[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4487313B2 - Electromagnet alignment method and alignment system - Google Patents

Electromagnet alignment method and alignment system Download PDF

Info

Publication number
JP4487313B2
JP4487313B2 JP2005126417A JP2005126417A JP4487313B2 JP 4487313 B2 JP4487313 B2 JP 4487313B2 JP 2005126417 A JP2005126417 A JP 2005126417A JP 2005126417 A JP2005126417 A JP 2005126417A JP 4487313 B2 JP4487313 B2 JP 4487313B2
Authority
JP
Japan
Prior art keywords
electromagnet
adjustment
amount
measurement reference
bolts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005126417A
Other languages
Japanese (ja)
Other versions
JP2006302818A5 (en
JP2006302818A (en
Inventor
静男 今岡
祐一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2005126417A priority Critical patent/JP4487313B2/en
Publication of JP2006302818A publication Critical patent/JP2006302818A/en
Publication of JP2006302818A5 publication Critical patent/JP2006302818A5/ja
Application granted granted Critical
Publication of JP4487313B2 publication Critical patent/JP4487313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

本発明は、陽子線加速器に設けられ、電子軌道を制御する電磁石の位置や姿勢を調整する、陽子線加速器用電磁石のアライメント方法およびアライメントシステムに関するものである。 The present invention is provided in proton accelerator, to adjust the position and posture of the electromagnet for controlling the electron trajectory, it relates to an electromagnet alignment method and alignment system for proton beam accelerator.

陽子線加速器では、電子軌道の制御用として例えば、偏向電磁石や四極電磁石などが連続して複数個設置される。この場合に、それぞれの電磁石は、電子軌道に対して正確なアライメントが取られていることが必要である。そこで、このような陽子線加速器では、各種の方法によってアライメントが図られている(例えば、特許文献1および特許文献2)。 In the proton beam accelerator, for example, a plurality of deflection electromagnets and quadrupole electromagnets are continuously installed for controlling the electron trajectory. In this case, each electromagnet needs to be accurately aligned with respect to the electron trajectory. Therefore, in such a proton beam accelerator, alignment is achieved by various methods (for example, Patent Document 1 and Patent Document 2).

特許文献1および特許文献2に開示されている陽子線加速器では、電磁石を水平方向(X,Y方向)に調整するボルト及び鉛直方向(Z方向)に調整するボルトが設置され、それらのボルトによって電磁石のアライメントが行なわれている。
特開平6−163197号公報 特開平11−214198号公報
In the proton beam accelerator disclosed in Patent Literature 1 and Patent Literature 2, a bolt for adjusting the electromagnet in the horizontal direction (X, Y direction) and a bolt for adjusting the electromagnet in the vertical direction (Z direction) are installed. The electromagnet is aligned.
JP-A-6-163197 JP 11-214198 A

ところで、特許文献1および特許文献2に開示されているアライメント方法では、建屋内に設けられた建屋基準点に基づき、電磁石の位置を確認しながら必要と思われる複数の調整ボルトを回転させ、電磁石のアライメントを行なっている。しかし、このようなアライメント方法では、正規の位置まで移動させる調整ボルトの位置と調整量とが明確でない為、トライアンドエラーを繰り返し、作業に膨大な時間を要していた。   By the way, in the alignment methods disclosed in Patent Document 1 and Patent Document 2, a plurality of adjustment bolts considered to be necessary are rotated while confirming the position of the electromagnet based on the building reference point provided in the building, and the electromagnet Alignment is performed. However, in such an alignment method, since the position and the adjustment amount of the adjustment bolt to be moved to the regular position are not clear, the trial and error are repeated, and an enormous amount of time is required for the work.

本発明は、かかる問題点を解決するためになされたもので、作業が簡単かつ短時間で済む陽子線加速器用電磁石のアライメント方法およびアライメントシステムを提供することを目的としている。 The present invention has been made to solve such a problem, and an object thereof is to provide an alignment method and an alignment system for an electromagnet for a proton beam accelerator that can be easily and quickly completed.

本発明は前記目的を達成するために、電磁石の位置及び姿勢を複数の調整ボルトにより調整する調整機構と、前記電磁石上の複数箇所に設けられた計測基準点と、前記電磁石が設置された建屋内のいずれかの場所に設置され、前記計測基準点の位置を計測する計測装置と、前記電磁石を正規の位置まで調整する複数の前記調整ボルトの調整量を算出する解析装置とを備え、前記計測基準点の位置を計測することにより、前記調整量を各前記調整ボルト別に算出し、該各調整ボルトを算出された該調整量移動させることにより、前記電磁石を正規の位置まで移動させることを特徴とする。   To achieve the above object, the present invention provides an adjustment mechanism for adjusting the position and orientation of an electromagnet with a plurality of adjustment bolts, measurement reference points provided at a plurality of locations on the electromagnet, and a building on which the electromagnet is installed. A measurement device that is installed in any place indoors and measures the position of the measurement reference point; and an analysis device that calculates adjustment amounts of the plurality of adjustment bolts that adjust the electromagnet to a normal position, By measuring the position of the measurement reference point, the adjustment amount is calculated for each of the adjustment bolts, and by moving the adjustment bolts to the calculated adjustment amount, the electromagnet is moved to a normal position. Features.

また、前記調整量は、各前記調整ボルト別に所定量移動させた際の前記計測基準点の位置変動量を計測し、該調整ボルト別に計測された該位置変動量に基づき、該調整ボルト別に算出することを特徴とする。   The adjustment amount is calculated for each adjustment bolt based on the position variation amount measured for each adjustment bolt by measuring the position variation amount of the measurement reference point when the adjustment bolt is moved by a predetermined amount. It is characterized by doing.

更に、前記調整ボルトは、該調整ボルトを回転させるアクチュエータを備え、該アクチュエータは、前記解析装置の指令によって作動されることを特徴とする。   Further, the adjustment bolt includes an actuator for rotating the adjustment bolt, and the actuator is operated by a command from the analysis device.

本発明によれば、電磁石は調整ボルトにより水平方向及び鉛直方向に移動する。電磁石上には複数箇所に計測基準点が設けられ、計測基準点の位置を建屋基準点に設置された計測装置により計測する。   According to the present invention, the electromagnet is moved in the horizontal direction and the vertical direction by the adjusting bolt. Measurement reference points are provided at a plurality of locations on the electromagnet, and the positions of the measurement reference points are measured by a measurement device installed at the building reference point.

複数ある調整ボルトの1つを所定量移動させ、計測基準点の変動量を計測し、移動させた調整ボルトを元の位置まで戻す。全ての調整ボルトにおいて同様に所定量移動させた際の計測基準点の変動量を計測する。各調整ボルトの変動量の計測結果に基づき、電磁石を正規の位置まで調整する各調整ボルトの調整量を解析装置によって算出する。各調整ボルトを算出された調整量移動させることにより、電磁石を正規の位置へ移動させる。   One of the plurality of adjustment bolts is moved by a predetermined amount, the fluctuation amount of the measurement reference point is measured, and the moved adjustment bolt is returned to the original position. In the same manner, the amount of change in the measurement reference point when the predetermined amount is moved in all the adjustment bolts is measured. Based on the measurement result of the fluctuation amount of each adjustment bolt, the analysis device calculates the adjustment amount of each adjustment bolt that adjusts the electromagnet to the normal position. The electromagnet is moved to a normal position by moving each adjustment bolt by the calculated adjustment amount.

これにより、調整が必要な調整ボルトの位置と調整量とが明確になり、トライアンドエラーを繰り返すことなく容易に陽子線加速器用電磁石のアライメントが行なえる。 As a result, the position of the adjustment bolt that needs to be adjusted and the adjustment amount become clear, and the electromagnet for the proton beam accelerator can be easily aligned without repeating trial and error.

また、調整ボルトには回転させるアクチュエータが備えられている為、調整量の算出から、電磁石を正規の位置まで移動させる動作を自動的に行なうことが可能である。   In addition, since the adjustment bolt is provided with an actuator to be rotated, it is possible to automatically perform an operation of moving the electromagnet to a regular position from the calculation of the adjustment amount.

以上説明したように、本発明の陽子線加速器用電磁石のアライメント方法およびアライメントシステムによれば、電磁石のアライメントに必要な調整ボルトの位置と調整量とを明確にし、電磁石のアライメント作業が簡単かつ短時間で済む。 As described above, according to the proton magnet accelerator electromagnet alignment method and alignment system of the present invention, the position and amount of adjustment bolts necessary for electromagnet alignment are clarified, and the electromagnet alignment work is simple and short. It takes time.

以下、添付図面に従って本発明に係る陽子線加速器用電磁石のアライメント方法およびアライメントシステムについて説明する。 Hereinafter, an alignment method and an alignment system for an electromagnet for a proton beam accelerator according to the present invention will be described with reference to the accompanying drawings.

図1は本発明に係る陽子線加速器用アライメントシステムを概念的に示した模式図、図2は3次元計測装置による計測と調整量の求め方を説明するための模式図、図3はアライメントシステムの動作を示したフロー図である。 1 is a schematic diagram conceptually showing an alignment system for a proton beam accelerator according to the present invention, FIG. 2 is a schematic diagram for explaining how to measure and adjust an amount by a three-dimensional measuring apparatus, and FIG. 3 is an alignment system. It is the flowchart which showed the operation | movement of.

図1に示すように、陽子線加速器には電子軌道の制御用として、偏向電磁石や四極電磁石などの電磁石1が備えられている。 As shown in FIG. 1, the proton beam accelerator is provided with an electromagnet 1 such as a deflection electromagnet or a quadrupole electromagnet for controlling the electron trajectory.

電磁石1の下部には、電磁石1の位置及び姿勢を調整する調整機構5が設けられている。調整機構5には、電磁石1を鉛直方向(Z方向)に調整するための調整ボルトL1〜L4、及び水平方向(X方向及びY方向)に調整するための調整ボルトL5、L6、L7、L8が設けられている。   An adjustment mechanism 5 that adjusts the position and orientation of the electromagnet 1 is provided below the electromagnet 1. The adjustment mechanism 5 includes adjustment bolts L1 to L4 for adjusting the electromagnet 1 in the vertical direction (Z direction), and adjustment bolts L5, L6, L7, and L8 for adjustment in the horizontal direction (X direction and Y direction). Is provided.

調整ボルトL1〜L8には、それぞれモータ等のアクチュエータA1〜A8(不図示)が設置されている。電磁石1の上面には、3点の計測基準点P1、P2、P3が配設されている。   Actuators A1 to A8 (not shown) such as motors are installed on the adjustment bolts L1 to L8, respectively. Three measurement reference points P1, P2, and P3 are disposed on the upper surface of the electromagnet 1.

陽子線加速器が設置されている建屋内には、いずれかの場所に計測基準点2が設けられ、計測基準点2上にはレーザ等を用いて物体の三次元位置を測定する3次元計測装置3(以下、計測装置)が設置されている。計測装置3は、計測装置3近傍、又は建屋外のいずれかの場所に設置された解析装置4に接続される。また、解析装置4はアクチュエータA1〜A8とも接続され、アクチュエータA1〜A8の動作を制御する。 A measurement reference point 2 is provided at any location in the building where the proton beam accelerator is installed, and a three-dimensional measurement device that measures the three-dimensional position of the object using a laser or the like on the measurement reference point 2 3 (hereinafter referred to as a measuring device) is installed. The measuring device 3 is connected to an analyzing device 4 installed in the vicinity of the measuring device 3 or anywhere in the building. The analysis device 4 is also connected to the actuators A1 to A8 and controls the operations of the actuators A1 to A8.

次に、図2において、電磁石1の鉛直,水平方向と分けた調整量の算出方法を示す。調整ボルトL1〜L8の1つを一定量移動させることで電磁石1の姿勢は一様の変化を生じる。これにより、調整ボルトL1〜L8の夫々の変動に対する電磁石1の姿勢変動には一定の再現性があり、行列式として成り立つ。   Next, in FIG. 2, a calculation method of the adjustment amount divided into the vertical and horizontal directions of the electromagnet 1 is shown. By moving one of the adjusting bolts L1 to L8 by a certain amount, the posture of the electromagnet 1 changes uniformly. As a result, the posture variation of the electromagnet 1 with respect to each variation of the adjustment bolts L1 to L8 has a certain reproducibility and holds as a determinant.

陽子線加速器が設置されている建屋内に想定されたX、Y、Z軸に対して、電磁石1の正規の位置までの水平方向の移動量をX、Y、垂直方向の移動量をZ。更に、X、Y、Z軸に対して回転した際の回転角度をθx、θy、θzとしたとき、電磁石1の正規の位置までの移動量は(X,Y,Z,θx,θy,θz)となる。このとき、最短で電磁石1を移動させるための各調整ボルトL1〜L8の調整量は上記行列の一般化逆行列から求まる。 With respect to the X, Y, and Z axes assumed in the building where the proton accelerator is installed, the horizontal movement amount of the electromagnet 1 to the normal position is X, Y, and the vertical movement amount is Z. Furthermore, when the rotation angles when rotating with respect to the X, Y, and Z axes are θx, θy, and θz, the movement amount of the electromagnet 1 to the regular position is (X, Y, Z, θx, θy, θz). ) At this time, the adjustment amount of each of the adjustment bolts L1 to L8 for moving the electromagnet 1 in the shortest time is obtained from the generalized inverse matrix of the above matrix.

まず、鉛直方向における各調整ボルトL1〜L4の調整量の算出方法を示す。   First, the calculation method of the adjustment amount of each adjustment bolt L1 to L4 in the vertical direction will be described.

計測基準点P1、P2、P3の各座標をP1:P10(x10,y10,z10)、P2:P20(x20,y20,z20)、P3:P30(x30,y30,z30)として解析装置4へ取り込む。アクチュエータA1を駆動させて0.5mm調整ボルトL1を上昇方向に移動させる。 Each coordinates of the measurement reference points P1, P2, P3 P1: P 10 (x 10, y 10, z 10), P2: P 20 (x 20, y 20, z 20), P3: P 30 (x 30, y 30 , z 30 ) are taken into the analyzer 4. Actuator A1 is driven to move 0.5 mm adjustment bolt L1 in the upward direction.

電磁石1の姿勢が変化した後の計測基準点P1、P2、P3の新たな座標をP1:P11(x11,y11,z11)、P2:P21(x21,y21,z21)、P3:P31(x31,y31,z31)として解析装置4へ取込む。 The new coordinates of the measurement reference points P1, P2, and P3 after the posture of the electromagnet 1 is changed are P1: P 11 (x 11 , y 11 , z 11 ), P2: P 21 (x 21 , y 21 , z 21). ), P3: P 31 (x 31 , y 31 , z 31 ) is taken into the analyzer 4.

取り込まれた計測基準点P1、P2、P3の座標より、解析装置4によって、3点の計測点の図心Gを仮基準点とし、移動前のP10、P20、P30の図心Gの位置から、新たなP11、P21、P31の図心Gの位置までの位置変動量G1(zg1,θxg1,θyg1)を算出する。算出後調整ボルトL1を逆方向に0.5mm移動させて、電磁石1の姿勢を元に戻す。 From the coordinates of the taken measurement reference points P1, P2 and P3, the analysis device 4 uses the centroid G of the three measurement points as a temporary reference point, and the centroids G of P 10 , P 20 and P 30 before the movement. A position variation amount G1 (z g1 , θx g1 , θy g1 ) is calculated from the position to the position of the centroid G of new P 11 , P 21 , and P 31 . After the calculation, the adjustment bolt L1 is moved 0.5 mm in the reverse direction, and the posture of the electromagnet 1 is restored.

L1を戻した後、再度計測基準点P1、P2、P3の各座標をP10、P20、P30として解析装置4へ取り込む。アクチュエータA2を駆動させ、同様に調整ボルトL2を0.5mm上昇させる。 After returning L1, the coordinates of the measurement reference points P1, P2, and P3 are again taken into the analyzer 4 as P 10 , P 20 , and P 30 . Actuator A2 is driven and adjustment bolt L2 is similarly raised by 0.5 mm.

電磁石1の姿勢が変化した後の計測基準点P1、P2、P3の新たな座標をP1:P12(x12,y12,z12)、P2:P22(x22,y22,z22)、P3:P32(x32,y32,z32)として解析装置4へ取込む。取り込まれた計測基準点P1、P2、P3の座標より、解析装置4によって、移動前の図心Gの位置から、新たな図心Gの位置までの位置変動量G2(zg2,θxg2,θyg2)を算出する。算出後調整ボルトL2を逆方向に0.5mm移動させて、電磁石1の姿勢を元に戻す。 Measurement reference points after the posture has changed electromagnets 1 P1, P2, P3 new coordinates of P1: P 12 (x 12, y 12, z 12), P2: P 22 (x 22, y 22, z 22 ), P3: P 32 (x 32 , y 32 , z 32 ) is taken into the analyzer 4. Based on the taken coordinates of the measurement reference points P1, P2, P3, the position variation amount G2 from the position of the centroid G before movement to the position of the new centroid G (z g2 , θx g2,. θy g2 ) is calculated. After the calculation, the adjustment bolt L2 is moved 0.5 mm in the reverse direction, and the posture of the electromagnet 1 is restored.

L2を戻した後、再度計測基準点P1、P2、P3の各座標をP10、P20、P30として解析装置4へ取り込む。アクチュエータA3を駆動させ、同様に調整ボルトL3を0.5mm上昇させる。 After returning L2, the coordinates of the measurement reference points P1, P2, and P3 are again taken into the analyzer 4 as P 10 , P 20 , and P 30 . Actuator A3 is driven and adjustment bolt L3 is similarly raised by 0.5 mm.

電磁石1の姿勢が変化した後の計測基準点P1、P2、P3の新たな座標をP1:P13(x13,y13,z13)、P2:P23(x23,y23,z23)、P3:P33(x33,y33,z33)として解析装置4へ取込む。取り込まれた計測基準点P1、P2、P3の座標より、解析装置4によって、移動前の図心Gの位置から、新たな図心Gの位置までの位置変動量G3(zg3,θxg3,θyg3)を算出する。算出後調整ボルトL3を逆方向に0.5mm移動させて、電磁石1の姿勢を元に戻す。 Measurement reference points after the posture has changed electromagnets 1 P1, P2, P3 new coordinates of P1: P 13 (x 13, y 13, z 13), P2: P 23 (x 23, y 23, z 23 ), P3: P 33 (x 33 , y 33 , z 33 ) is taken into the analyzer 4. A position variation amount G3 (z g3 , θx g3 , from the position of the centroid G before the movement to the position of the new centroid G is determined by the analyzing device 4 from the coordinates of the taken measurement reference points P1, P2, P3. θy g3 ) is calculated. After the calculation, the adjustment bolt L3 is moved 0.5 mm in the reverse direction, and the posture of the electromagnet 1 is restored.

L3を戻した後、再度計測基準点P1、P2、P3の各座標をP10、P20、P30として解析装置4へ取り込む。アクチュエータA4を駆動させ、同様に調整ボルトL4を0.5mm上昇させる。 After returning L3, the coordinates of the measurement reference points P1, P2, and P3 are again taken into the analyzer 4 as P 10 , P 20 , and P 30 . Actuator A4 is driven and adjustment bolt L4 is similarly raised by 0.5 mm.

電磁石1の姿勢が変化した後の計測基準点P1、P2、P3の新たな座標をP1:P14(x14,y14,z14)、P2:P24(x24,y24,z24)、P3:P34(x34,y34,z34)として解析装置4へ取込む。取り込まれた計測基準点P1、P2、P3の座標より、解析装置4によって、移動前の図心Gの位置から、新たな図心Gの位置までの位置変動量G4(zg4,θxg4,θyg4)を算出する。算出後調整ボルトL4を逆方向に0.5mm移動させて、電磁石1の姿勢を元に戻す。 Measurement reference points after the posture has changed electromagnets 1 P1, P2, P3 new coordinates of P1: P 14 (x 14, y 14, z 14), P2: P 24 (x 24, y 24, z 24 ), P3: P 34 (x 34 , y 34 , z 34 ) is taken into the analyzer 4. The position variation amount G4 (z g4 , θx g4 , from the position of the centroid G before the movement to the position of the new centroid G is determined by the analysis device 4 from the coordinates of the taken measurement reference points P1, P2, P3. θy g4 ) is calculated. After the calculation, the adjustment bolt L4 is moved 0.5 mm in the reverse direction, and the posture of the electromagnet 1 is restored.

以上のように、調整ボルトL1〜L4を所定量(0.5mm)移動させた際の電磁石1の姿勢の変化は、G1(zg1,θxg1,θyg1),G2(zg2,θxg2,θyg2),G3(zg3,θxg3,θyg3),G4(zg4,θxg4,θyg4)であり、これよりヤコビアン関係J(X)は以下の式が成り立つ。 As described above, changes in the posture of the electromagnet 1 when the adjustment bolts L1 to L4 are moved by a predetermined amount (0.5 mm) are G1 (z g1 , θx g1 , θy g1 ), G2 (z g2 , θx g2). , Θy g2 ), G3 (z g3 , θx g3 , θy g3 ), and G4 (z g4 , θx g4 , θy g4 ), from which the Jacobian relationship J (X 1 ) holds.

Figure 0004487313

調整ボルトL1〜L4の調整量は、上記ヤコビアン行列の一般化逆行列を計算することで求まる。即ち、目標値に対する各調整ボルトL1〜L4の調整量 IJ(X) は、以下の式で求めることが可能である。
Figure 0004487313

The adjustment amounts of the adjustment bolts L1 to L4 can be obtained by calculating a generalized inverse matrix of the Jacobian matrix. That is, the adjustment amount IJ (X 1 ) of each of the adjustment bolts L1 to L4 with respect to the target value can be obtained by the following equation.

Figure 0004487313
次に、水平方向における各調整ボルトL5〜L8の調整量の算出方法を示す。
Figure 0004487313
Next, a calculation method of the adjustment amount of each adjustment bolt L5 to L8 in the horizontal direction will be described.

調整ボルトL5〜L8の調整量の算出は、調整ボルトL1〜L4の調整量の算出と同様に、アクチュエータA5〜A8を駆動して調整ボルトL5〜L8をそれぞれ所定量(例えば0.5mm)移動させる。   As with the calculation of the adjustment amounts of the adjustment bolts L1 to L4, the adjustment bolts L5 to L8 are calculated by driving the actuators A5 to A8 and moving the adjustment bolts L5 to L8 by a predetermined amount (for example, 0.5 mm). Let

解析装置4へ取り込んだ元の位置での計測基準点P1、P2、P3の座標と、電磁石1の姿勢が変化した後の計測基準点P1、P2、P3の新たな座標より、図心Gを仮基準点として電磁石1の姿勢の変化は、調整ボルトL5〜L8でそれぞれ位置変動量G5(xg5,yg5,θzg5)、G6(xg6,yg6,θzg6)、G7(xg7,yg7,θzg7)、G8(xg8,yg8,θzg8)として算出される。 From the coordinates of the measurement reference points P1, P2 and P3 at the original position taken into the analysis device 4 and the new coordinates of the measurement reference points P1, P2 and P3 after the posture of the electromagnet 1 is changed, the centroid G change in the attitude of the electromagnet 1 as a temporary reference point, respectively positional variation G5 adjustment bolt L5~L8 (x g5, y g5, θz g5), G6 (x g6, y g6, θz g6), G7 (x g7 , Y g7 , θz g7 ), G8 (x g8 , y g8 , θz g8 ).

これよりヤコビアン関係J(X)は以下の式が成り立つ。 From this, the following equation holds for the Jacobian relationship J (X 2 ).

Figure 0004487313
調整ボルトL5〜L8の調整量は、上記ヤコビアン行列の一般化逆行列を計算することで求まる。即ち、目標値に対する各調整ボルトL5〜L8の調整量IJ(X) は、以下の式で求めることが可能である。
Figure 0004487313
The adjustment amounts of the adjustment bolts L5 to L8 can be obtained by calculating a generalized inverse matrix of the Jacobian matrix. That is, the adjustment amount IJ (X 2 ) of each of the adjustment bolts L5 to L8 with respect to the target value can be obtained by the following equation.

Figure 0004487313
次に、図3において、本発明に係る陽子線加速器用電磁石のアライメントシステムの動作フローを説明する。
Figure 0004487313
Next, with reference to FIG. 3, an operation flow of the alignment system for the proton beam accelerator electromagnet according to the present invention will be described.

はじめに図1に示す3次元計測装置3によって基準点2より、電磁石1上の計測基準P1,P2,P3の座標をP1:P10(x10,y10,z10)、P2:P20(x20,y20,z20)、P3:P30(x30,y30,z30)として解析装置4へ取込む。(ステップS1)。 First, the coordinates of the measurement references P1, P2, and P3 on the electromagnet 1 are set to P1: P 10 (x 10 , y 10 , z 10 ), P2: P 20 (from the reference point 2 by the three-dimensional measuring device 3 shown in FIG. x 20 , y 20 , z 20 ), P3: P 30 (x 30 , y 30 , z 30 ) are taken into the analyzer 4. (Step S1).

取り込み終了後、アクチュエータA1を駆動させて調整ボルトL1を所定量(0.5mm)移動させる。(ステップS2)。   After the completion of capturing, the actuator A1 is driven to move the adjustment bolt L1 by a predetermined amount (0.5 mm). (Step S2).

計測装置3によって基準点2より、姿勢を変化させた電磁石1の計測基準P1,P2,P3の座標を、計測基準P1:P11(x11,y11,z11)、P2:P21(x21,y21,z21)、P3:P31(x31,y31,z31)として解析装置4へ取込む。(ステップS3)。 The coordinates of the measurement references P1, P2, P3 of the electromagnet 1 whose posture has been changed from the reference point 2 by the measurement device 3 are the measurement references P1: P 11 (x 11 , y 11 , z 11 ), P2: P 21 ( x 21 , y 21 , z 21 ), P3: P 31 (x 31 , y 31 , z 31 ) are taken into the analyzer 4. (Step S3).

ステップS1にて解析装置4へ取り込んだ計測基準点P1、P2、P3の座標と、ステップS3にて解析装置4へ取り込んだ計測基準点P1、P2、P3の新たな座標より、図心Gを仮基準点とし位置変動量G1を算出する。(ステップS4)。   From the coordinates of the measurement reference points P1, P2, P3 taken into the analysis device 4 in step S1 and the new coordinates of the measurement reference points P1, P2, P3 taken into the analysis device 4 in step S3, the centroid G The position fluctuation amount G1 is calculated as a temporary reference point. (Step S4).

算出後、アクチュエータA1を駆動させて調整ボルトL1をステップ2とは逆の方向へ所定量(0.5mm)移動させて電磁石1を元の姿勢へ戻す。(ステップS5)。   After the calculation, the actuator A1 is driven to move the adjustment bolt L1 by a predetermined amount (0.5 mm) in the direction opposite to that in Step 2, thereby returning the electromagnet 1 to the original posture. (Step S5).

ステップ1からステップ5までを調整ボルトL1から調整ボルトL8まで繰り返す。調整ボルトL8までの作業が終了したらステップS6を実行する。(判断A1)
算出された調整ボルトL1からL8までの位置変動量よりコビアン行列の一般化逆行列を計算し、各調整ボルトL1からL8の調整量を算出する。(ステップS6)。
Steps 1 to 5 are repeated from the adjustment bolt L1 to the adjustment bolt L8. When the operation up to the adjustment bolt L8 is completed, step S6 is executed. (Judgment A1)
A generalized inverse matrix of the Cobian matrix is calculated from the calculated position fluctuation amounts from the adjustment bolts L1 to L8, and the adjustment amounts of the adjustment bolts L1 to L8 are calculated. (Step S6).

調整ボルトL1からL8に備えられたアクチュエータA1〜A8を駆動させ、調整ボルトL1からL8を調整量分移動させる。(ステップS7)。   Actuators A1 to A8 provided on adjustment bolts L1 to L8 are driven to move adjustment bolts L1 to L8 by an adjustment amount. (Step S7).

計測装置3によって基準点2より、電磁石1上の計測基準P1,P2,P3の座標を再度計測する。(ステップS8)。   The measurement device 3 again measures the coordinates of the measurement references P1, P2, and P3 on the electromagnet 1 from the reference point 2. (Step S8).

ステップS8で計測した座標より、電磁石1の位置が正規の位置へ移動しているか判断する。正規の位置へ達していない場合は、ステップS8で計測した座標より、正規の位置までの調整量をステップS6へ戻り再調整する。正規の位置へ達していた場合は調整作業を終了する。(判断A2)。   From the coordinates measured in step S8, it is determined whether the position of the electromagnet 1 has moved to a normal position. If the position has not reached the normal position, the adjustment amount up to the normal position is returned to step S6 from the coordinates measured in step S8 and readjusted. If it has reached the normal position, the adjustment work is terminated. (Decision A2).

以上説明したように、本発明に係る陽子線加速器用電磁石のアライメント方法およびアライメントシステムは、電磁石のアライメントに必要な調整ボルトの位置と調整量とを明確にし、電磁石のアライメント作業が簡単かつ短時間で済む。 As described above, the proton beam accelerator electromagnet alignment method and alignment system according to the present invention clarify the position and amount of adjustment bolts necessary for electromagnet alignment, and the electromagnet alignment operation is simple and short. Just do it.

なお、本実施の形態では調整ボルトL1〜L8はアクチュエータA1〜A8により移動しているが、調整ボルトL1〜L8の移動は手動で行なっても良い。   In this embodiment, the adjustment bolts L1 to L8 are moved by the actuators A1 to A8, but the adjustment bolts L1 to L8 may be moved manually.

また、調整ボルトL1〜L8の調整量算出後、調整ボルトL1〜L8を手動で調整する際、計測基準P1,P2,P3の座標を一定の時間間隔で解析装置4へ取り込み、取り込まれた座標から調整量を順次新たに算出し、算出された結果が調整を行なう作業者へ通知される形態でもよい。   In addition, after adjusting the adjustment amounts of the adjustment bolts L1 to L8, when adjusting the adjustment bolts L1 to L8 manually, the coordinates of the measurement standards P1, P2, and P3 are taken into the analyzer 4 at regular time intervals, and the taken-in coordinates Alternatively, the adjustment amount may be newly calculated sequentially, and the calculated result may be notified to the operator who performs the adjustment.

更に、本実施の形態では調整ボルトはL1〜L8の8本であるが、調整機構5の形態に合わせて8本よりも多数、又は少数であってもよい。   Furthermore, in the present embodiment, there are eight adjustment bolts L1 to L8, but the number of adjustment bolts may be more or less than eight according to the form of the adjustment mechanism 5.

本発明に係る陽子線加速器用アライメントシステムの模式図。The schematic diagram of the alignment system for proton beam accelerators which concerns on this invention. 調整量の求め方を説明するための模式図。The schematic diagram for demonstrating how to obtain | require adjustment amount. アライメントシステムの動作を示したフロー図。The flowchart which showed operation | movement of the alignment system.

符号の説明Explanation of symbols

1…電磁石,2…基準点,3…3次元測定装置,4…解析装置,5…調整機構,L1〜L8…調整ボルト,P1、P2、P3…計測基準点 DESCRIPTION OF SYMBOLS 1 ... Electromagnet, 2 ... Reference point, 3 ... Three-dimensional measuring apparatus, 4 ... Analysis apparatus, 5 ... Adjustment mechanism, L1-L8 ... Adjustment bolt, P1, P2, P3 ... Measurement reference point

Claims (5)

電磁石の位置及び姿勢を複数の調整ボルトにより調整する調整機構と、
前記電磁石上の複数箇所に設けられた計測基準点と、
前記電磁石が設置された建屋内のいずれかの場所に設置され、前記計測基準点の位置を計測する計測装置と、
前記電磁石を正規の位置まで調整する複数の前記調整ボルトの調整量を算出する解析装置とを備え、
前記計測基準点の位置を計測することにより、前記調整量を各前記調整ボルト別に算出し、該各調整ボルトを算出された該調整量移動させることにより、前記電磁石を正規の位置まで移動させることを特徴とする陽子線加速器用電磁石のアライメント方法。
An adjustment mechanism for adjusting the position and orientation of the electromagnet with a plurality of adjustment bolts;
Measurement reference points provided at a plurality of locations on the electromagnet,
A measurement device installed at any location in the building where the electromagnet is installed, and measuring the position of the measurement reference point;
An analyzer for calculating an adjustment amount of the plurality of adjustment bolts for adjusting the electromagnet to a regular position;
By measuring the position of the measurement reference point, the adjustment amount is calculated for each of the adjustment bolts, and the electromagnet is moved to a normal position by moving the adjustment bolts to the calculated adjustment amount. A method for aligning an electromagnet for a proton beam accelerator characterized by the following.
前記調整量は、各前記調整ボルト別に所定量移動させた際の前記計測基準点の位置変動量を計測し、該調整ボルト別に計測された該位置変動量に基づき、該調整ボルト別に算出することを特徴とする請求項1に記載の陽子線加速器用電磁石のアライメント方法。   The adjustment amount is calculated for each adjustment bolt based on the position variation amount measured for each adjustment bolt by measuring the position variation amount of the measurement reference point when the adjustment bolt is moved by a predetermined amount. The alignment method of the electromagnet for proton beam accelerators of Claim 1 characterized by these. 電磁石の位置及び姿勢を調整する複数の調整ボルトにより調整する調整機構と、
前記電磁石上の複数箇所に設けられた計測基準点と、
前記電磁石が設置された建屋内のいずれかの場所に設置され、前記計測基準点の位置を計測する計測装置と、
前記電磁石を正規の位置まで調整する複数の前記調整ボルトの調整量を算出する解析装置とを備えたことを特徴とする陽子線加速器用電磁石のアライメントシステム。
An adjustment mechanism that adjusts with a plurality of adjustment bolts that adjust the position and orientation of the electromagnet;
Measurement reference points provided at a plurality of locations on the electromagnet,
A measurement device installed at any location in the building where the electromagnet is installed, and measuring the position of the measurement reference point;
An electromagnet alignment system for a proton beam accelerator, comprising: an analyzing device that calculates an adjustment amount of the plurality of adjustment bolts for adjusting the electromagnet to a normal position.
前記調整機構は、複数の前記調整ボルトを回転させることによって前記電磁石の水平方向及び鉛直方向位置を調整することを特徴とする請求項3に記載の陽子線加速器用電磁石のアライメントシステム。   4. The proton magnet accelerator electromagnet alignment system according to claim 3, wherein the adjustment mechanism adjusts the horizontal and vertical positions of the electromagnets by rotating a plurality of the adjustment bolts. 5. 前記調整ボルトは、該調整ボルトを回転させるアクチュエータを備え、該アクチュエータは、前記解析装置の指令によって作動されることを特徴とする請求項4に記載の陽子線加速器用電磁石のアライメントシステム。
5. The proton beam accelerator electromagnet alignment system according to claim 4, wherein the adjustment bolt includes an actuator that rotates the adjustment bolt, and the actuator is actuated by a command of the analysis device.
JP2005126417A 2005-04-25 2005-04-25 Electromagnet alignment method and alignment system Active JP4487313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126417A JP4487313B2 (en) 2005-04-25 2005-04-25 Electromagnet alignment method and alignment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126417A JP4487313B2 (en) 2005-04-25 2005-04-25 Electromagnet alignment method and alignment system

Publications (3)

Publication Number Publication Date
JP2006302818A JP2006302818A (en) 2006-11-02
JP2006302818A5 JP2006302818A5 (en) 2008-01-10
JP4487313B2 true JP4487313B2 (en) 2010-06-23

Family

ID=37470852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126417A Active JP4487313B2 (en) 2005-04-25 2005-04-25 Electromagnet alignment method and alignment system

Country Status (1)

Country Link
JP (1) JP4487313B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11639768B2 (en) 2018-10-31 2023-05-02 Toshiba Energy Systems & Solutions Corporation Charged particle transport system and installation method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975914B1 (en) * 2013-03-14 2018-07-25 Mitsubishi Electric Corporation Electromagnet support base
WO2016084218A1 (en) * 2014-11-28 2016-06-02 三菱電機株式会社 Particle beam irradiation equipment
JP6584678B2 (en) * 2016-09-08 2019-10-02 三菱電機株式会社 Scanning electromagnet and method for manufacturing particle beam irradiation apparatus provided with scanning electromagnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11639768B2 (en) 2018-10-31 2023-05-02 Toshiba Energy Systems & Solutions Corporation Charged particle transport system and installation method therefor

Also Published As

Publication number Publication date
JP2006302818A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
CN102909728B (en) The vision correction methods of robot tooling center points
CN113001535B (en) Automatic correction system and method for robot workpiece coordinate system
TWI668541B (en) System and method for calibrating tool center point of robot
US10695910B2 (en) Automatic calibration method for robot system
EP3433061B1 (en) Automatic calibration method for robot system and corresponding robot system
JP6167622B2 (en) Control system and control method
JP2008012604A (en) Measuring apparatus and method of its calibration
EP3733355A1 (en) Robot motion optimization system and method
CN104390612A (en) Standard pose calibration method for six-degree-of-freedom parallel robot used for Stewart platform structure
DE102010031248A1 (en) Method for measuring a robot arm of an industrial robot
CN105444699B (en) A kind of method that micromanipulation system coordinate is detected and compensated with displacement error
CN109176517A (en) Series connection industrial robot link parameters scaling method based on the constraint of end name point
KR102658278B1 (en) Mobile robot and method of aligning robot arm thereof
JP4487313B2 (en) Electromagnet alignment method and alignment system
EP1886771A1 (en) Rotation center point calculating method, rotation axis calculating method, program creating method, operation method, and robot apparatus
CN105571811B (en) The method for measuring aerocraft real angle of attack value in wind tunnel experiment
JP4457353B2 (en) Adjusting bolt operation method and electromagnet position / posture adjustment method
JP7080068B2 (en) How to restore the location information of the robot
Lauer et al. Automated on-site assembly of timber buildings on the example of a biomimetic shell
JP6485620B2 (en) Robot control system and robot control method
CN114505865B (en) Pose tracking-based mechanical arm path generation method and system
JPH11320465A (en) Control method for robot arm
KR101792499B1 (en) Teaching method of apparatus for manufacturing semiconductor
CN113565300A (en) Tile work device
CN113580126A (en) System and method for setting up robotic assembly operations

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4487313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250