[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4413603B2 - Magnetic storage device and magnetic information writing method - Google Patents

Magnetic storage device and magnetic information writing method Download PDF

Info

Publication number
JP4413603B2
JP4413603B2 JP2003426765A JP2003426765A JP4413603B2 JP 4413603 B2 JP4413603 B2 JP 4413603B2 JP 2003426765 A JP2003426765 A JP 2003426765A JP 2003426765 A JP2003426765 A JP 2003426765A JP 4413603 B2 JP4413603 B2 JP 4413603B2
Authority
JP
Japan
Prior art keywords
magnetization
layer
pair
fixed
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003426765A
Other languages
Japanese (ja)
Other versions
JP2005191032A (en
Inventor
利江 佐藤
公一 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003426765A priority Critical patent/JP4413603B2/en
Publication of JP2005191032A publication Critical patent/JP2005191032A/en
Application granted granted Critical
Publication of JP4413603B2 publication Critical patent/JP4413603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Description

本発明は、面内への電流通電により磁化自由層の磁化方向を反転させる磁気記憶装置とその磁気情報の書込み方法に関する。   The present invention relates to a magnetic memory device for reversing the magnetization direction of a magnetization free layer by energizing a current in the plane and a method for writing magnetic information therefor.

近年、記憶情報を保持するための電力が不要であり、実質的に無限回の書き換えが可能な磁気ランダムアクセスメモリ(MRAM)の開発が始められている。   In recent years, development of a magnetic random access memory (MRAM) has been started that does not require power for holding stored information and can be rewritten virtually infinitely.

MRAMのメモリセルには、トンネル磁気抵抗効果素子(TMR素子)が使われる。このTMR素子へ磁気情報を書込む方法には、電流磁界方式とスピン注入方式がある。電流磁界方式では、メモリセル近傍に設けられた、互いに直交するワード線とビット線に電流を流し、この電流によって発生する磁界によりTMR素子の磁性層の磁化を反転させ、記憶させる。この方式の最大の課題は、メモリセル当たりの書込み電流が大きいことである。書込み電流が大きいと、エレクトロマイグレーションにより配線が断線したり、電流駆動回路の面積が増大してチップ面積が大きくなる等の恐れがある。   A tunnel magnetoresistive element (TMR element) is used for an MRAM memory cell. Methods for writing magnetic information to the TMR element include a current magnetic field method and a spin injection method. In the current magnetic field method, current is passed through word lines and bit lines provided in the vicinity of a memory cell, and the magnetization of the magnetic layer of the TMR element is reversed and stored by a magnetic field generated by the current. The biggest problem with this method is that the write current per memory cell is large. If the write current is large, the wiring may be disconnected due to electromigration, or the area of the current drive circuit may increase and the chip area may increase.

そこで、配線層が作る磁界を有効活用する技術として、TMR素子と書込み用ワード線の距離を短縮したり、書込みに使う配線を高透磁率の強磁性薄膜で被覆した磁束集中構造を用いる手法が開発されている。   Therefore, as a technique for effectively utilizing the magnetic field generated by the wiring layer, there is a method of shortening the distance between the TMR element and the writing word line or using a magnetic flux concentration structure in which the wiring used for writing is covered with a high-permeability ferromagnetic thin film. Has been developed.

しかし、電流磁界方式では、高密度化のために素子を微細化するに伴い、メモリセルの書込みに要する電流値が急激に大きくなるという問題がある。また、隣接セル間の距離が短くなるため磁界によりクロストークが発生するという問題も起きる。   However, the current magnetic field method has a problem that the current value required for writing to the memory cell rapidly increases as the element is miniaturized for higher density. In addition, since the distance between adjacent cells is shortened, there is a problem that crosstalk occurs due to a magnetic field.

そこで、このようなクロストークの問題が起きず、メモリセルを微細化しても書込み電流が増大しないスピン注入方式によるメモリセル書き換え技術が研究されている。スピン注入方式とは、素子に流した電流によって、磁性層の磁化を反転させる手法である(トンネル絶縁層ではなく金属スペーサを用いたGMR素子について、非特許文献1参照)。   Therefore, a memory cell rewriting technique based on a spin injection method in which such a crosstalk problem does not occur and the write current does not increase even if the memory cell is miniaturized has been studied. The spin injection method is a method of reversing the magnetization of a magnetic layer by a current passed through the element (refer to Non-Patent Document 1 for a GMR element using a metal spacer instead of a tunnel insulating layer).

スピン注入方式で磁化反転を起こすためには一定の電流密度が必要であり、素子を微細にするほど書込み電流を減らすことができる。そのため、周辺回路面積を小さくでき、微細化によってコストを削減することができる。しかし、磁化反転に必要な程度の電流密度ではTMR素子のトンネルバリア層(トンネル絶縁層)やメモリセルの分離選択用トランジスタが破壊される恐れがある。よって、磁化反転に要する電流密度を現状の約5×107A/cm2から1桁以上下げることが望まれる。
Phys. Rev. Lett. Vol. 84, No. 14, pp 3149-3152 (2000).
In order to cause magnetization reversal by the spin injection method, a constant current density is required, and the write current can be reduced as the element becomes finer. Therefore, the peripheral circuit area can be reduced, and the cost can be reduced by miniaturization. However, at a current density required for magnetization reversal, the tunnel barrier layer (tunnel insulating layer) of the TMR element and the memory cell isolation selection transistor may be destroyed. Therefore, it is desirable to reduce the current density required for magnetization reversal by one digit or more from the current level of about 5 × 10 7 A / cm 2 .
Phys. Rev. Lett. Vol. 84, No. 14, pp 3149-3152 (2000).

MRAMは記憶保持に電力を必要とせず、かつ無限回の書き換えが可能であるという優れた特性をもっている。しかし、従来のスピン注入方式では磁化反転に要する電流密度により、トンネル絶縁層や分離選択用トランジスタが破壊される恐れがある。   The MRAM has an excellent characteristic that it does not require electric power for storing and can be rewritten infinitely. However, in the conventional spin injection method, the tunnel insulating layer and the isolation selection transistor may be destroyed due to the current density required for magnetization reversal.

本発明は、小電流による書込みが可能な磁気記憶装置を提供することを課題の一つとする。   An object of the present invention is to provide a magnetic memory device capable of writing with a small current.

本発明の第一は、固定磁化が付与された導電性の磁化固定層と、磁化固定層に積層形成されたトンネル絶縁層と、トンネル絶縁層を介して磁化固定層と積層形成された接合部、接合部の一対の端部に隣接形成された磁壁ピン止め部、及び、磁壁ピン止め部に隣接する互いに反対向きの固定磁化が付与された一対の磁化固定部を具備する導電性の磁化自由層と、一対の磁化固定部に電気接続し、接合部、一対の磁壁ピン止め部及び一対の磁化固定部を貫通する電流を磁化自由層に流すための一対の磁気情報書込み用端子とを備えることを特徴とする磁気記憶装置を提供する。   The first aspect of the present invention is a conductive magnetization fixed layer provided with fixed magnetization, a tunnel insulating layer stacked on the magnetization fixed layer, and a junction formed on the magnetization fixed layer via the tunnel insulating layer. Conductive magnetization free comprising a domain wall pinning portion formed adjacent to a pair of end portions of a joint portion and a pair of magnetization fixed portions provided with opposite fixed magnetizations adjacent to the domain wall pinning portion A layer, and a pair of magnetic information writing terminals that are electrically connected to the pair of magnetization fixed portions and flow a current passing through the bonding portion, the pair of domain wall pinning portions, and the pair of magnetization fixed portions to the magnetization free layer. A magnetic storage device is provided.

また、本発明の第二は、磁化が固定された磁化固定層と、前記磁化固定層に積層されたトンネル絶縁層と、前記トンネル絶縁層を介して前記磁化固定層と積層形成された接合部、前記接合部の一対の端部に隣接形成された磁壁ピン止め部、及び、前記磁壁ピン止め部に隣接する互いに反対向きの固定磁化が付与された一対の磁化固定部を具備する導電性の磁化自由層と、前記一対の磁化固定部に電気接続し、前記磁化自由層の前記接合部、前記一対の磁壁ピン止め部及び前記一対の磁化固定部を貫通する電流を磁化自由層に流すための一対の磁気情報書込み用端子とを備える磁気抵抗効果素子に対し、前記磁化自由層内のみに電流を流して前記磁化自由層の磁化の向きを反転させることを特徴とする磁気情報の書込み方法を提供する。 The second aspect of the present invention is a magnetization fixed layer in which magnetization is fixed, a tunnel insulating layer stacked on the magnetization fixed layer, and a junction formed by stacking on the magnetization fixed layer via the tunnel insulating layer. A magnetic domain wall pinning portion formed adjacent to the pair of end portions of the joint, and a pair of magnetization fixed portions provided with fixed magnetizations in opposite directions adjacent to the domain wall pinning portion. To electrically connect the magnetization free layer and the pair of magnetization fixed portions, and to pass a current passing through the junction portion, the pair of domain wall pinning portions, and the pair of magnetization fixed portions of the magnetization free layer to the magnetization free layer Magnetic information writing method, comprising: a magnetoresistive effect element including a pair of magnetic information writing terminals, wherein a current flows only in the magnetization free layer to reverse the magnetization direction of the magnetization free layer. I will provide a.

本発明によれば、小さい電流で磁化自由層の磁化を反転させることができるため、低電流による書込みが可能となる。また、本発明によれば、高い集積度でありながらクロストークの少ない磁気記憶装置と磁化反転方法を提供することが可能となる。   According to the present invention, since the magnetization of the magnetization free layer can be reversed with a small current, writing with a low current is possible. In addition, according to the present invention, it is possible to provide a magnetic storage device and a magnetization reversal method that have a high degree of integration and a low crosstalk.

以下に、本発明の各実施の形態について図面を参照しながら説明する。尚、実施の形態や実施例を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、参照する各図は発明の説明とその理解を促すための模式図であり、図面表示の便宜上、形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
(第1の実施の形態)
本発明の磁気記憶装置と磁気情報の書込み方法に関わる第1の実施形態について、図1のメモリセル回路図(但し、TMR素子のみ断面模式図)を参照しつつ説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to a common structure through embodiment and an Example, and the overlapping description is abbreviate | omitted. In addition, each of the drawings to be referred to is a schematic diagram for promoting explanation and understanding of the invention, and for convenience of display of the drawing, there are places where shapes, dimensions, ratios, and the like are different from the actual device. The design can be changed as appropriate in consideration of known techniques.
(First embodiment)
A first embodiment relating to a magnetic memory device and a magnetic information writing method of the present invention will be described with reference to the memory cell circuit diagram of FIG. 1 (however, only a cross-sectional schematic diagram of a TMR element).

磁気記憶装置のメモリセルパターンには様々な形態があるが、一般には、基板上に複数のメモリセルを縦横に配列したパターンが知られている。このパターンでは、例えば、縦方向に隣り合うメモリセル同士は同じワード線を共有し、横方向に隣り合うメモリセル同士はビット線を共有する。本実施の形態ではこのパターンを前提に説明するが、その他のメモリセルパターンについても本発明の磁気記憶装置と磁気情報の書込み方法を適用することができる。   There are various types of memory cell patterns of the magnetic storage device. Generally, a pattern in which a plurality of memory cells are arranged vertically and horizontally on a substrate is known. In this pattern, for example, memory cells adjacent in the vertical direction share the same word line, and memory cells adjacent in the horizontal direction share the bit line. Although the present embodiment will be described on the assumption of this pattern, the magnetic memory device and the magnetic information writing method of the present invention can be applied to other memory cell patterns.

一つのメモリセルは、MIS(金属―絶縁体―半導体)型の電界効果トランジスタ(FET)1とTMR素子3の組み合わせを備える。FET1のゲート電極はワード線5に接続され、ワード線5によって制御される。つまり、このメモリセルに磁気情報を書込み、もしくは読み出す際には、ワード線からゲート電極にオン電圧が印加され、FET1のソース・ドレイン電極間は導通状態(オン状態)となる。   One memory cell includes a combination of a MIS (metal-insulator-semiconductor) type field effect transistor (FET) 1 and a TMR element 3. The gate electrode of the FET 1 is connected to the word line 5 and controlled by the word line 5. That is, when magnetic information is written to or read from the memory cell, an ON voltage is applied from the word line to the gate electrode, and the FET 1 has a conductive state (ON state) between the source and drain electrodes.

FET1のソース・ドレイン電極の一方はプレート電極に接続され、他方のソース・ドレイン電極はTMR素子3に接続されているため、FET1がオン状態になるとプレート電極とTMR素子3間が導通状態となる。この導通状態においてTMR素子3のトンネル接合抵抗値を測定することができる。   Since one of the source / drain electrodes of the FET 1 is connected to the plate electrode and the other source / drain electrode is connected to the TMR element 3, the conduction between the plate electrode and the TMR element 3 is established when the FET 1 is turned on. . In this conducting state, the tunnel junction resistance value of the TMR element 3 can be measured.

TMR素子3は、磁化固定層31、磁化自由層35、及び両層の間に形成されたトンネル絶縁層33を備える。磁化固定層31にはビット線(読出し)7が接続されている。プレート電極とTMR素子3が導通状態になると、ビット線7を介してTMR素子3の抵抗
値を測定することができ、その磁気記憶情報を読み出すことができる。このトンネル接合抵抗値の測定は、ビット線7の端部に接続されたセンス回路によって行う。このセンス回路によってトンネル接合抵抗値の大小を読出すことで、TMR素子3が記憶している"1"もしくは"0"の磁気記憶情報を判定することができる。
The TMR element 3 includes a magnetization fixed layer 31, a magnetization free layer 35, and a tunnel insulating layer 33 formed between both layers. A bit line (readout) 7 is connected to the magnetization fixed layer 31. When the plate electrode and the TMR element 3 become conductive, the resistance value of the TMR element 3 can be measured via the bit line 7 and the magnetic storage information can be read out. The tunnel junction resistance value is measured by a sense circuit connected to the end of the bit line 7. By reading the magnitude of the tunnel junction resistance value by this sense circuit, the magnetic storage information “1” or “0” stored in the TMR element 3 can be determined.

磁化自由層35の他端にはビット線(書込み)9の端子が接続され、このビット線9を用いて磁化自由層35へ磁気情報を書込むことができる。磁気記憶情報の書込み方法については、後述する。   A terminal of a bit line (write) 9 is connected to the other end of the magnetization free layer 35, and magnetic information can be written into the magnetization free layer 35 using this bit line 9. A method for writing the magnetic storage information will be described later.

次に、本実施の形態における磁化自由層35の構造について、図2の上面模式図を用いて説明する。   Next, the structure of the magnetization free layer 35 in the present embodiment will be described with reference to the schematic top view of FIG.

磁化自由層35は一体の強磁性層からなり、この強磁性層はトンネル接合部351と一対の磁壁ピン止め部353と一対の磁化固定領域357とに分けられる。図2では、トンネル接合部351と磁壁ピン止め部353との境界、磁壁ピン止め部353と磁化固定領域357との境界を点線で示した。   The magnetization free layer 35 is composed of an integral ferromagnetic layer, and this ferromagnetic layer is divided into a tunnel junction 351, a pair of domain wall pinning portions 353, and a pair of magnetization fixed regions 357. In FIG. 2, the boundary between the tunnel junction portion 351 and the domain wall pinning portion 353 and the boundary between the domain wall pinning portion 353 and the magnetization fixed region 357 are indicated by dotted lines.

磁化自由層35は内部に磁壁355を備える。この磁壁355は、図2の紙面垂直方向に広がっており、図2の紙面左右方向に移動可能である。   The magnetization free layer 35 includes a domain wall 355 therein. The domain wall 355 extends in the direction perpendicular to the paper surface of FIG. 2, and is movable in the horizontal direction of the paper surface of FIG.

トンネル接合部351は、トンネル絶縁層33を介して磁化固着層31と積層体をなし、この積層体がTMR素子35のトンネル接合を形成している。   The tunnel junction 351 forms a laminated body with the magnetization pinned layer 31 via the tunnel insulating layer 33, and this laminated body forms a tunnel junction of the TMR element 35.

一対の磁壁ピン止め部353は、トンネル接合部351を磁化自由層35内の磁壁355の移動方向(図2の紙面左右方向)から挟んでおり、磁壁355の移動を止める役割を果たす。この実施の形態では、この磁壁ピン止め部353の両側面に形成された、面内方向に延びるくさび形状のくびれ(切り欠け)353aにより磁壁355の移動を止めることができる。くびれによる磁壁355のピン止めは、磁壁355の移動方向の両端に、強磁性層の幅を狭める構造により実現でき、くびれの形状はくさび形状の他にU字形状等でもよい。また、くびれは両側面に形成する必要はなく、片側面にのみ形成してもよい。   The pair of domain wall pinning portions 353 sandwich the tunnel junction portion 351 from the moving direction of the domain wall 355 in the magnetization free layer 35 (left and right direction in FIG. 2), and play a role of stopping the movement of the domain wall 355. In this embodiment, the movement of the domain wall 355 can be stopped by a wedge-shaped constriction (notch) 353 a formed on both side surfaces of the domain wall pinning portion 353 and extending in the in-plane direction. The pinning of the magnetic wall 355 by the constriction can be realized by a structure in which the width of the ferromagnetic layer is narrowed at both ends in the moving direction of the magnetic wall 355. The shape of the constriction may be a U shape in addition to the wedge shape. Further, the constriction need not be formed on both sides, and may be formed only on one side.

くびれ以外の磁壁ピン止め構造は、結晶歪を備える応力部や格子欠陥密度の高い磁性体部がある。ここで、格子欠陥とは、空孔、不純物ドーピング、転移等である。   The domain wall pinning structure other than the constriction includes a stress portion having crystal strain and a magnetic body portion having a high lattice defect density. Here, the lattice defects are vacancies, impurity doping, transition, and the like.

磁壁ピン止め部353の外側(強磁性層内の磁壁355の移動方向延長上)には磁化固定部357が形成されている。磁化固定部は磁壁ピン止め部353の脇(同一平面状)や、磁壁ピン止め部353の上下に積層形成する等、その位置を適宜変更できる。   A magnetization pinned portion 357 is formed outside the domain wall pinning portion 353 (on the extension of the moving direction of the domain wall 355 in the ferromagnetic layer). The position of the magnetization fixed portion can be changed as appropriate, for example, by laminating and forming a side wall of the domain wall pinning portion 353 (on the same plane) or above and below the domain wall pinning portion 353.

磁化固定部357は、交換バイアス等により固定された固定磁化357a、357bを備える。固定磁化357a,357bのいずれか一方は、磁化固定層31の固定磁化と平行にすることが好ましい。固定磁化357a、357bの向きは互いに反対向きとなっており、これにより磁化自由層35内の磁壁355の導入を容易にし、また、磁壁355の移動距離を短くすることができるため、早い磁化反転が可能になる。   The magnetization fixed unit 357 includes fixed magnetizations 357a and 357b fixed by an exchange bias or the like. Any one of the fixed magnetizations 357 a and 357 b is preferably parallel to the fixed magnetization of the magnetization fixed layer 31. The directions of the fixed magnetizations 357a and 357b are opposite to each other, thereby facilitating introduction of the domain wall 355 in the magnetization free layer 35 and shortening the moving distance of the domain wall 355. Is possible.

図2では、固定磁化357aは右向き、固定磁化357bは左向きであるが、二つの固定磁化357a、357bの相対角度は略180°であればよく、向きは適宜変更することができる。例えば、二つの磁化の向きを図2の紙面の上向き/下向きとしてもよく、左側の磁化固定部357の磁化を左向き、右側の磁化固定部357の磁化を右向きとしてもよい。   In FIG. 2, the fixed magnetization 357a faces right and the fixed magnetization 357b faces left, but the relative angle between the two fixed magnetizations 357a and 357b may be approximately 180 °, and the orientation can be changed as appropriate. For example, the two magnetization directions may be upward / downward in FIG. 2, the magnetization of the left magnetization fixing unit 357 may be left, and the magnetization of the right magnetization fixing unit 357 may be right.

固定磁化357a、357bは、隣接する反強磁性層との交換結合による交換バイアスの他、硬質磁性層からの漏洩磁界等により固定することができる。反強磁性層は磁化固定部357に積層することもできる。硬質磁性層は、磁化固定部357に積層する他、面内に隣接形成したり、面内の近傍に配置したりするができる。   The fixed magnetizations 357a and 357b can be fixed by an exchange bias due to exchange coupling with an adjacent antiferromagnetic layer, or a leakage magnetic field from a hard magnetic layer. The antiferromagnetic layer can also be laminated on the magnetization fixed portion 357. The hard magnetic layer can be laminated on the magnetization pinned portion 357, can be formed adjacent in the plane, or can be arranged in the vicinity of the plane.

トンネル接合部351内の磁化の向きは、ビット線9から磁化自由層35の一端から多端に流れる電流により変化させることができる。この磁化自由層35の磁化方向の変化により、磁化自由層35に磁気情報を記憶させることができる。   The direction of magnetization in the tunnel junction 351 can be changed by a current flowing from one end of the magnetization free layer 35 to multiple ends from the bit line 9. Due to the change in the magnetization direction of the magnetization free layer 35, magnetic information can be stored in the magnetization free layer 35.

次に、この記憶情報の書込み方法の一例を説明する。   Next, an example of a method for writing the stored information will be described.

まず、初期状態として、例えば、図2の磁壁355より左側の部分が右向き磁化351a(磁化固定部357の固定磁化357aと同じ向きの磁化)を備え、磁壁355より右側の部分が左向き磁化351b(磁化固定部357の固定磁化357bと同じ向きの磁化)を備えている、とする。   First, as an initial state, for example, a portion on the left side of the domain wall 355 of FIG. 2 has a rightward magnetization 351a (magnetization in the same direction as the fixed magnetization 357a of the magnetization fixed portion 357), and a portion on the right side of the domain wall 355 has a leftward magnetization 351b It is assumed that the magnetization fixed portion 357 has magnetization in the same direction as the fixed magnetization 357b.

TMR素子3に書込み電流が流されると、磁化自由層35を流れる電流(図2の紙面内で右から左に向かう電流)により、磁壁355を左側から右側の磁壁ピン止め部353に移動させることができる。この磁壁355の移動により、接合部351の磁化を接合部351の磁化は右側の磁化固定部357の固定磁化357bと等しい向きに反転させることができる。   When a write current is passed through the TMR element 3, the domain wall 355 is moved from the left side to the right domain wall pinning portion 353 by the current flowing through the magnetization free layer 35 (current flowing from right to left in the plane of FIG. 2). Can do. By the movement of the domain wall 355, the magnetization of the junction 351 can be reversed in the same direction as the fixed magnetization 357b of the right magnetization fixed unit 357.

逆に、図2の紙面内を左から右に向かう電流を流すことにより右側のくびれ部353aにピン止めされた磁壁を左方向に動かす。その結果、接合部351の磁化は左側の磁化固定部357の固定磁化357aと等しい右向きにとなる。   On the other hand, the domain wall pinned to the right constricted portion 353a is moved to the left by passing a current from left to right in the plane of FIG. As a result, the magnetization of the bonding portion 351 is directed rightward, which is equal to the fixed magnetization 357a of the left magnetization fixed portion 357.

このような磁化自由層内の通電による磁壁移動法によれば、磁壁355の移動に必要な電流密度は、磁化固定層からのスピン注入法による磁化反転と同程度であるが、一般に磁化自由層35の断面積はトンネル接合面積よりも小さくできるので、必要な書込み電流の絶対値は磁壁移動法の方が小さくなる。   According to the domain wall motion method by energization in such a magnetization free layer, the current density required for the movement of the domain wall 355 is almost the same as the magnetization reversal by the spin injection method from the magnetization fixed layer. Since the sectional area of 35 can be made smaller than the tunnel junction area, the absolute value of the required write current is smaller in the domain wall motion method.

例えば、トンネル接合の平面積を約100x100nm2、磁化自由層の厚さを約10nmとすると、フリー層の断面積は接合面積の1/10程度となる。よって、必要な電流の絶対値はスピン注入法の約1/10となり、電流の2乗に比例する消費電力は約1/100にすることができる。 For example, when the plane area of the tunnel junction is about 100 × 100 nm 2 and the thickness of the magnetization free layer is about 10 nm, the cross-sectional area of the free layer is about 1/10 of the junction area. Therefore, the absolute value of the necessary current is about 1/10 of the spin injection method, and the power consumption proportional to the square of the current can be about 1/100.

トンネル接合の接合抵抗は最も低い接合でも約10Ωμm2程度であり、トンネル接合に107〜108A/cm2(0.1〜1A/μm2)の電流を流すと、0.1〜10W/μm2の熱が発生する。一般的なトンネル接合が耐えられる発熱は約1mW/μm2程度なので、スピン注入法により磁化を反転させるには電流値を約106A/cm2以下にする必要がある。すなわち、現在よりも1桁以上低い電流値で磁化反転をさせなければならず、従来のスピン注入法では実現が困難と考えられている。 The junction resistance of the tunnel junction is about 10 Ωμm 2 even at the lowest junction. When a current of 10 7 to 10 8 A / cm 2 (0.1 to 1 A / μm 2 ) is passed through the tunnel junction, the junction resistance is 0.1 to 10 W. / Μm 2 of heat is generated. Since the heat generated by a general tunnel junction is about 1 mW / μm 2 , the current value needs to be about 10 6 A / cm 2 or less in order to reverse the magnetization by the spin injection method. That is, it is necessary to perform magnetization reversal at a current value that is one digit lower than that at present, and it is considered difficult to realize with the conventional spin injection method.

一方、本実施の形態による磁壁移動法の場合、磁化自由層35の抵抗率は約10-5Ωcm程度、強磁性の磁化自由層35と金属性のビット線9とのコンタクト抵抗は約5×10-12Ωcm2程度なので、磁化自由層の長さを約200nm、磁壁355の移動方向に略垂直な断面の面積を約100×10nm2とした場合、約107〜108A/cm2の電流を流しても発熱は約0.2μW〜20μW(10μW/cm2〜1mW/cm2)となりトンネル接合を破壊することなく磁化を反転させることができる。 On the other hand, in the domain wall motion method according to the present embodiment, the resistivity of the magnetization free layer 35 is about 10 −5 Ωcm, and the contact resistance between the ferromagnetic magnetization free layer 35 and the metallic bit line 9 is about 5 ×. Since it is about 10 −12 Ωcm 2, when the length of the magnetization free layer is about 200 nm and the area of the cross section substantially perpendicular to the moving direction of the domain wall 355 is about 100 × 10 nm 2 , about 10 7 to 10 8 A / cm 2. Even when a current of 1 mm is applied, the heat generation is about 0.2 μW to 20 μW (10 μW / cm 2 to 1 mW / cm 2 ), and the magnetization can be reversed without destroying the tunnel junction.

電流が磁壁355に及ぼす力は電子の平均自由行程と磁壁355の厚さに依存し、電子の平均自由行程に比べて磁壁355が薄い場合には強い移動力を及ぼすと考えられる。強磁性体中の平均自由行程は10nm程度なので、磁壁の厚さは約10nm以下とすることが望ましい。   The force that the current exerts on the domain wall 355 depends on the mean free path of electrons and the thickness of the domain wall 355, and it is considered that a stronger moving force is exerted when the domain wall 355 is thinner than the mean free path of electrons. Since the mean free path in the ferromagnet is about 10 nm, the thickness of the domain wall is preferably about 10 nm or less.

磁壁355の厚さは異方性エネルギーが大きいほど薄くなるので、磁壁の動きを促すためには磁化自由層35の異方性エネルギーを高めることが重要である。異方性エネルギーを高めるには、Ce、Pr、Nd、Sm等の異方性エネルギーの高い希土類イオンを磁化自由層35の接合部351、あるいは接合部351と磁壁ピン止め部353にドープすることが望ましい。   Since the thickness of the domain wall 355 decreases as the anisotropic energy increases, it is important to increase the anisotropic energy of the magnetization free layer 35 in order to promote the movement of the domain wall. In order to increase the anisotropy energy, the rare earth ions having high anisotropy energy such as Ce, Pr, Nd, and Sm are doped into the junction 351 of the magnetization free layer 35 or the junction 351 and the domain wall pinning portion 353. Is desirable.

ここで、磁化自由層35としてはFe、Co、Ni、これらを少なくとも一つ含む合金、またはその他の強磁性材料を用いることができる。   Here, as the magnetization free layer 35, Fe, Co, Ni, an alloy containing at least one of these, or other ferromagnetic materials can be used.

トンネル絶縁層33にはAlOx、MgO、HfO、AlHfN、AlN、AlHfOなどの誘電体材料を用いることができる。 The tunnel insulating layer 33 can be made of a dielectric material such as AlO x , MgO, HfO, AlHfN, AlN, AlHfO.

磁化固定層31には、Fe、Co、Ni、これらを少なくとも一つ含む合金、またはその他の強磁性材料を用いることができる。   For the magnetization fixed layer 31, Fe, Co, Ni, an alloy containing at least one of these, or other ferromagnetic materials can be used.

反強磁性層には、IrMn、PtMn、PdMn、RuRhMn等やその他の反強磁性材料を用いることができる。   For the antiferromagnetic layer, IrMn, PtMn, PdMn, RuRhMn, and other antiferromagnetic materials can be used.

硬質磁性層には、FeC、CoNiAl、SmCo、NdFeB、またはその他の硬質磁性材料を用いることができる。   For the hard magnetic layer, FeC, CoNiAl, SmCo, NdFeB, or other hard magnetic materials can be used.

ワード線5、ビット線7,9の材料としては、Cu、Al、Au、W等の金属性材料を用いることができる。   As a material for the word line 5 and the bit lines 7 and 9, metallic materials such as Cu, Al, Au, and W can be used.

以上説明したように、本実施の形態による磁気記憶装置と磁気情報書込み方法によれば、外部磁場によらずに電流によって磁化反転を行うことができ、この電流はトンネル接合を横切って流れるのではなく磁化自由層35のみを流れるため、消費電力の低減とトンネル接合やFETの破壊を回避することができる。また、書込みに要する電流をトンネル接合を使ったスピン注入に比べて小さくすることができるため、低消費電力化、高集積化にも寄与する。   As described above, according to the magnetic memory device and the magnetic information writing method according to the present embodiment, the magnetization reversal can be performed by the current regardless of the external magnetic field, and this current does not flow across the tunnel junction. Since only the magnetization free layer 35 flows, the power consumption can be reduced and the tunnel junction and the FET can be prevented from being broken. In addition, the current required for writing can be reduced as compared with spin injection using a tunnel junction, which contributes to low power consumption and high integration.

(実施例1)
本発明の第1の実施形態による磁気記憶装置についてTMR素子を作成した。
Example 1
A TMR element was created for the magnetic memory device according to the first embodiment of the present invention.

イオンビームスパッター装置および電子ビームリソグラフィー装置を用いて、Si基板上に図3の側面模式図に示すTMR素子を作成した。   A TMR element shown in the schematic side view of FIG. 3 was formed on a Si substrate using an ion beam sputtering apparatus and an electron beam lithography apparatus.

TMR素子3は、Coの磁化固定層31、AlOxのトンネル絶縁層33、Coの磁化自由層35を備える。磁化自由層35の接合部351とトンネル絶縁層33と磁化固定層31の積層体によるトンネル接合を形成した。Si基板に替えて、ガラス基板、Al23・TiOx基板、セラミック基板を用いることもできる。TMR素子3とSi基板との間には、TMR素子3の各層の結晶構造などを制御するための下地層などを形成してもよい。 The TMR element 3 includes a Co magnetization fixed layer 31, an AlO x tunnel insulating layer 33, and a Co magnetization free layer 35. A tunnel junction was formed by a laminate of the junction 351 of the magnetization free layer 35, the tunnel insulating layer 33, and the magnetization fixed layer 31. In place of the Si substrate, a glass substrate, an Al 2 O 3 .TiO x substrate, or a ceramic substrate can be used. An underlayer for controlling the crystal structure of each layer of the TMR element 3 may be formed between the TMR element 3 and the Si substrate.

トンネル接合は図3の紙面に垂直な方向(幅:200nm)と紙面左右方向(長さ:400nm)に広がっており、面積は約200x400nm2である。磁化固定層31、磁化自由層35の幅は約200nm、厚さは約20nmである。磁化固定層31の長さは約400nmである。磁化自由層35の長さは約1200nmである。 The tunnel junction extends in a direction (width: 200 nm) perpendicular to the paper surface of FIG. 3 and a horizontal direction (length: 400 nm) of the paper surface, and has an area of about 200 × 400 nm 2 . The magnetization fixed layer 31 and the magnetization free layer 35 have a width of about 200 nm and a thickness of about 20 nm. The length of the magnetization fixed layer 31 is about 400 nm. The length of the magnetization free layer 35 is about 1200 nm.

トンネル絶縁層33はAlOxよりなる。このAlOx層は、磁化自由層35上に形成したAl層をプラズマ酸化することにより形成した。トンネル絶縁層AlOxの幅は約200nm、長さは約400nm、厚さは約1nmとした。 The tunnel insulating layer 33 is made of AlO x . This AlO x layer was formed by plasma oxidizing the Al layer formed on the magnetization free layer 35. The tunnel insulating layer AlO x had a width of about 200 nm, a length of about 400 nm, and a thickness of about 1 nm.

磁化自由層35の一対の磁壁ピン止め部353には夫々2個のくさび状のくびれ353aを形成した。図3では一側面のくびれ353a(二個)を図示した。このくびれ353aは、磁化自由層の形成後に、電子線リソグラフィーとイオンミリングにより形成した。くさび状のくびれ353aの磁化自由層35の側面における幅および側面からの深さは約50nmとした。   Two wedge-shaped constrictions 353a are formed on the pair of domain wall pinning portions 353 of the magnetization free layer 35, respectively. In FIG. 3, the constrictions 353a (two) on one side are shown. The constriction 353a was formed by electron beam lithography and ion milling after the formation of the magnetization free layer. The width of the wedge-shaped constriction 353a on the side surface of the magnetization free layer 35 and the depth from the side surface were about 50 nm.

磁化自由層35の一対の磁化固定部357と磁化固定層31との上には、厚さ約100nmの反強磁性体(IrMn)層11a,11b,11cを形成し、夫々、積層された磁化固定層31と磁化固定部357と磁気交換結合させた。この磁気交換結合により磁化固定層31と磁化固定部357には所定の向きの交換バイアスを付与し、磁化固定層31には固定磁化31a、一対の磁化固定部357のうち左側には固定磁化357a、右側には固定磁化357bを付与した。この交換結合は、各IrMn層の成膜を各磁化方向に向いた磁場中(磁場の強さは約2000Oe)で行うことにより導入した。   On the pair of magnetization fixed portions 357 and the magnetization fixed layer 31 of the magnetization free layer 35, antiferromagnetic (IrMn) layers 11a, 11b, and 11c having a thickness of about 100 nm are formed. The fixed layer 31 and the magnetization fixed portion 357 were magnetically exchange coupled. By this magnetic exchange coupling, an exchange bias of a predetermined direction is applied to the magnetization fixed layer 31 and the magnetization fixed portion 357, the fixed magnetization 31a is applied to the magnetization fixed layer 31, and the fixed magnetization 357a is provided on the left side of the pair of magnetization fixed portions 357. On the right side, fixed magnetization 357b was given. This exchange coupling was introduced by forming each IrMn layer in a magnetic field oriented in each magnetization direction (the strength of the magnetic field was about 2000 Oe).

反強磁性層11c上には、読出し用のAu電極13を形成した。また、磁化自由層35の一対の磁化固定部357上には、一対の書込み用のAu電極15を形成した。   A read Au electrode 13 was formed on the antiferromagnetic layer 11c. Further, a pair of writing Au electrodes 15 was formed on the pair of magnetization fixed portions 357 of the magnetization free layer 35.

次に、このTMR素子3に磁気情報を書込み、読出した。   Next, magnetic information was written to and read from the TMR element 3.

まず、外部磁場Hの下でAu電極13とAu電極15の一方に電流を流し、トンネル接合の磁気抵抗効果を測定した。その結果を図4の電流(mA)―トンネル接合抵抗(Ω)特性図に示す。磁場Hの正負は、図3において右向きを正、左向きを負とした。   First, a current was passed through one of the Au electrode 13 and the Au electrode 15 under the external magnetic field H, and the magnetoresistance effect of the tunnel junction was measured. The result is shown in the current (mA) -tunnel junction resistance (Ω) characteristic diagram of FIG. The positive and negative of the magnetic field H is positive in the right direction and negative in the left direction in FIG.

TMR素子3に−100Oeの磁場を印加し、磁化自由層35の磁化を磁化固定層31の磁化31aと平行な状態にした。その後、磁場を徐々に正の磁場(100Oe)まで変化させ、TMR素子3の抵抗を測定した。TMR素子3のトンネル接合抵抗は、約40Oeにおいて増大しており、この段階で磁化自由層35の磁化が反転して、磁化固定層31と磁化自由層35の2つの磁化が反平行状態になったことがわかる。トンネル接合の比抵抗は約100Ωμm2、MR比は約10%であった。 A magnetic field of −100 Oe was applied to the TMR element 3 so that the magnetization of the magnetization free layer 35 was parallel to the magnetization 31 a of the magnetization fixed layer 31. Thereafter, the magnetic field was gradually changed to a positive magnetic field (100 Oe), and the resistance of the TMR element 3 was measured. The tunnel junction resistance of the TMR element 3 increases at about 40 Oe. At this stage, the magnetization of the magnetization free layer 35 is reversed, and the two magnetizations of the magnetization fixed layer 31 and the magnetization free layer 35 become antiparallel. I understand that. The specific resistance of the tunnel junction was about 100 Ωμm 2 and the MR ratio was about 10%.

その後、外部磁場Hをゼロに戻してもトンネル接合抵抗は高抵抗状態が維持されたため、磁壁355は図3の紙面右側の磁壁ピン止め部353aに捕捉(トラップ)されたと考えられる。引き続き外部磁場Hがゼロの状態で以下の測定を行った。   Thereafter, even when the external magnetic field H is returned to zero, the tunnel junction resistance is maintained in a high resistance state. Therefore, it is considered that the domain wall 355 is trapped (trapped) by the domain wall pinning portion 353a on the right side of FIG. Subsequently, the following measurement was performed with the external magnetic field H being zero.

まず、左右のAu電極15間に、正の向き(図2の紙面右向き)の電流を1msec間流し、その後、電流を0に戻した後にトンネル接合抵抗の測定を行った。正の電流により電子は左向きに流れている。電流値を漸次増加させ同様な測定を繰り返し行った。その結果を図5の電流(mA)−トンネル接合抵抗(Ω)特性図に示す。   First, a current in a positive direction (rightward in FIG. 2) was passed between the left and right Au electrodes 15 for 1 msec, and then the tunnel junction resistance was measured after returning the current to zero. The positive current causes electrons to flow to the left. The same measurement was repeated by gradually increasing the current value. The result is shown in the current (mA) -tunnel junction resistance (Ω) characteristic diagram of FIG.

トンネル接合抵抗は約1.9mAの電流で高抵抗状態から低抵抗状態に変化し、この大きさの電流で磁壁が右側の磁壁ピン止め部353から左側の磁壁ピン止め部353に移動
したことが分かる。約1.9mAの電流を電流密度に換算すると、約4.8×107A/cm2となる。
The tunnel junction resistance changed from a high resistance state to a low resistance state at a current of about 1.9 mA, and the domain wall was moved from the right domain wall pinning portion 353 to the left domain wall pinning portion 353 by this magnitude of current. I understand. When a current of about 1.9 mA is converted into a current density, it is about 4.8 × 10 7 A / cm 2 .

本実施例による磁化自由層35と同じ層を形成して、MFM(Magnetic Force Microscope)により磁壁を観察したところ、磁壁の幅は約30nmであった。
(実施例2)
実施例1と同様の方法でCoの磁化固定層31、AlOxのトンネル絶縁層33、CoSmxの磁化自由層35を備えるトンネル接合を作製した。
When the same layer as the magnetization free layer 35 according to the present example was formed and the domain wall was observed with an MFM (Magnetic Force Microscope), the domain wall width was about 30 nm.
(Example 2)
A tunnel junction including a Co magnetization fixed layer 31, an AlO x tunnel insulating layer 33, and a CoSm x magnetization free layer 35 was fabricated in the same manner as in Example 1.

この実施例では、磁化自由層35に、Coに代えて約5%のSmがドープされたCoSmx合金を用いた。その他の層材料やTMR素子3の構造等は実施例1と同様である。 In this embodiment, the magnetization free layer 35, using CoSm x alloy about 5% of Sm in place of the Co doped. Other layer materials and the structure of the TMR element 3 are the same as those in the first embodiment.

このトンネル接合の抵抗(Ω)について、外部磁場(Oe)および電流(mA)とトンネル接合抵抗(Ω)の相関特性を測定した。その結果を図6および図7に示す。   With respect to the resistance (Ω) of the tunnel junction, the correlation characteristics of the external magnetic field (Oe) and current (mA) and the tunnel junction resistance (Ω) were measured. The results are shown in FIGS.

図6では、図4に比べてトンネル接合抵抗が変化する磁場が増大し、約70Oeで抵抗が変化した。この原因はSmの添加により磁化自由層35の保磁力が増大したためと考えられる。   In FIG. 6, the magnetic field in which the tunnel junction resistance changes is increased compared to FIG. 4, and the resistance changes at about 70 Oe. This is considered to be because the coercive force of the magnetization free layer 35 is increased by the addition of Sm.

一方、図7では図5に比べてトンネル接合抵抗が変化する電流が減少し、約1.3mA(電流密度は3.2×107A/cm2)の電流で高抵抗状態から低抵抗状態に変化したことがわかる。 On the other hand, in FIG. 7, the current at which the tunnel junction resistance changes is reduced as compared with FIG. 5, and the current is changed from the high resistance state to the low resistance state at a current of about 1.3 mA (current density is 3.2 × 10 7 A / cm 2 ). You can see that it has changed.

この実施例の磁化自由層と同じ層についてMFMにより磁壁を観察したところ、その厚さは約10nmと推定された。このことはSmを添加することにより磁化自由層35の磁気異方性エネルギーが増大したため磁壁の幅が減少し、実施例1に比べて、同じ電流量により磁壁が受ける力が増大したことを示している。   When the domain wall was observed by MFM for the same layer as the magnetization free layer of this example, the thickness was estimated to be about 10 nm. This shows that the magnetic anisotropy energy of the magnetization free layer 35 is increased by adding Sm, so that the domain wall width is reduced, and the force applied to the domain wall by the same amount of current is increased as compared with the first embodiment. ing.

本発明の磁気記憶装置と磁気情報の書込み方法に関わる第1の実施の形態を説明するための回路図(一部断面模式図)。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram (partially cross-sectional schematic diagram) for explaining a first embodiment relating to a magnetic storage device and a magnetic information writing method of the present invention; 第1の実施の形態に関わる磁化自由層の上面図。The top view of the magnetization free layer in connection with 1st Embodiment. 第1の実施の形態に関わる実施例1のTMR素子を示す断面模式図。The cross-sectional schematic diagram which shows the TMR element of Example 1 in connection with 1st Embodiment. 実施例1に関わるTMR素子の磁場(Oe)−トンネル接合抵抗(Ω)の特性図。FIG. 4 is a characteristic diagram of the magnetic field (Oe) -tunnel junction resistance (Ω) of the TMR element according to Example 1; 実施例1に関わるTMR素子の電流(mA)−トンネル接合抵抗(Ω)の特性図。FIG. 6 is a characteristic diagram of current (mA) -tunnel junction resistance (Ω) of the TMR element according to Example 1; 第1の実施の形態に関わる実施例2のTMR素子による磁場(Oe)−トンネル接合抵抗(Ω)の特性図。The magnetic field (Oe) -tunnel junction resistance (ohm) characteristic view by the TMR element of Example 2 in connection with 1st Embodiment. 実施例2に関わるTMR素子の電流(mA)−トンネル接合抵抗(Ω)の特性図。FIG. 10 is a characteristic diagram of current (mA) -tunnel junction resistance (Ω) of the TMR element according to Example 2.

符号の説明Explanation of symbols

1・・・FET
3・・・TMR素子
5・・・ワード線
7・・・ビット線(読出し)
9・・・ビット線(書込み)
31・・・磁化固定層
33・・・トンネル絶縁層
35・・・磁化自由層
1 ... FET
3 ... TMR element 5 ... word line 7 ... bit line (read)
9: Bit line (write)
31 ... Magnetization fixed layer 33 ... Tunnel insulating layer 35 ... Magnetization free layer

Claims (10)

固定磁化が付与された導電性の磁化固定層と、
前記磁化固定層に積層形成されたトンネル絶縁層と、
前記トンネル絶縁層を介して前記磁化固定層と積層形成された接合部、前記接合部の一対の端部に隣接形成された磁壁ピン止め部、及び、前記磁壁ピン止め部に隣接する互いに反対向きの固定磁化が付与された一対の磁化固定部を具備する導電性の磁化自由層と、
前記一対の磁化固定部に電気接続し、前記磁化自由層の前記接合部、前記一対の磁壁ピン止め部及び前記一対の磁化固定部を貫通する電流を磁化自由層に流すための一対の磁気情報書込み用端子とを備えることを特徴とする磁気記憶装置。
A conductive fixed magnetization layer provided with fixed magnetization;
A tunnel insulating layer laminated on the magnetization fixed layer;
A junction formed by laminating with the magnetization fixed layer via the tunnel insulating layer, a domain wall pinning portion formed adjacent to a pair of ends of the junction, and opposite directions adjacent to the domain wall pinning portion A conductive free magnetization layer comprising a pair of fixed magnetization portions provided with a fixed magnetization of
A pair of magnetic information that is electrically connected to the pair of magnetization fixed portions and causes a current passing through the joint portion of the magnetization free layer, the pair of domain wall pinning portions, and the pair of magnetization fixed portions to flow in the magnetization free layer. A magnetic storage device comprising a write terminal.
前記磁壁ピン止め部の側部にくびれを具備することを特徴とする請求項1記載の磁気記憶装置。 The magnetic storage device according to claim 1, further comprising a constriction on a side portion of the domain wall pinning portion. 前記磁化自由層は内部に磁壁を有し、前記磁化自由層は前記磁壁の厚さが電子の平均自由行程よりも薄くなる材料であることを特徴とする請求項1または2記載の磁気記憶装置。 3. The magnetic storage device according to claim 1, wherein the magnetization free layer has a domain wall therein, and the magnetization free layer is made of a material whose thickness is smaller than an average free path of electrons. . 前記磁化自由層内の磁壁の厚さは、10nm以下であることを特徴とする請求項1乃至3のいずれかに記載の磁気記憶装置。 4. The magnetic memory device according to claim 1, wherein the thickness of the domain wall in the magnetization free layer is 10 nm or less. 前記磁化自由層の磁性材料中に希土類元素が含まれていることを特徴とする請求項1乃至4のいずれかに記載の磁気記憶装置。 5. The magnetic storage device according to claim 1, wherein the magnetic material of the magnetization free layer contains a rare earth element. 前記磁化固定層、前記トンネル絶縁層、及び前記磁化自由層を備えるトンネル磁気抵抗効果素子と、前記一対の磁気情報書込み用端子の一方を介して前記トンネル磁気抵抗効果素子と電気接続する電界効果トランジスタを備えることを特徴とする請求項1乃至5のいずれかに記載の磁気記憶装置。 A tunnel magnetoresistive effect element including the magnetization fixed layer, the tunnel insulating layer, and the magnetization free layer, and a field effect transistor electrically connected to the tunnel magnetoresistive effect element through one of the pair of magnetic information write terminals The magnetic storage device according to claim 1, further comprising: 前記電界効果トランジスタはゲート電極及び一対のソース・ドレイン領域を有し、前記一対のソース・ドレイン領域の一方は前記トンネル磁気抵抗効果素子と電気接続し、前記一対のソース・ドレイン領域の他方はプレート電極と接続し、前記電界効果トランジスタと前記トンネル接合素子の組み合わせにより一つの磁気記憶セルを構成することを特徴とする請求項6記載の磁気記憶装置。 The field effect transistor has a gate electrode and a pair of source / drain regions, one of the pair of source / drain regions is electrically connected to the tunnel magnetoresistive element, and the other of the pair of source / drain regions is a plate. 7. The magnetic memory device according to claim 6, wherein one magnetic memory cell is constituted by a combination of the field effect transistor and the tunnel junction element connected to an electrode. 前記記憶セルが同一基板上に複数形成されて、記憶セルマトリクスをなしていることを特徴とする請求項7記載の磁気記憶装置。 8. The magnetic memory device according to claim 7, wherein a plurality of the memory cells are formed on the same substrate to form a memory cell matrix. 前記接合部の前記トンネル絶縁層を介して前記磁化固定層と対向する接合面積に比べて、前記磁化自由層の接合部の前記電流が流れる部位の断面積が小さいことを特徴とする請求項1乃至8のいずれかに記載の磁気記憶装置。 2. The cross-sectional area of a portion through which the current flows in the junction of the magnetization free layer is smaller than a junction area facing the magnetization fixed layer through the tunnel insulating layer of the junction. The magnetic storage device according to any one of 1 to 8. 磁化が固定された磁化固定層と、前記磁化固定層に積層されたトンネル絶縁層と、前記トンネル絶縁層を介して前記磁化固定層と積層形成された接合部、前記接合部の一対の端部に隣接形成された磁壁ピン止め部、及び、前記磁壁ピン止め部に隣接する互いに反対向きの固定磁化が付与された一対の磁化固定部を具備する導電性の磁化自由層と、前記一対の磁化固定部に電気接続し、前記磁化自由層の前記接合部、前記一対の磁壁ピン止め部及び前記一対の磁化固定部を貫通する電流を磁化自由層に流すための一対の磁気情報書込み用端子とを備える磁気抵抗効果素子に対し、前記磁化自由層内のみに電流を流して前記磁化自由層の磁化の向きを反転させることを特徴とする磁気情報の書込み方法。 Magnetization fixed layer with fixed magnetization, tunnel insulating layer stacked on the magnetization fixed layer, a junction formed by lamination with the magnetization fixed layer via the tunnel insulation layer, and a pair of ends of the junction A magnetic domain wall pinning portion formed adjacent to each other, a pair of magnetization free layers having a pair of magnetization fixed portions adjacent to the domain wall pinning portion and provided with fixed magnetizations in opposite directions, and the pair of magnetizations A pair of magnetic information writing terminals electrically connected to the fixed portion and for causing a current passing through the joint portion of the magnetization free layer, the pair of domain wall pinning portions, and the pair of magnetization fixed portions to flow in the magnetization free layer; A magnetic information writing method, wherein a current is passed only in the magnetization free layer to reverse the magnetization direction of the magnetization free layer.
JP2003426765A 2003-12-24 2003-12-24 Magnetic storage device and magnetic information writing method Expired - Fee Related JP4413603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003426765A JP4413603B2 (en) 2003-12-24 2003-12-24 Magnetic storage device and magnetic information writing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426765A JP4413603B2 (en) 2003-12-24 2003-12-24 Magnetic storage device and magnetic information writing method

Publications (2)

Publication Number Publication Date
JP2005191032A JP2005191032A (en) 2005-07-14
JP4413603B2 true JP4413603B2 (en) 2010-02-10

Family

ID=34786204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426765A Expired - Fee Related JP4413603B2 (en) 2003-12-24 2003-12-24 Magnetic storage device and magnetic information writing method

Country Status (1)

Country Link
JP (1) JP4413603B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10553299B2 (en) 2017-04-14 2020-02-04 Tdk Corporation Magnetic domain wall type analog memory element, magnetic domain wall type analog memory, nonvolatile logic circuit, and magnetic neuro-element
US10916480B2 (en) 2017-04-14 2021-02-09 Tdk Corporation Magnetic wall utilization type analog memory device, magnetic wall utilization type analog memory, nonvolatile logic circuit, and magnetic neuro device

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069368A1 (en) * 2004-01-15 2005-07-28 Japan Science And Technology Agency Current injection magnetic domain wall moving element
WO2006046591A1 (en) 2004-10-27 2006-05-04 Keio University Magnetoresistive element and magnetic memory device
WO2006090656A1 (en) * 2005-02-23 2006-08-31 Osaka University Magnetoresistive element based on magnetic domain wall shift by pulse current and high-speed magnetic recording device
JP4932275B2 (en) * 2005-02-23 2012-05-16 株式会社日立製作所 Magnetoresistive effect element
DE602006000836T2 (en) * 2005-03-24 2009-05-14 Hitachi, Ltd. Line control arrangement
JP2006287081A (en) * 2005-04-04 2006-10-19 Fuji Electric Holdings Co Ltd Spin injection magnetic domain transfer element and device using same
JP2006303159A (en) * 2005-04-20 2006-11-02 Fuji Electric Holdings Co Ltd Spin injection magnetic domain moving element and device using this
US20100157662A1 (en) * 2005-04-26 2010-06-24 Teruo Ono Mram and method for writing in mram
JP4962889B2 (en) * 2005-08-01 2012-06-27 独立行政法人科学技術振興機構 Magnetic memory
JP4817148B2 (en) * 2005-08-02 2011-11-16 独立行政法人科学技術振興機構 Magnetic and electrical energy interconversion device with nanostructures
JP5062481B2 (en) * 2005-08-15 2012-10-31 日本電気株式会社 Magnetic memory cell, magnetic random access memory, and data read / write method to magnetic random access memory
KR100754397B1 (en) * 2006-02-22 2007-08-31 삼성전자주식회사 Magnetic memory using magnetic domain motion
KR100763910B1 (en) * 2006-02-23 2007-10-05 삼성전자주식회사 Magnetic memory device using magnetic domain dragging
US7626856B2 (en) 2006-03-20 2009-12-01 Fuji Electric Device Technology Co., Ltd. Magnetic recording element
WO2007119446A1 (en) * 2006-03-24 2007-10-25 Nec Corporation Mram and mram data reading/writing method
JP2007273495A (en) * 2006-03-30 2007-10-18 Fujitsu Ltd Magnetic memory device and method of driving same
JP5104753B2 (en) * 2006-04-11 2012-12-19 日本電気株式会社 Magnetic random access memory and manufacturing method thereof
JP5099368B2 (en) 2006-04-11 2012-12-19 日本電気株式会社 Magnetic random access memory
JP2007324171A (en) * 2006-05-30 2007-12-13 Fujitsu Ltd Magnetic memory device and its fabrication process
US8693238B2 (en) 2006-08-07 2014-04-08 Nec Corporation MRAM having variable word line drive potential
US8477528B2 (en) 2006-10-16 2013-07-02 Nec Corporation Magnetic memory cell and magnetic random access memory
KR100785034B1 (en) * 2006-12-06 2007-12-11 삼성전자주식회사 Information storage device using magnetic domain wall moving, method of manufacturing the same and method of operating the same
JP5146836B2 (en) * 2006-12-06 2013-02-20 日本電気株式会社 Magnetic random access memory and manufacturing method thereof
WO2008072421A1 (en) * 2006-12-12 2008-06-19 Nec Corporation Magnetoresistance effect element and mram
KR100846510B1 (en) * 2006-12-22 2008-07-17 삼성전자주식회사 Information storage device using magnetic domain wall moving and method for manufacturing the same
KR101274203B1 (en) * 2007-01-02 2013-06-14 삼성전자주식회사 Data storage medium using magnetic domain wall moving and Manufacturing Method for the same
WO2008099626A1 (en) * 2007-02-13 2008-08-21 Nec Corporation Magnetoresistance effect element and magnetic random access memory
JP5164027B2 (en) 2007-02-21 2013-03-13 日本電気株式会社 Semiconductor memory device
WO2008108108A1 (en) * 2007-03-07 2008-09-12 Nec Corporation Magnetic random access memory
WO2008120482A1 (en) 2007-03-29 2008-10-09 Nec Corporation Magnetic random access memory
US7514271B2 (en) * 2007-03-30 2009-04-07 International Business Machines Corporation Method of forming high density planar magnetic domain wall memory
CN101689600B (en) * 2007-06-25 2012-12-26 日本电气株式会社 Magnetoresistive element and magnetic random access memory
US8120127B2 (en) * 2007-08-03 2012-02-21 Nec Corporation Magnetic random access memory and method of manufacturing the same
JP5338666B2 (en) * 2007-08-03 2013-11-13 日本電気株式会社 Domain wall random access memory
JP5278769B2 (en) * 2007-08-08 2013-09-04 日本電気株式会社 Magnetic recording apparatus and magnetization fixing method
JP5445133B2 (en) * 2007-09-19 2014-03-19 日本電気株式会社 Magnetic random access memory, writing method thereof, and magnetoresistive element
WO2009044644A1 (en) * 2007-10-04 2009-04-09 Nec Corporation Magnetoresistive effect element, and magnetic random access memory, and its initialization method
WO2009057504A1 (en) * 2007-11-02 2009-05-07 Nec Corporation Magnetoresistive element, magnetic random access memory, and initialization method thereof
JP5382348B2 (en) 2007-11-05 2014-01-08 日本電気株式会社 Magnetoresistive element and magnetic random access memory
WO2009078244A1 (en) * 2007-12-18 2009-06-25 Nec Corporation Magnetic random access memory and magnetic random access memory initialization method
US8174873B2 (en) 2008-01-25 2012-05-08 Nec Corporation Magnetic random access memory and initializing method for the same
US8379429B2 (en) 2008-02-13 2013-02-19 Nec Corporation Domain wall motion element and magnetic random access memory
WO2009104427A1 (en) 2008-02-19 2009-08-27 日本電気株式会社 Magnetic random access memory
JP5299643B2 (en) 2008-02-19 2013-09-25 日本電気株式会社 Magnetic random access memory
JP5488465B2 (en) 2008-07-10 2014-05-14 日本電気株式会社 Magnetic random access memory and initialization method and writing method of magnetic random access memory
US8625327B2 (en) 2008-07-15 2014-01-07 Nec Corporation Magnetic random access memory and initializing method for the same
JP5532436B2 (en) 2008-09-02 2014-06-25 日本電気株式会社 Magnetic memory and manufacturing method thereof
US8537604B2 (en) 2008-10-20 2013-09-17 Nec Corporation Magnetoresistance element, MRAM, and initialization method for magnetoresistance element
JP2010114261A (en) * 2008-11-06 2010-05-20 Sharp Corp Magnetic memory and method for recording information to the magnetic memory
US8565011B2 (en) 2008-11-07 2013-10-22 Nec Corporation Method of initializing magnetic memory element
KR20100068791A (en) * 2008-12-15 2010-06-24 삼성전자주식회사 Magnetic track, information storage device comprising magnetic track and method of operating the information storage device
JP5472821B2 (en) * 2008-12-19 2014-04-16 日本電気株式会社 Method for initializing magnetoresistive element and magnetoresistive element
US8687414B2 (en) 2008-12-25 2014-04-01 Nec Corporation Magnetic memory element and magnetic random access memory
JP5505312B2 (en) * 2008-12-25 2014-05-28 日本電気株式会社 Magnetic memory device and magnetic random access memory
WO2010087389A1 (en) 2009-01-30 2010-08-05 日本電気株式会社 Magnetic memory element and magnetic memory
US8514616B2 (en) 2009-02-17 2013-08-20 Nec Corporation Magnetic memory element and magnetic memory
WO2011052475A1 (en) 2009-10-26 2011-05-05 日本電気株式会社 Magnetic memory element, magnetic memory, and methods for initializing magnetic memory element and magnetic memory
US9379312B2 (en) 2009-12-24 2016-06-28 Nec Corporation Magnetoresistive effect element and magnetic random access memory using the same
US20110186946A1 (en) * 2010-02-04 2011-08-04 Qualcomm Incorporated Magnetic Tunnel Junction with Domain Wall Pinning
JP5652472B2 (en) 2010-03-23 2015-01-14 日本電気株式会社 Magnetic memory element, magnetic memory, and manufacturing method thereof
JP5633729B2 (en) * 2010-06-23 2014-12-03 日本電気株式会社 Domain wall moving element and manufacturing method thereof
JPWO2012002156A1 (en) 2010-06-29 2013-08-22 日本電気株式会社 Magnetic memory element, magnetic memory
JP5794892B2 (en) 2010-11-26 2015-10-14 ルネサスエレクトロニクス株式会社 Magnetic memory
JP5686626B2 (en) 2011-02-22 2015-03-18 ルネサスエレクトロニクス株式会社 Magnetic memory and manufacturing method thereof
US9799822B2 (en) 2011-05-20 2017-10-24 Nec Corporation Magnetic memory element and magnetic memory
JP5775773B2 (en) 2011-09-22 2015-09-09 ルネサスエレクトロニクス株式会社 Magnetic memory
WO2014065049A1 (en) 2012-10-25 2014-05-01 日本電気株式会社 Magnetic-domain-wall-displacement memory cell and initializing method therefor
WO2016182085A1 (en) 2015-05-14 2016-11-17 国立大学法人東北大学 Magnetoresistive effect element and magnetic memory device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10553299B2 (en) 2017-04-14 2020-02-04 Tdk Corporation Magnetic domain wall type analog memory element, magnetic domain wall type analog memory, nonvolatile logic circuit, and magnetic neuro-element
US10839930B2 (en) 2017-04-14 2020-11-17 Tdk Corporation Magnetic domain wall type analog memory element, magnetic domain wall type analog memory, nonvolatile logic circuit, and magnetic neuro-element
US10916480B2 (en) 2017-04-14 2021-02-09 Tdk Corporation Magnetic wall utilization type analog memory device, magnetic wall utilization type analog memory, nonvolatile logic circuit, and magnetic neuro device

Also Published As

Publication number Publication date
JP2005191032A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP4413603B2 (en) Magnetic storage device and magnetic information writing method
JP5366014B2 (en) Magnetic random access memory and initialization method thereof
JP5618103B2 (en) Magnetoresistive element and magnetic memory
JP5299735B2 (en) Domain wall random access memory
JP2017059594A (en) Magnetic memory
JP4920881B2 (en) Low power consumption magnetic memory and magnetization information writing device
JP2005116923A (en) Nonvolatile magnetic memory cell using spin torque and magnetic random access memory using same
KR20080070597A (en) Magnetoresistive element and magnetic memory
JPWO2009019947A1 (en) Domain wall random access memory
JP2007081280A (en) Magnetoresistance effect element and magnetic memory apparatus
KR101891829B1 (en) Memory element and memory device
WO2010004881A1 (en) Magnetic random access memory, and initialization method and writing method for magnetic random access memory
WO2010007893A1 (en) Magnetic random access memory and method for initializing thereof
JP2005116658A (en) Magnetoresistive memory device
JP5472820B2 (en) Magnetoresistive element, MRAM and method for initializing magnetoresistive element
KR20100094974A (en) Magnetic memory element, method for driving the magnetic memory element, and nonvolatile storage device
US8036024B2 (en) Magnetic storage element storing data by magnetoresistive effect
JP5092464B2 (en) Domain wall displacement type magnetic recording element having domain wall displacement detection terminal
TWI422083B (en) Magnetic memory lattice and magnetic random access memory
US20070133264A1 (en) Storage element and memory
JP5445029B2 (en) Magnetoresistive element and domain wall random access memory
JP2008251796A (en) Magnetic recording device
JP2004296858A (en) Magnetic memory element and magnetic memory device
JP2002353418A (en) Magnetoresistive effect element and magnetic memory device
JP2003060261A (en) Magnetoresistive effect film, memory element, and memory therewith

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4413603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees