンドミルに成膜した。所定の皮膜を被覆したエンドミルを用いて次の切削条件で切削試験を行い、エンドミル逃げ面の摩耗幅を測定した。 In the experiment, a composite film forming apparatus having two arc discharge ion plating evaporation sources and two sputtering evaporation sources was used as the film forming apparatus. Four evaporations in the order of arc discharge ion plating evaporation source (evaporation source A), sputtering evaporation source (evaporation source B), arc discharge ion plating evaporation source (evaporation source C), and sputtering evaporation source (evaporation source D). Sources are located on the sides in the device at 90 degree intervals. There is a rotating stage in the center of the apparatus, and a film forming substrate is set on the rotating stage and rotated while applying a bias voltage. A target having various compositions is attached in the film forming apparatus as an evaporation source of metal and metalloid components, and at least one of N 2 gas, CH 4 gas, and Ar gas is introduced into the film forming apparatus as a reactive gas. Then, a predetermined film was formed on a cemented carbide two-blade ball end mill (outer diameter: 2 mm) as a film forming substrate. Evaporation source D (sputtering evaporation source) is used to form the fourth coating layer, and evaporation source A and evaporation source C (arc discharge ion plating) are used to form the third coating layer and the first multilayer coating layer. The evaporation source A (arc discharge ion plating evaporation source) and the evaporation source B (sputtering evaporation source) were used for forming the second multilayer coating layer. Ar gas is introduced into the film forming apparatus at a ratio of 1/2 of the total gas flow rate when forming the fourth coating layer and the second multilayer coating layer, thereby forming the third coating layer and the first multilayer coating layer. Sometimes Ar gas was not introduced. The film was formed with an arc discharge current of 100 A and a sputtering power of 1.5 kW. The base cemented carbide was composed of hard particles mainly composed of WC and a binder mainly composed of Co. The WC particles had an average particle diameter of 1 μm and a Co content of 8% by weight. In film formation, the total film thickness should be 2.0 to 2.8 μm in the order of the fourth film layer, the third film layer, the first multilayer film layer, and the second multilayer film layer. A film was formed on a substrate end mill. A cutting test was performed under the following cutting conditions using an end mill coated with a predetermined film, and the wear width of the end mill flank was measured.
切削試験では、被削材をSKD61焼入れ材(52HRC)とし、湿式条件下で切削を行った。外径2mmのエンドミルを24600min−1の速度で回転させ、送り速度1480mm/min,切り込み量Ad=0.16mm,Pf=0.7mmとし、水溶性切削油をクーラントとして試験を行った。切削試験の結果を表1に示す。 In the cutting test, the work material was SKD61 hardened material (52HRC), and cutting was performed under wet conditions. An end mill having an outer diameter of 2 mm was rotated at a speed of 24600 min −1 , a feed rate of 1480 mm / min, a cutting amount Ad = 0.16 mm, Pf = 0.7 mm, and a test was performed using water-soluble cutting oil as a coolant. The results of the cutting test are shown in Table 1.
尚、No.1の第四皮膜層(TiCN)及びNo.20の第三皮膜層(TiCN)は、基材直上部のC量を0、即ちTiNとし、表層部に向けて徐々にC量を増やしながら成膜した。また、No.11の第四皮膜層(CrCN)は、基材直上部のC量を0、即ちCrNとし、表層部に向けて徐々にC量を増やしながら成膜した。 No. No. 1 fourth coating layer (TiCN) and No. 1 The 20th third coating layer (TiCN) was formed while the C amount immediately above the base material was 0, that is, TiN, and the C amount was gradually increased toward the surface layer portion. No. The fourth coating layer (CrCN) No. 11 was formed while the C amount immediately above the base material was 0, that is, CrN, and the C amount was gradually increased toward the surface layer portion.
表1では本実施例とともに、従来の硬質皮膜や本発明の範囲外の硬質皮膜を実施例と同様な手段で被覆したエンドミルで切削試験を行った結果を比較例として記載している。 Table 1 shows, as a comparative example, the results of a cutting test with an end mill in which a conventional hard coating or a hard coating outside the scope of the present invention is coated by the same means as in the present embodiment.
表1から、本実施例は比較例に比べてエンドミル逃げ面摩耗幅の低減、即ち、耐摩耗性の向上が認められる。 From Table 1, it can be seen that the end mill flank wear width is reduced, that is, the wear resistance is improved, in this embodiment as compared with the comparative example.
Claims (6)
Al(100−x−y−z)Cr(x)V(y)B(z)
ただし、20≦x≦40,2≦y≦15,5≦z≦15
で表され、非金属元素としてNを含むと共に、不可避不純物を含むものであり、前記第二皮膜層は金属及び半金属成分が原子%で、
Al(100−u−v−w)Cr(u)V(v)B(w)
ただし、20≦u≦40,0≦v≦5,0≦w≦5
で表され、非金属元素としてNを含むと共に、不可避不純物を含むものであり、前記第一皮膜層のVの含有割合yと前記第二皮膜層のVの含有割合vとがy≧vの関係を満たし、更に、前記第一皮膜層のBの含有割合zと前記第二皮膜層のBの含有割合wとがz−5≧wの関係を満たすものであり、
前記第一多層皮膜層の表層側には、第五皮膜層と第六皮膜層とを交互に各2層以上積層して成る第二多層皮膜層が設けられ、前記第五皮膜層の金属元素,半金属元素及び非金属元素は前記第一皮膜層の金属元素,半金属元素及び非金属元素と同一であり、前記第六皮膜層は金属元素及び半金属元素が原子%で、
Si (100−t) M (t)
ただし、0≦t≦30,Mは周期律表の4a,5a,6a,3b族のうちのいずれか1
種以上の元素
で表され、非金属元素としてNを含むと共に、不可避不純物を含むものであり、前記第五皮膜層の膜厚は40nm以下に設定され、前記第六皮膜層の膜厚は0.2nm〜4nmに設定され、更に、前記第五皮膜層が前記第六皮膜層の4倍以上の厚さとなるように前記第五皮膜層及び前記第六皮膜層の膜厚が設定されていることを特徴とする切削工具用硬質皮膜。 A hard coating for a cutting tool formed on a base material for a cutting tool, wherein the hard coating is a first multi-layer coating in which two or more first coating layers and second coating layers are alternately laminated. The first coating layer is atomic% metal and metalloid components,
Al (100-x-yz) Cr (x) V (y) B (z)
However, 20 ≦ x ≦ 40, 2 ≦ y ≦ 15, 5 ≦ z ≦ 15
In addition to N as a non-metallic element and unavoidable impurities, the second coating layer has an atomic% metal and metalloid component,
Al (100-u-v-w) Cr (u) V (v) B (w)
However, 20 ≦ u ≦ 40, 0 ≦ v ≦ 5, 0 ≦ w ≦ 5
The non-metallic element contains N as well as an inevitable impurity, and the content ratio y of V in the first film layer and the content ratio v of V in the second film layer satisfy y ≧ v. Satisfying the relationship, and further, the content ratio z of B in the first coating layer and the content ratio w of B in the second coating layer satisfy the relationship of z-5 ≧ w ,
On the surface layer side of the first multilayer coating layer, there is provided a second multilayer coating layer formed by alternately laminating two or more fifth coating layers and sixth coating layers, The metal element, the metalloid element, and the nonmetal element are the same as the metal element, the metalloid element, and the metalloid element of the first coating layer, and the sixth film layer is an atomic% of the metal element and the metalloid element,
Si (100-t) M (t)
However, 0 ≦ t ≦ 30, M is any one of groups 4a, 5a, 6a, and 3b of the periodic table.
More than species
In addition to containing N as a non-metallic element and unavoidable impurities, the thickness of the fifth coating layer is set to 40 nm or less, and the thickness of the sixth coating layer is 0.2 nm to 4 nm. And the film thickness of the fifth film layer and the sixth film layer is set so that the fifth film layer has a thickness four times or more that of the sixth film layer. Hard coating for cutting tools.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007225987A JP4413958B2 (en) | 2007-08-31 | 2007-08-31 | Hard coating for cutting tools |
EP20080014911 EP2031090B1 (en) | 2007-08-31 | 2008-08-22 | Hard covering film for cutting tool |
CN 200810212695 CN101376178B (en) | 2007-08-31 | 2008-08-29 | Hard film for cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007225987A JP4413958B2 (en) | 2007-08-31 | 2007-08-31 | Hard coating for cutting tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009056549A JP2009056549A (en) | 2009-03-19 |
JP4413958B2 true JP4413958B2 (en) | 2010-02-10 |
Family
ID=39800557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007225987A Active JP4413958B2 (en) | 2007-08-31 | 2007-08-31 | Hard coating for cutting tools |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2031090B1 (en) |
JP (1) | JP4413958B2 (en) |
CN (1) | CN101376178B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5422651B2 (en) * | 2009-06-26 | 2014-02-19 | オーエスジー株式会社 | Hard coating and hard coating tool |
JP5010707B2 (en) * | 2010-04-13 | 2012-08-29 | ユニオンツール株式会社 | Hard coating for cutting tools |
CN102443772A (en) * | 2010-09-30 | 2012-05-09 | 鸿富锦精密工业(深圳)有限公司 | Coated part and preparation method thereof |
WO2013047548A1 (en) | 2011-09-28 | 2013-04-04 | 日立ツール株式会社 | Covering member with excellent sliding properties |
EP2839051B1 (en) * | 2012-04-16 | 2018-09-26 | Oerlikon Surface Solutions AG, Pfäffikon | High performance tools exhibiting reduced crater wear in particular by dry machining operations |
CN107779862A (en) * | 2017-11-09 | 2018-03-09 | 贵州西南工具(集团)有限公司 | A kind of preparation technology of laser melting coating AlCrN composite coating hard alloy milling cutters |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59101759A (en) | 1982-12-02 | 1984-06-12 | Matsushita Electronics Corp | High pressure sodium lamp |
JPS6256565A (en) | 1985-09-06 | 1987-03-12 | Mitsubishi Metal Corp | Surface coated hard member having superior wear resistance |
JPH02194159A (en) | 1988-03-24 | 1990-07-31 | Kobe Steel Ltd | Formation of wear resistant coating film |
JP4062583B2 (en) * | 2001-07-23 | 2008-03-19 | 株式会社神戸製鋼所 | Hard coating for cutting tool, method for producing the same, and target for forming hard coating |
DE10262174B4 (en) * | 2001-07-23 | 2007-03-15 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe | Hard wear-resistant layer, method of forming same and use |
US7195817B2 (en) * | 2003-09-29 | 2007-03-27 | General Motors Corporation | Diamond coated article and method of its production |
CN100419117C (en) * | 2004-02-02 | 2008-09-17 | 株式会社神户制钢所 | Hard laminated film, method of manufacturing the same and film-forming device |
SE528108C2 (en) * | 2004-07-13 | 2006-09-05 | Sandvik Intellectual Property | Coated cemented carbide inserts, especially for turning steel, and ways of manufacturing the same |
JP2006082207A (en) * | 2004-09-17 | 2006-03-30 | Sumitomo Electric Hardmetal Corp | Surface coated cutting tool |
JP2006334738A (en) * | 2005-06-03 | 2006-12-14 | Mitsubishi Materials Corp | Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting of heat resistant alloy |
-
2007
- 2007-08-31 JP JP2007225987A patent/JP4413958B2/en active Active
-
2008
- 2008-08-22 EP EP20080014911 patent/EP2031090B1/en active Active
- 2008-08-29 CN CN 200810212695 patent/CN101376178B/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP2031090B1 (en) | 2011-08-17 |
EP2031090A2 (en) | 2009-03-04 |
CN101376178B (en) | 2012-09-05 |
CN101376178A (en) | 2009-03-04 |
JP2009056549A (en) | 2009-03-19 |
EP2031090A3 (en) | 2010-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3934136B2 (en) | Hard film coating member and coating method thereof | |
JP4373897B2 (en) | Hard film coating member and coating method thereof | |
JP4714186B2 (en) | Coated cutting tool | |
JP4440980B2 (en) | Hard coating for cutting tools | |
JP5010707B2 (en) | Hard coating for cutting tools | |
JP4441494B2 (en) | Hard coating coated member | |
KR20140047688A (en) | Nano-layer coating for high performance tools | |
JP4413958B2 (en) | Hard coating for cutting tools | |
WO2014132512A1 (en) | Cutting tool | |
JP2007260851A (en) | Surface coated cutting tool | |
WO2015199102A1 (en) | Laminated hard film and cutting tool | |
JP5395454B2 (en) | Surface coated cutting tool | |
JP3963354B2 (en) | Coated cutting tool | |
JP3394021B2 (en) | Coated cutting tool | |
CN112368094A (en) | Surface-coated cutting tool and method for manufacturing same | |
WO2013150603A1 (en) | Hard coating film for cutting tool and cutting tool coated with hard coating film | |
JP4707541B2 (en) | Hard coating coated member | |
WO2015133256A1 (en) | Hard film and method for forming same, and die for use in hot forming of steel sheet | |
JP3454428B2 (en) | Wear-resistant film-coated tools | |
JP5087427B2 (en) | Hard coating for cutting tools | |
JP3586217B2 (en) | Wear-resistant film-coated tools | |
JP6273161B2 (en) | Laminated coating with excellent wear resistance | |
JP2004136430A (en) | Coated tool | |
WO2014115846A1 (en) | Laminated coating film having excellent abrasion resistance | |
JP4459936B2 (en) | Hard coating for cutting tools |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091029 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091118 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4413958 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131127 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |