[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4497396B2 - Fuel cell heat recovery device - Google Patents

Fuel cell heat recovery device Download PDF

Info

Publication number
JP4497396B2
JP4497396B2 JP2003207027A JP2003207027A JP4497396B2 JP 4497396 B2 JP4497396 B2 JP 4497396B2 JP 2003207027 A JP2003207027 A JP 2003207027A JP 2003207027 A JP2003207027 A JP 2003207027A JP 4497396 B2 JP4497396 B2 JP 4497396B2
Authority
JP
Japan
Prior art keywords
heat
heat recovery
fuel cell
hot water
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003207027A
Other languages
Japanese (ja)
Other versions
JP2005063675A (en
Inventor
村 将 史 河
坂 典 子 大
崎 邦 博 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2003207027A priority Critical patent/JP4497396B2/en
Publication of JP2005063675A publication Critical patent/JP2005063675A/en
Application granted granted Critical
Publication of JP4497396B2 publication Critical patent/JP4497396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池運転時の発生熱を給湯等に利用する燃料電池コージェネレーションシステムにおける熱回収装置に関する。
【0002】
【従来の技術】
従来、燃料電池で発生した電力と共に、燃料電池の運転に伴って発生する熱をも(例えば温水として)利用している燃料電池コージェネレーションシステムでは、図10に示すように、燃料電池1の冷却水回路に熱回収用熱交換器3を介装して、燃料電池側の排熱(燃料電池の冷却、凝縮熱、あるいは改質器の発熱)を取り出している。
すなわち、貯湯槽2からその熱交換器3を経て貯湯槽2に戻る熱回収水回路L1、L2を設け、回路L1、L2を流れる熱回収水が、熱交換器3において燃料電池側と熱交換を行って、以って、貯湯槽2に蓄熱している(温水を蓄えている)。
【0003】
このようなシステムでは、貯湯槽2に十分熱が蓄えられて(いわゆる「満タン」となり)、循環する熱回収水が高温になると(約40度を超えると)燃料電池1の冷却に不十分となり、燃料電池1が運転を継続できなくなる。そのため、貯湯槽2から熱交換器3への熱回収水回路L1に並列にラジエータ15を設け、制御ユニット10が冷却を必要と判断すると三方弁16を動作させて流路を切り換え、同時にラジエータ15を運転して冷却を行っている(特許文献1参照)。
【0004】
しかしながら、上記した従来技術では、以下に列挙するような問題点を有している。
(1) ラジエータ取付けスペースが必要。
(2) ラジエータでの冷却に電力を消費し、燃料電池による発電電力の有効利用分が減少してしまう。
(3) 冷却の必要性判断のために温度センサなどの検出装置や制御ユニット、あるいは流路切り換えのための三方弁などが必要であり、複雑な構成となる。
(4) ラジエータの電源や制御ユニットへの配線工事が必要。
(5) ラジエータには凍結対策を行う必要がある。
【0005】
【特許文献1】
特開2001−325982号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記問題点に対処するため提案するものであり、ラジエータ配設のためのスペースおよび駆動動力が不要で、かつ冷却の必要性判断のための検出・制御装置が不要または簡易でコンパクトなシステムで構成される燃料電池の熱回収装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の燃料電池の熱回収装置は、燃料電池(1)の冷却回路に熱回収用熱交換器(3)を介装し、貯湯槽(2)からその熱交換器(3)を経て貯湯槽(2)に戻る熱回収水回路(L1、L2)を設け、その熱回収水によって燃料電池(1)で発生した熱を貯湯槽(2)に蓄熱する燃料電池の熱回収装置において、前記貯湯槽(2)から熱回収用熱交換器(3)に至る熱回収水回路(L1)に外部と熱交換を行う放熱手段(4)を設け、該放熱手段(4)は、前記貯湯槽(2)とその設置用基礎(5)との間の空間に放熱管(4A)を配設して放熱するように構成されていることを特徴としている(請求項1)。
【0008】
一般に、燃料電池コージェネレーションシステムは、
(1) 起動時に比較的大きなエネルギを消費する、
(2) 起動・停止にある程度の時間がかかる、
という特性を有するものである。
そこで発明者は種々研究の結果、貯湯槽が温水で満杯になった場合でも、温水需要があるまでの間は出力を最低レベルに抑えて運転を続ければ、燃料電池を停止する必要が無く、上記特性(1)、(2)に対応することが出来ることを見出した。そして、燃料電池を停止しない程度の最低レベルの出力で運転させれば、運転継続のために必要な熱回収回路の放熱量は少なく、放熱手段の簡略化が可能となることを見出した。
係る知見により、本発明に至ったものである。
【0009】
したがって、上述したような構成によれば、熱回収用熱交換器へ送られる熱回収水は、外部と熱交換を行う放熱手段を常に通り、その温度が高い場合には自然冷却される。そして、冷却のための特別な動力を必要とせず、また、冷却の必要性を判断する検出装置や制御ユニット等を、あるいは流路を切換る三方弁を必要としない。
【0010】
また、本発明の燃料電池の熱回収装置は、燃料電池(1)の冷却回路に熱回収用熱交換器(3)を介装し、貯湯槽(2)からその熱交換器(3)を経て貯湯槽(2)に戻る熱回収水回路(L1、L2)を設け、その熱回収水によって燃料電池(1)で発生した熱を貯湯槽(2)に蓄熱する燃料電池の熱回収装置において、前記貯湯槽(2)から熱回収用熱交換器(3)に至る熱回収水回路(L1)に外部と熱交換を行う放熱手段(4)を設け、該放熱手段(4)は、貯湯槽(2)を設置するコンクリート基礎(5A)の内部に放熱管(4B)を埋設して構成されているのを特徴としている(請求項2)。
【0011】
あるいは、本発明の燃料電池の熱回収装置は、燃料電池(1)の冷却回路に熱回収用熱交換器(3)を介装し、貯湯槽(2)からその熱交換器(3)を経て貯湯槽(2)に戻る熱回収水回路(L1、L2)を設け、その熱回収水によって燃料電池で発生した熱を貯湯槽(2)に蓄熱する燃料電池の熱回収装置において、前記貯湯槽(2)から熱回収用熱交換器(3)に至る熱回収水回路(L1)に外部と熱交換を行う放熱手段(4)を設け、該放熱手段(4)は、前記貯湯槽(2)の設置基礎(5)近傍の土中に放熱管(4C)を配設して構成されていることを特徴としている(請求項3)。
【0012】
また、本発明の燃料電池の熱回収装置において、前記熱回収水回路(L1)に温度センサ(T1またはT2)を設け、前記熱回収用熱交換器(3)に供給される熱回収水の温度が所定値以上であれば燃料電池(1)の出力を低下させる制御を行う様に構成された制御手段(制御ユニット10)を有しているのが好ましい(請求項4)。
この様な熱回収装置を備えた燃料電池(請求項4の燃料電池の熱回収装置)の制御方法は、前記熱回収水回路(L1)に設けた温度センサ(T1またはT2)により、前記熱回収用熱交換器(3)に供給される熱回収水の温度を計測する工程と、当該熱回収水が所定値以上であれば燃料電池(1)の出力を低下させる工程、とを有するのが好ましい。
【0013】
係る構成を採用すれば、熱交換器へ供給する熱回収水の温度を所定値以下に制御することが出来るので、燃料電池の運転を確実に継続することができる。そして、簡易な制御システムで実現できる。
【0014】
なお、このようなコージェネレーションシステムでは、冬場の外気温度が低い場合、凍結による配管破損の防止をしなければならない。内部配管などには、検知温度が設定値以下になると電気ヒータに通電するなどの方法が採られており、従来は、ラジエータなどの外部配管には独立した凍結防止制御が必要であった。一方、本発明においては、独立の凍結防止装置を必要とせず、内部配管の凍結防止制御が利用でき、システム構成を簡易化できる。
【0015】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態を説明する。
なお、前記図10で説明した従来技術と同様の部品には同じ符号を付し、重複した説明は省略する。
【0016】
図1において、貯湯槽2は円筒状で比較的縦長であって、温水は上層が高温、下層が低温の成層式に蓄えられている。すなわち、燃料電池1から熱回収された60〜70度Cの温水が回路L2により貯湯槽2の上部に投入されており、給湯等の利用には貯湯槽2の上部から流路L3によって取り出される。また、熱交換器3への回路L1を流れる熱回収水、換言すれば燃料電池1の冷却に用いられる熱回収水は、温度の低い貯湯槽2の下部から取り出されている。
そして、貯湯槽2から出た回路L1には放熱手段5が介装されており、熱回収水は外部へ放熱し冷却されて熱交換器3へ送られている。
【0017】
図2および図3には、放熱手段の実施形態の詳細が示されている。
貯湯槽2は、コンクリート基礎5上に、(図示例では3本の)支持脚6を介して設置されており、その支持脚6による基礎5と貯湯槽2下面との空隙δに脚6との干渉を避け複数回折り曲げ折り返された放熱配管4Aが配設されている。
【0018】
この放熱配管4Aの配設されるスペースは、従来、デッドスペースであってラジエータの配設は不可能なスペースである。また、貯湯槽2の水温の低い底部の下方であって周囲温度は低く、放熱効果は大きい。
なお、符号7は補助熱源機を示し、燃料電池1側からの回収熱が不足などの温水温度が低い場合には、補助運転を行って適正な水温を保持している。
【0019】
図示はされていないが、放熱配管4Aにフィンを設けると、さらに効果的である。もちろん、放熱配管4Aの断面形状は円形管に限らず冷却効果を向上するために表面積を増加した各種断面形状の異形管を採用してもよく、あるいは、蛇腹管のように表面積の大きい管を用いても良い。
【0020】
また、図4および図5に示す実施形態では、放熱手段はコンクリート基礎5A内に放熱配管4Bが埋設されている。このような構成にすれば、コンクリート基礎5Aは、大きな熱容量を有しているので、十分な放熱効果を得ることができる。
なお、このような家庭用の燃料電池コージェネレーションシステムにおいて、貯湯槽が温水で満杯になってから温水需要があるまでの時間は比較的短時間であるため、基礎5Aの温度上昇により放熱効果が低減するという問題は生じない。
【0021】
さらに、図6および図7にその他の実施形態を示す。
図6は、基礎5近傍の地中に放熱管4Cを埋設するようにしたものである。装置の設置に際しては、基礎工事等の簡単な(地ならし程度の)土木工事が行われており、このような放熱管埋設作業は特段に工数増加となるものではない。
【0022】
また、図7に示す実施形態は、貯湯槽を含むユニットのケーシングCの一側面に放熱手段を設けたものである。この場合、放熱手段は、例えば折り返した放熱管4Dを用い、ケーシングCの内側、あるいは外側のいずれに設けてもよい。そして、ケーシングCの下方位置に設けると環境温度が低く、しかも接続距離が短くできるので好ましい。
【0023】
以上説明した各実施形態では、複雑な検出装置や制御ユニットを使用せずに自然放熱を行うものであるが、次に、簡単な構成による運転制御を行う実施形態について図8を参照して説明する。
図8において、貯湯槽2の下方から熱回収用熱交換器3に連通する熱回収水回路L1には放熱手段4が介装されており、その回路L1には熱回収水の温度を検出する温度センサT1が設けられている。
【0024】
なお、図8には、貯湯槽2の下部にも温度センサT2が取り付けられて示されているが、後記のように、温度センサはT1またはT2のいずれかの一方でよく、それぞれに適正な所定温度によって比較判定するようにする。
【0025】
そして、制御ユニット10が設けられており、温度センサT1(またはT2)から検出データが入力され、制御ユニット10からはそのデータに基づいて燃料電池1へ制御信号が送られるように構成されている。
その制御は、冷却が必要になった場合に、燃料電池の出力を抑えるように運転制御を行って必要放熱量を低減させることで自然冷却を可能としている。
【0026】
その冷却の必要性の判定には、以下の方法が選択できる。
(1) 貯湯槽から燃料電池に送られる熱回収水の温度が高い場合(センサT1で検出)。
(2) 貯湯槽下部の温水の温度が高い場合(センサT2で検出)。
(3) あるいは、ユーザの熱・電力需要を予測して燃料電池の運転時間・出力を決定する運転制御方式においては、次の熱需要の発生予測時刻までに貯湯槽が温水で満杯になると予測された場合に、その熱需要が発生するまで燃料電池の出力を低下させる。
【0027】
上記(1)または(2)による制御の態様を図9のフローチャートにより説明する。
まず、温度センサT1(またはT2)で水温tを検出し(ステップS1)、検出された水温tが所定値以上か判定する(ステップS2)。Noであれば、ステップS4にジャンプし、Yesであれば、燃料電池(FC)1の出力を低下させる(ステップS3)。そして、ステップS4で制御が終了か否かの判断を行い、NoであればステップS1に戻る。
【0028】
このような構成においては、出力低下時の運転において、
Q1(熱交換器の交換熱量)≦Q2(放熱手段放熱熱量)
となるように放熱手段4を設定すればよい。
【0029】
図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではない旨を付記する。
【0030】
【発明の効果】
本発明による作用効果は以下に示す通りである。
(1) ラジエータ設置のために要した特別なスペースを必要としないため、システムのコンパクト化が図れる。
(2) 特別な動力を使用せずに冷却が可能である。
(3) 冷却の必要性を判断するためのセンサ等の検出器・制御ユニットが不要または簡易化でき、かつ流路の切り換えのための三方弁等が不要でシステムの構成を簡易化出来る。
(4) 水の冷却に関わる電源供給や制御用などの配線が不要である。
(5) 放熱部分の凍結防止制御を独立に用意する必要がなく、システム構成の簡易化とコスト低減が図れる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す構成図。
【図2】本発明の放熱手段の一実施形態を示す側面図。
【図3】図2のa−a矢視平面図。
【図4】放熱手段の別の実施形態を示す側面図。
【図5】図4のb−b矢視断面図。
【図6】放熱手段のさらに別の実施形態を示す側面図。
【図7】放熱手段のさらに別の実施形態を示す側面図。
【図8】制御と組み合わせた実施形態を説明する構成図。
【図9】図8の構成による制御機能を示すフローチャート。
【図10】従来の燃料電池の熱回収装置の構成を示す図。
【符号の説明】
1・・・燃料電池
2・・・貯湯槽
3・・・熱回収用熱交換器
4、4A、4B・・・放熱手段
5・・・基礎
7・・・補助熱源機
10・・・制御ユニット
15・・・ラジエータ
16・・・三方弁
T1、T2・・・温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat recovery apparatus in a fuel cell cogeneration system that uses heat generated during fuel cell operation for hot water supply or the like.
[0002]
[Prior art]
Conventionally, in a fuel cell cogeneration system that uses both the electric power generated in the fuel cell and the heat generated by the operation of the fuel cell (for example, as hot water), as shown in FIG. The heat recovery heat exchanger 3 is interposed in the water circuit to take out the exhaust heat on the fuel cell side (cooling of the fuel cell, heat of condensation, or heat generation of the reformer).
That is, heat recovery water circuits L1 and L2 that return from the hot water tank 2 through the heat exchanger 3 to the hot water tank 2 are provided, and the heat recovery water flowing through the circuits L1 and L2 exchanges heat with the fuel cell side in the heat exchanger 3. Therefore, heat is stored in the hot water tank 2 (hot water is stored).
[0003]
In such a system, sufficient heat is stored in the hot water tank 2 (so-called “full tank”), and when the circulating heat recovery water becomes high temperature (over about 40 degrees), it is insufficient for cooling the fuel cell 1. Thus, the fuel cell 1 cannot continue operation. Therefore, a radiator 15 is provided in parallel with the heat recovery water circuit L1 from the hot water tank 2 to the heat exchanger 3, and when the control unit 10 determines that cooling is necessary, the three-way valve 16 is operated to switch the flow path, and at the same time the radiator 15 The cooling is performed by operating (see Patent Document 1).
[0004]
However, the above-described conventional techniques have the following problems.
(1) Radiator mounting space is required.
(2) Electric power is consumed for cooling in the radiator, and the effective use of the power generated by the fuel cell is reduced.
(3) A detection device such as a temperature sensor, a control unit, or a three-way valve for switching the flow path is necessary for determining the necessity of cooling, and the configuration is complicated.
(4) Wiring work to the radiator power supply and control unit is required.
(5) It is necessary to take measures against freezing of the radiator.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-325982
[Problems to be solved by the invention]
The present invention is proposed in order to cope with the above-described problems, and does not require a space for installing a radiator and driving power, and does not require a detection / control device for determining the necessity of cooling, or is simple and compact. An object of the present invention is to provide a heat recovery device for a fuel cell configured with a simple system.
[0007]
[Means for Solving the Problems]
The fuel cell heat recovery apparatus of the present invention includes a heat recovery heat exchanger (3) interposed in a cooling circuit of the fuel cell (1), and passes through the heat exchanger (3) from the hot water tank (2) to store hot water. In the heat recovery device for a fuel cell, in which a heat recovery water circuit (L1, L2) returning to the tank (2) is provided, and heat generated in the fuel cell (1) by the heat recovery water is stored in the hot water storage tank (2). The heat recovery water circuit (L1) from the hot water storage tank (2) to the heat recovery heat exchanger (3) is provided with a heat radiating means (4) for exchanging heat with the outside, and the heat radiating means (4) is connected to the hot water tank. A heat dissipating pipe (4A) is disposed in a space between (2) and the installation base (5) to dissipate heat (Claim 1).
[0008]
In general, fuel cell cogeneration systems
(1) Consume relatively large energy at startup,
(2) It takes some time to start and stop,
It has the characteristic.
Therefore, as a result of various researches, the inventor does not need to stop the fuel cell if the operation is continued with the output kept at the lowest level until there is a demand for hot water, even when the hot water tank is full of hot water, It has been found that the above characteristics (1) and (2) can be accommodated. It was also found that if the fuel cell is operated at the lowest level output that does not stop, the heat recovery circuit requires less heat to continue operation and the heat dissipation means can be simplified.
This finding has led to the present invention.
[0009]
Therefore, according to the above-described configuration, the heat recovery water sent to the heat recovery heat exchanger always passes through the heat dissipating means for exchanging heat with the outside, and is naturally cooled when the temperature is high. Further, special power for cooling is not required, and a detection device and a control unit for determining the necessity for cooling, or a three-way valve for switching the flow path are not required.
[0010]
The heat recovery device for a fuel cell of the present invention includes a heat recovery heat exchanger (3) interposed in a cooling circuit of the fuel cell (1), and the heat exchanger (3) from the hot water tank (2). In a heat recovery device for a fuel cell, heat recovery water circuits (L1, L2) that return to the hot water storage tank (2) are provided, and heat generated in the fuel cell (1) by the heat recovery water is stored in the hot water storage tank (2). the hot water tank heat recovery heat exchanger (2) heat dissipation means for performing external heat exchanger to the heat recovery water circuit (L1) leading to (3) (4) is provided, heat radiating means (4), the hot water storage The present invention is characterized in that a heat radiating pipe (4B) is embedded in the concrete foundation (5A ) on which the tank (2) is installed (claim 2).
[0011]
Alternatively, the heat recovery device for a fuel cell of the present invention includes a heat recovery heat exchanger (3) interposed in a cooling circuit of the fuel cell (1), and the heat exchanger (3) from the hot water tank (2). In the heat recovery apparatus for a fuel cell, in which the heat recovery water circuit (L1, L2) is returned to the hot water storage tank (2) and the heat generated by the heat recovery water in the fuel cell is stored in the hot water storage tank (2). The heat recovery water circuit (L1) from the tank (2) to the heat recovery heat exchanger (3) is provided with heat dissipating means (4) for exchanging heat with the outside, and the heat dissipating means (4) The heat dissipating pipe (4C) is disposed in the soil in the vicinity of the installation base (5) of 2) (Claim 3).
[0012]
In the heat recovery apparatus for a fuel cell according to the present invention, a temperature sensor (T1 or T2) is provided in the heat recovery water circuit (L1), and the heat recovery water supplied to the heat recovery heat exchanger (3) is provided. It is preferable to have control means (control unit 10) configured to perform control to reduce the output of the fuel cell (1) if the temperature is equal to or higher than a predetermined value (claim 4).
A control method of a fuel cell having such a heat recovery device (a fuel cell heat recovery device according to claim 4) is provided by a temperature sensor (T1 or T2) provided in the heat recovery water circuit (L1). A step of measuring the temperature of the heat recovery water supplied to the recovery heat exchanger (3), and a step of reducing the output of the fuel cell (1) if the heat recovery water is a predetermined value or more. Is preferred.
[0013]
By adopting such a configuration, the temperature of the heat recovery water supplied to the heat exchanger can be controlled to a predetermined value or less, so that the operation of the fuel cell can be reliably continued. And it is realizable with a simple control system.
[0014]
In such a cogeneration system, when the outside air temperature is low in winter, it is necessary to prevent the pipe from being damaged due to freezing. For internal pipes and the like, a method has been adopted in which an electric heater is energized when the detected temperature falls below a set value. Conventionally, independent anti-freezing control has been required for external pipes such as radiators. On the other hand, the present invention does not require an independent anti-freezing device, can use the anti-freezing control of the internal piping, and can simplify the system configuration.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
In addition, the same code | symbol is attached | subjected to the components similar to the prior art demonstrated in the said FIG. 10, and the overlapping description is abbreviate | omitted.
[0016]
In FIG. 1, the hot water tank 2 is cylindrical and is relatively vertically long, and hot water is stored in a stratified manner in which the upper layer is high temperature and the lower layer is low temperature. That is, hot water of 60 to 70 degrees C recovered from the fuel cell 1 is introduced into the upper part of the hot water tank 2 by the circuit L2, and is taken out from the upper part of the hot water tank 2 through the flow path L3 for use of hot water. . Further, the heat recovery water flowing through the circuit L1 to the heat exchanger 3, in other words, the heat recovery water used for cooling the fuel cell 1 is taken out from the lower part of the hot water storage tank 2 having a low temperature.
The circuit L1 exiting the hot water tank 2 is provided with a heat dissipating means 5, and the heat recovery water dissipates heat to the outside and is cooled and sent to the heat exchanger 3.
[0017]
2 and 3 show details of an embodiment of the heat dissipation means.
The hot water tank 2 is installed on the concrete foundation 5 via (three in the illustrated example) support legs 6, and the leg 6 is placed in the gap δ between the foundation 5 and the lower surface of the hot water tank 2 by the support legs 6. A heat radiating pipe 4A that is bent and folded a plurality of times is provided.
[0018]
Conventionally, the space in which the heat radiating pipe 4A is disposed is a dead space, and a radiator cannot be disposed. Moreover, it is below the bottom part where the water temperature of the hot water tank 2 is low, the ambient temperature is low, and the heat dissipation effect is great.
Reference numeral 7 denotes an auxiliary heat source unit. When the hot water temperature is low, such as insufficient heat recovered from the fuel cell 1, the auxiliary operation is performed to maintain an appropriate water temperature.
[0019]
Although not shown, it is more effective to provide fins in the heat radiation pipe 4A. Of course, the cross-sectional shape of the heat radiating pipe 4A is not limited to a circular pipe, and a modified pipe having various cross-sectional shapes with an increased surface area may be employed to improve the cooling effect, or a pipe with a large surface area such as a bellows pipe may be used. It may be used.
[0020]
Moreover, in embodiment shown in FIG. 4 and FIG. 5, the heat radiating means has the heat radiating piping 4B embedded in the concrete foundation 5A. With such a configuration, the concrete foundation 5A has a large heat capacity, so that a sufficient heat dissipation effect can be obtained.
In such a household fuel cell cogeneration system, the time from when the hot water tank is filled with hot water until there is a demand for hot water is relatively short. The problem of reduction does not occur.
[0021]
Furthermore, other embodiment is shown in FIG. 6 and FIG.
FIG. 6 shows an example in which a heat radiating pipe 4C is buried in the ground near the foundation 5. FIG. At the time of installation of the equipment, simple civil engineering work such as foundation work is carried out, and such a radiating pipe embedding work does not particularly increase the man-hours.
[0022]
In the embodiment shown in FIG. 7, a heat radiating means is provided on one side surface of the casing C of the unit including the hot water tank. In this case, the heat radiating means may be provided either inside or outside the casing C using, for example, a folded heat radiating pipe 4D. And it is preferable to provide it below the casing C because the environmental temperature is low and the connection distance can be shortened.
[0023]
In each of the embodiments described above, natural heat dissipation is performed without using a complicated detection device or control unit. Next, an embodiment in which operation control with a simple configuration is performed will be described with reference to FIG. To do.
In FIG. 8, the heat recovery water circuit L1 communicating with the heat recovery heat exchanger 3 from below the hot water tank 2 is provided with a heat radiating means 4, and the circuit L1 detects the temperature of the heat recovery water. A temperature sensor T1 is provided.
[0024]
In FIG. 8, the temperature sensor T2 is also attached to the lower part of the hot water tank 2, but as will be described later, the temperature sensor may be either T1 or T2, and is appropriate for each. A comparative determination is made at a predetermined temperature.
[0025]
A control unit 10 is provided, and detection data is input from the temperature sensor T1 (or T2), and a control signal is sent from the control unit 10 to the fuel cell 1 based on the data. .
In the control, when cooling is necessary, natural cooling is enabled by performing operation control so as to suppress the output of the fuel cell and reducing a necessary heat radiation amount.
[0026]
The following methods can be selected for determining the necessity of cooling.
(1) When the temperature of the heat recovery water sent from the hot water tank to the fuel cell is high (detected by the sensor T1).
(2) When the temperature of the hot water at the lower part of the hot water tank is high (detected by the sensor T2).
(3) Alternatively, in the operation control system that predicts the user's heat and power demands and determines the fuel cell operation time and output, it is predicted that the hot water storage tank will be filled with hot water by the next predicted heat demand occurrence time. If so, the output of the fuel cell is reduced until the heat demand is generated.
[0027]
The mode of control according to the above (1) or (2) will be described with reference to the flowchart of FIG.
First, the water temperature t is detected by the temperature sensor T1 (or T2) (step S1), and it is determined whether the detected water temperature t is equal to or higher than a predetermined value (step S2). If No, the process jumps to Step S4, and if Yes, the output of the fuel cell (FC) 1 is reduced (Step S3). Then, in step S4, it is determined whether or not the control is finished. If No, the process returns to step S1.
[0028]
In such a configuration, in operation when the output is reduced,
Q1 (exchange heat amount of heat exchanger) ≤ Q2 (heat dissipation heat dissipation heat amount)
What is necessary is just to set the thermal radiation means 4 so that it may become.
[0029]
It should be noted that the illustrated embodiment is merely an example, and is not a description to limit the technical scope of the present invention.
[0030]
【The invention's effect】
The effects of the present invention are as follows.
(1) Since the special space required for installing the radiator is not required, the system can be made compact.
(2) Cooling is possible without using special power.
(3) A detector / control unit such as a sensor for determining the necessity of cooling can be omitted or simplified, and a three-way valve or the like for switching the flow path is unnecessary, thereby simplifying the system configuration.
(4) No power supply or control wiring for water cooling is required.
(5) It is not necessary to prepare the freeze prevention control for the heat radiation part independently, and the system configuration can be simplified and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 is a side view showing an embodiment of the heat dissipating means of the present invention.
FIG. 3 is a plan view taken along the line aa in FIG. 2;
FIG. 4 is a side view showing another embodiment of the heat dissipating means.
5 is a cross-sectional view taken along the line bb in FIG. 4;
FIG. 6 is a side view showing still another embodiment of the heat dissipating means.
FIG. 7 is a side view showing still another embodiment of the heat dissipating means.
FIG. 8 is a configuration diagram illustrating an embodiment combined with control.
FIG. 9 is a flowchart showing a control function according to the configuration of FIG. 8;
FIG. 10 is a diagram showing a configuration of a conventional heat recovery device for a fuel cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fuel cell 2 ... Hot water tank 3 ... Heat exchanger 4 for heat recovery 4, 4A, 4B ... Radiation means 5 ... Base 7 ... Auxiliary heat source machine 10 ... Control unit 15 ... Radiator 16 ... Three-way valve T1, T2 ... Temperature sensor

Claims (4)

燃料電池の冷却回路に熱回収用熱交換器を介装し、貯湯槽からその熱交換器を経て貯湯槽に戻る熱回収水回路を設け、その熱回収水によって燃料電池で発生した熱を貯湯槽に蓄熱する燃料電池の熱回収装置において、前記貯湯槽から熱回収用熱交換器に至る熱回収水回路に外部と熱交換を行う放熱手段を設け、該放熱手段は、前記貯湯槽とその設置基礎との間の空間に放熱管を配設して放熱するように構成されていることを特徴とする燃料電池の熱回収装置。  A heat recovery heat exchanger is installed in the cooling circuit of the fuel cell, and a heat recovery water circuit that returns from the hot water tank to the hot water tank through the heat exchanger is provided, and the heat generated in the fuel cell by the heat recovery water is stored as hot water. In a heat recovery device for a fuel cell that stores heat in a tank, a heat recovery water circuit extending from the hot water storage tank to a heat exchanger for heat recovery is provided with a heat radiating means for exchanging heat with the outside. A heat recovery apparatus for a fuel cell, characterized in that a heat radiating pipe is disposed in a space between the installation foundation and radiates heat. 燃料電池の冷却回路に熱回収用熱交換器を介装し、貯湯槽からその熱交換器を経て貯湯槽に戻る熱回収水回路を設け、その熱回収水によって燃料電池で発生した熱を貯湯槽に蓄熱する燃料電池の熱回収装置において、前記貯湯槽から熱回収用熱交換器に至る熱回収水回路に外部と熱交換を行う放熱手段を設け、該放熱手段は、貯湯槽を設置するコンクリート基礎の内部に放熱管を埋設して構成されていることを特徴とする燃料電池の熱回収装置。A heat recovery heat exchanger is installed in the cooling circuit of the fuel cell, and a heat recovery water circuit that returns from the hot water storage tank to the hot water storage tank is provided, and the heat generated in the fuel cell is stored by the heat recovery water. In a heat recovery device for a fuel cell that stores heat in a tank, a heat recovery means for exchanging heat with the outside is provided in a heat recovery water circuit from the hot water storage tank to a heat recovery heat exchanger, and the heat dissipation means is provided with a hot water storage tank . A heat recovery device for a fuel cell, characterized in that a heat radiating pipe is embedded in a concrete foundation. 燃料電池の冷却回路に熱回収用熱交換器を介装し、貯湯槽からその熱交換器を経て貯湯槽に戻る熱回収水回路を設け、その熱回収水によって燃料電池で発生した熱を貯湯槽に蓄熱する燃料電池の熱回収装置において、前記貯湯槽から熱回収用熱交換器に至る熱回収水回路に外部と熱交換を行う放熱手段を設け、該放熱手段は、前記貯湯槽の設置基礎近傍の土中に放熱管を配設して構成されていることを特徴とする燃料電池の熱回収装置。  A heat recovery heat exchanger is installed in the cooling circuit of the fuel cell, and a heat recovery water circuit that returns from the hot water tank to the hot water tank through the heat exchanger is provided, and the heat generated in the fuel cell by the heat recovery water is stored as hot water. In a heat recovery device for a fuel cell that stores heat in a tank, a heat recovery water circuit extending from the hot water storage tank to a heat exchanger for heat recovery is provided with a heat dissipation means for performing heat exchange with the outside, and the heat dissipation means is installed in the hot water tank A heat recovery device for a fuel cell, characterized in that a heat radiating pipe is arranged in the soil near the foundation. 前記熱回収水回路に温度センサを設け、前記熱回収用熱交換器に供給される熱回収水の温度が所定値以上であれば燃料電池の出力を低下させる制御を行う様に構成された制御手段を有する請求項1〜3の何れか1項の燃料電池の熱回収装置。  A control configured to provide a temperature sensor in the heat recovery water circuit and perform control to reduce the output of the fuel cell if the temperature of the heat recovery water supplied to the heat recovery heat exchanger is equal to or higher than a predetermined value. The heat recovery apparatus for a fuel cell according to any one of claims 1 to 3, further comprising means.
JP2003207027A 2003-08-11 2003-08-11 Fuel cell heat recovery device Expired - Fee Related JP4497396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003207027A JP4497396B2 (en) 2003-08-11 2003-08-11 Fuel cell heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003207027A JP4497396B2 (en) 2003-08-11 2003-08-11 Fuel cell heat recovery device

Publications (2)

Publication Number Publication Date
JP2005063675A JP2005063675A (en) 2005-03-10
JP4497396B2 true JP4497396B2 (en) 2010-07-07

Family

ID=34363656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207027A Expired - Fee Related JP4497396B2 (en) 2003-08-11 2003-08-11 Fuel cell heat recovery device

Country Status (1)

Country Link
JP (1) JP4497396B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678501B2 (en) * 2005-06-28 2011-04-27 株式会社ノーリツ Heat recovery device and cogeneration system
JP5081100B2 (en) * 2008-08-22 2012-11-21 日本電信電話株式会社 Power generation management system and power generation management method
JP5408430B2 (en) * 2009-11-26 2014-02-05 株式会社ノーリツ Fuel cell system
JP2012154554A (en) * 2011-01-25 2012-08-16 Noritz Corp Cogeneration system
JP6293609B2 (en) * 2014-08-05 2018-03-14 株式会社ガスター Heat source device with power generation function
JP6508450B2 (en) * 2014-11-27 2019-05-08 パナソニックIpマネジメント株式会社 Fuel cell system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031408A (en) * 2000-07-14 2002-01-31 Matsushita Electric Ind Co Ltd Cogeneration system
JP2002042841A (en) * 2000-07-24 2002-02-08 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell cogeneration system
JP2002289239A (en) * 2001-03-28 2002-10-04 Osaka Gas Co Ltd Household use fuel cell system
JP2004111208A (en) * 2002-09-18 2004-04-08 Toyota Motor Corp Fuel cell power generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031408A (en) * 2000-07-14 2002-01-31 Matsushita Electric Ind Co Ltd Cogeneration system
JP2002042841A (en) * 2000-07-24 2002-02-08 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell cogeneration system
JP2002289239A (en) * 2001-03-28 2002-10-04 Osaka Gas Co Ltd Household use fuel cell system
JP2004111208A (en) * 2002-09-18 2004-04-08 Toyota Motor Corp Fuel cell power generation system

Also Published As

Publication number Publication date
JP2005063675A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US8839848B2 (en) Cabinet, and cabinet temperature control system
JP2006224879A (en) Vehicle cooling system
JP2007255775A (en) Hybrid type hot water supply apparatus
JP2002310524A (en) Heat source equipment
JPH11281203A (en) Soil heat source heat pump system and its operation method
JP4497396B2 (en) Fuel cell heat recovery device
KR20170094847A (en) A hybrid heat exchanger system using geothermal and solar thermal and Control method for this
JPH11313406A (en) Cooler for hybrid vehicle
JP2004332744A (en) Cooling system of hybrid electric car
JP4357270B2 (en) Fuel cell exhaust heat utilization system and operation method thereof
JP4833707B2 (en) Waste heat recovery device
JP2006145059A (en) Hybrid type underground heat utilization heat pump device and its operating method
JP4938268B2 (en) Heat recovery device and cogeneration system
JP2007132612A (en) Cogeneration system, its control method, and program
JP2008215780A (en) Accumulated waste heat utilization device
KR102303482B1 (en) Vehicle thermal management system and method
JP2011257130A (en) Apparatus for recovering exhaust heat
JP6137951B2 (en) Fuel cell system and method for stopping the same
JP5203842B2 (en) FUEL CELL COGENERATION SYSTEM, ITS CONTROL METHOD AND CONTROL PROGRAM
JP2008051073A (en) Cogeneration system
JP2008209038A (en) Engine-driven heat pump system
JP2005069608A (en) Hot water utilizing system
JP2005140393A (en) Hot water storage type water heater
KR200357888Y1 (en) A cooling and heating apparatus using the geathermy
JP2012197987A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4497396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees