[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4406778B2 - Cold water circulation system - Google Patents

Cold water circulation system Download PDF

Info

Publication number
JP4406778B2
JP4406778B2 JP2009043487A JP2009043487A JP4406778B2 JP 4406778 B2 JP4406778 B2 JP 4406778B2 JP 2009043487 A JP2009043487 A JP 2009043487A JP 2009043487 A JP2009043487 A JP 2009043487A JP 4406778 B2 JP4406778 B2 JP 4406778B2
Authority
JP
Japan
Prior art keywords
cold water
water
chilled water
temperature difference
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009043487A
Other languages
Japanese (ja)
Other versions
JP2009115452A5 (en
JP2009115452A (en
Inventor
完二 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009043487A priority Critical patent/JP4406778B2/en
Publication of JP2009115452A publication Critical patent/JP2009115452A/en
Publication of JP2009115452A5 publication Critical patent/JP2009115452A5/ja
Application granted granted Critical
Publication of JP4406778B2 publication Critical patent/JP4406778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、省エネルギー化が可能な冷水循環システム(空調用や生産冷却水用に冷熱を連続供給する目的の冷水循環設備を含む)に関し、特に、冷水蓄熱槽を含む設備システムにおいて、冷水二次ポンプと冷凍機の最適な運転制御を行うことによりエネルギー効率向上が可能となる冷水循環システムに関する。   The present invention relates to a chilled water circulation system (including chilled water circulation equipment for the purpose of continuously supplying cold heat for air conditioning and production cooling water) capable of saving energy, and in particular, in a facility system including a chilled water thermal storage tank, The present invention relates to a chilled water circulation system capable of improving energy efficiency by performing optimum operation control of a pump and a refrigerator.

図3は、従来一般に使用されている既存の冷水循環システムにおける主要部の構成概略図である。   FIG. 3 is a schematic configuration diagram of a main part in an existing chilled water circulation system that is generally used in the past.

冷水一次ポンプ1は、冷水蓄熱槽(以下、蓄熱槽ということがある。)2の高温部2aから冷水(戻り冷水)を吸い上げ、冷凍機3に送り、目的とする温度まで冷やす。冷やされた冷水(送り冷水)は、一旦、蓄熱槽2の低温部2bに入り、そこから必要な量だけが冷水二次ポンプ5に汲み上げられ、送りヘッダー6を経由して、1又は2以上の負荷設備8に送られる。送られた冷水は、負荷設備8を冷却するために用いられ、その負荷の大きさに比例して冷水の温度が上昇する。その後、冷水は、戻りヘッダー9、集合管10を通って、蓄熱槽2の高温部2aに戻る。冷凍機3には、クーリングタワー31と冷却水ポンプ32が補機として付随しており、これら補機と冷水一次ポンプ1は冷凍機3と連動して動作する。(以下、冷水一次ポンプ1と補機、及びこれと常時連動して運転する冷凍機3の補助設備が存する場合、それらすべてを含めて冷凍機3ということがある。)   The chilled water primary pump 1 sucks chilled water (return chilled water) from a high temperature portion 2a of a chilled water heat storage tank (hereinafter also referred to as a heat storage tank) 2, sends it to the refrigerator 3, and cools it to a target temperature. The chilled chilled water (feed chilled water) once enters the low temperature portion 2b of the heat storage tank 2, and only a necessary amount is pumped from the chilled water secondary pump 5 through the feed header 6 to one or two or more. To the load facility 8. The sent chilled water is used to cool the load facility 8, and the temperature of the chilled water rises in proportion to the magnitude of the load. Thereafter, the cold water returns to the high temperature part 2 a of the heat storage tank 2 through the return header 9 and the collecting pipe 10. The refrigerator 3 is accompanied by a cooling tower 31 and a cooling water pump 32 as auxiliary devices, and these auxiliary devices and the cold water primary pump 1 operate in conjunction with the refrigerator 3. (Hereinafter, when there are cold water primary pump 1 and auxiliary equipment, and auxiliary equipment for refrigerator 3 that is always operated in conjunction therewith, all of them may be referred to as refrigerator 3.)

冷水二次ポンプ5の送水量を制御する方法としては、送りヘッダー6の水圧を送りの圧力検出器12で測定し、その圧力をあらかじめ一定に設定した値、またはその設定値を流量計11で検出した冷水量に応じて修正した値になる様にポンプ運転制御器13によって圧力を調整して冷水を送る仕組みとなっている。   As a method for controlling the water supply amount of the cold water secondary pump 5, the water pressure of the feed header 6 is measured by the feed pressure detector 12, and the pressure is set to a constant value or the set value is measured by the flow meter 11. The pump operation controller 13 adjusts the pressure so as to obtain a value corrected according to the detected amount of cold water, and sends the cold water.

ここでは、制御二方弁16(温度検出器23に付随する制御信号変換器24からの信号により開閉制御)により段階なく増減調整される負荷設備8の必要水量を、流量計11で計測し、ポンプ運転制御器13が必要な台数を冷水二次ポンプ5の標準能力から判断して段階的に選定するシステムとなっている。この際、冷水二次ポンプ5には、運転電力の周波数を自動に変化させて送水量を調整する動力インバーターは備わっていない事が標準的な方法であり、その必要な流量を確保すべく、冷水二次ポンプ5の運転台数は余裕をもって決定される。この為、通常は過剰な送水が発生し、これを過剰水の返り管7により蓄熱槽2の低温部2bに戻しながら運転する事を標準の形態としている。   Here, the flow meter 11 measures the required amount of water in the load facility 8 that is increased or decreased by the control two-way valve 16 (open / close control by a signal from the control signal converter 24 attached to the temperature detector 23). This is a system in which the number of pump operation controllers 13 required is selected step by step based on the standard capacity of the cold water secondary pump 5. At this time, it is a standard method that the cold water secondary pump 5 is not provided with a power inverter that automatically adjusts the amount of water supplied by automatically changing the frequency of the operating power, and in order to ensure the necessary flow rate, The number of operating cold water secondary pumps 5 is determined with a margin. For this reason, normally, excess water is generated, and the operation is performed while returning the water to the low temperature part 2b of the heat storage tank 2 by the return pipe 7 of the excess water.

この際、冷水一次ポンプ1と冷水二次ポンプ5の送水量は必ずしも同一ではなく、たとえば、冷水一次ポンプ1からの送水量が多い場合、その差の冷水は蓄熱槽2の高温部2aとは温度差を持った蓄熱槽2の蓄熱部2cに低温度の冷水が冷熱として貯められる。その差がついた冷水の温度の境目は、冷水一次ポンプ1と冷水二次ポンプ5の送水量のバランスにより蓄熱槽2の蓄熱部2cにおいて移動する。蓄熱槽2の蓄熱部2c中に図示される点線(図3では6本)は、蓄熱槽2で水温の境目となる小割りの仕切りを表している。   At this time, the amount of water supplied from the cold water primary pump 1 and the cold water secondary pump 5 is not necessarily the same. For example, when the amount of water supplied from the cold water primary pump 1 is large, the difference between the cold water and the high temperature portion 2a of the heat storage tank 2 is Low temperature cold water is stored as cold heat in the heat storage part 2c of the heat storage tank 2 having a temperature difference. The boundary of the temperature of the cold water with the difference moves in the heat storage part 2c of the heat storage tank 2 by the balance of the water supply amounts of the cold water primary pump 1 and the cold water secondary pump 5. Dotted lines (six lines in FIG. 3) shown in the heat storage section 2 c of the heat storage tank 2 represent a small partition that becomes the boundary of the water temperature in the heat storage tank 2.

この原理により、負荷設備8から戻る冷水の設計温度と蓄熱槽2の蓄熱部2c内部の冷水温度との差をその容積に掛け合わせた値をもとに蓄熱された冷熱の量を計算して、この値を一日の時間帯ごとに定めた目標値以上に保つ管理を行なう冷凍機台数制御器15により、冷凍機3の運転を制御することが一般に行われている。そのため、蓄熱槽2の蓄熱部2cには小割りの仕切りごとに温度検出器20が設置されている。   Based on this principle, the amount of cold energy stored is calculated based on a value obtained by multiplying the difference between the design temperature of the cold water returning from the load facility 8 and the cold water temperature inside the heat storage section 2c of the heat storage tank 2 by the volume. In general, the operation of the refrigerator 3 is controlled by a refrigerator number controller 15 that performs management for keeping this value at or above a target value determined for each time zone of the day. Therefore, the temperature detector 20 is installed in the heat storage part 2c of the heat storage tank 2 for every small partition.

先に記述の冷水二次ポンプ5の台数制御を行なう場合は、常に必要な流量以上の冷水二次ポンプ5の送水を適切に減らして送水圧力を目標の値に調整するためにも過剰水の返り管7を通過する冷水があり、その水量分の動力は常に無駄となっている。   When the number control of the chilled water secondary pumps 5 described above is performed, excess water is always used to appropriately reduce the water supply of the chilled water secondary pump 5 exceeding the necessary flow rate and adjust the water supply pressure to the target value. There is cold water passing through the return pipe 7, and the power for the amount of water is always wasted.

また、ポンプ運転制御器13においては、一般的に、必要送水圧力の不足を恐れて、送りヘッダー6での送水圧力は高めに設定され、また、冷水二次ポンプ5の標準能力は少なめに設定されるため、実際に運転される台数は多めになりがちで、過剰な冷水の送水を助長していることが多い。   Further, in the pump operation controller 13, in general, the water supply pressure in the feed header 6 is set to be high because of a shortage of necessary water supply pressure, and the standard capacity of the cold water secondary pump 5 is set to be low. Therefore, the number of units actually operated tends to be large, and often promotes the supply of excessive cold water.

また、制御二方弁16の開度が冷却対象物17の要求による自動制御で小さくなり必要な冷水量が少なくなると、その量の送水により生じる配管抵抗に対抗するための圧力(送りヘッダー6における送水圧力)は、送水量の2乗に比例して減少することが物理現象として知られている。   Further, when the opening degree of the control two-way valve 16 is reduced by the automatic control according to the request of the cooling object 17 and the required amount of cold water is reduced, the pressure (in the feed header 6) to counter the pipe resistance caused by the amount of water supply. It is known as a physical phenomenon that the (water supply pressure) decreases in proportion to the square of the water supply amount.

この現象を活用し、冷水二次ポンプ5の無駄な送水量を減らすことでの省エネルギーを目的とした制御として、送りヘッダー6と戻りヘッダー9との冷水の差圧を測定する差圧センサからの測定信号に基づいて動力インバーターの回転周波数を変化させて冷水二次ポンプ5の送水圧力を調整することで、冷水送水量を必要最低限に減らすという制御手法が知られている(特許文献1参照)。   Utilizing this phenomenon, the control from the differential pressure sensor that measures the differential pressure of the chilled water between the feed header 6 and the return header 9 is used as a control for energy saving by reducing the amount of wasted water delivered by the chilled water secondary pump 5. A control method is known in which the amount of chilled water supplied is reduced to the minimum necessary by adjusting the water supply pressure of the chilled water secondary pump 5 by changing the rotational frequency of the power inverter based on the measurement signal (see Patent Document 1). ).

特許第3530824号公報Japanese Patent No. 3530824

前記述の冷水二次ポンプ5により過剰な圧力で、過剰な冷水が送水されている場合には、冷水が負荷設備8を通過する時に冷熱が移動したこと(熱交換)を示す、負荷設備8への入り水温と出の水温の差は、特に負荷設備8の稼動負荷率が小さめの時に顕著に、その定格設計温度差よりも小さくなることが一般に知られている。この際、冷凍機3の冷水吸い込み温度はその設計定格値よりも低くなり、この結果、冷水二次ポンプ5の運転動力の無駄のみならず、冷凍機3の運転効率(成績係数)が高くない運転傾向をもたらす。   When excess chilled water is being pumped at an excessive pressure by the chilled water secondary pump 5 described above, the load facility 8 indicates that the chill has moved (heat exchange) when the chilled water passes through the load facility 8. It is generally known that the difference between the incoming water temperature and the outgoing water temperature is remarkably smaller than the rated design temperature difference, particularly when the operating load factor of the load facility 8 is small. At this time, the cold water suction temperature of the refrigerator 3 becomes lower than the design rated value, and as a result, not only the operating power of the cold water secondary pump 5 is wasted, but the operating efficiency (coefficient of performance) of the refrigerator 3 is not high. Bring driving tendency.

また、特許文献1記載の手法では、過剰な冷水の送水動力を削減できる一方で、負荷設備8を通過する冷水の流量が減る結果、負荷設備8での熱交換により蓄熱槽の高温部2aに戻る冷水の温度が過剰に高まり、冷凍機3の吸い込み冷水の設計定格値を超え、許容できる温度を超えてしまう場合でも、それを自動的に予知して冷凍機3を保護する事ができない。その為に、冷凍機3の故障や冷凍機3で作る送り冷水の温度保証の不能などの問題を発生し得る。   Moreover, in the method of patent document 1, while the water supply power of excess chilled water can be reduced, as a result of the flow rate of the chilled water passing through the load facility 8 being reduced, the heat exchange in the load facility 8 results in the high temperature portion 2a of the heat storage tank. Even if the temperature of the returning cold water rises excessively and exceeds the design rated value of the suction cold water of the refrigerator 3 and exceeds the allowable temperature, it cannot be automatically predicted to protect the refrigerator 3. Therefore, problems such as failure of the refrigerator 3 and inability to guarantee the temperature of the feed cold water produced by the refrigerator 3 may occur.

また、冷水二次ポンプ5の運転周波数を下げる方法のみで送水量を低減する場合、冷水二次ポンプ5の送水量と送水圧力を同時に減らす手法であるために、冷水送水配管の末端にある負荷設備8においてその管路の圧力損失が、同じ系内部の他部分より特に大きい場合には、要求される必要充分な水量が確保出来ない問題が発生し得る。   Further, when the amount of water supply is reduced only by reducing the operating frequency of the chilled water secondary pump 5, the load at the end of the chilled water supply piping is a method for simultaneously reducing the amount of water supplied and the pressure of the chilled water secondary pump 5. When the pressure loss of the pipe line in the facility 8 is particularly larger than other parts in the same system, there may be a problem that the required and sufficient amount of water cannot be ensured.

また、この方法では、たとえば、蓄熱槽が地中にある場合に、建物最上階などの高い位置にある負荷設備8に冷水を送水するときには、最低必要な圧力を確保出来ないため、送水が困難な場合がある。   In this method, for example, when the heat storage tank is in the ground, when supplying cold water to the load facility 8 at a high position such as the top floor of the building, it is difficult to supply water because the minimum necessary pressure cannot be secured. There are cases.

さらに、冷凍機3の運転台数を決定するために、従来は蓄熱槽2への蓄熱量を管理して、その管理された蓄熱量に基づき、運転台数を制御する設備が一般に導入されていた。これは、一日の各時点で常に目標とする蓄熱量に届くまで、過剰台数か否かを問わずに冷凍機3を運転する台数制御手法である。その結果、低い運転負荷率の冷凍機3を多めの台数で運転して、省エネルギー的ではない運転がされている場合も見られる。   Furthermore, in order to determine the number of operating refrigerators 3, conventionally, a facility for managing the amount of heat stored in the heat storage tank 2 and controlling the number of operating units based on the amount of stored heat has been generally introduced. This is a unit control method in which the refrigerator 3 is operated regardless of whether the number is excessive or not until reaching the target heat storage amount at each time of the day. As a result, there are cases where the refrigerator 3 having a low operating load factor is operated with a larger number of units and is operated in an energy-saving manner.

また、その運転台数を制御する設備の構築には、多くの水温計測点とその計測器具や専用コントローラーを必要とし、新築時からこの設備を持たない場所では、冷凍機台数を制御する仕組みの導入が困難であった。   In addition, the construction of equipment that controls the number of operating units requires many water temperature measurement points, measuring instruments, and dedicated controllers, and the introduction of a mechanism to control the number of refrigerators in locations that do not have this equipment since the new construction. It was difficult.

従って、本発明の目的は、冷水二次ポンプによる送水量が過剰および不足状態とならないよう最適な量に制御してシステム全体の運転動力(消費エネルギー)を削減できる冷水循環システムを提供することにある。   Accordingly, an object of the present invention is to provide a chilled water circulation system capable of reducing the operating power (consumed energy) of the entire system by controlling the amount of water supplied by the chilled water secondary pump to an optimum amount so as not to become excessive and insufficient. is there.

本発明は、上記目的を達成するため、 少なくとも、複数又は単数の負荷装置と、前記負荷装置から戻ってくる戻り冷水を少なくとも1つの冷凍機へ送る冷水一次ポンプと、動力インバーターを備え、前記冷凍機で冷やされた冷水を送り冷水として、当該動力インバーターの運転周波数に応じた送水量の冷水を前記負荷設備へ送る冷水二次ポンプと、温度検出器により検出される冷却対象物に送る熱媒体の温度に基づいて開閉制御することで、前記冷水二次ポンプにより送られてくる前記送り冷水の量を段階なく増減調整する制御弁と、前記動力インバーターの前記運転周波数を制御して、前記冷水二次ポンプの前記送り冷水の前記送水量を調整するポンプ運転制御器とを備えた冷水循環システムであって、前記ポンプ運転制御器は、前記送り冷水の温度と前記戻り冷水の温度との検出温度差と前記負荷設備の定格設計温度差との差の絶対値が減少する方向へ、前記検出温度差に基づいて前記動力インバーターの運転周波数を制御して前記送り冷水の前記負荷設備への前記送水量を調整することを特徴とする冷水循環システムを提供する。
また、上記の本発明は、前記冷水二次ポンプを2台以上備えた冷水循環システムであって、前記ポンプ運転制御器は、前記動力インバーターの運転周波数と前記冷水二次ポンプの運転台数とを制御して、前記検出温度差を前記定格設計温度差に近づけることを特徴とする発明を含む。
In order to achieve the above object, the present invention comprises at least a plurality or a single load device , a cold water primary pump that sends return cold water returning from the load device to at least one refrigerator, and a power inverter, A cooling water secondary pump that sends chilled water cooled by the machine as chilled water to the load facility, and a heat medium sent to the object to be cooled detected by the temperature detector. A control valve that adjusts the amount of the fed cold water sent by the cold water secondary pump steplessly by controlling the opening and closing based on the temperature of the cold water, and the operating frequency of the power inverter to control the cold water A chilled water circulation system comprising a pump operation controller for adjusting the amount of the chilled water of the secondary pump , wherein the pump operation controller The operating frequency of the power inverter is controlled based on the detected temperature difference in a direction in which the absolute value of the difference between the detected temperature difference between the cold water temperature and the return cold water temperature and the rated design temperature difference of the load equipment decreases. Then , a cold water circulation system is provided that adjusts the amount of water supplied to the load facility of the supplied cold water.
Further, the invention described above, the cold water secondary pump a cold water circulation system comprising two or more, before Symbol pump operation controller, the operation frequency of the power inverter and the number of operating units of the chilled water secondary pump And the detected temperature difference is brought close to the rated design temperature difference.

また、上記の本発明は、前記ポンプ運転制御器は、前記検出温度差と前記定格設計温度差との差があらかじめ設定した許容値を外れた時間が、あらかじめ設定した一定の時間を連続して、または、あらかじめ設定した時間内に累積して過ぎた場合に、前記動力インバーターの運転周波数を前記検出温度差と前記定格設計温度差との差の絶対値が小さくなる方向へ変化させる周波数制御機構を有することを特徴とする発明を含む。   Further, in the present invention described above, the pump operation controller is configured such that the time when the difference between the detected temperature difference and the rated design temperature difference deviates from a preset allowable value continuously continues for a predetermined time. Or a frequency control mechanism that changes the operating frequency of the power inverter in a direction in which the absolute value of the difference between the detected temperature difference and the rated design temperature difference becomes smaller when it has accumulated within a preset time. Including the invention characterized by having.

本発明によれば、冷水二次ポンプによる送水量が過剰および不足状態とならないよう最適な量に制御してシステム全体の運転動力(消費エネルギー)を削減できる冷水循環システムを提供できる。   According to the present invention, it is possible to provide a chilled water circulation system capable of reducing the operation power (consumed energy) of the entire system by controlling to an optimal amount so that the amount of water supplied by the chilled water secondary pump does not become excessive or insufficient.

本発明の実施の形態に係る冷水循環システムにおける主要部の構成概略図である。It is a composition schematic diagram of the principal part in the cold-water circulation system concerning an embodiment of the invention. 図1に示す冷水循環システムの動作例を示すフローチャートである。It is a flowchart which shows the operation example of the cold water circulation system shown in FIG. 既存の冷水循環システムにおける主要部の構成概略図である。It is the structure schematic of the principal part in the existing cold water circulation system.

〔本発明の実施の形態に係る冷水循環システムの構成〕
図1は、本発明の実施の形態に係る冷水循環システムにおける主要部の構成概略図である。図2は、図1に示す冷水循環システムの動作例を示すフローチャートである。図1において図3と同一の構成については同一の符号を付す。図3と同一部分についての説明は省略(又は簡略化)し、図3と異なる部分について中心に説明する。
[Configuration of Cold Water Circulation System According to Embodiment of the Present Invention]
FIG. 1 is a schematic configuration diagram of a main part in a cold water circulation system according to an embodiment of the present invention. FIG. 2 is a flowchart showing an operation example of the cold water circulation system shown in FIG. 1, the same components as those in FIG. 3 are denoted by the same reference numerals. The description of the same part as FIG. 3 is omitted (or simplified), and the part different from FIG. 3 will be mainly described.

本実施の形態における冷水循環システムは、戻り冷水と送り冷水を貯える蓄熱槽(冷水蓄熱槽)2と、戻り冷水を蓄熱槽2の高温部2aから冷凍機3を介して蓄熱槽2の低温部2bへ送る冷水一次ポンプ1と、動力インバーター51を備え、送り冷水を蓄熱槽2の低温部2bから負荷設備81A,81Bへ送る冷水二次ポンプ5と、冷水二次ポンプ5の動作を制御するポンプ運転制御器131とを備える。冷水二次ポンプ5は、1台又は2台以上である場合がある。   The cold water circulation system in the present embodiment includes a heat storage tank (cold water heat storage tank) 2 that stores return cold water and feed cold water, and a low temperature part of the heat storage tank 2 through the refrigerator 3 from the high temperature part 2a of the heat storage tank 2 to the return cold water. The chilled water primary pump 1 to be sent to 2b and the power inverter 51 are provided, and the operations of the chilled water secondary pump 5 and the chilled water secondary pump 5 for sending the fed chilled water from the low temperature part 2b of the heat storage tank 2 to the load facilities 81A and 81B are controlled. And a pump operation controller 131. The cold water secondary pump 5 may be one or more than two.

<冷水二次ポンプ運転制御器>
ポンプ運転制御器131は、送り水の温度と戻り水の温度の検出温度差を負荷設備81A,81Bの定格設計温度差に近づけるように、すなわち、負荷設備81A,81Bの熱交換設計上の最大温度差を確保するように、冷水二次ポンプ5の運転台数と動力インバーター51の運転周波数とを制御する。ここで、負荷設備の定格設計温度差とは、その設備の設計仕様書に記載された定格能力を発揮する際の冷水流量が配管で当該設備に入り、熱交換後に出て来るときの前後の温度差であり、1つの冷水循環システムにおいて一般に統一して設定される値である。また、本実施の形態における定格設計温度差には、その設計仕様書に基く温度差(上記の熱交換後に出て来るときの前後の温度差)をもとに一定の修正を加えた値を定格設計温度差に設定する場合(例えば、当該温度差から0.5℃を差し引いた値を当制御器における定格設計温度差として採用する、など)も含まれる。
<Cold water secondary pump operation controller>
The pump operation controller 131 makes the detected temperature difference between the feed water temperature and the return water temperature close to the rated design temperature difference between the load facilities 81A and 81B, that is, the maximum in the heat exchange design of the load facilities 81A and 81B. The number of operating cold water secondary pumps 5 and the operating frequency of the power inverter 51 are controlled so as to ensure a temperature difference. Here, the rated design temperature difference of the load equipment is the flow rate of chilled water when the rated capacity described in the design specification of the equipment is entered into the equipment by piping and before and after the heat exchange. It is a temperature difference and is a value that is generally set uniformly in one chilled water circulation system. The rated design temperature difference in the present embodiment is a value obtained by making a certain correction based on the temperature difference based on the design specification (temperature difference before and after coming out after the heat exchange). A case where the rated design temperature difference is set (for example, a value obtained by subtracting 0.5 ° C. from the temperature difference is adopted as the rated design temperature difference in the controller) is also included.

本実施の形態においては、運転周波数での制御を優先し、運転周波数では制御しきれなくなったときに、運転台数での制御(運転台数の増減)を起動させることが望ましい。   In the present embodiment, it is desirable to prioritize control at the operating frequency, and to start control at the number of operating units (increase / decrease in the number of operating units) when the control becomes impossible at the operating frequency.

負荷設備としては、例えば、空調機の除湿コイル或いは冷却コイル、生産冷却水用熱交換器、ドライコイル等が挙げられる。   Examples of the load facility include a dehumidification coil or a cooling coil of an air conditioner, a heat exchanger for production cooling water, and a dry coil.

温度計測の為には、送り水の温度では送り主管または送りヘッダー6に、また戻り水の温度では戻りヘッダー9、集合管10等にと、それぞれ送水配管の集合部分に設けた温度検出器により、例えば、図1に示したように、送りヘッダー6に設けた送りの温度検出器18、集合管10に設けた戻りの温度検出器19により温度検出(計測)される。   For temperature measurement, the temperature of the feed water is fed to the feed main pipe or feed header 6, and the temperature of the return water is fed to the return header 9, the collecting pipe 10 and the like by a temperature detector provided at the collecting portion of the feeding pipe. For example, as shown in FIG. 1, the temperature is detected (measured) by a feed temperature detector 18 provided in the feed header 6 and a return temperature detector 19 provided in the collecting pipe 10.

(動力インバーター周波数制御機構)
ポンプ運転制御器131は、送り水の温度と戻り水の温度の検出温度差と負荷設備81A,81Bの定格設計温度差との差があらかじめ設定した許容値を外れた時間が、あらかじめ設定した一定の時間を連続して、または、あらかじめ設定した時間内に累積して過ぎた場合に、動力インバーター51の運転周波数を上記検出温度差と上記定格設計温度差との差の絶対値が小さくなる方向へ変化させる周波数制御機構を有することができる。これにより、戻り冷水の温度を冷凍機3における熱交換設計上の最適な温度差(定格設計温度差)となるように維持することができ、冷水二次ポンプ5と冷凍機3との全体運転効率を最も良くするように送り冷水の量を制御できる。
(Power inverter frequency control mechanism)
The pump operation controller 131 sets a predetermined time when the difference between the detected temperature difference between the feed water temperature and the return water temperature and the rated design temperature difference between the load facilities 81A and 81B deviates from the preset allowable value. In the direction where the absolute value of the difference between the detected temperature difference and the rated design temperature difference is reduced, the operating frequency of the power inverter 51 is reduced when the time is continuously accumulated within the preset time. It is possible to have a frequency control mechanism that changes to As a result, the temperature of the return chilled water can be maintained to be an optimum temperature difference (rated design temperature difference) in the heat exchange design in the refrigerator 3, and the entire operation of the cold water secondary pump 5 and the refrigerator 3 can be performed. The amount of feed cold water can be controlled to maximize efficiency.

あらかじめ設定する許容値は、例えば、±0.5〜1.0℃程度に設定する。また、「あらかじめ設定する許容値」、「あらかじめ設定する一定の時間」、「あらかじめ設定する時間内」は、運転後、冷水循環システムの効率が最適となるように、適宜調整することが望ましい。   The allowable value set in advance is set to about ± 0.5 to 1.0 ° C., for example. Further, it is desirable to appropriately adjust the “preset allowable value”, “predetermined predetermined time”, and “preset time” so that the efficiency of the chilled water circulation system is optimized after operation.

(冷水二次ポンプ運転台数制御機構)
ポンプ運転制御器131は、動力インバーター51の運転周波数が、あらかじめ設定した最高周波数に到達し、あらかじめ設定した一定時間を継続した場合に冷水二次ポンプ5の運転台数を増加し、また、あらかじめ設定した最低周波数に到達し、あらかじめ設定した一定時間を継続した場合に冷水二次ポンプ5の運転台数を減ずる台数制御機構を有することができる。これにより、動力インバーター51の運転周波数の調整のみでは行なえない範囲までの送水量の増減を行い、戻り冷水の温度を冷凍機3での高い運転効率(成績係数)確保の為に最適な状態に維持することができる。
(Cooling water secondary pump operation number control mechanism)
The pump operation controller 131 increases the operating number of the chilled water secondary pumps 5 when the operating frequency of the power inverter 51 reaches a preset maximum frequency and continues for a preset time, and is set in advance. It is possible to have a unit control mechanism that reduces the number of operating cold water secondary pumps 5 when the minimum frequency is reached and a predetermined time is continued. As a result, the amount of water supply is increased or decreased to a range that cannot be achieved only by adjusting the operating frequency of the power inverter 51, and the temperature of the return chilled water is brought into an optimum state to ensure high operating efficiency (coefficient of performance) in the refrigerator 3. Can be maintained.

最高周波数は、その地域の商用運転周波数(50ヘルツ又は60ヘルツ)に設定することが望ましく、最低周波数は、予測される最少冷水量を送るためにその配管系の形状を考慮して最低限必要とされる圧力を発生できる周波数(例えば、30〜35ヘルツ)に設定することが望ましい。また、運転が最適となるように、適宜調整することが望ましい。   The maximum frequency is preferably set to the local commercial operating frequency (50 Hz or 60 Hz), and the minimum frequency is the minimum required in consideration of the shape of the piping system to deliver the expected minimum amount of cold water. It is desirable to set to a frequency (for example, 30 to 35 hertz) that can generate the pressure. Further, it is desirable to adjust appropriately so that the operation becomes optimal.

(優先制御機構)
ポンプ運転制御器131は、1又は複数の負荷設備から選択して設定された1つ以上の特定負荷設備、例えば、負荷設備81A,81Bのうち、あらかじめ選択された特定負荷設備81Aにおいて、特定負荷設備81Aに要求される必須の機能を満たすことを送り冷水の温度と戻り冷水の温度との検出温度差を負荷設備の定格設計温度差に近づける事よりも優先(最優先する場合を含む)するように、動力インバーター51の運転周波数を、或いは動力インバーター51の運転周波数と冷水二次ポンプ5の運転台数を制御する優先制御機構を有することができる。
(Priority control mechanism)
The pump operation controller 131 selects a specific load in one or more specific load facilities selected and set from one or a plurality of load facilities, for example, a specific load facility 81A selected in advance among the load facilities 81A and 81B. Satisfying the essential function required for the facility 81A has priority (including the highest priority) over the detected temperature difference between the temperature of the feed chilled water and the temperature of the returned chilled water close to the rated design temperature difference of the load facility. Thus, it is possible to have a priority control mechanism that controls the operating frequency of the power inverter 51 or the operating frequency of the power inverter 51 and the number of operating cold water secondary pumps 5.

特定負荷設備の選択基準は、特に限定されるものではないが、例えば、必要な冷水量が最も送られにくい条件の下にある事を判断基準にして、冷水二次ポンプ5から一番遠隔地に設置された負荷設備や、一番高所に設置された負荷設備等を選択することができ、その数は1つ以上であればよく、すべてを選択して設定しておいてもよい。   The selection criteria for the specific load equipment are not particularly limited. For example, it is determined that the necessary amount of chilled water is under the condition where the required amount of chilled water is most difficult to be sent. The load facility installed at the top, the load facility installed at the highest place, or the like can be selected. The number of load facilities may be one or more, and all may be selected and set.

特定負荷設備81Aに要求される必須の機能とは、その特定負荷設備が対応する建物施設の空調環境の維持や、対応する設備部分での生産条件の維持であり、例えば、室内乾球温度の一定化や室内露点温度の一定化、あるいは生産冷却水温度の一定化などが挙げられる。要求される必須の機能のうち、1つ以上をあらかじめ選択して設定しておく。   The essential function required for the specific load equipment 81A is maintenance of the air conditioning environment of the building facility corresponding to the specific load equipment and maintenance of the production conditions in the corresponding equipment portion. Examples thereof include stabilization, indoor dew point temperature stabilization, and production cooling water temperature stabilization. One or more required functions are selected and set in advance.

<冷凍機台数制御器>
本実施の形態においては、冷凍機3の運転台数を制御する冷凍機台数制御器151を備えることができる。冷凍機3は、1台であっても複数台であってもよい。
<Refrigerator unit controller>
In the present embodiment, a refrigerator number controller 151 that controls the number of operating refrigerators 3 can be provided. There may be one refrigerator 3 or a plurality of refrigerators 3.

冷凍機台数制御器151は、蓄熱槽2の高温部2aと低温部2bの中間部に位置する蓄熱部2cに設けられた起動温度検出器21および停止温度検出器22を用いて、起動温度検出器21による検出温度があらかじめ設定した上限温度以上となった時に即時、または当該上限温度以上となった後、あらかじめ設定した時間を経過した時に冷凍機3の運転台数を増加し、停止温度検出器22による検出温度があらかじめ設定した下限温度以下となった時に即時、または当該下限温度以下となった後、あらかじめ設定した時間を経過した時に冷凍機3の運転台数を減ずる制御を行なう。   The chiller unit controller 151 uses the start temperature detector 21 and the stop temperature detector 22 provided in the heat storage section 2c located in the middle of the high temperature section 2a and the low temperature section 2b of the heat storage tank 2 to detect the start temperature. Immediately when the temperature detected by the vessel 21 exceeds the preset upper limit temperature or after the preset time has elapsed after the temperature exceeds the upper limit temperature, the number of operating refrigerators 3 is increased, and the stop temperature detector Control is performed to reduce the number of operating refrigerators 3 immediately when the detected temperature by 22 is equal to or lower than a preset lower limit temperature or when a preset time has elapsed after the detected temperature falls below the lower limit temperature.

起動温度検出器21は、蓄熱量の最少限度を判定するために、蓄熱槽2の蓄熱部2cのうち低温部2bの至近(低温部2bに近い部分)、例えば低温部2b側の端部に設置され、停止温度検出器22は、蓄熱量の最大限度を判定するために、蓄熱槽2の蓄熱部2cのうち高温部2aの至近(高温部2aに近い部分)、例えば高温部2a側の端部に設置される。   In order to determine the minimum limit of the heat storage amount, the startup temperature detector 21 is close to the low temperature part 2b (part close to the low temperature part 2b) of the heat storage part 2c of the heat storage tank 2, for example, at the end on the low temperature part 2b side. In order to determine the maximum limit of the heat storage amount, the stop temperature detector 22 is located close to the high temperature part 2a (part close to the high temperature part 2a) of the heat storage part 2c of the heat storage tank 2, for example, on the high temperature part 2a side. Installed at the end.

なお、本実施の形態において、過剰水の返り管7は、設置しなくてもよい。図1においても過剰水の返り管7を図示しているのは、既存設備にある過剰水の返り管7をあえて撤去する必要はないとの意味である。また、この返り管7には、万一、制御二方弁16が全閉止の際に誤って運転された冷水二次ポンプ5の圧力開放手段として圧力開放弁を取りつける事もあり得る。   In the present embodiment, the return pipe 7 for excess water may not be installed. In FIG. 1, the excess water return pipe 7 is illustrated in the sense that it is not necessary to intentionally remove the excess water return pipe 7 in the existing equipment. In addition, in the unlikely event that the control two-way valve 16 is fully closed, a pressure relief valve may be attached to the return pipe 7 as the pressure relief means of the cold water secondary pump 5 that is erroneously operated.

<本発明の実施の形態に係る冷水循環システムの動作>
冷水二次ポンプ5は、ポンプ運転制御器131においてあらかじめ設定された動力インバーター51の初期周波数HZIN、冷水二次ポンプ5の初期台数PNにて運転が開始される。その後、送りの温度検出器18が測定する温度TH1と戻りの温度検出器19が測定する温度TH2との検出温度差の値DT(=TH2−TH1)を、負荷設備81A,81Bの定格設計温度差DTSに近づけるように、ポンプ運転制御器131における動力インバーター51の周波数と冷水二次ポンプ5の運転台数に修正が加えられて運転が継続される。
<Operation of Cold Water Circulation System According to Embodiment of the Present Invention>
The cold water secondary pump 5 is started to operate at the initial frequency HZIN of the power inverter 51 and the initial number PN of the cold water secondary pumps 5 set in advance in the pump operation controller 131. Thereafter, the detected temperature difference value DT (= TH2−TH1) between the temperature TH1 measured by the feed temperature detector 18 and the temperature TH2 measured by the return temperature detector 19 is used as the rated design temperature of the load equipment 81A and 81B. The operation is continued by correcting the frequency of the power inverter 51 and the number of operating cold water secondary pumps 5 in the pump operation controller 131 so as to approach the difference DTS.

その際、動力インバーター51の最高周波数HZMaxは、その地域の商用運転周波数(50ヘルツ又は60ヘルツ)に設定する。また、最低周波数HZMinは、最低限必要な冷水量を送るために必要と予測される圧力を発生できる周波数に設定し、運転を継続しながら省エネルギー性を高める数字への調整を手動、または自動で行なうものとする。   At that time, the maximum frequency HZMax of the power inverter 51 is set to the commercial operation frequency (50 Hz or 60 Hz) in that region. In addition, the minimum frequency HZMin is set to a frequency that can generate the pressure that is expected to be required to send the minimum amount of chilled water. Shall be done.

一定時間WTの運転後に、DTSとDTの比較を行ない、その差が許容される大きさDTPを超えた時間があらかじめ定める時間TLに到達した時のみ、現在の動力インバーター51の運転設定周波数をその(DT−DTS)の絶対値が小さくなる方に修正を加える。これにより、常に定格設計温度差に近いDTを得る動きを継続して行うことができる。   After operation for a certain time WT, DTS and DT are compared, and only when the time when the difference exceeds the allowable size DTP reaches a predetermined time TL, the current operation setting frequency of the power inverter 51 is Correction is made in the direction where the absolute value of (DT-DTS) becomes smaller. Thereby, the movement which always obtains DT close | similar to a rated design temperature difference can be performed continuously.

その制御動作を継続する中で、運転中の冷水二次ポンプ5が複数台ある場合は、それらの吐出圧力が同一となるように動力インバーター51の設定周波数に修正を加えるものとする。   When there are a plurality of operating cold water secondary pumps 5 while continuing the control operation, the set frequency of the power inverter 51 is corrected so that the discharge pressures thereof are the same.

その制御動作により動力インバーター51の運転周波数が、最高周波数HZmaxに到達した場合は、運転する冷水二次ポンプ5の台数を1台加えるものとする。また、最低周波数HZMinに到達した場合は、運転する冷水二次ポンプ5の台数を1台減ずるものとする。冷水二次ポンプ5の台数が増減されたときは、運転中の冷水二次ポンプ5の総吐出圧力が急変しないように、運転周波数で調整制御がなされる。   When the operation frequency of the power inverter 51 reaches the maximum frequency HZmax by the control operation, the number of the cold water secondary pumps 5 to be operated is added. Moreover, when the lowest frequency HZMin is reached, the number of the cold water secondary pumps 5 to be operated is reduced by one. When the number of the chilled water secondary pumps 5 is increased or decreased, adjustment control is performed at the operating frequency so that the total discharge pressure of the chilled water secondary pump 5 during operation does not change suddenly.

以上の制御動作を行なう中で、例えば、圧力水頭を負荷設備81Aが負荷設備81Bより高く要求することがわかっている場合には、あらかじめその温度検出器23Aおよび付属する制御信号変換器24Aより、ポンプ運転制御器131へ温度の異常を示す警報信号を送る仕組みを設け、その信号をもとに異常信号が消えるまで、冷水量を増やす制御動作が行われる。   In performing the above control operation, for example, when it is known that the load equipment 81A requires a higher pressure head than the load equipment 81B, from the temperature detector 23A and the attached control signal converter 24A in advance, A mechanism for sending a warning signal indicating a temperature abnormality to the pump operation controller 131 is provided, and a control operation for increasing the amount of cold water is performed until the abnormality signal disappears based on the signal.

一方、冷凍機3は、当初あらかじめ設定した初期台数RNで運転が開始される。その後、蓄熱槽2の蓄熱部2cの低温部寄りに設けた起動温度検出器21が、あらかじめ定めた温度以上を検知した場合はRNに1台を加える。また、蓄熱槽2の蓄熱部2cの高温部寄りに設けた停止温度検出器22が、あらかじめ定めた温度以下を検知した場合はRNから1台を減ずる。   On the other hand, the refrigerator 3 is started to operate with the initial number RN initially set in advance. Then, when the starting temperature detector 21 provided near the low temperature part of the heat storage unit 2c of the heat storage tank 2 detects a temperature equal to or higher than a predetermined temperature, one is added to the RN. Moreover, when the stop temperature detector 22 provided near the high temperature part of the heat storage part 2c of the heat storage tank 2 detects the temperature below a predetermined temperature, one unit is reduced from RN.

この制御の動作を行なうことで冷凍機3の台数は最低限となり、冷凍機3に連動するクーリングタワー31、冷却水ポンプ32の台数も最低限となる。また、運転中の冷凍機3は吸い込み温度が低くなりすぎる従来の一般的な状態が解消され、成績係数が高い運転が出来る。したがって、冷凍機3についても大きな省エネとなり、システムとしての運転効率は高い値を維持する。   By performing this control operation, the number of refrigerators 3 is minimized, and the number of cooling towers 31 and cooling water pumps 32 linked to the refrigerator 3 is also minimized. Moreover, the refrigerator 3 in operation can be operated with a high coefficient of performance because the conventional general state in which the suction temperature is too low is eliminated. Therefore, the refrigerator 3 also saves energy, and the operating efficiency of the system maintains a high value.

次に、図2を参照して、より具体的に本発明の実施の形態に係る冷水循環システムの動作(制御)を説明する。   Next, the operation (control) of the cold water circulation system according to the embodiment of the present invention will be described more specifically with reference to FIG.

(ステップS1)
ステップS1では、システムの起動により、あらかじめ設定した初期の冷水二次ポンプ5の台数PNを初期設定周波数HZINで運転開始する。
(Step S1)
In step S1, the system is started to start operation of the initial number of chilled water secondary pumps PN at the initial setting frequency HZIN.

(ステップS2)
ステップS2では、あらかじめ選択(設定)した特定負荷設備81Aからの警報がないことを確認して、ステップS3に進む。警報がある時はCase3として、ステップS19に進む。
(Step S2)
In step S2, it is confirmed that there is no alarm from the specific load facility 81A selected (set) in advance, and the process proceeds to step S3. When there is an alarm, Case 3 is set and the process proceeds to step S19.

(ステップS3)
ステップS3では、運転状態において計測される温度差DT(=TH2−TH1)と負荷設備81A,81Bの設計温度差DTSとの比較をおこなう。この温度DTがDTS以下である時(DT≦DTS)はステップS4に進み(Case1)、大きい時(DT>DTS)はステップS12に進む(Case2)。
(Step S3)
In step S3, the temperature difference DT (= TH2-TH1) measured in the operating state is compared with the design temperature difference DTS of the load equipment 81A, 81B. When the temperature DT is equal to or lower than DTS (DT ≦ DTS), the process proceeds to Step S4 (Case 1), and when the temperature DT is higher (DT> DTS), the process proceeds to Step S12 (Case 2).

(ステップS4)(Case1)
ステップS4では、DTがDTSよりも下側許容幅DTPL以上小さい値(DT≦DTS−DTPL)であればステップS5に進み、大きければ(DT>DTS−DTPL)ステップS2の手前に戻る。
(Step S4) (Case 1)
In step S4, if DT is smaller than the DTS by the lower allowable width DTPL (DT ≦ DTS−DTPL), the process proceeds to step S5, and if larger (DT> DTS−DTPL), the process returns to the position before step S2.

(ステップS5)(Case1)
ステップS5では、その維持時間を計測し、設定時間TL継続した場合のみにステップS6に進み、そうでなければステップS2の手前に戻る。
(Step S5) (Case 1)
In step S5, the maintenance time is measured, and only when the set time TL is continued, the process proceeds to step S6. Otherwise, the process returns to the position before step S2.

(ステップS6)(Case1)
ステップS6では、あらかじめ設定した周波数HZL分を下げ、ステップS7に進む。
(Step S6) (Case 1)
In step S6, the frequency HZL set in advance is decreased, and the process proceeds to step S7.

(ステップS7,S8)(Case1)
ステップS7では、運転周波数HZが最低周波数HZMin以上であれば(HZ≧HZMin)、一定時間WT1をステップS8でとった後にステップS2の手前に戻る。ステップS7で、運転周波数HZが最低周波数HZMinを下回る値になった場合(HZ<HZMin)はステップS9に進む。
(Steps S7, S8) (Case 1)
In step S7, if the operating frequency HZ is equal to or higher than the lowest frequency HZMin (HZ ≧ HZMin), the process returns to the position before step S2 after taking the fixed time WT1 in step S8. In step S7, when the operating frequency HZ becomes a value lower than the lowest frequency HZMin (HZ <HZMin), the process proceeds to step S9.

(ステップS9,S10)(Case1)
ステップS9では、冷水二次ポンプ5の運転台数PNを1台減らしてステップS10に進み、運転中の同ポンプの送水圧力を揃え、かつ、減台以前と等しい送水圧力となる様に、各インバーターを設定周波数HZNLに調整してステップS11に進む。(各ポンプの特性から各々のHZNLの数字は異なる場合がある。)
(Steps S9, S10) (Case 1)
In step S9, the number of operating PN of the chilled water secondary pumps 5 is reduced by one, and the process proceeds to step S10. Is adjusted to the set frequency HZNL, and the process proceeds to step S11. (The number of each HZNL may be different from the characteristics of each pump.)

(ステップS11)(Case1〜3)
ステップS11では、設定変更後の効果を安定させるため一定時間WT3経たあとにステップS2の手前に戻る。
(Step S11) (Case 1-3)
In step S11, in order to stabilize the effect after the setting change, after a predetermined time WT3, the process returns to the position before step S2.

(ステップS12)(Case2)
ステップS3の判断で、Case2となった場合は、ステップS12に進み、DTがDTSよりも上側許容幅DTPU以上大きい値であれば(DT≧DTS+DTPU)ステップS13に進み、小さければ(DT<DTS+DTPU)ステップS2の手前に戻る。
(Step S12) (Case 2)
If Case 2 is determined in step S3, the process proceeds to step S12, and if DT is greater than the DTS by the upper allowable width DTPU (DT ≧ DTS + DTPU), the process proceeds to step S13, and if smaller (DT <DTS + DTPU). Return to the position before step S2.

(ステップS13)(Case2)
ステップS13では、その維持時間を計測し、設定時間TU継続した場合のみにステップS14に進み、そうでなければステップS2の手前に戻る。
(Step S13) (Case 2)
In step S13, the maintenance time is measured, and only when the set time TU is continued, the process proceeds to step S14. Otherwise, the process returns to the position before step S2.

(ステップS14)(Case2)
ステップS14では、あらかじめ設定した周波数HZU分を上げステップS15に進む。
(Step S14) (Case 2)
In step S14, the frequency HZU set in advance is increased, and the process proceeds to step S15.

(ステップS15,S16)(Case2〜3)
ステップS15では、運転周波数HZが最高周波数HZMax以下ならば(HZ≦HZMax)、一定時間WT2をS16でとった後にステップS2の手前に戻る。ステップS15で、運転周波数HZが最高周波数HZMaxを超えた値(HZ>HZMax)になった場合はステップS17に進む。
(Steps S15, S16) (Case2-3)
In step S15, if the operating frequency HZ is equal to or lower than the maximum frequency HZMax (HZ ≦ HZMax), the process returns to the position before step S2 after taking the fixed time WT2 in S16. In step S15, when the operation frequency HZ becomes a value exceeding the maximum frequency HZMax (HZ> HZMax), the process proceeds to step S17.

(ステップS17,S18)(Case2〜3)
ステップS17では、冷水二次ポンプ5の運転台数PNを1台増やしてステップS18に進み、運転中の同ポンプの送水圧力を揃え、かつ、増台以前と等しい送水圧力となる様に各インバーターを設定周波数HZNUに調整してステップS11に進んで、一定時間WT3経たあとにステップS2の手前に戻る。(各ポンプの特性から各々のHZNUの値は異なる場合がある。)
(Steps S17, S18) (Case2-3)
In step S17, the operating number PN of the chilled water secondary pump 5 is increased by one, and the process proceeds to step S18, where the water supply pressure of the same pump during operation is made uniform, and each inverter is set to have the same water supply pressure as before the increase. After adjusting to the set frequency HZNU, the process proceeds to step S11, and after a predetermined time WT3, returns to the position before step S2. (The value of each HZNU may differ from the characteristics of each pump.)

(ステップS19)(Case3)
ステップS2の判断で、Case3となった場合は、ステップS19に進み、冷水二次ポンプ5のインバーターをあらかじめ設定した周波数HZEだけ上げてステップS15に進む。以降は、Case2と同じ動きをたどる。
(Step S19) (Case 3)
If it is determined in Step S2 that Case 3 has been reached, the process proceeds to Step S19, the inverter of the cold water secondary pump 5 is increased by a preset frequency HZE, and the process proceeds to Step S15. Thereafter, the same movement as Case 2 is followed.

以上説明した本実施の形態は、本発明の概念の説明と例示を目的としたものであり、実際にはこの思想に基づく制御の構成は更に高度な付加機能を設け、修正を経た他の手法によっても可能である。上記実施の形態は、その同一思想に基いて修正された構成を含む基本原理を示すに過ぎず、基本概念下での将来の修正を含む。   The embodiment described above is for the purpose of explaining and exemplifying the concept of the present invention. In fact, the control configuration based on this idea is provided with a further advanced function, and other methods that have undergone correction. Is also possible. The above-described embodiment merely shows the basic principle including the configuration modified based on the same idea, and includes future modifications under the basic concept.

〔実施の形態の効果〕
上記の本発明の実施の形態によれば、下記の効果を奏する。
(1)冷水循環システムの運転中に常時変化しつづける、負荷設備が必要とする冷熱量に対応して、送り水と戻り水の温度差を一定としながら水量を可変とする制御を行なうことで、各負荷設備が設計通りの熱交換部分の温度差で充分に機能を発揮することを確認でき、過剰でも過少でもない、適当な流量を判断し確保できることとなる。これにより、送り圧力を一定としていた従来の方式(水量が過剰の傾向)に比べ、その動力が削減できる効果が現れる。その際、従来比較で戻り水の温度は高くなり、冷凍機の定格の吸込み温度に近づく。この結果として冷凍機の成績係数が最も高い運転が可能となる。したがって、ポンプの動力を削減しながら、かつ、冷凍機の動力も削減できることとなり、大きな省エネルギーの成果が現れる。
[Effect of the embodiment]
According to the above embodiment of the present invention, the following effects can be obtained.
(1) By controlling the water volume to be variable while keeping the temperature difference between feed water and return water constant, corresponding to the amount of cold heat required by the load equipment, which constantly changes during operation of the chilled water circulation system Thus, it can be confirmed that each load facility fully functions with the temperature difference of the heat exchange part as designed, and it is possible to judge and secure an appropriate flow rate that is neither excessive nor insufficient. As a result, an effect that the power can be reduced appears as compared with the conventional method in which the feed pressure is constant (the amount of water tends to be excessive). At that time, the temperature of the return water is higher than in the conventional case and approaches the rated suction temperature of the refrigerator. As a result, the operation with the highest coefficient of performance of the refrigerator can be performed. Therefore, the power of the refrigerator can be reduced while reducing the power of the pump, and a great energy saving result appears.

(2)負荷設備で必要とする冷水の過不足が僅かの時に直ちに動作せずに、一定時間にわたり限界量を超えた時にのみ冷水二次ポンプの運転周波数と運転台数を変化させる仕組みとしたため、緩やかに、かつ確実に、適当な二次冷水ポンプの運転周波数と運転台数を決定できる仕組みとなる。これにより、冷水循環システムを熟練した調整員の判断規準に近い方法で制御でき、自動的に施設の運転管理を行うことができる。 (2) Since the system does not operate immediately when the excess or deficiency of the chilled water required by the load equipment is slight, it changes the operating frequency and the number of operating chilled water secondary pumps only when the limit amount is exceeded for a certain period of time. It will be a mechanism that can determine the appropriate operating frequency and number of secondary chilled water pumps gently and reliably. As a result, the chilled water circulation system can be controlled in a manner close to the judgment criteria of a skilled coordinator, and the facility operation can be automatically managed.

(3)配管の抵抗を予測して圧力損失による差のみを監視する従来の方法では、必ずしも必要な冷水の量が確保されたとはいえず、重要な管理点での冷却機能が確保できる保証がなかったが、冷水二次ポンプの動力を削減することに優先して、生産現場などの重要な冷却対象設備の必須な機能を確保できる制御システムとしたため、システム全体の機能保証をしつつ、かつ、省エネルギーの調整も行なうことができる。 (3) The conventional method of predicting piping resistance and monitoring only the difference due to pressure loss does not necessarily ensure the necessary amount of cold water, but guarantees that the cooling function can be secured at important control points. However, in order to prioritize reducing the power of the chilled water secondary pump, the control system can ensure the essential functions of important cooling target equipment at the production site, etc. Also, energy saving can be adjusted.

(4)冷凍機の運転台数制御を蓄熱槽により行なう場合、従来の制御方法は必ずしも最低台数かつ最高効率の運転を志向していなかったが、本実施の形態によれば、省エネルギー性を重視し、最低台数かつ最高効率の冷凍機の運転を自動的に志向できる。さらに、設備面でも起動側と停止側の2点の電極設備で対応でき、その制御動作も単純であることから、既存設備での新規導入が必要な状況にあっても冷凍機の運転台数調整機構を安価な方法で提供できる。 (4) When controlling the number of operating refrigerators using a heat storage tank, the conventional control method has not always aimed at the minimum number and maximum efficiency, but according to the present embodiment, emphasis is placed on energy saving. It can automatically aim to operate the lowest number and highest efficiency refrigerator. Furthermore, on the equipment side, it can be handled with two electrode facilities on the start and stop sides, and its control operation is simple, so the number of operating refrigerators can be adjusted even in situations where new installations are required in existing facilities. The mechanism can be provided in an inexpensive manner.

1 冷水一次ポンプ
2 蓄熱槽
2a 蓄熱槽の高温部
2b 蓄熱槽の低温部
2c 蓄熱槽の蓄熱部
3 冷凍機
5 冷水二次ポンプ
6 送りヘッダー
7 過剰水の返り管
8 負荷設備
9 戻りヘッダー
10 集合管
11 流量計
12 送りの圧力検出器
13 ポンプ運転制御器
15 冷凍機台数制御器
16 制御二方弁
17,17A,17B 冷却対象物
18 送りの温度検出器
19 戻りの温度検出器
20 温度検出器
21 起動温度検出器
22 停止温度検出器
23,23A,23B 温度検出器
24,24A,24B 制御信号変換器
31 クーリングタワー
32 冷却水ポンプ
51 動力インバーター
81A,81B 負荷設備
131ポンプ運転制御器
151冷凍機台数制御器
DESCRIPTION OF SYMBOLS 1 Cold water primary pump 2 Thermal storage tank 2a High temperature part 2b of a thermal storage tank Low temperature part 2c of a thermal storage tank Thermal storage part 3 of a thermal storage tank 3 Refrigerator 5 Cold water secondary pump 6 Feed header 7 Excess water return pipe 8 Load equipment 9 Return header 10 Assembly Pipe 11 Flow meter 12 Feed pressure detector 13 Pump operation controller 15 Refrigeration unit controller 16 Control two-way valve 17, 17A, 17B Cooling object 18 Feed temperature detector
19 Return temperature detector 20 Temperature detector 21 Start temperature detector 22 Stop temperature detector 23, 23A, 23B Temperature detector 24, 24A, 24B Control signal converter 31 Cooling tower 32 Cooling water pump 51 Power inverter 81A, 81B Load Equipment 131 Pump operation controller 151 Number of refrigerators controller

Claims (3)

少なくとも、
複数又は単数の負荷装置と、
前記負荷装置から戻ってくる戻り冷水を少なくとも1つの冷凍機へ送る冷水一次ポンプと、
動力インバーターを備え、前記冷凍機で冷やされた冷水を送り冷水として、当該動力インバーターの運転周波数に応じた送水量の冷水を前記負荷設備へ送る冷水二次ポンプと、
温度検出器により検出される冷却対象物に送る熱媒体の温度に基づいて開閉制御することで、前記冷水二次ポンプにより送られてくる前記送り冷水の量を段階なく増減調整する制御弁と
前記動力インバーターの前記運転周波数を制御して、前記冷水二次ポンプの前記送り冷水の前記送水量を調整するポンプ運転制御器と
を備えた冷水循環システムであって、
前記ポンプ運転制御器は、前記送り冷水の温度と前記戻り冷水の温度との検出温度差と前記負荷設備の定格設計温度差との差の絶対値が減少する方向へ、前記検出温度差に基づいて前記動力インバーターの運転周波数を制御して前記送り冷水の前記負荷設備への前記送水量を調整することを特徴とする冷水循環システム。
at least,
Multiple or single load devices;
A chilled water primary pump that sends returned chilled water returning from the load device to at least one refrigerator;
A chilled water secondary pump comprising a power inverter, sending chilled water cooled by the refrigerator as chilled water, and sending chilled water of the amount of water according to the operating frequency of the power inverter to the load facility;
A control valve that adjusts the amount of the fed cold water sent by the cold water secondary pump steplessly by controlling opening and closing based on the temperature of the heat medium sent to the cooling object detected by the temperature detector ;
A chilled water circulation system comprising a pump operation controller that controls the operating frequency of the power inverter and adjusts the amount of the chilled water secondary pump that feeds the chilled water ;
The pump operation controller is based on the detected temperature difference in a direction in which the absolute value of the difference between the detected temperature difference between the feed cold water temperature and the return cold water temperature and the rated design temperature difference of the load facility decreases. And controlling the operating frequency of the power inverter to adjust the amount of water supplied to the load facility of the supplied cold water.
前記冷水二次ポンプを2台以上備えた冷水循環システムであって
記ポンプ運転制御器は、前記動力インバーターの運転周波数と前記冷水二次ポンプの運転台数とを制御して、前記検出温度差を前記定格設計温度差に近づけることを特徴とする請求項記載の冷水循環システム。
A cold water circulation system comprising two or more of the cold water secondary pumps ,
Before SL pump operation controller, wherein the operating frequency of the power inverter by controlling the number of operating chilled water secondary pump, according to claim 1, wherein the closer the detected temperature difference to the nominal design temperature difference Cold water circulation system.
前記ポンプ運転制御器は、前記検出温度差と前記定格設計温度差との差があらかじめ設定した許容値を外れた時間が、あらかじめ設定した一定の時間を連続して、または、あらかじめ設定した時間内に累積して過ぎた場合に、前記動力インバーターの運転周波数を前記検出温度差と前記定格設計温度差との差の絶対値が小さくなる方向へ変化させる周波数制御機構を有することを特徴とする請求項1又は請求項記載の冷水循環システム。 The pump operation controller is configured such that a time when the difference between the detected temperature difference and the rated design temperature difference deviates from a preset allowable value is continuously set within a preset time or within a preset time. And a frequency control mechanism that changes the operating frequency of the power inverter in a direction in which the absolute value of the difference between the detected temperature difference and the rated design temperature difference decreases. The cold water circulation system according to claim 1 or 2 .
JP2009043487A 2009-02-26 2009-02-26 Cold water circulation system Active JP4406778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009043487A JP4406778B2 (en) 2009-02-26 2009-02-26 Cold water circulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009043487A JP4406778B2 (en) 2009-02-26 2009-02-26 Cold water circulation system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008326667A Division JP4333818B2 (en) 2008-12-23 2008-12-23 Cold water circulation system

Publications (3)

Publication Number Publication Date
JP2009115452A JP2009115452A (en) 2009-05-28
JP2009115452A5 JP2009115452A5 (en) 2009-11-19
JP4406778B2 true JP4406778B2 (en) 2010-02-03

Family

ID=40782773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009043487A Active JP4406778B2 (en) 2009-02-26 2009-02-26 Cold water circulation system

Country Status (1)

Country Link
JP (1) JP4406778B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136071A (en) * 2017-02-21 2018-08-30 高砂熱学工業株式会社 Cooling water transfer control system and cooling water transfer control method
US10203128B2 (en) 2012-12-28 2019-02-12 Ntt Facilities, Inc. Cold water circulation system with control of supply of cold water based on degree of air handler surplus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509206B (en) * 2016-01-26 2018-06-29 广州高菱能源技术有限公司 A kind of chilled water storage system that there is dual temperature section and let cool
CN106839275A (en) * 2016-12-28 2017-06-13 杭州裕达自动化科技有限公司 Refrigerating water pump intelligent energy-saving control method in central air-conditioning monitoring system
CN112378005A (en) * 2020-11-19 2021-02-19 浙江永德信宜居科技有限公司 Primary and secondary water pumping system of air conditioner water system and energy-saving adjusting method thereof
CN114383174B (en) * 2022-01-13 2023-05-26 珠海格力电器股份有限公司 Unit control method and device and unit
CN114608853B (en) * 2022-01-24 2024-04-09 合肥通用机械研究院有限公司 Maximum flux detection device and energy efficiency detection method based on liquid-liquid separation equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10203128B2 (en) 2012-12-28 2019-02-12 Ntt Facilities, Inc. Cold water circulation system with control of supply of cold water based on degree of air handler surplus
JP2018136071A (en) * 2017-02-21 2018-08-30 高砂熱学工業株式会社 Cooling water transfer control system and cooling water transfer control method

Also Published As

Publication number Publication date
JP2009115452A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
US11493246B2 (en) Demand flow for air cooled chillers
JP4333818B2 (en) Cold water circulation system
JP4406778B2 (en) Cold water circulation system
JP4301238B2 (en) Cold water circulation system
JP5399948B2 (en) Cold water circulation system
JP4594276B2 (en) Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
JP2009115452A5 (en)
US10203128B2 (en) Cold water circulation system with control of supply of cold water based on degree of air handler surplus
CN104390311B (en) Air conditioner refrigeration method, system and device aiming at high-temperature server
JP4569661B2 (en) Cold water circulation system
JP4748175B2 (en) Cold water circulation system
US20140374497A1 (en) Heat source system, control device thereof, and control method thereof
EP2737263B1 (en) Hvac systems
JP5816422B2 (en) Waste heat utilization system of refrigeration equipment
JP5062197B2 (en) Cold water circulation system
JP4693645B2 (en) Air conditioning system
JP5955495B2 (en) Cold water circulation system
JP5286479B2 (en) Cold water circulation system
JP5195696B2 (en) Cold water circulation system
JP4883108B2 (en) Cold water circulation system
JP5538917B2 (en) Heat source system
JP5940608B2 (en) Heat medium circulation system
CN114017903B (en) Floor heating and air conditioning integrated machine
JP2010071599A (en) Ice thermal storage system
CN118647186A (en) Server cooling system and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090703

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4406778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250