[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4403669B2 - Fractional N frequency synthesizer - Google Patents

Fractional N frequency synthesizer Download PDF

Info

Publication number
JP4403669B2
JP4403669B2 JP2001128329A JP2001128329A JP4403669B2 JP 4403669 B2 JP4403669 B2 JP 4403669B2 JP 2001128329 A JP2001128329 A JP 2001128329A JP 2001128329 A JP2001128329 A JP 2001128329A JP 4403669 B2 JP4403669 B2 JP 4403669B2
Authority
JP
Japan
Prior art keywords
frequency
temperature
characteristic data
temperature characteristic
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001128329A
Other languages
Japanese (ja)
Other versions
JP2002325034A (en
Inventor
和久 吉木
秀樹 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2001128329A priority Critical patent/JP4403669B2/en
Publication of JP2002325034A publication Critical patent/JP2002325034A/en
Application granted granted Critical
Publication of JP4403669B2 publication Critical patent/JP4403669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、通信機等に用いられるフラクショナルN方式周波数シンセサイザの温度補償に関するものである。
【0002】
【従来の技術】
従来のフラクショナルN方式周波数シンセサイザとしては、例えば、図4に示すように、水晶振動子21をもとに基準周波数Frefを発生する基準周波数発振部2と、水晶振動子21の周波数温度特性データ1cを予め記憶した記憶手段4と、温度を検出する温度検出手段5と、保持値が所定値以上になるとオーバーフロー信号を出力するアキュムレータ7と、記憶手段4からのデータと温度検出手段5からのデータとに基づいて主分周数Nとアキュムレータ7のステップ数Kを演算する制御手段6と、制御手段6からの主分周数Nで周波数を分周する主分周器8と、主分周器8からの分周出力Fcompと基準周波数Frefとの位相を比較する位相比較器10と、位相比較器10からの出力を電圧変換する制御電圧発生部3と、制御電圧発生部3からの出力より発振周波数Fvcoを出力し、発振周波数Fvcoの一部を主分周器8へ帰還する電圧制御発振器9と、スプリアスを抑制するスプリアスキャンセル手段(図示せず)とを備える構成である。
【0003】
ここで、基準周波数発振部2は、水晶振動子21と、水晶発振回路22と、基準分周器23とを備え、水晶振動子21と水晶発振回路22にて発振する周波数Fx’talを基準分周数Aで分周した基準周波数Frefを出力する。
【0004】
主分周器8は、発振周波数Fvcoの一部を帰還し、所定の保持値を持つアキュムレータ7からのオーバーフロー信号により制御手段6から与えられる主分周数Nと主分周数N+1を切り替えて分周し位相比較器10に分周出力Fcompを出力する。
【0005】
位相比較器10は、電圧制御発振器9の発振周波数Fvcoの一部を制御手段6から与えた主分周数Nにより分周した分周出力Fcompと、基準周波数Frefとの位相を比較する。
【0006】
また、制御電圧発生部3は、位相比較器10の出力パルスにより電流の吸い込みやはき出しを行うチャージポンプ回路31と、チャージポンプ回路31からの電流を平滑化し電圧変換するループフィルタ32とを備え、発振周波数Fvcoを電圧制御発振器9に出力する。
【0007】
なお、このようなフラクショナルN方式周波数シンセサイザにおいては、記憶手段4は、水晶振動子21の周波数温度特性データ1cを予め記憶しており、温度検出手段5は、フラクショナルN方式周波数シンセサイザを組み込んだシステム(図示せず)の近傍に設置され、温度を検出し、制御手段6が、記憶手段4の周波数温度特性データから、温度検出手段5で検出した温度に対するデータを読み出して、発生する周波数偏差を打ち消す方向に主分周数Nとアキュムレータ7のステップ数Kを補正して温度補償を実現するものである。
【0008】
例えば、以下に、温度補償方法の一例を示す。図5は、予め記憶手段に記憶された水晶振動子21の周波数温度特性データ1cを示す説明図である。水晶振動子21の周波数温度特性データ1cは、水晶片のカットアングルにより、正の3次曲線を有するATカットを用いる。
【0009】
ここで、フラクショナルN方式周波数シンセサイザを組み込んだシステム(図示せず)に求められる温度範囲は、P(℃)〜W(℃)のデータであり、±G(ppm)は、該システムに求められる周波数偏差であり、該周波数偏差を保証できる温度範囲は、P(℃)〜Q(℃)である(但し、P<Q<W)。温度S(℃)(但し、Q<S<W)で、制御手段6は、水晶振動子21の初期偏差補正値と発振させたい周波数データにより演算される主分周数Nとステップ数Kに対し、−B(ppm)(但し、B<Gを満たす)に相当する補正を行い、主分周数Nとステップ数Kを補正し、アキュムレータ7に与えるようにする。これにより、フラクショナルN方式周波数シンセサイザは、温度補償を行わなかった場合の温度S(℃)における発振周波数(Fvco+B(ppm))に対し、−B(ppm)だけ低い発振周波数Fvco、即ち所望の発振周波数で発振することが可能となり、水晶振動子21の発振条件を変えずに温度補償が行える。
【0010】
【発明が解決しようとする課題】
ところが、上述のようなフラクショナルN方式周波数シンセサイザにおいては、記憶手段に予め記憶する水晶振動子の周波数温度特性データは、全温度範囲にわたる周波数温度特性データであるために記憶容量が大きく、温度補償を実現するにあたって、該フラクショナルN方式周波数シンセサイザを組み込んだシステムの制御が複雑になるという問題点があった。
【0011】
本発明は上記問題点に鑑みてなされたものであり、簡便に温度補償が行えるフラクショナルN方式周波数シンセサイザを提供することを目的とするものである。
【0012】
【課題を解決するための手段】
請求項1に記載のフラクショナルN方式周波数シンセサイザは、水晶振動子をもとに基準周波数を発生する基準周波数発振部と、前記水晶振動子の周波数温度特性データならびに照明機器における点灯・消灯動作と該動作の経過時間による照明機器内の温度特性データを予め記憶した記憶手段と、保持値が所定値以上になるとオーバーフロー信号を出力するアキュムレータと、前記記憶手段からの周波数温度特性データならびに照明機器内の温度特性データとに基づいて主分周数と前記アキュムレータのステップ数を演算する制御手段と、前記制御手段からの主分周数で周波数を分周する主分周器と、該主分周器からの分周出力と前記基準周波数との位相を比較する位相比較器と、該位相比較器からの出力を電圧変換する制御電圧発生部と、該制御電圧発生部からの出力より発振周波数を出力し、該発振周波数の一部を前記主分周器へ帰還する電圧制御発振器と、スプリアスを抑制するスプリアスキャンセル手段とを備えてなり、前記記憶手段からの周波数温度特性データならびに照明機器内の温度特性データにより、前記制御手段にて、前記周波数温度特性データに対して、発生する周波数偏差を打ち消す方向に前記主分周器及び前記アキュムレータに与える前記主分周数と前記ステップ数を補正する照明機器内蔵向けのフラクショナルN方式周波数シンセサイザであることを特徴とするものである。
【0016】
【発明の実施の形態】
以下、本発明の参考形態および実施形態を図面に基づき説明する。なお、フラクショナルN方式周波数シンセサイザの基本構成は、従来の技術にて示した構造と同様であるので、同一箇所には同一符号を付して共通部分の説明は省略する。
【0017】
まず、本発明の第1参考形態を図1に基づいて説明する。図1は、本発明の第1参考形態に係るフラクショナルN方式周波数シンセサイザの周波数温度特性データを示す説明図である。
【0018】
図1に示すように、水晶振動子21の周波数温度特性データ1aは、フラクショナルN方式周波数シンセサイザを組み込んだシステム(図示せず)に求められる温度範囲、第1参考形態においては、P(℃)〜W(℃)のデータであり、このようなデータを予め記憶手段に記憶する。なお、水晶振動子21の水晶片のカットアングルは、ATカットを用いるが、水晶振動子21の周波数温度特性データが正の2次曲線を有するDTカット等であってもよい。
【0019】
また、温度検出手段5は、サーミスタ(図示せず)を用い、サーミスタの抵抗値変化量と水晶振動子21の周波数温度特性データ1aにより、発生する周波数偏差を打ち消す方向に主分周器8と、アキュムレータ7に与える主分周数Nとステップ数Kを制御手段6にて補正することで、可変容量手段(図示せず)を別途設けずに温度補償が行える。
【0020】
なお、温度補償方法は、従来の技術と同様であるので説明は省略する。
【0021】
かかるフラクショナルN方式周波数シンセサイザにおいては、記憶手段4に予め記憶する水晶振動子21の周波数温度特性データ1aを、フラクショナルN方式周波数シンセサイザを組み込んだシステムに求められる温度範囲P(℃)〜W(℃)に限定して記憶させることで、記憶手段4の記憶容量を削減できるので、温度補償に必要な制御が簡便になる。
【0022】
ここで、第1参考形態においては、フラクショナルN方式周波数シンセサイザを組み込んだシステムに求められる温度範囲、P(℃)〜W(℃)のデータを予め記憶手段4に記憶しているが、温度検出手段5からの温度データが、周波数偏差を保証できる温度範囲の上限温度、つまりQ(℃)以上の場合のみに温度補償を行う場合には、前記システムに求められる温度範囲の一部、例えば、Q(℃)〜W(℃)のデータのみを予め記憶手段に記憶しておくような構成にする。
【0023】
かかるフラクショナルN方式周波数シンセサイザにおいては、記憶手段4に予め記憶する水晶振動子21の周波数温度特性データ1aを、フラクショナルN方式周波数シンセサイザを組み込んだシステムに求められる温度範囲P(℃)〜W(℃)のうち周波数偏差を逸脱する温度Q(℃)〜W(℃)のみに限定して記憶させることで、更に記憶手段4の記憶容量を削減できるので、温度補償に必要な制御が簡便になる。
【0024】
ここで、前記周波数偏差を逸脱する温度範囲は、周波数偏差を保証できる温度の上限からの範囲のものに限らず、周波数偏差を逸脱するような温度範囲であればどのような温度範囲のものでもよい。
【0025】
なお、第1参考形態においては、アキュムレータ7を用いているが、この部分にアキュムレータ7と同様の動作を実現するような構成、例えば、積分器とΔ変調器と微分器と低域濾波器を備えてなり位相比較器10に出力する位相誤差をループフィルタ通過帯域外の高周波領域へ移動させフラクショナルスプリアスを抑制するようなΔ−Σモジュレータ(図示せず)を用いてもよい。この場合、Δ−Σモジュレータの積分器が、アキュムレータ7と同等の動作を実現するので、前述のようにアキュムレータ7を用いた場合と同様の効果が得られる。
【0026】
次に、本発明の第2参考形態を図2に基づいて説明する。図2は、本発明の第2参考形態に係るフラクショナルN方式周波数シンセサイザの周波数温度特性データを示す説明図であり、第1参考形態との共通部分の説明は省略する。
【0027】
一般に、水晶振動子21の周波数温度特性データは、ある温度でのばらつき範囲で規定できる。そこで、図2に示すように、水晶振動子21の周波数温度特性データ1bは、後述のようなばらつきの上限値曲線L1と下限値曲線L2との間の領域に存在するばらつき範囲を含んだデータを予め記憶手段に記憶する。ここで、第1参考形態と同様に、温度補償をかけない場合に周波数偏差±G(ppm)を保証できる温度範囲は、P(℃)〜Q(℃)である。
【0028】
なお、ばらつきの上限値曲線L1がG(ppm)になる温度が、Q(℃)であり、ばらつきの下限値曲線L2が−G(ppm)になる温度が、P(℃)である。また、ばらつきの上限値曲線L1が−G(ppm)になる温度を、U(℃)とし、、ばらつきの下限値曲線L2がG(ppm)になる温度を、V(℃)とする(但し、U<P<Q<Vである)。また、ばらつきの上限値曲線L1と下限値曲線L2との平均値を、平均値曲線LAと称する。
【0029】
このように、ばらつきの上限値曲線L1と下限値曲線L2、平均値曲線LAを用いることで、周波数偏差±G(ppm)を保証できる温度範囲をP(℃)〜Q(℃)から、U(℃)〜V(℃)へと拡大することができる。
【0030】
かかるフラクショナルN方式周波数シンセサイザにおいては、上限値曲線L1と下限値曲線L2の間からなるばらつき範囲を含んだデータを用いて温度補償を行うことで、周波数偏差を保証できる温度範囲を拡大することが可能となる。また、ばらつき範囲を含んだ周波数温度特性データ1bを予め記憶手段4に記憶しておくことで、ロット等が異なる水晶振動子毎に周波数温度特性データ1bを変更して書き込む必要が無くなり、温度補償に必要な制御が簡便になる。
【0031】
ここで、第2参考形態においては、フラクショナルN方式周波数シンセサイザを組み込んだシステムに求められる温度範囲が、例えば、P(℃)〜V(℃)であり、温度検出手段5からの温度データが、周波数偏差を保証できる温度範囲の上限温度、Q(℃)以上の場合のみに温度補償を行う場合には、該システムに求められる温度範囲の一部、例えば、Q(℃)〜V(℃)のデータを予め記憶手段4に記憶しておくことで、更に記憶手段の記憶容量を削減できる。
【0032】
また、第1参考形態及び第2参考形態においては、温度検出手段5はサーミスタを用いたが、温度検出手段としてPN接合によるバンドギャップを用い、バンドギャップが出力する電位差と水晶振動子21の周波数温度特性データにより、発生する周波数偏差を打ち消す方向に主分周器8とアキュムレータ7に与える主分周数Nとステップ数Kを制御手段6にて補正することで温度補償を行ってもよい。フラクショナルN方式周波数シンセサイザはIC化されることがあるため、バンドギャップを用いた温度検出手段5も同じIC内に構成することが可能であり、フラクショナルN方式周波数シンセサイザには、実装部品を別途追加する必要が無くなり小型化が可能となる。
【0033】
次に、本願発明に係る実施形態を示す。フラクショナルN方式周波数シンセサイザが、白熱灯機器等の照明機器に内蔵されるようなシステムにおいて、照明機器における点灯・消灯動作と該動作の経過時間による機器内の温度特性を予め計測し、記憶手段4に記憶しておくことで温度検出手段5の代わりとするようなものである。なお、第1参考形態との共通部分の説明は省略する。
【0034】
本願発明に係る実施形態を図3に基づいて説明する。図3は、本願発明のフラクショナルN方式周波数シンセサイザを搭載する通信機と接続された照明機器の点灯状態と経過時間を示す説明図である。
【0035】
白熱灯機器等の照明機器(図示せず)の温度は、点灯制御を行う点灯制御手段(図示せず)により、図3に示すような照明機器の点灯状態(点灯・消灯動作)と該動作の経過時間との関係を容易に把握することができる。
【0036】
図3に示すように、温度補償しない場合には、照明機器は、機器内の温度が外気温相当時で点灯開始し(a1点)、機器内の温度が上昇しはじめ、温度範囲許容値限界であるC℃を越え(a2点)、機器内温度は上昇を続け、D℃に達し(a3点)、a3点にて温度上昇は安定領域に達する。そして、a4点で点灯終了すると、放熱とともに徐々に機器内の温度は下がり、a5点で温度範囲許容値限界であるC℃以下になり、a6点で外気温相当に下がる。ここで、縦軸は、機器内の温度であり、横軸は、動作の経過時間である。
【0037】
従って、このような点灯・消灯動作と該動作の経過時間による機器内の温度特性を予め計測し、記憶手段4に記憶しておくことで温度検出手段5の代わりとすることができる。
【0038】
制御手段6では、水晶振動子21の初期偏差補正値と発振させたい周波数データにより演算される主分周数Nとステップ数Kに対し、予め記憶手段4に記憶された水晶振動子21の周波数温度特性データ(図示せず)と、点灯制御手段の動作を検出し、予め記憶手段4に記憶された点灯状態(点灯・消灯動作)と該動作の経過時間との関係により得られる機器内の温度とにより、主分周数Nとステップ数Kを補正する。
【0039】
具体的には、システムの使用温度範囲の内、C℃までは温度補償が無くても周波数偏差の規格値を外れないが、温度がa2点近傍になった場合には、水晶振動子21の周波数温度特性データにより温度補償を開始する。なお、a3点、a4点、a5点でも同様の温度補償を行い、消灯後の時間経過がa5点を過ぎると温度補償をしなくても周波数偏差の規格値内に収まるようになる。
【0040】
かかるフラクショナルN方式周波数シンセサイザにおいては、温度補償を、記憶手段4に予め記憶した機器周辺の温度特性データにより行うため、温度検出手段5を実現するハードが不要となり、システムを簡素かつ低価格で実現できる。
【0041】
ここで、本願発明に係る実施形態においては、フラクショナルN方式周波数シンセサイザが照明機器に内蔵される場合について説明したが、例えば自動車のエンジンルームのように温度変化が大きく、図3に示すように動作状態と該動作の経過時間が比較的安定した機器に内蔵される場合であってもよい。
【0042】
また、その他の実施形態として、温度検出手段5に日時情報を取得できる別途計時機能を付加するともに、機器使用場所における統計的な気温データ、例えば、1時間毎、1日毎、1カ月毎等の統計的な気温データを予め記憶手段4に記憶しておき、前記計時機能を付加した温度検出手段5により得られる日時情報と、記憶手段4に記憶する前述のような統計的な気温データより温度情報を得て、発生する周波数偏差を打ち消す方向に主分周器8とアキュムレータ7に与える主分周数Nとステップ数Kを制御手段6にて補正することで温度補償を行ってもよい。このような場合は、温度検出手段5にて計時機能を兼用できるため、温度補償のために実装部品を別途追加する必要が無い。
【0043】
【発明の効果】
上記のように本発明に係る請求項1に記載のフラクショナルN方式周波数シンセサイザにあっては、水晶振動子をもとに基準周波数を発生する基準周波数発振部と、前記水晶振動子の周波数温度特性データならびに照明機器における点灯・消灯動作と該動作の経過時間による照明機器内の温度特性データを予め記憶した記憶手段と、保持値が所定値以上になるとオーバーフロー信号を出力するアキュムレータと、前記記憶手段からの周波数温度特性データならびに照明機器内の温度特性データとに基づいて主分周数と前記アキュムレータのステップ数を演算する制御手段と、前記制御手段からの主分周数で周波数を分周する主分周器と、該主分周器からの分周出力と前記基準周波数との位相を比較する位相比較器と、該位相比較器からの出力を電圧変換する制御電圧発生部と、該制御電圧発生部からの出力より発振周波数を出力し、該発振周波数の一部を前記主分周器へ帰還する電圧制御発振器と、スプリアスを抑制するスプリアスキャンセル手段とを備えてなり、前記記憶手段からの周波数温度特性データならびに照明機器内の温度特性データにより、前記制御手段にて、前記周波数温度特性データに対して、発生する周波数偏差を打ち消す方向に前記主分周器及び前記アキュムレータに与える前記主分周数と前記ステップ数を補正する照明機器内蔵向けのフラクショナルN方式周波数シンセサイザであるようにしたので、点灯・消灯動作と該動作の経過時間による機器内の温度特性を予め計測し、記憶手段に記憶しておくことで、温度検出手段など設けずに、温度補償を、記憶手段に予め記憶した機器周辺の温度特性データにより行うため、温度検出手段を実現するハードが不要となり、システムを簡素かつ低価格で実現できる。ここで、点灯・消灯動作と該動作の経過時間による機器内の温度特性を予め計測する際に、図3で示したようなa1から6までというごく数点の変化点のみを記録すれば、さほど記憶量が増えることはなく、記憶手段の記憶容量を削減することに貢献でき、簡便に温度補償が行えるフラクショナルN方式周波数シンセサイザを提供することができる。なお、図3で示したようなa1から6までの数点の変化点のどの状態に至るかを計時する計時手段は必要ではあるが、この計時手段としては基準周波数発振部と制御手段とで従来広く行われてきたタイマカウント行為を行うに過ぎず、容易に実現可能なものに過ぎない。
【図面の簡単な説明】
【図1】本発明の第1参考形態に係るフラクショナルN方式周波数シンセサイザの周波数温度特性データを示す説明図である。
【図2】本発明の第2参考形態に係るフラクショナルN方式周波数シンセサイザの周波数温度特性データを示す説明図である。
【図3】本願発明のフラクショナルN方式周波数シンセサイザを搭載する通信機と接続された形態に係る照明機器の点灯状態と経過時間を示す説明図である。
【図4】従来例に係るフラクショナルN方式周波数シンセサイザのブロック図である。
【図5】従来例に係るフラクショナルN方式周波数シンセサイザの周波数温度特性データを示す説明図である。
【符号の説明】
1a、1b、1c 周波数温度特性データ
2 基準周波数発振部
3 制御電圧発生部
4 記憶手段
5 温度検出手段
6 制御手段
7 アキュムレータ
8 主分周器
9 電圧制御発振器
10 位相比較器
21 水晶振動子
22 水晶発振回路
23 基準分周器
31 チャージポンプ回路
32 ループフィルタ
L1 上限値曲線
L2 下限値曲線
LA 平均値曲線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to temperature compensation of a fractional N system frequency synthesizer used in a communication device or the like.
[0002]
[Prior art]
As a conventional fractional-N frequency synthesizer, for example, as shown in FIG. 4, a reference frequency oscillating unit 2 that generates a reference frequency Fref based on a crystal resonator 21, and frequency temperature characteristic data 1c of the crystal resonator 21 Is stored in advance, temperature detecting means 5 for detecting temperature, accumulator 7 for outputting an overflow signal when the hold value exceeds a predetermined value, data from the storing means 4 and data from the temperature detecting means 5 The main frequency dividing number N and the step number K of the accumulator 7 based on the above, a main frequency divider 8 for dividing the frequency by the main frequency dividing number N from the control means 6, and the main frequency dividing A phase comparator 10 that compares the phases of the frequency-divided output Fcomp from the comparator 8 and the reference frequency Fref, a control voltage generator 3 that converts the output from the phase comparator 10 into a voltage, A voltage-controlled oscillator 9 that outputs an oscillation frequency Fvco from an output from the generation unit 3 and feeds back a part of the oscillation frequency Fvco to the main frequency divider 8 and spurious canceling means (not shown) for suppressing spurious are provided. It is a configuration.
[0003]
Here, the reference frequency oscillating unit 2 includes a crystal resonator 21, a crystal oscillation circuit 22, and a reference frequency divider 23, and a frequency Fx′tal oscillated by the crystal resonator 21 and the crystal oscillation circuit 22 is used as a reference. The reference frequency Fref divided by the frequency dividing number A is output.
[0004]
The main frequency divider 8 feeds back a part of the oscillation frequency Fvco, and switches between the main frequency division number N and the main frequency division number N + 1 given from the control means 6 by the overflow signal from the accumulator 7 having a predetermined holding value. Frequency division is performed and a frequency division output Fcomp is output to the phase comparator 10.
[0005]
The phase comparator 10 compares the phase of the frequency division output Fcomp obtained by dividing a part of the oscillation frequency Fvco of the voltage controlled oscillator 9 by the main frequency division number N given from the control means 6 with the phase of the reference frequency Fref.
[0006]
The control voltage generator 3 includes a charge pump circuit 31 that sucks and discharges current by an output pulse of the phase comparator 10, and a loop filter 32 that smoothes the current from the charge pump circuit 31 and converts the voltage. The oscillation frequency Fvco is output to the voltage controlled oscillator 9.
[0007]
In such a fractional N system frequency synthesizer, the storage means 4 stores the frequency temperature characteristic data 1c of the crystal resonator 21 in advance, and the temperature detection means 5 is a system incorporating a fractional N system frequency synthesizer. It is installed in the vicinity of (not shown), detects the temperature, and the control means 6 reads out the data with respect to the temperature detected by the temperature detection means 5 from the frequency temperature characteristic data of the storage means 4, and generates a frequency deviation. Temperature compensation is realized by correcting the main frequency division number N and the step number K of the accumulator 7 in the direction of cancellation.
[0008]
For example, an example of a temperature compensation method is shown below. FIG. 5 is an explanatory diagram showing the frequency temperature characteristic data 1c of the crystal unit 21 stored in advance in the storage means. The frequency-temperature characteristic data 1c of the crystal unit 21 uses an AT cut having a positive cubic curve depending on the cut angle of the crystal piece.
[0009]
Here, the temperature range required for a system (not shown) incorporating a fractional-N frequency synthesizer is data from P (° C.) to W (° C.), and ± G (ppm) is required for the system. It is a frequency deviation, and the temperature range in which the frequency deviation can be guaranteed is P (° C.) to Q (° C.) (where P <Q <W). At temperature S (° C.) (Q <S <W), the control means 6 sets the main frequency division number N and step number K calculated from the initial deviation correction value of the crystal resonator 21 and the frequency data to be oscillated. On the other hand, correction corresponding to −B (ppm) (B <G is satisfied) is performed, the main frequency division number N and the step number K are corrected, and given to the accumulator 7. As a result, the fractional N frequency synthesizer has an oscillation frequency Fvco that is lower by −B (ppm) than the oscillation frequency (Fvco + B (ppm)) at the temperature S (° C.) when temperature compensation is not performed, that is, the desired oscillation. It becomes possible to oscillate at a frequency, and temperature compensation can be performed without changing the oscillation condition of the crystal resonator 21.
[0010]
[Problems to be solved by the invention]
However, in the fractional-N frequency synthesizer as described above, the frequency temperature characteristic data of the crystal resonator stored in advance in the storage means is the frequency temperature characteristic data over the entire temperature range. In realization, there has been a problem that the control of a system incorporating the fractional-N frequency synthesizer becomes complicated.
[0011]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a fractional-N frequency synthesizer that can easily perform temperature compensation.
[0012]
[Means for Solving the Problems]
The fractional N-system frequency synthesizer according to claim 1 is a reference frequency oscillation unit that generates a reference frequency based on a crystal resonator, frequency temperature characteristic data of the crystal resonator, and a lighting / light-off operation in a lighting device, and Storage means for preliminarily storing temperature characteristic data in the lighting apparatus according to the elapsed time of operation, an accumulator for outputting an overflow signal when the hold value exceeds a predetermined value, frequency temperature characteristic data from the storage means, and in the lighting apparatus Control means for calculating a main frequency division number and the number of steps of the accumulator based on temperature characteristic data , a main frequency divider for frequency dividing by the main frequency division number from the control means, and the main frequency divider A phase comparator that compares the phase of the frequency-divided output from the reference frequency with the reference frequency, a control voltage generator that converts the output from the phase comparator, and Outputting an oscillation frequency from the output from the control voltage generation unit, it comprises a voltage-controlled oscillator is fed back a portion of the oscillation frequency to the main divider, and suppresses the spurious cancel means spurious, the storage means From the frequency temperature characteristic data from and the temperature characteristic data in the lighting equipment, the control means gives the frequency divider to the main frequency divider and the accumulator in a direction to cancel the generated frequency deviation with respect to the frequency temperature characteristic data. It is a fractional-N frequency synthesizer for use in a built- in lighting device that corrects the main frequency division number and the number of steps.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, reference embodiments and embodiments of the present invention will be described with reference to the drawings. Since the basic configuration of the fractional-N frequency synthesizer is the same as the structure shown in the prior art, the same portions are denoted by the same reference numerals, and description of common portions is omitted.
[0017]
First, a first reference embodiment of the present invention will be described with reference to FIG. Figure 1 is an explanatory diagram showing a fractional N system frequency-temperature characteristic data of the frequency synthesizer according to a first referential embodiment of the present invention.
[0018]
As shown in FIG. 1, crystal frequency temperature characteristic data 1a of the vibrator 21, a fractional-N mode a temperature range needed for a system incorporating a frequency synthesizer (not shown), in the first reference embodiment, P (° C.) ~ W (° C) data, and such data is stored in the storage means in advance. In addition, although the AT cut is used as the cut angle of the crystal piece of the crystal unit 21, the frequency temperature characteristic data of the crystal unit 21 may be a DT cut having a positive quadratic curve.
[0019]
The temperature detection means 5 uses a thermistor (not shown), and the main frequency divider 8 and the main frequency divider 8 in a direction to cancel out the generated frequency deviation based on the resistance value variation of the thermistor and the frequency temperature characteristic data 1a of the crystal resonator 21. By correcting the main frequency division number N and the step number K given to the accumulator 7 by the control means 6, temperature compensation can be performed without separately providing variable capacitance means (not shown).
[0020]
Note that the temperature compensation method is the same as that of the prior art, and thus the description thereof is omitted.
[0021]
In such a fractional N system frequency synthesizer, the temperature temperature characteristic data 1a of the crystal resonator 21 stored in advance in the storage means 4 is converted into a temperature range P (° C.) to W (° C.) required for a system incorporating the fractional N system frequency synthesizer. ), The storage capacity of the storage means 4 can be reduced, so that the control necessary for temperature compensation is simplified.
[0022]
Here, in the first reference embodiment, the temperature range required for a system incorporating a fractional N frequency synthesizer, data of P (° C.) to W (° C.) is stored in the storage means 4 in advance. When temperature compensation is performed only when the temperature data from the means 5 is equal to or higher than the upper limit temperature of the temperature range in which the frequency deviation can be guaranteed, that is, Q (° C.) or more, a part of the temperature range required for the system, for example, Only the data of Q (° C.) to W (° C.) is stored in advance in the storage means.
[0023]
In such a fractional N system frequency synthesizer, the temperature temperature characteristic data 1a of the crystal resonator 21 stored in advance in the storage means 4 is converted into a temperature range P (° C.) to W (° C.) required for a system incorporating the fractional N system frequency synthesizer. ), The storage capacity of the storage means 4 can be further reduced by storing only the temperatures Q (° C.) to W (° C.) that deviate from the frequency deviation, thereby simplifying the control necessary for temperature compensation. .
[0024]
Here, the temperature range that deviates from the frequency deviation is not limited to the range from the upper limit of the temperature at which the frequency deviation can be guaranteed, and any temperature range that deviates from the frequency deviation may be used. Good.
[0025]
In the first reference embodiment, the accumulator 7 is used. In this part, a configuration that realizes the same operation as the accumulator 7, such as an integrator, a Δ modulator, a differentiator, and a low-pass filter is provided. A Δ-Σ modulator (not shown) that suppresses the fractional spurious by moving the phase error output to the phase comparator 10 to the high frequency region outside the loop filter pass band may be used. In this case, since the integrator of the Δ-Σ modulator realizes an operation equivalent to that of the accumulator 7, the same effect as that obtained when the accumulator 7 is used can be obtained.
[0026]
Next, a second reference embodiment of the present invention will be described with reference to FIG. FIG. 2 is an explanatory diagram showing frequency temperature characteristic data of the fractional N-type frequency synthesizer according to the second reference embodiment of the present invention, and a description of common parts with the first reference embodiment is omitted.
[0027]
In general, the frequency temperature characteristic data of the crystal unit 21 can be defined by a variation range at a certain temperature. Therefore, as shown in FIG. 2, the frequency temperature characteristic data 1b of the crystal resonator 21 is data including a variation range existing in a region between the upper limit curve L1 and the lower limit curve L2 of the variation as described later. Is previously stored in the storage means. Here, similarly to the first reference embodiment, the temperature range that can guarantee the frequency deviation ± G (ppm) when not to apply temperature compensation is P (℃) ~Q (℃) .
[0028]
The temperature at which the variation upper limit value curve L1 becomes G (ppm) is Q (° C.), and the temperature at which the variation lower limit value curve L2 becomes −G (ppm) is P (° C.). Further, the temperature at which the upper limit curve L1 of variation is −G (ppm) is U (° C.), and the temperature at which the lower limit curve L2 of variation is G (ppm) is V (° C.). , U <P <Q <V). The average value of the upper limit value curve L1 and the lower limit value curve L2 of the variation is referred to as an average value curve LA.
[0029]
Thus, by using the upper limit value curve L1, the lower limit value curve L2, and the average value curve LA of the variation, the temperature range in which the frequency deviation ± G (ppm) can be guaranteed is from P (° C.) to Q (° C.), U It can be expanded from (° C.) to V (° C.).
[0030]
In such a fractional-N frequency synthesizer, it is possible to expand the temperature range in which the frequency deviation can be guaranteed by performing temperature compensation using data including a variation range between the upper limit curve L1 and the lower limit curve L2. It becomes possible. Further, by storing the frequency temperature characteristic data 1b including the variation range in the storage unit 4 in advance, it is not necessary to change and write the frequency temperature characteristic data 1b for each crystal resonator having a different lot or the like. The control required for this becomes simple.
[0031]
Here, in the second reference embodiment, the temperature range required for the system incorporating the fractional N system frequency synthesizer is, for example, P (° C.) to V (° C.), and the temperature data from the temperature detecting means 5 is When temperature compensation is performed only when the temperature is equal to or higher than the upper limit temperature of the temperature range in which the frequency deviation can be guaranteed, Q (° C.), a part of the temperature range required for the system, for example, Q (° C.) to V (° C.) By storing the data in the storage unit 4 in advance, the storage capacity of the storage unit can be further reduced.
[0032]
In the first reference form and the second reference form, the thermistor is used as the temperature detecting means 5, but a band gap formed by a PN junction is used as the temperature detecting means, and the potential difference output from the band gap and the frequency of the crystal resonator 21 are used. The temperature compensation may be performed by correcting the main frequency division number N and the step number K applied to the main frequency divider 8 and the accumulator 7 in the direction to cancel the generated frequency deviation by the control means 6 based on the temperature characteristic data. Since the fractional N frequency synthesizer may be integrated into an IC, the temperature detection means 5 using the band gap can be configured in the same IC, and additional components are added to the fractional N frequency synthesizer. There is no need to do so, and miniaturization becomes possible.
[0033]
Next, an embodiment according to the present invention will be described . Full fractional N system frequency synthesizer, in a system such as that incorporated in the lighting device of the white heat lamp device or the like, in advance by measuring the temperature characteristics of the apparatus by turning on and off operation and the elapsed time of said operating in the lighting equipment, storage By storing in the means 4, the temperature detecting means 5 can be used instead. In addition, description of a common part with 1st reference form is abbreviate | omitted.
[0034]
An embodiment according to the present invention will be described with reference to FIG. FIG. 3 is an explanatory diagram showing the lighting state and elapsed time of a lighting device connected to a communication device equipped with the fractional N system frequency synthesizer of the present invention .
[0035]
The temperature of the lighting device (not shown) such as an incandescent lamp device is determined by the lighting control means (not shown) for lighting control and the lighting state (lighting / extinguishing operation) of the lighting device as shown in FIG. It is possible to easily grasp the relationship with the elapsed time.
[0036]
As shown in FIG. 3, when temperature compensation is not performed, the lighting device starts lighting when the temperature inside the device is equivalent to the outside air temperature (point a1), the temperature inside the device starts to rise, and the temperature range allowable value limit The temperature inside the device continues to rise and reaches D ° C (point a3), and the temperature rise reaches a stable region at point a3. When the lighting ends at point a4, the temperature inside the device gradually decreases with heat dissipation, falls below C ° C. which is the temperature range allowable value limit at point a5, and decreases to the equivalent of outside temperature at point a6. Here, the vertical axis represents the temperature in the device, and the horizontal axis represents the elapsed time of the operation.
[0037]
Therefore, the temperature characteristics in the device due to such lighting / extinguishing operation and the elapsed time of the operation are measured in advance and stored in the storage unit 4, so that the temperature detection unit 5 can be substituted.
[0038]
In the control means 6, the frequency of the crystal resonator 21 stored in advance in the storage means 4 with respect to the main frequency division number N and the step number K calculated from the initial deviation correction value of the crystal resonator 21 and the frequency data to be oscillated. The temperature characteristic data (not shown) and the operation of the lighting control means are detected, and the in-apparatus obtained from the relationship between the lighting state (lighting / extinguishing operation) stored in the storage means 4 and the elapsed time of the operation is obtained. The main frequency division number N and the step number K are corrected according to the temperature.
[0039]
Specifically, within the operating temperature range of the system, up to C ° C., the standard value of the frequency deviation cannot be deviated without temperature compensation, but when the temperature is in the vicinity of point a2, the crystal resonator 21 Temperature compensation is started by frequency temperature characteristic data. Note that similar temperature compensation is performed at points a3, a4, and a5. When the time elapsed after turning off the light passes the point a5, the temperature deviation falls within the standard value of the frequency deviation without temperature compensation.
[0040]
In such a fractional-N frequency synthesizer, the temperature compensation is performed by the temperature characteristic data around the equipment stored in advance in the storage means 4, so that the hardware for realizing the temperature detection means 5 is not required, and the system is realized at a simple and low price. it can.
[0041]
Here, in the embodiment according to the present invention, the case where the fractional-N frequency synthesizer is incorporated in the lighting device has been described. However, the temperature change is large as in an engine room of an automobile, for example, and the operation is performed as shown in FIG. The state and the elapsed time of the operation may be incorporated in a relatively stable device.
[0042]
In addition, as another embodiment, a separate timekeeping function capable of acquiring date and time information is added to the temperature detection means 5, and statistical temperature data at the device usage location, for example, hourly, daily, monthly, etc. Statistical temperature data is stored in the storage means 4 in advance, the date and time information obtained by the temperature detection means 5 to which the time measuring function is added, and the above-described statistical temperature data stored in the storage means 4 Temperature compensation may be performed by obtaining the information and correcting the main frequency division number N and the step number K given to the main frequency divider 8 and the accumulator 7 in the direction to cancel the generated frequency deviation by the control means 6. In such a case, since the temperature detecting means 5 can also function as a timekeeping function, there is no need to add a separate mounting component for temperature compensation.
[0043]
【The invention's effect】
As described above, in the fractional N system frequency synthesizer according to the first aspect of the present invention, the reference frequency oscillating unit that generates the reference frequency based on the crystal resonator, and the frequency temperature characteristics of the crystal resonator. Storage means for preliminarily storing data and temperature characteristic data in the lighting equipment based on the lighting / light-out operation of the lighting equipment and the elapsed time of the operation, an accumulator for outputting an overflow signal when the hold value exceeds a predetermined value, and the storage means Control means for calculating the main frequency division number and the number of steps of the accumulator based on the frequency temperature characteristic data from and the temperature characteristic data in the lighting device, and frequency dividing by the main frequency division number from the control means A main frequency divider, a phase comparator for comparing the phase of the frequency-divided output from the main frequency divider and the reference frequency, and an output from the phase comparator A control voltage generator for converting voltage, a voltage controlled oscillator for outputting an oscillation frequency from an output from the control voltage generator, and feeding back a part of the oscillation frequency to the main frequency divider, and a spurious cancel for suppressing spurious The frequency temperature characteristic data from the storage means and the temperature characteristic data in the lighting device, the control means causes the frequency temperature characteristic data to cancel out the generated frequency deviation with respect to the frequency temperature characteristic data. Since it is a fractional-N frequency synthesizer for use in a built- in lighting device that corrects the main frequency divider and the number of steps given to the main frequency divider and the accumulator, it is a device based on the turn-on / off operation and the elapsed time of the operation. The temperature characteristics are stored in the memory means in advance, so that temperature compensation can be stored without providing a temperature detection means. To perform the temperature characteristic data of the peripheral device stored in advance in the stage, the hard becomes unnecessary to achieve a temperature detecting means, the system can be realized with simple and low cost. Here, when measuring the temperature characteristics in the device according to the turn-on / off operation and the elapsed time of the operation in advance, if only a few change points from a1 to 6 as shown in FIG. 3 are recorded, A fractional-N frequency synthesizer that can contribute to reducing the storage capacity of the storage means without increasing the storage amount so much and can easily perform temperature compensation can be provided. In addition, although time measuring means for measuring which state of several changing points from a1 to 6 as shown in FIG. 3 is required is necessary, as this time measuring means, a reference frequency oscillation unit and a control means are used. It merely performs a timer counting action that has been widely performed in the past, and is only easily realizable.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a frequency-temperature characteristic data of the fractional-N type frequency synthesizer according to a first referential embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a frequency-temperature characteristic data of the fractional-N type frequency synthesizer according to a second referential embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a lighting state and an elapsed time of a lighting device according to a form connected to a communication device equipped with a fractional N system frequency synthesizer of the present invention .
FIG. 4 is a block diagram of a fractional-N frequency synthesizer according to a conventional example.
FIG. 5 is an explanatory diagram showing frequency temperature characteristic data of a fractional-N frequency synthesizer according to a conventional example.
[Explanation of symbols]
1a, 1b, 1c Frequency temperature characteristic data 2 Reference frequency oscillating unit 3 Control voltage generating unit 4 Storage unit 5 Temperature detecting unit 6 Control unit 7 Accumulator 8 Main frequency divider 9 Voltage controlled oscillator 10 Phase comparator 21 Crystal resonator 22 Crystal Oscillator 23 Reference frequency divider 31 Charge pump circuit 32 Loop filter L1 Upper limit curve L2 Lower limit curve LA Average curve

Claims (1)

水晶振動子をもとに基準周波数を発生する基準周波数発振部と、前記水晶振動子の周波数温度特性データならびに照明機器における点灯・消灯動作と該動作の経過時間による照明機器内の温度特性データを予め記憶した記憶手段と、保持値が所定値以上になるとオーバーフロー信号を出力するアキュムレータと、前記記憶手段からの周波数温度特性データならびに照明機器内の温度特性データとに基づいて主分周数と前記アキュムレータのステップ数を演算する制御手段と、前記制御手段からの主分周数で周波数を分周する主分周器と、該主分周器からの分周出力と前記基準周波数との位相を比較する位相比較器と、該位相比較器からの出力を電圧変換する制御電圧発生部と、該制御電圧発生部からの出力より発振周波数を出力し、該発振周波数の一部を前記主分周器へ帰還する電圧制御発振器と、スプリアスを抑制するスプリアスキャンセル手段とを備えてなり、前記記憶手段からの周波数温度特性データならびに照明機器内の温度特性データにより、前記制御手段にて、前記周波数温度特性データに対して、発生する周波数偏差を打ち消す方向に前記主分周器及び前記アキュムレータに与える前記主分周数と前記ステップ数を補正する照明機器内蔵向けのフラクショナルN方式周波数シンセサイザ。A reference frequency oscillation unit that generates a reference frequency based on a crystal resonator, frequency temperature characteristic data of the crystal resonator, and temperature characteristic data in the lighting device based on the lighting / light-off operation of the lighting device and the elapsed time of the operation. Based on pre-stored storage means , an accumulator that outputs an overflow signal when the hold value exceeds a predetermined value, frequency temperature characteristic data from the storage means, and temperature characteristic data in the lighting device, Control means for calculating the number of steps of the accumulator, a main frequency divider that divides the frequency by the main frequency division number from the control means, and the phase of the frequency division output from the main frequency divider and the reference frequency A phase comparator to be compared, a control voltage generator for converting the output from the phase comparator, an oscillation frequency is output from the output from the control voltage generator, and the oscillation frequency A voltage controlled oscillator is fed back some number to the main divider, made and a suppressing spurious cancel means spurious, the temperature characteristic data of the frequency-temperature characteristic data as well as the lighting equipment from the storage means, by the control means, the relative frequency-temperature characteristic data, of the direction of canceling the generated frequency deviation the main divider and lighting equipment built for correcting the number of steps and the main frequency division number to be supplied to the accumulator Fractional N frequency synthesizer.
JP2001128329A 2001-04-25 2001-04-25 Fractional N frequency synthesizer Expired - Fee Related JP4403669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001128329A JP4403669B2 (en) 2001-04-25 2001-04-25 Fractional N frequency synthesizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128329A JP4403669B2 (en) 2001-04-25 2001-04-25 Fractional N frequency synthesizer

Publications (2)

Publication Number Publication Date
JP2002325034A JP2002325034A (en) 2002-11-08
JP4403669B2 true JP4403669B2 (en) 2010-01-27

Family

ID=18977042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128329A Expired - Fee Related JP4403669B2 (en) 2001-04-25 2001-04-25 Fractional N frequency synthesizer

Country Status (1)

Country Link
JP (1) JP4403669B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100549221B1 (en) * 2003-12-22 2006-02-03 한국전자통신연구원 The voltage controlled digital analog oscillator and the frequency synthesizer using the same
JP2007243586A (en) * 2006-03-08 2007-09-20 Oki Electric Ind Co Ltd Circuit and method for correcting clock, mobile body terminal, and base station device
JP5426316B2 (en) * 2009-10-21 2014-02-26 日本電波工業株式会社 Frequency synthesizer

Also Published As

Publication number Publication date
JP2002325034A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
US8432231B2 (en) Digital phase-locked loop clock system
US8188796B2 (en) Digital phase-locked loop clock system
US9509324B2 (en) Integrated circuit frequency generator
JP3358619B2 (en) Temperature compensated oscillator, method of controlling temperature compensated oscillator, and wireless communication device
US7064617B2 (en) Method and apparatus for temperature compensation
US7288998B2 (en) Voltage controlled clock synthesizer
US20140139293A1 (en) Integrated reference frequency generator
JP2007288647A (en) Oscillator controller
US20020005765A1 (en) Digital indirectly compensated crystal oscillators
JP4691024B2 (en) Method and apparatus for low jitter two-loop fractional-N synthesizer
US20040022340A1 (en) Accumulator controlled prescaler in a phased locked loop
JP2000315948A (en) Pll frequency synthesizer
JP4403669B2 (en) Fractional N frequency synthesizer
JPS6335017A (en) Radio frequency stabilizing device
JP4357674B2 (en) Frequency synthesizer
US7151414B2 (en) Method and circuit for frequency synthesis using a low drift current controlled oscillator with wide output frequency range
JP2003204260A (en) Temperature compensated high frequency oscillator and communication equipment
JP2004080624A (en) Frequency synthesizer
JP3334565B2 (en) Frequency synthesizer
JPH06338793A (en) Pll frequency synthesizer circuit
JP3466944B2 (en) Voltage controlled crystal oscillator
JP5063833B2 (en) High-frequency signal generator based on the time base of the clock
JP2002314413A (en) Phase locked loop circuit
JP2004282223A (en) Frequency synthesizer
EP1638207B1 (en) Method of calibrating the frequency of an oscillator in a phase locked loop circuit

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20020716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees