[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4401999B2 - Air separation method and air separation device - Google Patents

Air separation method and air separation device Download PDF

Info

Publication number
JP4401999B2
JP4401999B2 JP2005103645A JP2005103645A JP4401999B2 JP 4401999 B2 JP4401999 B2 JP 4401999B2 JP 2005103645 A JP2005103645 A JP 2005103645A JP 2005103645 A JP2005103645 A JP 2005103645A JP 4401999 B2 JP4401999 B2 JP 4401999B2
Authority
JP
Japan
Prior art keywords
oxygen
fluid
air
liquefied
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005103645A
Other languages
Japanese (ja)
Other versions
JP2006284075A (en
Inventor
俊幸 野島
高司 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2005103645A priority Critical patent/JP4401999B2/en
Publication of JP2006284075A publication Critical patent/JP2006284075A/en
Application granted granted Critical
Publication of JP4401999B2 publication Critical patent/JP4401999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04315Lowest pressure or impure nitrogen, so-called waste nitrogen expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/0443A main column system not otherwise provided, e.g. a modified double column flowsheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/52Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、空気分離方法および空気分離装置に関するものであり、特に、原料空気を深冷液化分離して、中圧製品窒素ガスと中圧製品酸素ガスとを採取する空気分離方法および空気分離装置に関するものである。   The present invention relates to an air separation method and an air separation device, and in particular, an air separation method and an air separation device for collecting medium pressure product nitrogen gas and medium pressure product oxygen gas by cryogenic liquefaction separation of raw material air. It is about.

従来より、工業的に酸素、窒素を製造する方法として、一般的には、複精留塔を用いて、空気を原料とした低温蒸留により製造する方法(深冷分離方法)およびそれに用いられる装置(空気分離装置)が知られている。   Conventionally, as a method for industrially producing oxygen and nitrogen, generally, a method for producing by low temperature distillation using air as a raw material using a double rectification column (deep cold separation method) and an apparatus used therefor (Air separation device) is known.

例えば、特許文献1では、製品として酸素ガス、窒素ガスを採取する典型的な空気分離装置が、従来例として説明されている。この典型的な空気分離装置は、運転圧力が約0.6MPa(6bar)(以後、特記しない場合は絶対圧力を意味する。)の高圧塔と、約0.14MPa(1.4bar)の低圧塔とから構成されており、この高圧塔と低圧塔とは熱的に結合している。   For example, in Patent Document 1, a typical air separation device that collects oxygen gas and nitrogen gas as products is described as a conventional example. This typical air separation apparatus includes a high pressure column having an operating pressure of about 0.6 MPa (6 bar) (hereinafter, absolute pressure unless otherwise specified) and a low pressure column of about 0.14 MPa (1.4 bar). The high pressure column and the low pressure column are thermally coupled.

そして、高圧塔頂部における窒素ガスを液化し、低圧塔底部における液体酸素を気化させるために、主凝縮器が設置されており、その熱交換に必要な窒素ガスと液体酸素との温度差を確保するためには、前述した高圧塔0.6MPa、低圧塔0.14MPaの運転圧力が必要となってくる。   A main condenser is installed to liquefy the nitrogen gas at the top of the high-pressure column and vaporize liquid oxygen at the bottom of the low-pressure column, ensuring a temperature difference between the nitrogen gas and liquid oxygen necessary for heat exchange. In order to do this, the above-mentioned operating pressures of the high pressure column 0.6 MPa and the low pressure column 0.14 MPa are required.

この空気分離装置では、製品酸素ガスは低圧塔底部から採取するため、その採取圧力は約0.14MPaと低いことから、その後何らかの方法で中圧まで昇圧した後、使用に供される場合が多い。このような中圧の製品ガスを採取するには、以下の方法が考えられる。   In this air separation apparatus, product oxygen gas is collected from the bottom of the low-pressure tower, and the collection pressure is as low as about 0.14 MPa. Therefore, the product is often used after being increased to a medium pressure by some method. . In order to collect such a medium-pressure product gas, the following method can be considered.

(1)中圧の製品酸素ガスを採取するには、上記空気分離装置で生成した低圧の酸素ガスを昇圧する方法がある。これは、空気分離装置とは別途に製品ガス圧縮機を設置し、例えば、空気分離装置から採取した製品酸素ガスを、必要に応じて酸素ガス圧縮機に導入し、所定圧力にまで昇圧する方法である(例えば、特許文献1参照)。特許文献1では、空気分離装置から低圧で採取した製品酸素ガス、製品窒素ガスを、それぞれの圧縮機に導入して、所定の圧力まで昇圧している。   (1) In order to collect medium-pressure product oxygen gas, there is a method of increasing the pressure of low-pressure oxygen gas generated by the air separation device. This is a method in which a product gas compressor is installed separately from the air separation device, for example, product oxygen gas collected from the air separation device is introduced into the oxygen gas compressor as necessary, and the pressure is increased to a predetermined pressure. (For example, see Patent Document 1). In Patent Document 1, product oxygen gas and product nitrogen gas collected from an air separation device at a low pressure are introduced into respective compressors to increase the pressure to a predetermined pressure.

この方法は、それぞれの圧縮機が空気分離装置から全く独立しているので、運転上の制約が少ないというメリットがある。しかしながら、酸素ガス圧縮機は、空気圧縮機等と比較すると特別仕様となるため高価であり、日常のメンテナンスや運転管理上での留意点も多いという問題があった。   This method has the advantage that there are few operational restrictions because each compressor is completely independent of the air separation device. However, the oxygen gas compressor is expensive because it has a special specification compared to an air compressor or the like, and there is a problem that there are many points to be noted in daily maintenance and operation management.

(2)また、製品ガスに求められる圧力に応じて、空気分離装置全体の運転圧力を高くする方法(高圧精留方式)がある。例えば、非特許文献1には、低圧塔からの製品窒素ガスを中圧で採取するために、運転圧力が夫々約0.95MPa(9.5bar)の高圧塔、約0.35MPa(3.5bar)の低圧塔からなる空気分離装置の例が記載されている。   (2) There is also a method (high pressure rectification method) in which the operating pressure of the entire air separation device is increased according to the pressure required for the product gas. For example, in Non-Patent Document 1, in order to collect product nitrogen gas from a low-pressure column at a medium pressure, a high-pressure column having an operating pressure of about 0.95 MPa (9.5 bar), about 0.35 MPa (3.5 bar), respectively. An example of an air separation device consisting of a low-pressure column is described.

上記高圧精留方式では、低圧塔の運転圧力に応じて高圧塔の運転圧力を高く設定する必要があるため、空気分離装置全体の運転圧力が高くなり、製品の動力原単位が大きくなるという問題がある。例えば、従来の複精留塔では、主凝縮器における温度差を確保するために、低圧塔運転圧力を0.01MPa(0.1bar)高く設定する毎に、高圧塔運転圧力を0.025〜0.03MPa(0.25〜0.30bar)程度上昇させる必要があった。   In the high-pressure rectification method, the operating pressure of the high-pressure column needs to be set higher in accordance with the operating pressure of the low-pressure column. Therefore, the operating pressure of the entire air separation device increases and the power unit of the product increases. There is. For example, in the conventional double rectification column, every time the low pressure column operating pressure is set higher by 0.01 MPa (0.1 bar) in order to ensure the temperature difference in the main condenser, the high pressure column operating pressure is set to 0.025 to It was necessary to increase the pressure by about 0.03 MPa (0.25 to 0.30 bar).

また、低圧塔からの酸素ガス以外の流体、例えば排ガスも通常の空気分離装置より高い圧力で取り出されるのであるが、この排ガスは単に減圧されて、前処理吸着器の再生等に用いられるのみであるため、その圧力エネルギーが無駄になるという問題があった。   In addition, fluid other than oxygen gas from the low-pressure column, such as exhaust gas, is also taken out at a higher pressure than that of a normal air separation device, but this exhaust gas is simply decompressed and used for regeneration of the pretreatment adsorber. Therefore, there is a problem that the pressure energy is wasted.

また、特許文献2には、原料空気圧縮機の吐出圧力を0.7〜1.7MPa(7〜17bar ゲージ圧力)とする高圧精留方式の例が提案されている。この高圧精留方式では、低圧塔から取り出される有圧の排窒素ガスの一部を、膨張タービンに導入することで圧力エネルギーの一部を回収しているが、原料空気圧縮機の動力増加分の多くを補うほどではなく、依然として圧力エネルギーのロスという問題があった。   Patent Document 2 proposes an example of a high-pressure rectification method in which the discharge pressure of the raw material air compressor is 0.7 to 1.7 MPa (7 to 17 bar gauge pressure). In this high-pressure rectification system, a part of the pressure energy is recovered by introducing a part of the pressurized exhaust nitrogen gas taken out from the low-pressure column into the expansion turbine. There was still a problem of loss of pressure energy.

(3)また、低圧塔から採取した0.14MPa(1.4bar)の液体酸素を、液体の状態でポンプを用いて所定の圧力にまで圧縮し、気化させる方法(内部昇圧プロセス)がある。例えば、特許文献3には、内部昇圧プロセスの例が提案されている。これによれば、液体酸素を液酸ポンプで約0.531MPa(5.31bar)まで昇圧後、主熱交換器で昇温し、中圧製品酸素ガスとして採取している。この内部昇圧プロセスでは、加圧した液体酸素の気化のための加熱源として、例えば、原料空気の一部を圧縮機で約1MPa(10bar)まで昇圧し、主熱交換器に導入する必要がある。   (3) Further, there is a method (internal pressurization process) in which liquid oxygen of 0.14 MPa (1.4 bar) collected from a low pressure column is compressed to a predetermined pressure using a pump in a liquid state. For example, Patent Document 3 proposes an example of an internal boosting process. According to this, after increasing the pressure of liquid oxygen to about 0.531 MPa (5.31 bar) with a liquid acid pump, the temperature is raised with a main heat exchanger and collected as medium pressure product oxygen gas. In this internal pressurization process, as a heating source for vaporizing pressurized liquid oxygen, for example, part of the raw material air needs to be pressurized to about 1 MPa (10 bar) with a compressor and introduced into the main heat exchanger. .

この内部昇圧プロセスを採用した装置は実績も多く、特殊な装置ではなく一般的に採用されている装置である。液酸ポンプで液体酸素を昇圧する方が、(1)の方法より動力が少ないというメリットもある。しかしながら、液酸ポンプだけでなく原料空気昇圧機も必要となるため、空気分離装置を構成する回転機械が複数台必要になり、制御が複雑になるという問題があった。
特開平7−270064号公報 特開2004−85032号公報 特開平7−174460号公報 ハンズ(B. A. Hands)著、クライオジェニック エンジニアリング(Cryogenic Engineering)、アカデミック プレス(Academic Press)、1986年、p.402−404
A device adopting this internal boosting process has many achievements, and is not a special device but a generally adopted device. There is also a merit that increasing the pressure of liquid oxygen with a liquid acid pump has less power than the method (1). However, since not only a liquid acid pump but also a raw material air booster is required, there is a problem that a plurality of rotating machines constituting the air separation device are required and the control becomes complicated.
JP 7-270064 A JP 2004-85032 A JP-A-7-174460 BA Hands, Cryogenic Engineering, Academic Press, 1986, p. 402-404

このように、中圧の製品ガスを採取する上記(1)〜(3)の方法にあっては、酸素ガス圧縮機が高価であること、高圧塔の運転圧力が高くなることによる製品の動力原単位が大きくなること、液酸ポンプと原料空気昇圧機を用いることによる回転機械数の増加と制御の複雑化という問題があった。   As described above, in the methods (1) to (3) for collecting the medium-pressure product gas, the power of the product due to the high cost of the oxygen gas compressor and the high operating pressure of the high-pressure tower. There was a problem that the basic unit was increased, the number of rotating machines was increased and the control was complicated by using a liquid acid pump and a raw material air booster.

本発明は、上記従来技術の問題点に鑑み、酸素ガス圧縮機や液酸ポンプを用いることなく、簡単な構成で制御も簡便であり、製品動力原単位を削減して、中圧製品窒素ガスと中圧製品酸素ガスとを採取できる空気分離方法および空気分離装置を提供することを目的とする。   In view of the above-mentioned problems of the prior art, the present invention is easy to control with a simple configuration without using an oxygen gas compressor or a liquid acid pump, reduces the product power consumption, and reduces the medium pressure product nitrogen gas. It is an object of the present invention to provide an air separation method and an air separation device that can collect oxygen and medium-pressure product oxygen gas.

かかる課題を解決するため、
請求項1にかかる発明は、原料空気を深冷液化分離して、中圧製品窒素ガスと中圧製品酸素ガスとを採取する空気分離方法において、圧縮、精製、冷却した前記原料空気を高圧塔に導入し、塔上部の窒素ガス流体と、塔下部の第1酸素富化液化流体とに分離する第1分離工程と、前記第1酸素富化液化流体を補助塔に導入し、塔上部の酸素組成がほぼ空気と同じである空気組成流体と、塔下部の第2酸素富化液化流体とに分離する第2分離工程と、前記窒素ガス流体の一部と、前記第2酸素富化液化流体とを間接熱交換して、前記窒素ガス流体を凝縮して液化窒素にすると同時に、前記第2酸素富化液化流体を蒸発して第2酸素富化ガス流体にする第1間接熱交換工程と、前記第2酸素富化ガス流体の一部を低圧塔に導入し、塔上部の第3酸素富化ガス流体と、塔下部の液化酸素とに分離する第3分離工程と、前記酸素組成がほぼ空気と同じである空気組成流体を昇圧する圧縮工程と、昇圧した前記酸素組成がほぼ空気と同じである空気組成流体と、前記液化酸素とを間接熱交換して、前記酸素組成がほぼ空気と同じである空気組成流体を凝縮して液化空気組成流体にすると同時に、前記液化酸素を蒸発して酸素ガス流体にする第2間接熱交換工程と、前記窒素ガス流体の残部を、熱回収後に前記中圧製品窒素ガスとして導出する製品窒素ガス回収工程と、前記酸素ガス流体を、熱回収後に前記中圧製品酸素ガスとして導出する製品酸素ガス回収工程とを含むことを特徴とする空気分離方法である。
To solve this problem,
The invention according to claim 1 is an air separation method in which raw material air is subjected to cryogenic liquefaction separation to collect medium pressure product nitrogen gas and medium pressure product oxygen gas. A first separation step of separating the nitrogen gas fluid at the top of the tower and the first oxygen-enriched liquefied fluid at the bottom of the tower, and introducing the first oxygen-enriched liquefied fluid into the auxiliary tower, A second separation step for separating an air composition fluid having substantially the same oxygen composition as air; a second oxygen-enriched liquefied fluid at the bottom of the column; a part of the nitrogen gas fluid; and the second oxygen-enriched liquefied product A first indirect heat exchange step of indirect heat exchange with a fluid to condense the nitrogen gas fluid into liquefied nitrogen and simultaneously evaporate the second oxygen enriched liquefied fluid into a second oxygen enriched gas fluid. A portion of the second oxygen-enriched gas fluid is introduced into the low pressure column, A third separation step for separating the enriched gas fluid into liquefied oxygen at the bottom of the column; a compression step for boosting the air composition fluid having the same oxygen composition as air; and the boosted oxygen composition being substantially air. The same air composition fluid and the liquefied oxygen are indirectly heat exchanged to condense the air composition fluid having the same oxygen composition as the air into a liquefied air composition fluid, and at the same time evaporate the liquefied oxygen. A second indirect heat exchanging step for converting the oxygen gas fluid into a product, a product nitrogen gas recovering step for deriving the remainder of the nitrogen gas fluid as the medium-pressure product nitrogen gas after heat recovery, and the oxygen gas fluid after heat recovery. A product oxygen gas recovery step derived as the medium pressure product oxygen gas.

請求項2にかかる発明は、系外から液化ガスを導入して装置に必要な寒冷を補給するものである請求項1に記載の空気分離方法である。   The invention according to claim 2 is the air separation method according to claim 1, wherein liquefied gas is introduced from outside the system to replenish the coldness necessary for the apparatus.

請求項3にかかる発明は、原料空気を深冷液化分離して、中圧製品窒素ガスと中圧製品酸素ガスとを採取する空気分離装置(70)であって、圧縮、精製した前記原料空気と製品ガスとを熱交換して、前記原料空気を冷却する主熱交換器(3)と、前記主熱交換器(3)で冷却した前記原料空気を、高圧塔(5)下部に導入する管路(4)と、この原料空気を、窒素ガス流体と第1酸素富化液化流体とに分離する高圧塔(5)と、前記高圧塔(5)塔下部の前記第1酸素富化液化流体を、補助塔(7)上部に導入する管路(14)と、前記第1酸素富化液化流体を、酸素組成がほぼ空気と同じである空気組成流体と第2酸素富化液化流体とに分離する補助塔(7)と、前記高圧塔(5)上部から導出した前記窒素ガス流体の一部を、凝縮器(12)に導入する管路(11)と、前記窒素ガス流体の一部と前記第2酸素富化液化流体とを間接熱交換する、前記補助塔(7)下部に設けられた凝縮器(12)と、この窒素ガス流体を前記凝縮器(12)で間接熱交換して液化窒素にした後、前記高圧塔(5)上部に導入する管路(13)と、前記第2酸素富化液化流体を間接熱交換で蒸発して得た第2酸素富化ガス流体の一部を低圧塔(20)に導入する管路(15,18)と、前記第2酸素富化ガス流体を、第3酸素富化ガス流体と液化酸素とに分離する低圧塔(20)と、前記補助塔(7)塔上部から導出した前記酸素組成がほぼ空気と同じである空気組成流体の一部を、空気昇圧機(51)に導入する管路(17,31)と、前記酸素組成がほぼ空気と同じである空気組成流体を昇圧する空気昇圧機(51)と、前記空気昇圧機(51)で昇圧した前記酸素組成がほぼ空気と同じである空気組成流体を、蒸化器(21)に導入する管路(32)と、昇圧した前記酸素組成がほぼ空気と同じである空気組成流体と前記液化酸素とを間接熱交換する、前記低圧塔(20)下部に設けられた蒸化器(21)と、前記酸素組成がほぼ空気と同じである空気組成流体を間接熱交換して得た液化空気組成流体を、前記低圧塔(20)上部に導入する管路(33)と、前記窒素ガス流体の残部を、前記高圧塔(5)上部から導出し、前記中圧製品窒素ガスとして採取する管路(6)と、酸素ガス流体を、前記低圧塔(20)下部から導出し、前記中圧製品酸素ガスとして採取する管路(19)とを設けたことを特徴とする空気分離装置である。   The invention according to claim 3 is an air separation device (70) for extracting a medium-pressure product nitrogen gas and a medium-pressure product oxygen gas by subjecting the raw material air to a cryogenic liquefaction separation, wherein the raw material air is compressed and purified. The main heat exchanger (3) for cooling the raw material air by heat exchange with the product gas, and the raw material air cooled by the main heat exchanger (3) are introduced into the lower part of the high-pressure tower (5). A line (4), a high-pressure column (5) for separating the raw air into a nitrogen gas fluid and a first oxygen-enriched liquefied fluid, and the first oxygen-enriched liquefaction at the lower portion of the high-pressure column (5) A pipe (14) for introducing a fluid into the upper part of the auxiliary tower (7), and the first oxygen-enriched liquefied fluid, an air composition fluid having substantially the same oxygen composition as air, and a second oxygen-enriched liquefied fluid A part of the nitrogen gas fluid led out from the upper part of the auxiliary tower (7) and the high pressure tower (5) separated into a condenser ( 2) a condenser (12) provided in the lower part of the auxiliary tower (7) for indirect heat exchange between the pipe (11) to be introduced and a part of the nitrogen gas fluid and the second oxygen-enriched liquefied fluid. ), And the nitrogen gas fluid is indirectly heat exchanged into the liquefied nitrogen by the condenser (12), and then the pipe (13) introduced into the upper portion of the high pressure column (5), and the second oxygen-enriched liquefaction. Lines (15, 18) for introducing a part of the second oxygen-enriched gas fluid obtained by evaporating the fluid by indirect heat exchange into the low-pressure column (20), and the second oxygen-enriched gas fluid, A low-pressure column (20) that separates into three oxygen-enriched gas fluid and liquefied oxygen, and a part of the air composition fluid that is derived from the upper part of the auxiliary column (7) and that has substantially the same oxygen composition as air, Pipe lines (17, 31) to be introduced into the booster (51) and an air composition fluid in which the oxygen composition is substantially the same as air An air pressure booster (51) to be pressurized, and a pipe (32) for introducing an air composition fluid having the same oxygen composition as that of the air boosted by the air pressure booster (51) into the evaporator (21), A vaporizer (21) provided at the lower portion of the low-pressure column (20) for indirectly heat-exchanging the liquefied oxygen with an air composition fluid having the same oxygen composition as that of air, and the oxygen composition is substantially the same. A pipe line (33) for introducing a liquefied air composition fluid obtained by indirect heat exchange of an air composition fluid that is the same as air into the upper portion of the low-pressure tower (20), and the remainder of the nitrogen gas fluid are used as the high-pressure tower. (5) A pipe (6) that is led out from the upper part and collected as the medium-pressure product nitrogen gas, and a pipe that leads out the oxygen gas fluid from the lower part of the low-pressure column (20) and collects it as the medium-pressure product oxygen gas An air separation device characterized by providing a passage (19) is there.

請求項4にかかる発明は、前記空気分離装置(70)外からの液化ガスを導入する液化ガス導入管路(45)を設けた請求項3に記載の空気分離装置である。   The invention according to claim 4 is the air separation device according to claim 3, further comprising a liquefied gas introduction pipe (45) for introducing liquefied gas from outside the air separation device (70).

本発明の空気分離方法および空気分離装置によれば、高圧塔(5)と低圧塔(20)とが直接熱的に結合していないため、低圧塔(20)の運転圧力を高くしても高圧塔(5)の運転圧力を従来ほど高くする必要がない。その結果、高圧塔(5)の運転圧力を従来装置よりも低くすることが可能であり、製品動力原単位を削減することができる。   According to the air separation method and the air separation apparatus of the present invention, since the high pressure column (5) and the low pressure column (20) are not directly thermally coupled, the operating pressure of the low pressure column (20) can be increased. It is not necessary to increase the operating pressure of the high-pressure tower (5) as much as before. As a result, the operating pressure of the high-pressure tower (5) can be made lower than that of the conventional apparatus, and the product power consumption can be reduced.

また、高圧塔(5)と低圧塔(20)とが直接熱的に結合していないため、低圧塔(20)の運転圧力を高くできることにより、酸素ガス圧縮機や液酸ポンプを用いることなく、簡単な構成で制御も簡便に中圧製品酸素ガスとを採取することができる。   Further, since the high-pressure column (5) and the low-pressure column (20) are not directly thermally coupled, the operating pressure of the low-pressure column (20) can be increased without using an oxygen gas compressor or a liquid acid pump. The medium-pressure product oxygen gas can be sampled with a simple configuration and a simple control.

以下、本発明の実施の形態に係る空気分離装置の系統図の例を図面に示し、詳細に説明する。   Hereinafter, an example of a system diagram of an air separation device according to an embodiment of the present invention will be shown in the drawings and described in detail.

図1は、本実施形態に係る空気分離装置(70)の系統図である。本実施形態の空気分離装置(70)は、主熱交換器(3)と、原料空気導入管路(4)と、高圧塔(5)と、製品窒素ガス採取管路(6)と、補助塔(7)と、凝縮器(12)と、凝縮器への窒素ガス流体導入管路(11)と、高圧塔への液化窒素導入管路(13)と、補助塔への第1酸素富化液化流体導入管路(14)と、低圧塔(20)と、蒸化器(21)と、低圧塔への第2酸素富化ガス流体導入管路(15,18)と、空気昇圧機(51)と、空気昇圧機への空気組成流体導入管路(17,31)と、製品酸素ガス採取管路(19)と、膨張タービン(40)と、膨張タービンへの第2酸素富化ガス流体、第3酸素富化ガス流体導入管路(30,24,26)と、蒸化器への空気組成流体導入管路(32)と、低圧塔への液化空気組成流体導入管路(33)と、空気分離装置外からの液化ガス導入管路(45)とから概略構成されている。   FIG. 1 is a system diagram of an air separation device (70) according to the present embodiment. The air separation device (70) of the present embodiment includes a main heat exchanger (3), a feed air introduction line (4), a high-pressure tower (5), a product nitrogen gas collection line (6), and an auxiliary A tower (7), a condenser (12), a nitrogen gas fluid introduction line (11) to the condenser, a liquefied nitrogen introduction line (13) to the high pressure tower, and a first oxygen rich to the auxiliary tower Liquefied liquefied fluid introduction line (14), low pressure column (20), evaporator (21), second oxygen-enriched gas fluid introduction line (15, 18) to the low pressure column, and air booster (51), the air composition fluid introduction line (17, 31) to the air booster, the product oxygen gas collection line (19), the expansion turbine (40), and the second oxygen enrichment to the expansion turbine Gas fluid, third oxygen-enriched gas fluid introduction line (30, 24, 26), air composition fluid introduction line (32) to the evaporator, and liquefied air set to the low pressure column Fluid inlet conduit (33), and since the liquefied gas introduction pipe line from the outside of the air separation unit (45) is schematically configured.

まず、大気から吸入した原料空気は、原料空気圧縮機(1)で所定の圧力まで昇圧し、冷却器(8)で冷却した後、吸着塔(2,2)に導入される。吸着塔(2,2)では、原料空気中の水分、二酸化炭素等の不純物が除去される。不純物を除去した原料空気は、主熱交換器(3)に導入される。   First, the raw material air sucked from the atmosphere is pressurized to a predetermined pressure by the raw material air compressor (1), cooled by the cooler (8), and then introduced into the adsorption tower (2, 2). In the adsorption tower (2, 2), impurities such as moisture and carbon dioxide in the raw material air are removed. The raw material air from which impurities have been removed is introduced into the main heat exchanger (3).

主熱交換器(3)で液化点付近まで冷却された原料空気は、原料空気導入管路(4)から高圧塔(5)下部に導入される。この高圧塔(5)、後述の補助塔(7)及び低圧塔(20)内には、精留段(棚)、規則充填材、または不規則充填材等が設けられている。   The raw air cooled to the vicinity of the liquefaction point in the main heat exchanger (3) is introduced from the raw air introduction pipe (4) to the lower part of the high-pressure tower (5). In the high-pressure column (5), the auxiliary column (7) and the low-pressure column (20) described later, a rectification stage (shelf), a regular filler, an irregular filler, or the like is provided.

高圧塔(5)に導入された原料空気は、高圧塔(5)内上昇中に下降液である液化窒素と向流接触を行い、蒸留により低沸点成分の組成が増加し、高圧塔(5)頂部における窒素ガス流体と、高圧塔(5)底部における酸素濃度約35%の第1酸素富化液化流体とに分離される。   The raw material air introduced into the high pressure column (5) makes countercurrent contact with the liquefied nitrogen as the descending liquid while rising in the high pressure column (5), and the composition of the low boiling point component is increased by distillation. ) Separated into a nitrogen gas fluid at the top and a first oxygen-enriched liquefied fluid having an oxygen concentration of about 35% at the bottom of the high pressure column (5).

高圧塔(5)頂部に生成した窒素ガス流体は、高圧塔(5)上部から導出され、一部は、製品窒素ガス採取管路(6)を通って、主熱交換器(3)で熱回収されて常温まで昇温され、中圧製品窒素ガスとして採取される。   The nitrogen gas fluid generated at the top of the high-pressure tower (5) is led out from the upper part of the high-pressure tower (5), and partly passes through the product nitrogen gas collection line (6) and is heated in the main heat exchanger (3). It is collected, heated to room temperature, and collected as medium-pressure product nitrogen gas.

高圧塔(5)頂部に生成した窒素ガス流体の残部は、窒素ガス流体導入管路(11)を通って、補助塔(7)下部に設けられた凝縮器(12)に導入される。凝縮器(12)では、この窒素ガス流体と、後述する補助塔(7)底部に生成した第2酸素富化液化流体との間接熱交換が行われ、窒素ガス流体は凝縮して液化窒素になり、第2酸素富化液化流体は蒸発して第2酸素富化ガス流体になる。   The remainder of the nitrogen gas fluid generated at the top of the high-pressure tower (5) is introduced into the condenser (12) provided at the lower part of the auxiliary tower (7) through the nitrogen gas fluid introduction line (11). In the condenser (12), indirect heat exchange is performed between the nitrogen gas fluid and a second oxygen-enriched liquefied fluid generated at the bottom of the auxiliary tower (7) described later, and the nitrogen gas fluid is condensed to liquefied nitrogen. And the second oxygen-enriched liquefied fluid evaporates into a second oxygen-enriched gas fluid.

この液化窒素は、液化窒素導入管路(13)を通って、還流液として高圧塔(5)上部に導入される。高圧塔(5)では、この液化窒素は、下降液として高圧塔(5)内を下降し、上昇ガスである原料空気と向流接触を行い、それにしたがって高沸点成分の組成が増加し、高圧塔(5)底部に第1酸素富化液化流体が生成する。   This liquefied nitrogen is introduced into the upper portion of the high-pressure column (5) as a reflux liquid through the liquefied nitrogen introduction pipe (13). In the high-pressure column (5), this liquefied nitrogen descends in the high-pressure column (5) as a descending liquid and makes countercurrent contact with the raw material air that is the ascending gas, and the composition of high-boiling components increases accordingly. A first oxygen-enriched liquefied fluid is produced at the bottom of the column (5).

高圧塔(5)底部に生成した第1酸素富化液化流体は、管路(14)から導出され、過冷器(9)、減圧弁(10)を経由して、還流液として補助塔(7)上部に導入される。   The first oxygen-enriched liquefied fluid produced at the bottom of the high-pressure tower (5) is led out from the pipe (14) and passes through the supercooler (9) and the pressure reducing valve (10) as an auxiliary tower ( 7) Introduced at the top.

補助塔(7)では、還流液である第1酸素富化液化流体と、後述する補助塔(7)内を上昇する第2酸素富化ガス流体との向流接触が起こり、蒸留の結果、補助塔(7)頂部には、酸素組成がほぼ空気と同じである流体(空気組成流体)が、補助塔(7)底部には、酸素濃度約48%の第2酸素富化液化流体が生成する。   In the auxiliary column (7), countercurrent contact occurs between the first oxygen-enriched liquefied fluid that is the reflux liquid and the second oxygen-enriched gas fluid that rises in the auxiliary column (7) described later, and as a result of distillation, A fluid (air composition fluid) having almost the same oxygen composition as air is generated at the top of the auxiliary tower (7), and a second oxygen-enriched liquefied fluid having an oxygen concentration of about 48% is generated at the bottom of the auxiliary tower (7). To do.

この第2酸素富化液化流体は、補助塔(7)下部に設けられた凝縮器(12)で、窒素ガス流体と間接熱交換し、蒸発して第2酸素富化ガス流体となり、補助塔(7)内を上昇する。   The second oxygen-enriched liquefied fluid is indirectly heat exchanged with the nitrogen gas fluid in the condenser (12) provided at the lower part of the auxiliary tower (7), and evaporated to become the second oxygen-enriched gas fluid. (7) Go up inside.

この第2酸素富化ガス流体の一部は、管路(15)から導出された後、二分され、その大部分が第2酸素富化ガス流体導入管路(18)から低圧塔(20)に導入される。   A part of the second oxygen-enriched gas fluid is bisected after being led out from the pipe (15), and most of the second oxygen-enriched gas fluid is supplied from the second oxygen-enriched gas fluid introduction pipe (18) to the low pressure column (20). To be introduced.

補助塔(7)頂部に生成した、空気組成流体は、管路(17)から導出され、過冷器(9)を経由してから二分され、その一部は、管路(31)、熱交換器(50)を経由して常温まで昇圧された後、空気昇圧機(51)に導入される。その後、空気昇圧機(51)で昇圧された後、冷却器(52)、熱交換器(50)を通過して冷却され、空気組成流体導入管路(32)から、低圧塔(20)下部に設けられた蒸化器(21)に加熱源として導入される。   The air composition fluid generated at the top of the auxiliary tower (7) is led out from the pipe (17) and divided into two after passing through the subcooler (9). The pressure is raised to room temperature via the exchanger (50) and then introduced into the air pressure booster (51). Thereafter, the pressure is increased by the air pressure booster (51), and then cooled by passing through the cooler (52) and the heat exchanger (50), from the air composition fluid introduction pipe (32), and the lower part of the low pressure column (20) Is introduced into the evaporator (21) provided as a heating source.

また、空気組成流体の残部は、弁(27)、排出管路(29)を通過して、主熱交換器(3)で原料空気と熱交換してから、排ガス1として排出される。   The remainder of the air composition fluid passes through the valve (27) and the discharge pipe (29), exchanges heat with the raw air in the main heat exchanger (3), and is then discharged as the exhaust gas 1.

低圧塔(20)下部に設けられた蒸化器(21)では、昇圧した前記空気組成流体と、後述する低圧塔(20)底部に生成した液化酸素との間接熱交換が行われ、空気組成流体は、凝縮して液化空気組成流体になり、液化酸素は蒸発して酸素ガス流体になる。   In the evaporator (21) provided at the lower part of the low-pressure column (20), indirect heat exchange is performed between the pressurized air composition fluid and liquefied oxygen generated at the bottom of the low-pressure column (20), which will be described later. The fluid condenses into a liquefied air composition fluid and the liquefied oxygen evaporates into an oxygen gas fluid.

液化空気組成流体は、管路(33)から導出され、過冷器(22)、減圧弁(23)を経由して、還流液とし低圧塔(20)上部に導入される。   The liquefied air composition fluid is led out from the pipe (33) and is introduced into the upper portion of the low-pressure column (20) as a reflux liquid via the supercooler (22) and the pressure reducing valve (23).

低圧塔(20)では、上部に導入された還流液である液化空気組成流体と、管路(18)から導入された第2酸素富化ガス流体と、低圧塔(20)内を上昇する酸素ガス流体との向流接触が起こり、蒸留の結果、低圧塔(20)頂部には、第3酸素富化ガス流体が、低圧塔(20)底部には、酸素濃度約95%の液化酸素が生成する。   In the low pressure column (20), the liquefied air composition fluid which is the reflux liquid introduced into the upper portion, the second oxygen-enriched gas fluid introduced from the pipe line (18), and the oxygen rising in the low pressure column (20). Countercurrent contact with the gas fluid occurs, and as a result of distillation, a third oxygen-enriched gas fluid is present at the top of the low pressure column (20), and liquefied oxygen having an oxygen concentration of about 95% is present at the bottom of the low pressure column (20). Generate.

蒸化器(21)で間接熱交換して発生した酸素ガス流体の一部は、低圧塔(20)下部に設けた製品酸素ガス採取管路(19)を通って、主熱交換器(3)で熱回収されて常温まで昇温され、中圧製品酸素ガスとして採取される。   Part of the oxygen gas fluid generated by indirect heat exchange in the evaporator (21) passes through the product oxygen gas collection line (19) provided at the lower part of the low pressure column (20), and passes through the main heat exchanger (3 ), The temperature is raised to room temperature and collected as medium-pressure product oxygen gas.

低圧塔(20)頂部に生成した第3酸素富化ガス流体は、管路(30)から導出される。この第3酸素富化ガス流体は、補助塔(7)下部の管路(15)から導出された第2酸素富化ガス流体の残部と管路(24)で合流する。この第2酸素富化ガス流体と第3酸素富化ガス流体とは、過冷器(22)、主熱交換器(3)を通って、一部は管路(26)から膨張タービン(40)に導入されて、空気分離装置(70)に必要な寒冷を発生する。その後、管路(28)から排出管路(29)に合流して、排ガス1として排出される。   The third oxygen-enriched gas fluid produced at the top of the low pressure column (20) is led out from the line (30). This third oxygen-enriched gas fluid merges with the remainder of the second oxygen-enriched gas fluid led out from the pipe (15) below the auxiliary tower (7) in the pipe (24). The second oxygen-enriched gas fluid and the third oxygen-enriched gas fluid pass through the supercooler (22) and the main heat exchanger (3), and partly from the pipe (26) to the expansion turbine (40 ) To generate the cold required for the air separation device (70). Thereafter, the pipe (28) joins the discharge pipe (29) and is discharged as the exhaust gas 1.

第2酸素富化ガス流体と第3酸素富化ガス流体との残部は、排出管路(25)から排ガス2として排出される。   The remainder of the second oxygen-enriched gas fluid and the third oxygen-enriched gas fluid is discharged as exhaust gas 2 from the discharge line (25).

また、空気分離装置(70)に必要な寒冷の一部又は全部は、空気分離装置(70)外から液化ガスを導入して寒冷補給させてもよい。本実施形態では、低圧塔(20)上部に、液化ガス導入管路(45)を設けており、ここから液体空気、液体窒素、あるいは液体酸素を供給することも可能である。この液化ガス導入管路(45)を、高圧塔(5)、補助塔(7)、低圧塔(20)、あるいはそれらの塔に導入される配管等に設けてもよい。空気分離装置(70)に必要な寒冷の全部を、空気分離装置(70)外から液化ガスを導入して行う場合、膨張タービン(40)は不要である。その場合には、管路(24)の流体は、管路(25)から排出することができる。   In addition, a part or all of the cold necessary for the air separation device (70) may be replenished with cold by introducing a liquefied gas from outside the air separation device (70). In the present embodiment, a liquefied gas introduction line (45) is provided on the upper portion of the low-pressure column (20), and liquid air, liquid nitrogen, or liquid oxygen can be supplied therefrom. The liquefied gas introduction line (45) may be provided in the high-pressure column (5), the auxiliary column (7), the low-pressure column (20), a pipe introduced into these columns, or the like. When all of the cooling required for the air separation device (70) is performed by introducing liquefied gas from the outside of the air separation device (70), the expansion turbine (40) is unnecessary. In that case, the fluid in the conduit (24) can be discharged from the conduit (25).

また、補助塔(7)、低圧塔(20)の塔下部に、必要に応じて管路(60,61)を設けて、保安用液体酸素を取り出すこともある。   In addition, if necessary, pipes (60, 61) may be provided at the lower part of the auxiliary tower (7) and the low-pressure tower (20) to take out the liquid oxygen for safety.

また、本実施形態では、主熱交換器(3)と熱交換器(50)は、別個に設けられているが、これらの熱交換器は一体としてもよいし、流体ごとに分割してもよい。   In the present embodiment, the main heat exchanger (3) and the heat exchanger (50) are provided separately, but these heat exchangers may be integrated or divided for each fluid. Good.

次に、本実施形態で、高圧塔(5)の運転圧力を従来ほど高くする必要のないことを説明する。   Next, it will be described in the present embodiment that it is not necessary to increase the operating pressure of the high-pressure tower (5) as much as in the past.

この空気分離装置(70)では、補助塔(7)を設けて、補助塔(7)底部に生成した第2酸素富化液化流体を、高圧塔(5)頂部の窒素ガスの液化に、補助塔(7)頂部に生成した空気組成流体を、低圧塔(5)底部の液化酸素の蒸発に用いている点に特徴がある。   In this air separation device (70), an auxiliary tower (7) is provided, and the second oxygen-enriched liquefied fluid produced at the bottom of the auxiliary tower (7) is used as an auxiliary to liquefy the nitrogen gas at the top of the high-pressure tower (5). The air composition fluid generated at the top of the tower (7) is characterized in that it is used for evaporation of liquefied oxygen at the bottom of the low pressure tower (5).

例えば、製品酸素ガスに必要な圧力を0.3MPa(3bar)とすると、補助塔(7)の運転圧力もほぼ0.3MPaとなり、補助塔(7)底部に生成される第2酸素富化液化流体の飽和温度は約97Kになる。窒素ガスと第2酸素富化液化流体との熱交換のために、凝縮器(12)に必要な温度差を2Kとすると、高圧塔(5)頂部の窒素ガス流体に必要な温度は、約99Kとなり、高圧塔(5)に必要な運転圧力は0.69MPa(6.9bar)となる。   For example, if the pressure required for the product oxygen gas is 0.3 MPa (3 bar), the operating pressure of the auxiliary tower (7) is also about 0.3 MPa, and the second oxygen-enriched liquefaction produced at the bottom of the auxiliary tower (7). The saturation temperature of the fluid will be about 97K. If the temperature difference required for the condenser (12) for heat exchange between the nitrogen gas and the second oxygen-enriched liquefied fluid is 2K, the temperature required for the nitrogen gas fluid at the top of the high pressure column (5) is about 99K, and the operating pressure required for the high pressure column (5) is 0.69 MPa (6.9 bar).

これに対し、特許文献1の図1に記載された従来の空気分離装置では、低圧塔底部には、例えば、酸素濃度約95%の液化酸素が生成される。この液化酸素の0.3MPa(3bar)における飽和温度は、約102Kである。そのため、特許文献1の図1に示した凝縮器(41)において、酸素流体と窒素流体との熱交換に必要な温度差を2Kとすると、高圧塔頂部の窒素ガス流体に必要な温度は、約104Kとなる。その結果、特許文献1に示した高圧塔に必要な運転圧力は0.99MPa(9.9bar)となる。   On the other hand, in the conventional air separation apparatus described in FIG. 1 of Patent Document 1, for example, liquefied oxygen having an oxygen concentration of about 95% is generated at the bottom of the low-pressure column. The saturation temperature of this liquefied oxygen at 0.3 MPa (3 bar) is about 102K. Therefore, in the condenser (41) shown in FIG. 1 of Patent Document 1, if the temperature difference required for heat exchange between the oxygen fluid and the nitrogen fluid is 2K, the temperature required for the nitrogen gas fluid at the top of the high-pressure tower is: About 104K. As a result, the operating pressure required for the high-pressure column shown in Patent Document 1 is 0.99 MPa (9.9 bar).

つまり、0.3MPaの製品酸素ガスが必要な場合、本発明を利用することで、原料空気圧縮機(1)の吐出圧力を約0.3MPa(=0.99MPa−0.69MPa)低減することができ、製品の動力原単位を低減することができる。   That is, when 0.3 MPa product oxygen gas is required, the discharge pressure of the raw material air compressor (1) can be reduced by about 0.3 MPa (= 0.99 MPa−0.69 MPa) by using the present invention. And the power consumption of the product can be reduced.

また、補助塔(7)を用いて、空気組成流体を管路(17)から取り出し、これを空気昇圧機(51)で圧縮した後、低圧塔(20)下部の蒸化器(21)への温流体として、管路(32)から導入している。補助塔(7)を用いることにより、取り出すのが空気組成流体であるため、特別仕様の酸素ガス圧縮機を用いることなく、通常の空気圧縮機を空気昇圧機(51)として使用することができ、コストやメンテナンスの労力を低減することができる。   Moreover, after taking out an air composition fluid from a pipe line (17) using an auxiliary tower (7), and compressing this with an air booster (51), it is to the evaporator (21) below a low pressure tower (20). Is introduced from the pipe (32). By using the auxiliary tower (7), since it is the air composition fluid that is taken out, a normal air compressor can be used as the air booster (51) without using a special oxygen gas compressor. Costs and maintenance effort can be reduced.

また、低圧塔(20)下部の蒸化器(21)の加熱源に空気組成流体を利用することは、プロセス上もメリットがある。
低圧塔(20)の運転圧力を0.3MPa(3bar)とすると、低圧塔底部の酸素流体の飽和温度は約102Kである。蒸化器(21)に必要な温度差を2Kとすると、蒸化器(21)の加熱源に必要な飽和温度は、約104Kである。蒸化器(21)の加熱源に空気組成流体を用いた場合、その飽和温度から、その圧力は約0.85MPaである必要がある。
Moreover, using an air composition fluid as a heating source for the evaporator (21) at the lower part of the low-pressure column (20) is advantageous in terms of process.
If the operating pressure of the low pressure column (20) is 0.3 MPa (3 bar), the saturation temperature of the oxygen fluid at the bottom of the low pressure column is about 102K. If the temperature difference required for the evaporator (21) is 2K, the saturation temperature required for the heating source of the evaporator (21) is about 104K. When an air composition fluid is used as a heating source of the evaporator (21), the pressure needs to be about 0.85 MPa from the saturation temperature.

一方、蒸化器(21)の加熱源に窒素ガスを用いた場合、その飽和温度からその運転圧力は約0.99MPaである必要がある。つまり、蒸化器(21)の加熱源に「空気組成流体」を用いることで、空気昇圧機(51)の吐出圧力を低減することができ、しかも、昇圧機として一般的な空気圧縮機を採用できるメリットを得ることができる。   On the other hand, when nitrogen gas is used as the heating source of the evaporator (21), the operating pressure needs to be about 0.99 MPa from the saturation temperature. That is, by using “air composition fluid” as the heating source of the evaporator (21), the discharge pressure of the air booster (51) can be reduced, and a general air compressor as a booster can be used. Benefits that can be adopted.

また、本明細書では、「空気組成流体」とは、その圧縮に一般的な空気圧縮機の利用が可能な流体を意味している。従って、その組成が通常の大気組成と完全に一致する意味に限定するものではない。特に、その酸素組成は採用する圧縮機のメーカや型番によって多少変動する場合がある。   In the present specification, the “air composition fluid” means a fluid that can be used by a general air compressor for compression. Therefore, it is not limited to the meaning that the composition completely coincides with the normal atmospheric composition. In particular, the oxygen composition may vary somewhat depending on the compressor manufacturer and model number employed.

以下、実施例により、本発明をさらに詳しく説明する。本発明は、下記実施例に何ら制限されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the following examples.

[実施例1]
図1に示した空気分離装置(70)を用いて、窒素ガスと酸素ガスを生産した。フィルタ(図示略)によって粉塵等を除去した原料空気3630Nm/hを、原料空気圧縮機(1)で約0.73MPa(7.3bar)まで圧縮した後、吸着器(2,2)で水分、二酸化炭素を除去した。主熱交換器(3)で露点近くまで冷却し、高圧塔(5)下部に導入した。
[Example 1]
Nitrogen gas and oxygen gas were produced using the air separation device (70) shown in FIG. The raw material air 3630Nm 3 / h from which dust and the like have been removed by a filter (not shown) is compressed to about 0.73 MPa (7.3 bar) by the raw material air compressor (1), and then the moisture is absorbed by the adsorber (2, 2). Removed carbon dioxide. It was cooled to near the dew point with the main heat exchanger (3) and introduced into the lower part of the high-pressure tower (5).

高圧塔(5)上部から、0.69MPa(6.9bar)の製品窒素ガス1450Nm/hを取り出し、主熱交換器(3)で常温まで昇温した後、製品窒素ガスとして採取した。 From the upper part of the high-pressure column (5), 0.69 MPa (6.9 bar) of product nitrogen gas 1450 Nm 3 / h was taken out, heated to room temperature with the main heat exchanger (3), and then collected as product nitrogen gas.

高圧塔(5)底部からは、酸素濃度約35%の第1酸素富化液化流体2180Nm/hを取り出し、過冷器(9)で冷却後、補助塔(11)上部に還流液として供給した。 A first oxygen-enriched liquefied fluid 2180 Nm 3 / h having an oxygen concentration of about 35% is taken out from the bottom of the high-pressure tower (5), cooled by a supercooler (9), and then supplied to the upper part of the auxiliary tower (11) as a reflux liquid. did.

補助塔(11)を約0.3MPa(3bar)で運転し、供給された還流液である第1酸素富化液化流体2180Nm/hを、補助塔(7)頂部の酸素組成がほぼ空気と同じである空気組成流体1160Nm/hと、補助塔(7)底部の酸素濃度約48%の第2酸素富化液化流体1020Nm/hとに分離した。 The auxiliary tower (11) is operated at about 0.3 MPa (3 bar), and the first oxygen-enriched liquefied fluid 2180 Nm 3 / h, which is the reflux liquid, is supplied, and the oxygen composition at the top of the auxiliary tower (7) is substantially equal to air. The same air composition fluid 1160 Nm 3 / h and a second oxygen-enriched liquefied fluid 1020 Nm 3 / h having an oxygen concentration of about 48% at the bottom of the auxiliary tower (7) were separated.

この空気組成流体を管路(17)から取り出し、熱交換器(50)で常温まで昇温した後、空気昇圧機(51)で約0.85MPa(8.5bar)まで昇圧した。昇圧した空気組成流体を、熱交換器(50)で再度冷却し、低圧塔(20)下部の蒸化器(21)に導入した。   The air composition fluid was taken out from the pipe line (17), heated to room temperature with a heat exchanger (50), and then pressurized to about 0.85 MPa (8.5 bar) with an air pressure booster (51). The pressurized air composition fluid was cooled again by the heat exchanger (50) and introduced into the evaporator (21) at the lower part of the low-pressure column (20).

低圧塔(20)を約0.3MPa(3bar)で運転し、低圧塔(20)下部から約0.3MPa(3bar)の酸素濃度95%の酸素ガス465Nm/hを取り出し、主熱交換器(3)で昇温後、製品酸素ガスとして採取した。 The low pressure column (20) is operated at about 0.3 MPa (3 bar), an oxygen gas of 465 Nm 3 / h with an oxygen concentration of about 0.3 MPa (3 bar) is extracted from the lower portion of the low pressure column (20), and the main heat exchanger After raising the temperature in (3), it was collected as product oxygen gas.

また、低圧塔(20)頂部からは第3酸素富化ガス流体を取り出し、補助塔(7)下部からの第2酸素富化ガス流体の一部と共に、膨張タービン(40)に導入して、空気分離装置(70)に必要な寒冷を発生させた。   Further, the third oxygen-enriched gas fluid is taken out from the top of the low-pressure column (20) and introduced into the expansion turbine (40) together with a part of the second oxygen-enriched gas fluid from the lower portion of the auxiliary column (7). The coldness required for the air separation device (70) was generated.

以上の結果から、本発明の空気分離方法および空気分離装置によれば、中圧製品窒素ガスと中圧製品酸素ガスとを採取し、高圧塔(5)の運転圧力を従来より低くできることが確認された。   From the above results, according to the air separation method and the air separation apparatus of the present invention, it is confirmed that the medium pressure product nitrogen gas and the medium pressure product oxygen gas can be sampled and the operating pressure of the high pressure column (5) can be lowered than before. It was done.

本発明の実施の形態に係る空気分離装置の系統図である。It is a systematic diagram of the air separation device concerning an embodiment of the invention.

符号の説明Explanation of symbols

3 主熱交換器
4 原料空気導入管路
5 高圧塔
6 製品窒素ガス採取管路
7 補助塔
11 凝縮器への窒素ガス流体導入管路
12 凝縮器
13 高圧塔への液化窒素導入管路
14 補助塔への第1酸素富化液化流体導入管路
15,18 低圧塔への第2酸素富化ガス流体導入管路
17,31 空気昇圧機への空気組成流体導入管路
19 製品酸素ガス採取管路
20 低圧塔
21 蒸化器
32 蒸化器への空気組成流体導入管路
33 低圧塔への液化空気組成流体導入管路
45 空気分離装置外からの液化ガス導入管路
51 空気昇圧機
70 空気分離装置


3 Main heat exchanger 4 Raw material air introduction line 5 High pressure column 6 Product nitrogen gas sampling line 7 Auxiliary tower 11 Nitrogen gas fluid introduction line to condenser 12 Condenser 13 Liquid nitrogen introduction line to high pressure column 14 Auxiliary First oxygen-enriched liquefied fluid introduction line to the tower 15, 18 Second oxygen-enriched gas fluid introduction line to the low-pressure tower 17, 31 Air composition fluid introduction line to the air booster 19 Product oxygen gas sampling pipe Route 20 Low-pressure tower 21 Evaporator 32 Air composition fluid introduction line to the evaporator 33 Liquefied air composition fluid introduction line to the low-pressure tower 45 Liquefied gas introduction line from the outside of the air separation device 51 Air booster 70 Air Separation device


Claims (4)

原料空気を深冷液化分離して、中圧製品窒素ガスと中圧製品酸素ガスとを採取する空気分離方法において、
圧縮、精製、冷却した前記原料空気を高圧塔に導入し、塔上部の窒素ガス流体と、塔下部の第1酸素富化液化流体とに分離する第1分離工程と、
前記第1酸素富化液化流体を補助塔に導入し、塔上部の酸素組成がほぼ空気と同じである空気組成流体と、塔下部の第2酸素富化液化流体とに分離する第2分離工程と、
前記窒素ガス流体の一部と、前記第2酸素富化液化流体とを間接熱交換して、前記窒素ガス流体を凝縮して液化窒素にすると同時に、前記第2酸素富化液化流体を蒸発して第2酸素富化ガス流体にする第1間接熱交換工程と、
前記第2酸素富化ガス流体の一部を低圧塔に導入し、塔上部の第3酸素富化ガス流体と、塔下部の液化酸素とに分離する第3分離工程と、
前記酸素組成がほぼ空気と同じである空気組成流体を昇圧する圧縮工程と、
昇圧した前記酸素組成がほぼ空気と同じである空気組成流体と、前記液化酸素とを間接熱交換して、前記酸素組成がほぼ空気と同じである空気組成流体を凝縮して液化空気組成流体にすると同時に、前記液化酸素を蒸発して酸素ガス流体にする第2間接熱交換工程と、
前記窒素ガス流体の残部を、熱回収後に前記中圧製品窒素ガスとして導出する製品窒素ガス回収工程と、
前記酸素ガス流体を、熱回収後に前記中圧製品酸素ガスとして導出する製品酸素ガス回収工程とを含むことを特徴とする空気分離方法。
In the air separation method in which raw material air is liquefied and separated to collect medium pressure product nitrogen gas and medium pressure product oxygen gas,
A first separation step of introducing the compressed, purified, and cooled raw material air into a high-pressure tower and separating it into a nitrogen gas fluid at the top of the tower and a first oxygen-enriched liquefied fluid at the bottom of the tower;
A second separation step of introducing the first oxygen-enriched liquefied fluid into the auxiliary tower and separating it into an air composition fluid whose oxygen composition at the top of the tower is substantially the same as air and a second oxygen-enriched liquefied fluid at the bottom of the tower When,
A part of the nitrogen gas fluid and the second oxygen-enriched liquefied fluid are indirectly heat exchanged to condense the nitrogen gas fluid into liquefied nitrogen, and at the same time evaporate the second oxygen-enriched liquefied fluid. A first indirect heat exchange step into a second oxygen-enriched gas fluid;
A third separation step of introducing a part of the second oxygen-enriched gas fluid into the low-pressure column and separating it into a third oxygen-enriched gas fluid at the upper part of the tower and liquefied oxygen at the lower part of the tower;
A compression step of pressurizing an air composition fluid whose oxygen composition is substantially the same as air;
An indirect heat exchange is performed between the air composition fluid whose oxygen composition is substantially the same as air and the liquefied oxygen, and the air composition fluid whose oxygen composition is substantially the same as air is condensed to a liquefied air composition fluid. And at the same time, a second indirect heat exchange step of evaporating the liquefied oxygen into an oxygen gas fluid;
A product nitrogen gas recovery step of deriving the remainder of the nitrogen gas fluid as the medium pressure product nitrogen gas after heat recovery;
And a product oxygen gas recovery step of deriving the oxygen gas fluid as the medium pressure product oxygen gas after heat recovery.
系外から液化ガスを導入して装置に必要な寒冷を補給するものである請求項1に記載の空気分離方法。   The air separation method according to claim 1, wherein liquefied gas is introduced from outside the system to replenish the coldness necessary for the apparatus. 原料空気を深冷液化分離して、中圧製品窒素ガスと中圧製品酸素ガスとを採取する空気分離装置(70)であって、
圧縮、精製した前記原料空気と製品ガスとを熱交換して、前記原料空気を冷却する主熱交換器(3)と、
前記主熱交換器(3)で冷却した前記原料空気を、高圧塔(5)下部に導入する管路(4)と、
この原料空気を、窒素ガス流体と第1酸素富化液化流体とに分離する高圧塔(5)と、
前記高圧塔(5)塔下部の前記第1酸素富化液化流体を、補助塔(7)上部に導入する管路(14)と、
前記第1酸素富化液化流体を、酸素組成がほぼ空気と同じである空気組成流体と第2酸素富化液化流体とに分離する補助塔(7)と、
前記高圧塔(5)上部から導出した前記窒素ガス流体の一部を、凝縮器(12)に導入する管路(11)と、
前記窒素ガス流体の一部と前記第2酸素富化液化流体とを間接熱交換する、前記補助塔(7)下部に設けられた凝縮器(12)と、
この窒素ガス流体を前記凝縮器(12)で間接熱交換して液化窒素にした後、前記高圧塔(5)上部に導入する管路(13)と、
前記第2酸素富化液化流体を間接熱交換で蒸発して得た第2酸素富化ガス流体の一部を低圧塔(20)に導入する管路(15,18)と、
前記第2酸素富化ガス流体を、第3酸素富化ガス流体と液化酸素とに分離する低圧塔(20)と、
前記補助塔(7)塔上部から導出した前記酸素組成がほぼ空気と同じである空気組成流体を、空気昇圧機(51)に導入する管路(17,31)と、
前記酸素組成がほぼ空気と同じである空気組成流体を昇圧する空気昇圧機(51)と、
前記空気昇圧機(51)で昇圧した前記酸素組成がほぼ空気と同じである空気組成流体を、蒸化器(21)に導入する管路(32)と、
昇圧した前記酸素組成がほぼ空気と同じである空気組成流体と前記液化酸素とを間接熱交換する、前記低圧塔(20)下部に設けられた蒸化器(21)と、
前記酸素組成がほぼ空気と同じである空気組成流体を間接熱交換して得た液化空気組成流体を、前記低圧塔(20)上部に導入する管路(33)と、
前記窒素ガス流体の残部を、前記高圧塔(5)上部から導出し、前記中圧製品窒素ガスとして採取する管路(6)と、
酸素ガス流体を、前記低圧塔(20)下部から導出し、前記中圧製品酸素ガスとして採取する管路(19)とを設けたことを特徴とする空気分離装置。
An air separation device (70) for cryogenic liquefaction separation of raw material air to collect medium pressure product nitrogen gas and medium pressure product oxygen gas,
A main heat exchanger (3) for heat-exchanging the compressed and purified raw material air and product gas to cool the raw material air;
A conduit (4) for introducing the raw material air cooled in the main heat exchanger (3) into the lower portion of the high-pressure tower (5);
A high pressure column (5) for separating the raw material air into a nitrogen gas fluid and a first oxygen-enriched liquefied fluid;
A line (14) for introducing the first oxygen-enriched liquefied fluid at the lower part of the high-pressure tower (5) to the upper part of the auxiliary tower (7);
An auxiliary tower (7) for separating the first oxygen-enriched liquefied fluid into an air composition fluid having an oxygen composition substantially the same as air and a second oxygen-enriched liquefied fluid;
A pipe line (11) for introducing a part of the nitrogen gas fluid derived from the upper part of the high-pressure column (5) into a condenser (12);
A condenser (12) provided at a lower portion of the auxiliary tower (7) for indirectly heat-exchanging a part of the nitrogen gas fluid and the second oxygen-enriched liquefied fluid;
After this nitrogen gas fluid is indirectly heat exchanged in the condenser (12) to liquefied nitrogen, a pipe line (13) introduced into the upper part of the high-pressure tower (5),
Lines (15, 18) for introducing a part of the second oxygen-enriched gas fluid obtained by evaporating the second oxygen-enriched liquefied fluid by indirect heat exchange into the low-pressure column (20);
A low pressure column (20) for separating the second oxygen-enriched gas fluid into a third oxygen-enriched gas fluid and liquefied oxygen;
Pipes (17, 31) for introducing an air composition fluid derived from the upper part of the auxiliary tower (7) and having the same oxygen composition as that of air into an air booster (51);
An air booster (51) for boosting an air composition fluid whose oxygen composition is substantially the same as air;
A pipe line (32) for introducing an air composition fluid having the oxygen composition boosted by the air pressure booster (51) substantially the same as air into the evaporator (21);
A vaporizer (21) provided at the lower part of the low-pressure column (20) for indirectly heat-exchanging the liquefied oxygen with an air composition fluid having the same oxygen composition as that of air;
A conduit (33) for introducing a liquefied air composition fluid obtained by indirect heat exchange of an air composition fluid having substantially the same oxygen composition as air into the upper portion of the low pressure column (20);
A conduit (6) for extracting the remainder of the nitrogen gas fluid from the upper part of the high-pressure tower (5) and collecting it as the medium-pressure product nitrogen gas;
An air separation apparatus comprising: a pipe line (19) for extracting an oxygen gas fluid from a lower part of the low pressure column (20) and collecting the oxygen gas fluid as the medium pressure product oxygen gas.
前記空気分離装置(70)外からの液化ガスを導入する液化ガス導入管路(45)を設けた請求項3に記載の空気分離装置。


The air separation device according to claim 3, further comprising a liquefied gas introduction pipe (45) for introducing liquefied gas from outside the air separation device (70).


JP2005103645A 2005-03-31 2005-03-31 Air separation method and air separation device Expired - Fee Related JP4401999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103645A JP4401999B2 (en) 2005-03-31 2005-03-31 Air separation method and air separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103645A JP4401999B2 (en) 2005-03-31 2005-03-31 Air separation method and air separation device

Publications (2)

Publication Number Publication Date
JP2006284075A JP2006284075A (en) 2006-10-19
JP4401999B2 true JP4401999B2 (en) 2010-01-20

Family

ID=37406190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103645A Expired - Fee Related JP4401999B2 (en) 2005-03-31 2005-03-31 Air separation method and air separation device

Country Status (1)

Country Link
JP (1) JP4401999B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5005708B2 (en) * 2009-01-06 2012-08-22 大陽日酸株式会社 Air separation method and apparatus
JP5417054B2 (en) * 2009-06-15 2014-02-12 大陽日酸株式会社 Air separation method and apparatus
JP5307055B2 (en) * 2010-03-04 2013-10-02 大陽日酸株式会社 Nitrogen and oxygen production method and nitrogen and oxygen production apparatus.
JP5878310B2 (en) * 2011-06-28 2016-03-08 大陽日酸株式会社 Air separation method and apparatus
CN112984955B (en) * 2021-03-15 2022-05-20 鞍钢股份有限公司 Starting method of plate-fin heat exchanger of air separation equipment
CN113464847B (en) * 2021-06-10 2024-09-20 陕西秦风气体股份有限公司 Efficient and high-yield space division system and control method thereof

Also Published As

Publication number Publication date
JP2006284075A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4331460B2 (en) Method and apparatus for producing krypton and / or xenon by low temperature air separation
JP2989516B2 (en) Cryogenic rectification method and apparatus for producing pressurized nitrogen
JP5425100B2 (en) Cryogenic air separation method and apparatus
JP4450886B2 (en) High purity oxygen production method and apparatus
US10969168B2 (en) System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
JP5655104B2 (en) Air separation method and air separation device
JPH06207775A (en) Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide
CN111033160B (en) Systems and methods for recovering neon and helium from an air separation unit
US9360250B2 (en) Process and apparatus for the separation of air by cryogenic distillation
JPH10185425A (en) Method for producing impure oxygen and pure nitrogen
JPH06257939A (en) Distilling method at low temperature of air
JP2007064617A (en) Method of manufacturing krypton and/or xenon by cryogenic air separation
JP5417054B2 (en) Air separation method and apparatus
JP5032407B2 (en) Nitrogen production method and apparatus
US20130086941A1 (en) Air separation method and apparatus
JP4540182B2 (en) Cryogenic distillation system for air separation
JP4401999B2 (en) Air separation method and air separation device
JP2000329456A (en) Method and device for separating air
JP4230213B2 (en) Air liquefaction separation apparatus and method
JP5027173B2 (en) Argon production method and apparatus thereof
JP5005708B2 (en) Air separation method and apparatus
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JP4150107B2 (en) Nitrogen production method and apparatus
JP4447501B2 (en) Air liquefaction separation method and apparatus
JP6159242B2 (en) Air separation method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Ref document number: 4401999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees