JP4408211B2 - Pressure adjusting device for liquefied natural gas tank and pressure adjusting method thereof - Google Patents
Pressure adjusting device for liquefied natural gas tank and pressure adjusting method thereof Download PDFInfo
- Publication number
- JP4408211B2 JP4408211B2 JP2003374576A JP2003374576A JP4408211B2 JP 4408211 B2 JP4408211 B2 JP 4408211B2 JP 2003374576 A JP2003374576 A JP 2003374576A JP 2003374576 A JP2003374576 A JP 2003374576A JP 4408211 B2 JP4408211 B2 JP 4408211B2
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- liquefied natural
- natural gas
- gas
- circulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003949 liquefied natural gas Substances 0.000 title claims description 165
- 238000000034 method Methods 0.000 title claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 318
- 229910052757 nitrogen Inorganic materials 0.000 claims description 143
- 239000007788 liquid Substances 0.000 claims description 73
- 239000007789 gas Substances 0.000 claims description 46
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 33
- 238000001816 cooling Methods 0.000 claims description 31
- 238000000926 separation method Methods 0.000 claims description 27
- 238000004781 supercooling Methods 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 239000003345 natural gas Substances 0.000 claims description 2
- 238000004821 distillation Methods 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 239000000047 product Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04612—Heat exchange integration with process streams, e.g. from the air gas consuming unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
- F25J1/0015—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/007—Primary atmospheric gases, mixtures thereof
- F25J1/0072—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0201—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
- F25J1/0202—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0204—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0208—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0234—Integration with a cryogenic air separation unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0236—Heat exchange integration providing refrigeration for different processes treating not the same feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/0406—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
- F25J3/04224—Cores associated with a liquefaction or refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
- F25J3/0426—The cryogenic component does not participate in the fractionation
- F25J3/04266—The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
- F25J3/04357—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/90—Boil-off gas from storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/34—Details about subcooling of liquids
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
本発明は、空気分離装置の一部を活用する液化天然ガスタンクの圧力調整装置およびその圧力調整方法に関するものである。 The present invention relates to a pressure adjusting device for a liquefied natural gas tank that utilizes a part of an air separation device, and a pressure adjusting method thereof.
周知のとおり、空気分離装置は空気中の窒素と酸素とを分離して取出すものであり、圧縮・冷却・膨張サイクルからなる寒冷発生装置を備えている。このような寒冷発生装置に加えて、液化天然ガス(以下、LNGという。)の冷熱を利用することによって、空気の分離、および液体製品(液体酸素、液体窒素、液体アルゴン等)の製造に必要な圧縮動力を大幅に低減させるようにした空気分離装置がある。このような空気分離装置としては、例えば、その系統図の図5に示すような構成になるものが公知である。以下、この従来例に係る空気分離装置の概要を、その系統図の図5を参照しながら説明する。 As is well known, the air separation device separates and extracts nitrogen and oxygen from the air, and includes a cold generator comprising a compression / cooling / expansion cycle. Necessary for the separation of air and production of liquid products (liquid oxygen, liquid nitrogen, liquid argon, etc.) by utilizing the cold heat of liquefied natural gas (hereinafter referred to as LNG) in addition to such a cold generator. There is an air separation device that greatly reduces the compression power. As such an air separation device, for example, a device having a configuration as shown in FIG. The outline of the air separation device according to this conventional example will be described below with reference to FIG.
図に示す符号50は、従来例に係る空気分離装置である。この従来例に係る空気分離装置50の場合、図示しない吸着塔等で前処理(水分や炭酸ガス等を除去する。)された原料ガスは、主熱交換器51を通じて精留塔高圧塔(以下、高圧精留塔という。)52H内に導入される。そして、この高圧精留塔52H内の底部から精留塔低圧塔(以下、低圧精留塔という。)52Lの中腹部に酸素リッチの液体空気が送られると共に、高圧精留塔52Hの上段から低圧精留塔52Lの塔頂に液体窒素が送られる。低圧精留塔52Lの塔底液は、弁53を通じて製品酸素として図示しない液体酸素タンク内に取出される。 Reference numeral 50 shown in the figure is an air separation device according to a conventional example. In the case of the air separation device 50 according to this conventional example, the raw material gas that has been pretreated (removes moisture, carbon dioxide gas, etc.) in an adsorption tower (not shown) is passed through the main heat exchanger 51 to the rectification tower high-pressure tower (hereinafter referred to as the rectification tower high-pressure tower This is referred to as a high-pressure rectification column). Then, oxygen-rich liquid air is sent from the bottom of the high pressure rectification column 52H to the middle part of the rectification column low pressure column (hereinafter referred to as low pressure rectification column) 52L, and from the upper stage of the high pressure rectification column 52H. Liquid nitrogen is sent to the top of the low pressure rectification column 52L. The bottom liquid of the low pressure rectification column 52L is taken out as product oxygen through a valve 53 into a liquid oxygen tank (not shown).
一方、前記低圧精留塔52Lの塔頂ガス(窒素ガス)は、前記主熱交換器51で前記前処理済の原料ガスと熱交換した後、窒素予冷器54、窒素冷却器55、複数段の循環圧縮機56、および窒素凝縮器57を順に通って凝縮し、液窒分離器58で気液分離される。液窒分離器58の気相成分は、前記窒素凝縮器57および窒素冷却器55を通じて循環圧縮機56に戻される一方、液相成分は空気分離装置50に液体窒素として還元される。より具体的には、当該液体窒素の一部は弁60を通じて前記高圧精留塔52H内に還元され、残りは弁59を通じて図示しない液体窒素タンク内に取出される。前記窒素予冷器54、窒素冷却器55、および窒素凝縮器57は熱交換器であって、これらの熱交換器を通じて、図示しないLNG貯槽(LNGタンクに相当する。)から抽出されるLNGと窒素ガスとの熱交換が行われる。そして、この熱交換によってLNGの昇温および蒸発と窒素ガスの凝縮とが同時に行われる(特許文献1参照。)。
ところで、上記従来例に係る空気分離装置に対してLNGを供給するLNGタンク(LNG貯槽)には、後述するような解決すべき問題があった。即ち、LNGタンク内に発生する自然気化ガス(Boil Off Gas;BOG)は、BOG圧縮機によって圧縮して天然ガス(以下、NGという。)として利用するか、またはBOG圧縮機によって圧縮し、NGとして払出すLNGとの間の熱交換により液化させる方式が採用されていた。
しかしながら、NGが利用されない期間には、BOGによりLNGタンクの内圧が上昇し、LNGタンクの破裂の危険があるため、LNGタンク内のBOGを廃棄せざるを得ず、省エネルギーの観点から、廃棄することなくLNGタンクの内圧を調整する手段の具現が望まれていた。
Incidentally, the LNG tank (LNG storage tank) for supplying LNG to the air separation device according to the conventional example has a problem to be solved as described later. That is, natural vaporized gas (Boil Off Gas; BOG) generated in the LNG tank is compressed by a BOG compressor and used as natural gas (hereinafter referred to as NG) or compressed by a BOG compressor, and NG The method of liquefying by heat exchange with LNG to be dispensed as was adopted.
However, during the period when NG is not used, the internal pressure of the LNG tank rises due to BOG, and there is a risk of rupture of the LNG tank. Thus, it has been desired to implement a means for adjusting the internal pressure of the LNG tank.
従って、本発明の目的は、LNGタンクからNGの払出しができなくなっても、空気分離装置の一部を活用して、LNGタンクの圧力調整装置およびLNGタンクの圧力調整方法を提供することである。 Accordingly, an object of the present invention is to provide a pressure adjusting device for an LNG tank and a pressure adjusting method for an LNG tank by utilizing a part of the air separation device even when NG cannot be discharged from the LNG tank. .
本発明は、上記課題を解決するためになされたものであって、従って本発明の請求項1に係るLNGタンクの圧力調整装置が採用した手段は、大気から原料空気を取り込んで所定圧力まで圧縮した圧縮空気を浄化する原料空気処理部と、この原料空気処理部で浄化された圧縮空気を、主熱交換器を通して冷却した後に酸素と窒素とに精留分離する精留塔を収容するコールドボックスと、このコールドボックスから取り出すと共に、循環圧縮機から吐出された圧縮窒素ガスを断熱膨張させる膨張タービンが介装されてなる窒素循環流路を有する窒素循環冷却機構を備えた空気分離装置を活用する液化天然ガスタンクの圧力調整装置であって、前記窒素循環流路と、前記液化天然ガスタンク、液化天然ガスポンプ、前記窒素循環流路の前記膨張タービンの下流側に介装された液化天然ガス過冷却器を経て前記液化天然ガスタンクに戻る液化天然ガス循環流路からなるとともに、前記液化天然ガスタンクに戻される液化天然ガスのガス過冷却温度と、液化天然ガスタンク内の自然気化ガスのガス層のガス層温度との温度差に応じて弁開度が制御される流量制御弁が介装され、前記窒素循環冷却機構で製造された液体窒素を供給する液体窒素供給流路を、前記液化天然ガス過冷却器を介して前記窒素循環流路の、前記液化天然ガス過冷却器の下流側に連通させたことを特徴とする。 The present invention has been made in order to solve the above-mentioned problems. Therefore, the means adopted by the pressure regulator of the LNG tank according to claim 1 of the present invention takes the raw air from the atmosphere and compresses it to a predetermined pressure. A cold box containing a raw material air treatment section that purifies the compressed air and a rectification tower that rectifies and separates the compressed air purified by the raw material air treatment section into oxygen and nitrogen after cooling through the main heat exchanger And an air separation device having a nitrogen circulation cooling mechanism having a nitrogen circulation flow path in which an expansion turbine for adiabatically expanding compressed nitrogen gas discharged from the circulation compressor is interposed. A pressure adjusting device for a liquefied natural gas tank, comprising: the nitrogen circulation channel; the liquefied natural gas tank; a liquefied natural gas pump; Together consist of liquefied natural gas circulation flow path back to the liquefied natural gas tank through the LNG subcooler interposed downstream of the bottle, the gas supercooling temperature of the liquefied natural gas to be returned to the liquefied natural gas tank, A flow control valve that controls the valve opening according to the temperature difference between the gas layer temperature of the natural vaporized gas in the liquefied natural gas tank is provided, and liquid nitrogen produced by the nitrogen circulation cooling mechanism is supplied. The liquid nitrogen supply flow path is connected to the downstream side of the liquefied natural gas subcooler in the nitrogen circulation flow path via the liquefied natural gas subcooler .
本発明の請求項2に係るLNGタンクの圧力調整装置が採用した手段は、請求項1に記載のLNGタンクの圧力調整装置において、前記窒素循環流路の前記循環圧縮機の下流側に、前記膨張タ−ビンで駆動されて前記循環圧縮機で圧縮された圧縮窒素ガスの圧力を上昇させる昇圧機を介装したことを特徴とする。 The means adopted by the LNG tank pressure regulator according to claim 2 of the present invention is the LNG tank pressure regulator according to claim 1, wherein the LNG tank pressure regulator is disposed downstream of the circulation compressor in the nitrogen circulation channel. It is characterized by comprising a booster that is driven by an expansion turbine and increases the pressure of compressed nitrogen gas compressed by the circulating compressor.
本発明の請求項3に係るLNGタンクの圧力調整装置が採用した手段は、請求項1に記載のLNGタンクの圧力調整装置において、前記窒素循環流路の前記循環圧縮機から前記膨張タービンに連通する流路の間に、循環冷凍機が介装されてなる分岐窒素流路を設けたことを特徴とする。 The means adopted by the LNG tank pressure regulator according to claim 3 of the present invention is the LNG tank pressure regulator according to claim 1, wherein the LNG tank pressure regulator is connected to the expansion turbine from the circulation compressor of the nitrogen circulation passage. A branch nitrogen flow path in which a circulation refrigerator is interposed is provided between the flow paths.
本発明の請求項4に係るLNGタンクの圧力調整方法が採用した手段は、空気分離装置に設けられた窒素循環流路を流れる窒素の冷熱により、LNGタンクから供給されたLNGを過冷却し、過冷却したLNGにより前記LNGタンクの圧力を調整するLNGタンクの圧力調整方法であって、前記LNGタンクに戻されるLNGのガス過冷却温度と、LNGタンク内のBOGのガス層温度との温度差に応じてLNGのガス過冷却温度を調整すると共に、ガス過冷却温度を調整したLNGをLNGタンク内のBOGのガス層に噴霧することを特徴とする。 LNG means pressure adjustment method has adopted a tank according to claim 4 of the present invention, the cold of the nitrogen flowing through the nitrogen circulation passage provided in an air separation equipment, the LNG supplied from the LNG tank subcooled LNG tank pressure adjustment method for adjusting the pressure of the LNG tank by using the supercooled LNG, wherein the temperature of the LNG gas supercooling temperature returned to the LNG tank and the gas layer temperature of the BOG in the LNG tank The LNG gas supercooling temperature is adjusted according to the difference, and the LNG with the adjusted gas supercooling temperature is sprayed onto the BOG gas layer in the LNG tank.
本発明の請求項1乃至3に係るLNGタンクの圧力調整装置、または本発明の請求項4に係るLNGタンクの圧力調整方法では、LNGタンクには過冷却されたLNGが戻され、このLNGによりLNGタンク内が冷却される。従って、発明の請求項1乃至3に係るLNGタンクの圧力調整装置、または本発明の請求項4に係るLNGタンクの圧力調整方法によれば、LNGタンク内におけるBOGの発生量が抑制されるだけでなく、LNGタンク内のBOGの液化により、LNGタンクの内圧が低下するから、従来例のように、BOGを廃棄する必要がない。さらに、本発明の請求項1乃至3に係るLNGタンクの圧力調整装置によれば、液体窒素過冷却ボックスで製造された液体窒素を、液体窒素供給流路を介してLNG過冷却器に供給するに際して、流量制御弁の開度を制御して液体窒素の流量を調整することができる。従って、LNGタンクに戻されるLNGの過冷却温度を制御することができるから、LNGタンクの温度を制御してBOGの発生を抑制し、またBOGを液化させることによりLNGタンクの内圧を低下させることができる。 In the LNG tank pressure adjusting device according to claims 1 to 3 of the present invention or the pressure adjusting method of the LNG tank according to claim 4 of the present invention, the overcooled LNG is returned to the LNG tank. The inside of the LNG tank is cooled. Therefore, according to the pressure adjusting method of an LNG tank according to claim 4 wherein the pressure regulating device of the LNG tank according to claim 1 to 3, or present invention, only the generation of BOG in the LNG tank is suppressed In addition, since the internal pressure of the LNG tank decreases due to liquefaction of the BOG in the LNG tank, it is not necessary to discard the BOG as in the conventional example. Furthermore, according to the pressure regulating apparatus for an LNG tank according to claims 1 to 3 of the present invention, the liquid nitrogen produced in the liquid nitrogen supercooling box is supplied to the LNG subcooler via the liquid nitrogen supply channel. At this time, the flow rate of the liquid nitrogen can be adjusted by controlling the opening of the flow control valve. Therefore, since the LNG subcooling temperature returned to the LNG tank can be controlled, the generation of BOG is controlled by controlling the temperature of the LNG tank, and the internal pressure of the LNG tank is reduced by liquefying the BOG. Can do.
本発明の請求項2に係るLNGタンクの圧力調整装置によれば、窒素循環流路の循環圧縮機の下流側に、膨張タ−ビンで駆動されて循環圧縮機で圧縮された圧縮窒素ガスの圧力を上昇させる昇圧機が介装されている。従って、より高圧の圧縮窒素ガスを断熱膨張させることにより、窒素循環流路の液体窒素の生産効率が向上するから、LNG過冷却器でより効果的にLNGを過冷却することができる。 According to the pressure regulating device for the LNG tank according to claim 2 of the present invention, the compressed nitrogen gas which is driven by the expansion turbine and compressed by the circulation compressor is disposed downstream of the circulation compressor of the nitrogen circulation passage. A booster for increasing the pressure is interposed. Therefore, since the production efficiency of liquid nitrogen in the nitrogen circulation channel is improved by adiabatic expansion of the higher-pressure compressed nitrogen gas, LNG can be subcooled more effectively by the LNG subcooler.
本発明の請求項3に係るLNGタンクの圧力調整装置によれば、窒素循環流路の前記循環圧縮機から前記膨張タービンに連通する流路の間に、循環冷凍機が介装されてなる分岐窒素流路が設けられている。従って、循環圧縮機の窒素ガスの流量を減らすことができ、窒素循環流路の液体窒素の生産効率が向上するから、LNG過冷却器でより効果的にLNGを過冷却することができる。 According to the pressure regulator for an LNG tank according to claim 3 of the present invention, a branch formed by interposing a circulation refrigerator between the circulation compressor of the nitrogen circulation passage and the passage communicating with the expansion turbine. A nitrogen channel is provided. Accordingly, the flow rate of the nitrogen gas in the circulation compressor can be reduced and the production efficiency of liquid nitrogen in the nitrogen circulation flow path can be improved, so that the LNG can be subcooled more effectively by the LNG subcooler.
本発明の請求項4に係るLNGタンクの圧力調整方法によれば、LNGタンクに戻されるLNGのガス過冷却温度と、LNGタンク内のBOGのガス層温度との温度差に応じて、LNGのガス過冷却温度が調整され、ガス過冷却温度が調整されたLNGがLNGタンク内のBOGのガス層に噴霧される。従って、LNGタンクに戻されるLNGによりLNGタンクを冷却することにより、BOGの発生を抑制し、またBOGを液化させることによりLNGタンクの内圧を低下させることができる。 According to the pressure adjusting method of an LNG tank according to claim 4 of the present invention, the LNG gas supercooling temperature returned to LNG tank, according to the temperature difference between the gas layer temperature BOG in LNG tanks, L NG The gas subcooling temperature is adjusted, and the LNG with the adjusted gas subcooling temperature is sprayed on the BOG gas layer in the LNG tank. Therefore, by cooling the LNG tank with the LNG returned to the LNG tank, the generation of BOG can be suppressed, and the internal pressure of the LNG tank can be reduced by liquefying the BOG.
以下、本発明の空気分離方法を実施するLNGタンクの圧力調整方法を実施する形態1に係る圧力調整装置を、添付図面を参照しながら説明する。図1は空気分離装置に設けられた本発明の形態1に係るLNGタンクの圧力調整装置の模式的構成説明図である。 Hereinafter, a pressure regulator according to a first embodiment for carrying out a pressure regulation method for an LNG tank for carrying out the air separation method of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration explanatory view of a pressure adjusting device for an LNG tank according to Embodiment 1 of the present invention provided in an air separation device.
先ず、空気分離装置の概要を説明すると、空気分離装置は、主として後述する4つの主要部から構成されている。第1の主要部は、大気から原料空気を取り込んで所定圧力まで圧縮すると共に、圧縮空気を浄化する原料空気処理部1である。第2の主要部は、主熱交換器と、精留塔と、過冷却器等を収容したコールドボックス2である。また、第3の主要部は、前記コールドボックス2から排出された窒素ガスを圧縮すると共に、圧縮された窒素ガスを断熱膨張させて液体窒素を製造する窒素循環冷却機構3である。そして、第4の主要部は、前記窒素循環冷却機構3で製造された液体窒素と低温の窒素ガスとを分離すると共に、液体窒素を過冷却して液体窒素製品とする液体窒素過冷却ボックス4である。 First, the outline of the air separation device will be described. The air separation device is mainly composed of four main parts described later. The first main part is a raw air processing unit 1 that takes in raw air from the atmosphere and compresses it to a predetermined pressure and purifies the compressed air. The second main part is a cold box 2 containing a main heat exchanger, a rectifying column, a supercooler and the like. The third main part is a nitrogen circulation cooling mechanism 3 that compresses the nitrogen gas discharged from the cold box 2 and adiabatically expands the compressed nitrogen gas to produce liquid nitrogen. The fourth main part separates the liquid nitrogen produced by the nitrogen circulation cooling mechanism 3 from the low-temperature nitrogen gas, and supercools the liquid nitrogen to form a liquid nitrogen product, thereby producing a liquid nitrogen product. It is.
原料空気処理部1で圧縮されると共に、水分や炭酸ガス等が除去されて浄化された原料空気は、流路Aを介してコールドボックス2に送られる。このコールドボックス2内には複数種の機器類が収容されている。機器類は、図示省略しているが、主熱交換器、上部の低圧精留塔、下部の高圧精留塔、および過冷却器である。即ち、前記原料空気処理部1で処理され、流路Aを介して主熱交換器に送られた原料空気は、この主熱交換器で冷却される。そして、原料空気は、低圧精留塔の頂部から過冷却器を介して取出された高純度窒素ガス、低圧精留塔の上部付近から過冷却器を介して取出された低純度窒素ガス(流路Bを介して原料空気処理部1の乾燥機に送られる。)、および高圧精留塔から取出された高純度窒素ガスと熱交換することにより冷却される。 The raw material air compressed by the raw material air processing unit 1 and purified by removing moisture, carbon dioxide and the like is sent to the cold box 2 via the flow path A. A plurality of types of devices are accommodated in the cold box 2. Although not shown, the equipment is a main heat exchanger, an upper low-pressure rectification column, a lower high-pressure rectification column, and a supercooler. That is, the raw material air processed by the raw material air processing unit 1 and sent to the main heat exchanger via the flow path A is cooled by the main heat exchanger. The raw air is made up of high-purity nitrogen gas taken out from the top of the low-pressure rectification tower via the supercooler, and low-purity nitrogen gas taken from the vicinity of the upper part of the low-pressure rectification tower through the subcooler It is sent to the dryer of the raw material air processing unit 1 through the path B.), and cooled by exchanging heat with the high-purity nitrogen gas taken out from the high-pressure rectification tower.
前記主熱交換器を通過した冷却空気は、高圧精留塔の底部に供給される。高圧精留塔に供給された冷却空気は、塔内を上昇する間に次第に窒素リッチになり、その頂部では高純度窒素となる。高純度窒素の一部は、高圧精留塔からガス状で抜き出され、主熱交換器を通って加熱されて系外に送出される。残部は主凝縮器に導かれ、冷却、凝縮されて液体窒素となる。凝縮された液体窒素の一部は、高圧精留塔の上部より抜出され、過冷却器を通って過冷却されると共に、減圧された後に低圧精留塔の頂部に供給される。残りの液体窒素は塔内を流下する間に次第に酸素リッチになり、高圧精留塔の底部に液体空気として溜まる。液体空気は、高圧精留塔から引出された後に、過冷却器で過冷却されて低圧精留塔の中部に導入される。 The cooling air that has passed through the main heat exchanger is supplied to the bottom of the high-pressure rectification column. The cooling air supplied to the high-pressure rectification column gradually becomes nitrogen-rich while rising in the column, and becomes high-purity nitrogen at the top. A part of the high-purity nitrogen is extracted from the high-pressure rectification column in the form of gas, heated through the main heat exchanger, and sent out of the system. The remainder is led to the main condenser, cooled and condensed to become liquid nitrogen. Part of the condensed liquid nitrogen is withdrawn from the upper part of the high-pressure rectification column, is supercooled through the subcooler, and is decompressed and then supplied to the top of the low-pressure rectification column. The remaining liquid nitrogen gradually becomes richer in oxygen as it flows down the tower, and accumulates as liquid air at the bottom of the high pressure rectification tower. After the liquid air is drawn out from the high pressure rectification tower, it is supercooled by the supercooler and introduced into the middle of the low pressure rectification tower.
前記低圧精留塔の中部に導入された酸素リッチな液体空気は塔内を流下しながら次第に酸素が凝縮され、底部で高純度酸素となる。この低圧精留塔の底部に溜まった液体酸素は、液体酸素製品として系外に取出される。一方、低圧精留塔の頂部から過冷却器を介して取出された高純度窒素ガス、および高圧精留塔から取出された高純度窒素ガスは主熱交換器において原料空気と熱交換した後、流路C,Dを介して送出される。流路Cから窒素循環冷却機構3に向かって送出された窒素ガスは窒素圧縮機31により圧縮されると共に、流路Dから導かれた窒素ガスと合流して、循環圧縮機32に導かれる。 The oxygen-rich liquid air introduced into the middle part of the low-pressure rectification column is gradually condensed while flowing down in the column, and becomes high-purity oxygen at the bottom. The liquid oxygen collected at the bottom of the low pressure rectification column is taken out of the system as a liquid oxygen product. On the other hand, after the high-purity nitrogen gas taken out from the top of the low-pressure rectification tower via the supercooler and the high-purity nitrogen gas taken out from the high-pressure rectification tower are heat-exchanged with the raw air in the main heat exchanger, It is sent out through channels C and D. Nitrogen gas sent from the flow path C toward the nitrogen circulation cooling mechanism 3 is compressed by the nitrogen compressor 31, merges with the nitrogen gas guided from the flow path D, and is guided to the circulation compressor 32.
前記窒素循環冷却機構3には、後述するLNGタンク34aの圧力調整装置が設けられている。窒素循環冷却機構3に設けられた窒素循環流路33に送り込まれた窒素ガスは、第1循環熱交換器33aで冷却され、冷却された窒素ガスの大部分が発電機Gを駆動する膨張タービン33bにより断熱膨張させられる。断熱膨張させられた窒素ガスは、この窒素ガスの冷熱を利用する、LNG過冷却器33c、第2循環熱交換器33dの順に循環するように構成されている。さらに、この窒素循環冷却機構3には、LNGタンク34a、LNGポンプ34b、前記LNG過冷却器33cを経てLNGタンク34aに戻るLNG循環流路34が設けられている。つまり、LNGタンク34aの圧力調整装置は、前記窒素循環流路33とLNG循環流路34とによって構成されている。 The nitrogen circulation cooling mechanism 3 is provided with a pressure adjusting device for an LNG tank 34a described later. The nitrogen gas sent into the nitrogen circulation flow path 33 provided in the nitrogen circulation cooling mechanism 3 is cooled by the first circulation heat exchanger 33a, and an expansion turbine in which most of the cooled nitrogen gas drives the generator G. Adiabatic expansion is performed by 33b. The nitrogen gas that has been adiabatically expanded is configured to circulate in the order of the LNG subcooler 33c and the second circulation heat exchanger 33d that use the cold heat of the nitrogen gas. Further, the nitrogen circulation cooling mechanism 3 is provided with an LNG circulation passage 34 that returns to the LNG tank 34a via the LNG tank 34a, the LNG pump 34b, and the LNG subcooler 33c. That is, the pressure adjusting device of the LNG tank 34 a is constituted by the nitrogen circulation channel 33 and the LNG circulation channel 34.
さらに、LNG過冷却器33cで過冷却されたLNGのガス過冷却温度T1を検出する第1温度検出器34cと、LNGタンク34a内のBOGのガス層のガス層温度T2を検出する第2温度検出器34dと、これら第1温度検出器34cで検出されるガス過冷却温度T1と第2温度検出器34dで検出されるガス層温度T2との温度差ΔTを求め、温度差ΔT(=T2−T1)が所定の範囲内になるようにLNGの過冷却温度を調整する制御器34eと、この制御器34eによって弁開度が制御され、膨張タービン33bによる断熱膨張で生じた低温窒素をLNG過冷却器33cの下流側にバイパスさせるバイパス弁33gが設けられている。つまり、LNGの過冷却温度は、バイパス33gの開度を制御することによって行われるように構成されている。 Further, the detecting a first temperature detector 34c for detecting the LNG subcooler 33c in the supercooled LNG gas subcooling temperature T 1, the gas layer temperature T 2 of the gas layer in BOG in LNG tanks 34a The temperature difference ΔT between the two temperature detector 34d and the gas supercooling temperature T 1 detected by the first temperature detector 34c and the gas layer temperature T 2 detected by the second temperature detector 34d is obtained, and the temperature difference A controller 34e that adjusts the LNG subcooling temperature so that ΔT (= T 2 −T 1 ) is within a predetermined range, and the valve opening degree is controlled by this controller 34e, and adiabatic expansion by the expansion turbine 33b. A bypass valve 33g for bypassing the generated low-temperature nitrogen to the downstream side of the LNG subcooler 33c is provided. That is, the LNG supercooling temperature is configured to be controlled by controlling the opening degree of the bypass 33g.
前記循環圧縮機32により圧縮されると共に、前記第1循環熱交換器33aで冷却された窒素ガスの大部分は、上記のとおり、膨張タービン33bにより断熱膨張させられるが、残りの窒素ガスは、途中で分岐して第2循環熱交換器33dを通る流路Eを流れる間に冷却され、液体窒素となって液体窒素過冷却ボックス4に送り込まれるように構成されている。この液体窒素過冷却ボックス4の内部には、主として気液分離器41と液体窒素過冷却器42が収容されている。即ち、流路Eを介して前記窒素循環冷却機構3から供給される液体窒素は、気液分離器41で低温の窒素ガス46と液体窒素47とに分離される。
気液分離器41で分離された窒素ガス46はコールドボックス2に収容されている低圧精留塔に送られるようになっている。一方、液体窒素47は液体窒素過冷却器42で過冷却されて液体窒素製品として系外に取出される。前記液体窒素47の一部は、気液分離器41の流出口付近で分岐してコールドボックス2に収容されている高圧精留塔に送出されるように構成されている。
Most of the nitrogen gas compressed by the circulation compressor 32 and cooled by the first circulation heat exchanger 33a is adiabatically expanded by the expansion turbine 33b as described above, but the remaining nitrogen gas is It is configured to be cooled while flowing through the flow path E passing through the second circulating heat exchanger 33d after being branched in the middle, and then fed into the liquid nitrogen supercooling box 4 as liquid nitrogen. Inside the liquid nitrogen supercooling box 4, a gas-liquid separator 41 and a liquid nitrogen supercooler 42 are mainly accommodated. That is, the liquid nitrogen supplied from the nitrogen circulation cooling mechanism 3 via the flow path E is separated into the low-temperature nitrogen gas 46 and the liquid nitrogen 47 by the gas-liquid separator 41.
The nitrogen gas 46 separated by the gas-liquid separator 41 is sent to a low-pressure rectification column accommodated in the cold box 2. On the other hand, the liquid nitrogen 47 is supercooled by the liquid nitrogen supercooler 42 and taken out of the system as a liquid nitrogen product. A part of the liquid nitrogen 47 branches near the outlet of the gas-liquid separator 41 and is sent to a high-pressure rectification tower accommodated in the cold box 2.
前記気液分離器41の出口から液体窒素流路43が分岐しており、この液体窒素流路43を介して液体窒素の一部が液体窒素製品の過冷却に使用されるように構成されている。
また、前記液体窒素流路43には、液体窒素製品となる液体窒素の温度を検出する液体窒素温度検出センサ45の検出温度に基づいて弁開度が制御される流量制御弁44が介装されると共に、前記液体窒素過冷却器42を介して液体窒素製品となる液体窒素を過冷却するように構成されている。これにより、所定温度範囲内に過冷却された窒素製品が製造されることとなる。
A liquid nitrogen channel 43 is branched from the outlet of the gas-liquid separator 41, and a part of the liquid nitrogen is configured to be used for supercooling the liquid nitrogen product through the liquid nitrogen channel 43. Yes.
The liquid nitrogen channel 43 is provided with a flow rate control valve 44 whose valve opening degree is controlled based on the temperature detected by a liquid nitrogen temperature detection sensor 45 that detects the temperature of liquid nitrogen that is a liquid nitrogen product. At the same time, the liquid nitrogen product that is the liquid nitrogen product is supercooled via the liquid nitrogen supercooler 42. Thereby, the nitrogen product supercooled within a predetermined temperature range will be manufactured.
本発明の形態1に係るLNGタンクの圧力調整装置によれば、LNGタンク34aに戻されるLNGのガス過冷却温度T1(第1温度検出器34cで検出される。)と、LNGタンク34a内のBOGのガス層のガス層温度T2(第2温度検出器34dで検出される。)との温度差ΔT(=T2−T1)に応じてバイパス弁33gの弁開度が制御されることにより、LNG過冷却器33cにおけるLNGのガス過冷却温度が制御される。より具体的には、第2温度検出器34dで検出される温度が所定範囲内になるように、温度差ΔT(=T2−T1)が大きければバイパス流量制御弁33gの弁開度が小さくなるように制御され、逆に温度差ΔT(=T2−T1)が小さければバイパス弁33gの弁解度が大きくなるように制御されて、窒素循環流路33を流れる液体窒素の流量が調整される。 According to the pressure adjusting device for an LNG tank according to Embodiment 1 of the present invention, the LNG gas supercooling temperature T 1 (detected by the first temperature detector 34c) returned to the LNG tank 34a, and the LNG tank 34a The valve opening degree of the bypass valve 33g is controlled in accordance with the temperature difference ΔT (= T 2 −T 1 ) with the gas layer temperature T 2 (detected by the second temperature detector 34d) of the BOG gas layer. Thus, the gas subcooling temperature of LNG in the LNG subcooler 33c is controlled. More specifically, if the temperature difference ΔT (= T 2 −T 1 ) is large so that the temperature detected by the second temperature detector 34d is within a predetermined range, the opening degree of the bypass flow control valve 33g is If the temperature difference ΔT (= T 2 −T 1 ) is small, the bypass valve 33g is controlled to increase the degree of solution, and the flow rate of liquid nitrogen flowing through the nitrogen circulation passage 33 is controlled. Adjusted.
そのため、LNGタンク34aには、断熱膨張により低温になった窒素との熱交換により過冷却されたLNGが戻され、この戻されたLNGによりLNGタンク34a内が冷却される。従って、本発明の形態1に係るLNGタンクの圧力調整装置によれば、LNGタンク34a内におけるBOGの発生量が抑制されるだけでなく、LNGタンク34a内のBOGの液化により、LNGタンク34aの内圧が低下するから、従来例のように、BOGを廃棄する必要がない。ところで、本発明の形態1に係るLNGタンクの圧力調整装置にあっては、温度差ΔTによってバイパス弁33gの弁開度を制御するように構成されているが、LNGタンク34a内の圧力を検出し、検出した圧力に応じて前記バイパス弁33gの弁開度を制御するように構成することもできる。 Therefore, LNG that has been supercooled by heat exchange with nitrogen that has become low temperature due to adiabatic expansion is returned to the LNG tank 34a, and the inside of the LNG tank 34a is cooled by the returned LNG. Therefore, according to the pressure adjusting device for the LNG tank according to the first embodiment of the present invention, not only is the amount of BOG generated in the LNG tank 34a suppressed, but also the LNG tank 34a is liquefied by liquefaction of the BOG in the LNG tank 34a. Since the internal pressure decreases, it is not necessary to discard the BOG as in the conventional example. By the way, the pressure regulator for the LNG tank according to the first embodiment of the present invention is configured to control the valve opening degree of the bypass valve 33g by the temperature difference ΔT, but detects the pressure in the LNG tank 34a. And it can also comprise so that the valve opening degree of the said bypass valve 33g may be controlled according to the detected pressure.
本発明の形態2に係るLNGタンクの圧力調整装置を、空気分離装置の窒素循環冷却機構に設けられたその模式的系統説明図の図2を参照しながら説明する。なお、本発明の形態2が上記形態1と相違するところは、窒素循環冷却機構の構成が若干相違するだけであるから、同一のものに同一符号を付し、かつ同一名称を以ってその相違する点について説明する。 An LNG tank pressure adjusting device according to Embodiment 2 of the present invention will be described with reference to FIG. 2 of a schematic system explanatory diagram provided in a nitrogen circulation cooling mechanism of an air separation device. It should be noted that the second embodiment of the present invention differs from the first embodiment in that the configuration of the nitrogen circulation cooling mechanism is slightly different, so that the same components are denoted by the same reference numerals and denoted by the same names. Differences will be described.
本発明の形態2に窒素循環冷却機構3では、窒素循環流路33の循環圧縮機32の下流側に、前記循環圧縮機32により圧縮された窒素ガスをさらに圧縮する循環タービン圧縮機(昇圧機)33eが介装されている。この循環タービン圧縮機33eは膨張タービン33bで駆動されるようになっており、この循環タービン圧縮機33eで圧縮された圧縮窒素ガスは第1循環熱交換器33aで冷却された後に前記膨張タービン33bで断熱膨張されるように構成されている。 In the nitrogen circulation cooling mechanism 3 according to the second embodiment of the present invention, a circulation turbine compressor (a booster) that further compresses the nitrogen gas compressed by the circulation compressor 32 on the downstream side of the circulation compressor 32 in the nitrogen circulation passage 33. ) 33e is interposed. The circulation turbine compressor 33e is driven by an expansion turbine 33b. The compressed nitrogen gas compressed by the circulation turbine compressor 33e is cooled by the first circulation heat exchanger 33a and then the expansion turbine 33b. It is comprised so that adiabatic expansion may be carried out.
本実施の形態2に係るLNGタンクの圧力調整装置によれば、窒素循環冷却機構3の窒素循環流路33に循環タービン圧縮機33eが追加されただけであるから、上記形態1に係るLNGタンクの圧力調整装置と同等の効果を得ることができる。さらに、より高圧の圧縮窒素ガスを断熱膨張させることにより、窒素循環流路33の液体窒素の生産効率が向上し、LNG過冷却器33cでより効果的にLNGを過冷却することができるので、この点に関しては本発明の形態1よりも優れている。 According to the pressure regulating device for the LNG tank according to the second embodiment, the circulation turbine compressor 33e is only added to the nitrogen circulation flow path 33 of the nitrogen circulation cooling mechanism 3, and therefore the LNG tank according to the first embodiment. An effect equivalent to that of the pressure adjusting device can be obtained. Furthermore, by adiabatically expanding higher-pressure compressed nitrogen gas, the production efficiency of liquid nitrogen in the nitrogen circulation flow path 33 is improved, and the LNG subcooler 33c can more effectively subcool LNG. This is superior to the first embodiment of the present invention.
本発明の形態3に係るLNGタンクの圧力調整装置を、空気分離装置の窒素循環冷却機構に設けられたその模式的系統説明図の図3を参照しながら説明する。なお、本発明の形態2が上記形態1と相違するところは、窒素循環冷却機構の構成が若干相違するだけであるから、同一のものに同一符号を付し、かつ同一名称を以ってその相違する点について説明する。 An LNG tank pressure adjusting device according to Embodiment 3 of the present invention will be described with reference to FIG. 3 of a schematic system explanatory view provided in a nitrogen circulation cooling mechanism of an air separation device. It should be noted that the second embodiment of the present invention differs from the first embodiment in that the configuration of the nitrogen circulation cooling mechanism is slightly different, so that the same components are denoted by the same reference numerals and denoted by the same names. Differences will be described.
本発明の形態3に係るLNGタンクの圧力調整装置の窒素循環冷却機構3では、窒素循環流路33の循環圧縮機32から膨張タービン33bに連通する流路の間に、循環冷凍機33fが介装されてなる分岐窒素流路33′が設けられている。前記循環冷凍機33fは液体窒素、または冷媒を用いるもので、この循環冷凍機33fで冷却した圧縮質素ガスと第1循環熱交換器33aで冷却した圧縮窒素ガスとを合流させた後、膨張タービン33bで断熱膨張されるように構成されている In the nitrogen circulation cooling mechanism 3 of the LNG tank pressure adjusting device according to the third embodiment of the present invention, the circulation refrigerator 33f is interposed between the circulation compressor 32 of the nitrogen circulation passage 33 and the passage communicating with the expansion turbine 33b. A branched nitrogen flow path 33 ′ is provided. The circulation refrigerator 33f uses liquid nitrogen or a refrigerant. After the compressed elementary gas cooled by the circulation refrigerator 33f and the compressed nitrogen gas cooled by the first circulation heat exchanger 33a are merged, the expansion turbine It is configured to be adiabatically expanded at 33b
本実施の形態3に係るLNGタンクの圧力調整装置によれば、窒素循環冷却機構3の窒素循環流路33に循環冷凍機33fが介装されてなる分岐窒素流路33′が追加されただけであるから、上記形態1に係るLNGタンクの圧力調整装置と同等の効果を得ることができる。さらに、循環圧縮機32の窒素ガスの流量を減らすことができ、窒素循環流路33の液体窒素の生産効率が向上し、LNG過冷却器33cでより効果的にLNGを過冷却することができるので、この点に関しては本発明の形態1よりも優れている。 According to the pressure adjusting device for the LNG tank according to the third embodiment, the branched nitrogen flow path 33 ′ in which the circulation refrigerator 33f is interposed is added to the nitrogen circulation flow path 33 of the nitrogen circulation cooling mechanism 3. Therefore, an effect equivalent to that of the pressure adjusting device for the LNG tank according to the first aspect can be obtained. Furthermore, the flow rate of the nitrogen gas in the circulation compressor 32 can be reduced, the production efficiency of liquid nitrogen in the nitrogen circulation passage 33 can be improved, and the LNG subcooler 33c can more effectively subcool the LNG. Therefore, this point is superior to Embodiment 1 of the present invention.
本発明の形態4に係るLNGタンクの圧力調整装置を、空気分離装置の窒素循環冷却機構に設けられたその模式的系統説明図の図4を参照しながら説明する。なお、本発明の形態2が上記形態1と相違するところは、窒素循環冷却機構の構成が若干相違するだけであるから、同一のものに同一符号を付し、かつ同一名称を以ってその相違する点について説明する。 An LNG tank pressure adjusting device according to Embodiment 4 of the present invention will be described with reference to FIG. 4 of a schematic system explanatory diagram provided in a nitrogen circulation cooling mechanism of an air separation device. It should be noted that the second embodiment of the present invention differs from the first embodiment in that the configuration of the nitrogen circulation cooling mechanism is slightly different, so that the same components are denoted by the same reference numerals and denoted by the same names. Differences will be described.
即ち、本発明の形態4に係るLNGタンクの圧力調整装置の窒素循環流路33には流量調整弁33gが介装されていないが、液体窒素過冷却ボックス4の気液分離器41の出口側から、流量制御弁35aが介装されてなる液体窒素供給流路35が前記LNG過冷却器33を介して窒素循環流路33の、前記LNG過冷却器33cの下流側に連通している。
そして、前記流量制御弁35aの弁開度は、第1温度検出器34cで検出されるガス過冷却温度T1と第2温度検出器34dで検出されるガス層温度T2との温度差ΔT(T2−T1)を求める制御器34eにより制御されるように構成されている。
That is, although the flow rate adjusting valve 33g is not interposed in the nitrogen circulation flow path 33 of the pressure adjusting device of the LNG tank according to the fourth embodiment of the present invention, the outlet side of the gas-liquid separator 41 of the liquid nitrogen supercooling box 4 Therefore, the liquid nitrogen supply flow path 35 in which the flow rate control valve 35 a is interposed communicates with the nitrogen circulation flow path 33 downstream of the LNG subcooler 33 c via the LNG subcooler 33.
The valve opening degree of the flow rate control valve 35a is the temperature difference ΔT between the gas supercooling temperature T 1 detected by the first temperature detector 34c and the gas layer temperature T 2 detected by the second temperature detector 34d. It is configured to be controlled by a controller 34e that calculates (T 2 −T 1 ).
従って、本発明の形態4に係るLNGタンクの圧力調整装置によれば、制御器34eで流量制御弁35aの弁開度を制御することにより、LNGタンク34aに戻されるLNGのガス過冷却温度を調整することができる。従って、本発明の形態4に係るLNGタンクの圧力調整装置によれば、上記形態1に係るLNGタンクの圧力調整装置と同等の効果を得ることができる。なお、本発明の形態1乃至3のように、窒素循環流路33にバイパス弁を設ける。そして、このバイパス弁と、前記液体窒素供給流路35に介装されてなる流量制御弁35aとの弁開度を共に制御する構成にすることもできる。 Therefore, according to the pressure regulator for an LNG tank according to the fourth embodiment of the present invention, the gas subcooling temperature of the LNG returned to the LNG tank 34a is controlled by controlling the valve opening degree of the flow rate control valve 35a with the controller 34e. Can be adjusted. Therefore, the LNG tank pressure adjusting device according to the fourth embodiment of the present invention can achieve the same effects as the LNG tank pressure adjusting device according to the first embodiment. Note that a bypass valve is provided in the nitrogen circulation channel 33 as in the first to third embodiments of the present invention. And it can also be set as the structure which controls both the valve opening degree of this bypass valve and the flow control valve 35a interposed by the said liquid nitrogen supply flow path 35. As shown in FIG.
A,B,C,D,E…流路
1…原料空気処理部
2…コールドボックス
3…窒素循環冷却機構,31…窒素圧縮機,32…循環圧縮機,33…窒素循環流路,33′…分岐窒素流路,33a…第1循環熱交換器,33b…膨張タービン,33c…LNG過冷却器,33d…第2循環熱交換器,33e…循環タービン圧縮機,33f…循環冷凍機,33g…バイパス弁,34…LNG循環流路,34a…LNGタンク,34b…LNGポンプ,34c…第1温度検出器,34d…第2温度検出器,34e…制御器,35…液体窒素供給流路.35a…流量制御弁
4…液体窒素過冷却ボックス,41…気液分離器,42…液体窒素過冷却器,43…液体窒素流路,44…流量制御弁,45…液体窒素温度検出センサ、46…低温の窒素ガス,47…液体窒素
A, B, C, D, E ... flow path 1 ... raw material air processing unit 2 ... cold box 3 ... nitrogen circulation cooling mechanism, 31 ... nitrogen compressor, 32 ... circulation compressor, 33 ... nitrogen circulation flow path, 33 ' ... Branch nitrogen flow path, 33a ... first circulation heat exchanger, 33b ... expansion turbine, 33c ... LNG subcooler, 33d ... second circulation heat exchanger, 33e ... circulation turbine compressor, 33f ... circulation refrigerator, 33g ... bypass valve, 34 ... LNG circulation channel, 34a ... LNG tank, 34b ... LNG pump, 34c ... first temperature detector, 34d ... second temperature detector, 34e ... controller, 35 ... liquid nitrogen supply channel. 35a ... Flow control valve 4 ... Liquid nitrogen subcooling box, 41 ... Gas-liquid separator, 42 ... Liquid nitrogen subcooler, 43 ... Liquid nitrogen flow path, 44 ... Flow control valve, 45 ... Liquid nitrogen temperature detection sensor, 46 ... low-temperature nitrogen gas, 47 ... liquid nitrogen
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003374576A JP4408211B2 (en) | 2003-11-04 | 2003-11-04 | Pressure adjusting device for liquefied natural gas tank and pressure adjusting method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003374576A JP4408211B2 (en) | 2003-11-04 | 2003-11-04 | Pressure adjusting device for liquefied natural gas tank and pressure adjusting method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005140163A JP2005140163A (en) | 2005-06-02 |
JP4408211B2 true JP4408211B2 (en) | 2010-02-03 |
Family
ID=34686251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003374576A Expired - Fee Related JP4408211B2 (en) | 2003-11-04 | 2003-11-04 | Pressure adjusting device for liquefied natural gas tank and pressure adjusting method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4408211B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100774836B1 (en) | 2007-02-09 | 2007-11-07 | 현대중공업 주식회사 | Treatment unit of excessive boil-off gas using lng suction drum and line mixer |
KR20080085619A (en) | 2007-03-20 | 2008-09-24 | 대우조선해양 주식회사 | Safety valve control method |
US10145514B2 (en) | 2013-11-18 | 2018-12-04 | Man Energy Solutions Se | Cold-box system and method for power management aboard ships |
CN115127304B (en) * | 2022-06-30 | 2023-11-17 | 四川帝雷蒙科技有限公司 | BOG reliquefaction recovery system and method capable of improving helium purity |
CN117928174B (en) * | 2024-01-24 | 2024-07-30 | 连云港中新燃气有限公司 | LNG cold energy utilization air separation device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08178189A (en) * | 1994-12-22 | 1996-07-12 | Tokyo Gas Co Ltd | Suppressing device for bog generated in lpg storage tank |
JP3610246B2 (en) * | 1998-10-29 | 2005-01-12 | 大阪瓦斯株式会社 | LNG boil-off gas reliquefaction and air separation integrated device |
FR2792707B1 (en) * | 1999-04-20 | 2001-07-06 | Gaz De France | METHOD AND DEVICE FOR THE COLD HOLDING OF TANKS FOR STORING OR TRANSPORTING LIQUEFIED GAS |
JP3908881B2 (en) * | 1999-11-08 | 2007-04-25 | 大阪瓦斯株式会社 | Boil-off gas reliquefaction method |
GB0001801D0 (en) * | 2000-01-26 | 2000-03-22 | Cryostar France Sa | Apparatus for reliquiefying compressed vapour |
JP3488695B2 (en) * | 2001-02-09 | 2004-01-19 | エア・ウォーター株式会社 | Nitrogen production equipment |
GB0320474D0 (en) * | 2003-09-01 | 2003-10-01 | Cryostar France Sa | Controlled storage of liquefied gases |
-
2003
- 2003-11-04 JP JP2003374576A patent/JP4408211B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005140163A (en) | 2005-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3048373B2 (en) | Method and apparatus for low-temperature separation of air | |
JP3086857B2 (en) | Method for generating cold, cooling cycle using this method, and air rectification method and apparatus using this method | |
US6370910B1 (en) | Liquefying a stream enriched in methane | |
JP3947565B2 (en) | Method and apparatus for variable generation of pressurized product gas | |
KR101680465B1 (en) | Integrated nitrogen removal in the production of liquefied natural gas using dedicated reinjection circuit | |
KR950010557B1 (en) | Method for separating air for obtaining oxygene according to varying demand | |
US5611218A (en) | Nitrogen generation method and apparatus | |
JP4276520B2 (en) | Operation method of air separation device | |
JPH04283390A (en) | Air rectification method and equipment for producing gaseous oxygen in variable amount | |
JP4408211B2 (en) | Pressure adjusting device for liquefied natural gas tank and pressure adjusting method thereof | |
EP0932004A2 (en) | Apparatus and method for producing nitrogen | |
JP3884240B2 (en) | Air separation device and control operation method thereof | |
WO2019127180A1 (en) | Cryogenic rectification process-based method for producing air product, and air separation system | |
JP4688843B2 (en) | Air separation device | |
US20120125044A1 (en) | Feed compression method and apparatus for air separation process | |
JP7313608B2 (en) | High purity oxygen and nitrogen production system | |
US6568210B2 (en) | Method and apparatus for obtaining a gaseous product by cryogenic air separation | |
JP2004205076A (en) | Air liquefying and separating device and its method | |
JP3976188B2 (en) | Product gas production method using air separation device | |
JP2920392B2 (en) | Supercooling method of liquefied nitrogen in air liquefaction separator | |
JP3703943B2 (en) | Method and apparatus for producing low purity oxygen | |
JP3026098B2 (en) | Air liquefaction separation method and apparatus suitable for fluctuations in demand | |
JP2020076514A (en) | Nitrogen gas producing device | |
KR100694376B1 (en) | Sub-zero air separation apparatus and an operating method of the same | |
JP2001336876A (en) | Method and system for producing nitrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091106 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131120 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |