[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4479582B2 - Manufacturing method of electronic component mounting body - Google Patents

Manufacturing method of electronic component mounting body Download PDF

Info

Publication number
JP4479582B2
JP4479582B2 JP2005142633A JP2005142633A JP4479582B2 JP 4479582 B2 JP4479582 B2 JP 4479582B2 JP 2005142633 A JP2005142633 A JP 2005142633A JP 2005142633 A JP2005142633 A JP 2005142633A JP 4479582 B2 JP4479582 B2 JP 4479582B2
Authority
JP
Japan
Prior art keywords
electronic component
insulating resin
conductor
manufacturing
mounting body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005142633A
Other languages
Japanese (ja)
Other versions
JP2006319253A (en
Inventor
邦男 日比野
能彦 八木
和宏 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005142633A priority Critical patent/JP4479582B2/en
Priority to CN2006800117409A priority patent/CN101156238B/en
Priority to PCT/JP2006/307916 priority patent/WO2006112384A1/en
Priority to US11/883,801 priority patent/US8033016B2/en
Publication of JP2006319253A publication Critical patent/JP2006319253A/en
Application granted granted Critical
Publication of JP4479582B2 publication Critical patent/JP4479582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the bump preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11334Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83102Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus using surface energy, e.g. capillary forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Description

本発明は、電子部品の電極端子や配線基板の接続端子に形成される微細な導電体を介して接続する電子部品実装体の製造方法に関する。   The present invention relates to a method of manufacturing an electronic component mounting body that is connected via a fine conductor formed on an electrode terminal of an electronic component or a connection terminal of a wiring board.

近年、携帯型端末などの電子機器の高機能化や軽薄短小化の要求にともない、半導体チップなどの電子部品の高密度集積化や高密度実装化が要望され、これらの電子部品として用いられる半導体パッケージのさらなる小型化、多ピン化が進んできている。さらに、半導体パッケージの小型化にともなって、従来のようなリードフレームを使用した形態では小型化に限界がきている。   In recent years, with the demand for higher functionality and lighter and shorter electronic devices such as portable terminals, there is a demand for high-density integration and high-density mounting of electronic components such as semiconductor chips, and semiconductors used as these electronic components. The package has been further reduced in size and increased in pin count. Furthermore, with the miniaturization of semiconductor packages, there is a limit to miniaturization in the form using a conventional lead frame.

そのため、最近では回路基板上に半導体チップを実装したものとしてBGA(Ball Grid Array)やCSP(Chip Scale Package)などのエリア実装型の半導体パッケージが主流となっている。これらの半導体パッケージにおいて、半導体チップに電極と導体配線で構成される基板の端子との電気的接続方法として、ワイヤーボンディング方式やTAB(Tape Automated Bonding)方式、さらにFC(Flip Chip)接続方式などが知られている。   Therefore, recently, an area-mounting type semiconductor package such as a BGA (Ball Grid Array) or a CSP (Chip Scale Package) is mainly used as a semiconductor chip mounted on a circuit board. In these semiconductor packages, there are a wire bonding method, a TAB (Tape Automated Bonding) method, an FC (Flip Chip) connection method, etc. as an electrical connection method between a semiconductor chip and electrodes of a substrate composed of conductor wiring. Are known.

特に、半導体パッケージの小型化に有利なFC接続方式を用いたBGAやCSPの構造が提案されている。   In particular, BGA and CSP structures using an FC connection method that is advantageous for miniaturization of semiconductor packages have been proposed.

例えば、FC接続方式は、一般に、半導体チップの電極に予めバンプと呼ばれる突起電極を形成しておき、このバンプと基板上の端子を位置合わせして熱圧着などにより接続する方式である。   For example, the FC connection method is generally a method in which bump electrodes called bumps are formed in advance on the electrodes of a semiconductor chip, and the bumps and terminals on the substrate are aligned and connected by thermocompression bonding or the like.

そして、半導体チップに予めバンプを形成する方法としては、電解めっきによる方法とスタッドバンプによる方法などがある。電解めっきでバンプを形成する方法では、バンプをはんだだけで所望の大きさに形成するため、製造時間や製造コストが掛かるという課題があった。また、電解めっきではめっき槽の電流分布を完全に均一にするのが困難であるため、形成したバンプの大きさにばらつきが生じてしまう。バンプの大きさのばらつきは、めっき時間が長いほど顕著になるため、バンプをはんだだけで形成する方法では、製造時間や製造コストなどの課題を解決することが困難である。また、バンプの接続部分の耐湿信頼性を確保するために、例えば銅などの金属コアを有するバンプが開発されているが、製造工程が複雑となるなど製造コストがさらに掛かってしまうという課題があった。   As a method of forming bumps in advance on the semiconductor chip, there are a method using electrolytic plating and a method using stud bumps. In the method of forming bumps by electrolytic plating, the bumps are formed in a desired size using only solder, and thus there is a problem that manufacturing time and manufacturing cost are increased. Moreover, since it is difficult to make the current distribution in the plating tank completely uniform in electrolytic plating, the size of the formed bumps varies. The variation in the size of the bumps becomes more prominent as the plating time is longer. Therefore, it is difficult to solve the problems such as the manufacturing time and the manufacturing cost by the method of forming the bumps with only the solder. In addition, bumps having a metal core such as copper have been developed in order to ensure moisture resistance reliability of the bump connection parts, but there is a problem that the manufacturing process is further complicated and the manufacturing cost is further increased. It was.

一方、スタッドバンプは、半導体チップの電極に金ワイヤーをボンディングし、切断することにより形成するものである。この方法では、半導体チップの電極に1つ1つバンプを形成するため、製造時間が掛かる。さらに、バンプに使用される金ワイヤーの価格が高いため製造コストが掛かってしまうという課題があった。   On the other hand, the stud bump is formed by bonding a gold wire to an electrode of a semiconductor chip and cutting it. In this method, since bumps are formed one by one on the electrodes of the semiconductor chip, it takes a long manufacturing time. Furthermore, since the price of the gold wire used for the bump is high, there is a problem that the manufacturing cost is increased.

そこで、上記課題を解決するために、バンプを半導体チップの電極に一括して形成する転写バンプ方式が開発されている。これは、シート状のベースに、はんだバンプを形成した転写バンプシートと半導体チップとを位置合わせし、加熱および加圧することにより、転写バンプシート側のバンプが半導体チップ側に一括転写するものが開示されている(例えば、特許文献1および特許文献2参照)。   Therefore, in order to solve the above problems, a transfer bump method has been developed in which bumps are collectively formed on electrodes of a semiconductor chip. This discloses that the bumps on the transfer bump sheet side are collectively transferred to the semiconductor chip side by aligning the transfer bump sheet on which the solder bumps are formed on the sheet-like base and the semiconductor chip, and applying heat and pressure. (For example, see Patent Document 1 and Patent Document 2).

また、銅コアはんだバンプにより、はんだ接続部分の耐湿信頼性を確保しつつ、一括転写するものも開示されている(例えば、特許文献3参照)。
特開平5−166880号公報 特開平9−153495号公報 特開2000−286282号公報
In addition, there is also disclosed a method in which a copper core solder bump performs batch transfer while ensuring moisture resistance reliability of a solder connection portion (see, for example, Patent Document 3).
JP-A-5-166880 JP-A-9-153495 JP 2000-286282 A

しかしながら、上記特許文献1および特許文献2に示されているバンプ900は、図8(a)に示すように、はんだの表面張力により、基板910の電極920の上に球状に形成される。そのため、溶融前のはんだの量がばらついた場合や形成される電極面積などが異なる場合には、バンプ900の形状(特に、高さなど)がばらつくという課題がある。   However, as shown in FIG. 8A, the bumps 900 shown in Patent Document 1 and Patent Document 2 are formed in a spherical shape on the electrode 920 of the substrate 910 due to the surface tension of the solder. Therefore, when the amount of solder before melting varies, or when the area of the formed electrodes is different, there is a problem that the shape (particularly, height) of the bump 900 varies.

また、図8(b)に示すように、バンプ900の形状が球状であるため、電子部品930の接続電極940と接続した場合、太鼓形状950となる。そのため、バンプ900と電子部品930の接続電極940との接続部分に応力が集中し、接続電極940の界面での剥離やクラックなどが発生するという課題がある。   Further, as shown in FIG. 8B, since the bump 900 has a spherical shape, when it is connected to the connection electrode 940 of the electronic component 930, a drum shape 950 is obtained. Therefore, there is a problem that stress concentrates on the connection portion between the bump 900 and the connection electrode 940 of the electronic component 930, and peeling or cracking occurs at the interface of the connection electrode 940.

さらに、バンプ900の形状が太鼓形状950となるため、隣接するバンプ900間が、図8(c)に示すように短絡960する可能性があるため、電極920の間隔を狭くすることができない。また、接続する電極920のピッチを微細化する場合には、バンプ900の形状を小さくすれば可能であるが、半導体チップのなどの電子部品930の反りなどを吸収することができないため、接続の信頼性を確保することが困難である。   Furthermore, since the bump 900 has a drum shape 950, there is a possibility that the adjacent bumps 900 may be short-circuited 960 as shown in FIG. 8C, so that the distance between the electrodes 920 cannot be reduced. In addition, when the pitch of the electrodes 920 to be connected is reduced, it is possible to reduce the shape of the bump 900. However, the warp of the electronic component 930 such as a semiconductor chip cannot be absorbed. It is difficult to ensure reliability.

また、上記特許文献3に示されているはんだバンプでは、転写シート上に金属層とはんだ層を積層した導電端子を半導体チップなどの接続電極に導電端子のはんだ層側と接続するように加熱・加圧する。そして、はんだ層を溶融させて、金属層の周囲にはんだ層が回り込んだ状態にした後、転写シートを除去し、はんだバンプを一括に形成するものである。しかし、はんだ層の溶融によりはんだバンプの形状が大きくなるため、微細なはんだバンプの形成に課題がある。さらに、はんだ層が金属層の周囲に回り込まない場合には、基板の電極と、例えば銅などの金属を溶融させて接続することは困難であり、接続信頼性を確保するのが困難である。   Moreover, in the solder bump shown in the above-mentioned Patent Document 3, the conductive terminal in which the metal layer and the solder layer are laminated on the transfer sheet is heated and connected to the connection electrode such as a semiconductor chip to the solder layer side of the conductive terminal. Pressurize. Then, after the solder layer is melted so that the solder layer wraps around the metal layer, the transfer sheet is removed, and solder bumps are collectively formed. However, since the shape of the solder bump becomes large due to melting of the solder layer, there is a problem in forming a fine solder bump. Further, when the solder layer does not go around the metal layer, it is difficult to connect the substrate electrode with a metal such as copper, for example, and it is difficult to ensure connection reliability.

また、導電端子は、銅箔に転写シートとなる樹脂層を塗布し、硬化後、銅箔上にドライフィルムの積層、露光、現像の工程後に、はんだ層を電解めっきで形成する。そして、ドライフィルムを剥離および銅箔のエッチングすることにより柱状の導電端子が形成される。そのため、製造工程が複雑となり、生産性や製造コストの点で課題がある。また、エッチング処理するため、廃液の処理などの問題も発生する。   The conductive terminal is formed by applying a resin layer serving as a transfer sheet on the copper foil, and after curing, forming a solder layer by electrolytic plating after the steps of laminating a dry film on the copper foil, exposure, and development. Then, the columnar conductive terminals are formed by peeling the dry film and etching the copper foil. Therefore, the manufacturing process becomes complicated, and there are problems in terms of productivity and manufacturing cost. In addition, since the etching process is performed, problems such as waste liquid processing also occur.

本発明は、上記の従来の課題を解決するためになされたもので、微細な導電体で配線基板と電子部品を接続する電子部品実装体の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and an object thereof is to provide a method of manufacturing an electronic component mounting body in which a wiring board and an electronic component are connected with a fine conductor.

上述したような課題を解決するために、本発明の電子部品実装体の製造方法は、複数の接続端子が設けられている配線基板と、接続端子に対応して複数の電極端子が設けられている電子部品とを電気的に接続する電子部品実装体の製造方法であって、複数の接続端子に対応する2段以上の形状の凹部を備える転写型の凹部に、導電性材料を充填する工程と、導電性材料を加熱した後、硬化させることにより導電体を形成し、導電性材料の硬化収縮により凹部に空間部を形成する工程と、空間部に第1の絶縁性樹脂を充填する工程と、接続端子に対向して転写型の凹部を位置合わせして載置する工程と、少なくとも第1の絶縁性樹脂が半硬化状態になる温度で加熱する工程と、転写型を剥離する工程と、配線基板の導電体が形成された面に第2の絶縁性樹脂を形成する工程と、導電体と対向して、電子部品の電極端子を位置合わせする工程と、導電体を介して、接続端子と電極端子を接続するとともに、第2の絶縁性樹脂を硬化する工程とを具備する。   In order to solve the problems as described above, the electronic component mounting body manufacturing method of the present invention includes a wiring board provided with a plurality of connection terminals, and a plurality of electrode terminals corresponding to the connection terminals. A method for manufacturing an electronic component mounting body for electrically connecting an electronic component to a transfer type, wherein a conductive material is filled in a concave portion of a transfer mold having concave portions having two or more steps corresponding to a plurality of connection terminals. And heating the conductive material and then curing to form a conductor, forming a space in the recess by curing shrinkage of the conductive material, and filling the space with the first insulating resin And a step of positioning and placing the concave portion of the transfer mold so as to face the connection terminal, a step of heating at a temperature at which at least the first insulating resin is in a semi-cured state, and a step of peeling the transfer die The second surface of the wiring board on which the conductor is formed is A step of forming an insulating resin, a step of positioning an electrode terminal of an electronic component opposite to the conductor, a connection terminal and the electrode terminal are connected via the conductor, and a second insulating resin And a step of curing.

また、本発明の電子部品実装体の製造方法は、複数の接続端子が設けられている配線基板と、接続端子に対応して複数の電極端子が設けられている電子部品とを電気的に接続する電子部品実装体の製造方法であって、複数の電極端子に対応する2段以上の形状の凹部を備える転写型の凹部に、導電性材料を充填する工程と、導電性材料を加熱した後、硬化させることにより導電体を形成し、導電性材料の硬化収縮により凹部に空間部を形成する工程と、空間部に第1の絶縁性樹脂を充填する工程と、電極端子に対向して転写型の凹部を位置合わせして載置する工程と、少なくとも第1の絶縁性樹脂が半硬化状態になる温度で加熱する工程と、転写型を剥離する工程と、配線基板の電極端子が形成された面に第2の絶縁性樹脂を形成する工程と、導電体と対向して、配線基板の接続端子を位置合わせする工程と、導電体を介して、接続端子と電極端子を接続するとともに、第2の絶縁性樹脂を硬化する工程とを具備する。   The method for manufacturing an electronic component mounting body according to the present invention electrically connects a wiring board provided with a plurality of connection terminals and an electronic component provided with a plurality of electrode terminals corresponding to the connection terminals. A method for manufacturing an electronic component mounting body, comprising: filling a transfer-type recess having a recess having two or more steps corresponding to a plurality of electrode terminals with a conductive material; and heating the conductive material A step of forming a conductor by curing, a step of forming a space in the recess by curing shrinkage of the conductive material, a step of filling the space with the first insulating resin, and a transfer facing the electrode terminal A step of aligning and placing the concave portion of the mold, a step of heating at a temperature at which at least the first insulating resin is in a semi-cured state, a step of peeling the transfer mold, and electrode terminals of the wiring board are formed. Forming a second insulating resin on the opposite surface; Conductor and oppositely, aligning the connection terminals of the wiring board, through a conductor, thereby connecting the connection terminal and the electrode terminal, and a step of curing the second insulating resin.

また、本発明の電子部品実装体の製造方法は、複数の接続端子が設けられている配線基板と、接続端子に対応して複数の電極端子が設けられている電子部品とを電気的に接続する電子部品実装体の製造方法であって、複数の接続端子に対応する2段以上の形状の凹部を備える転写型の凹部に、導電性材料を充填する工程と、導電性材料を加熱した後、硬化させることにより導電体を形成し、導電性材料の硬化収縮により凹部に空間部を形成する工程と、空間部に第1の絶縁性樹脂を充填する工程と、接続端子に対向して転写型の凹部を位置合わせして載置する工程と、少なくとも第1の絶縁性樹脂が半硬化状態になる温度で加熱する工程と、転写型を剥離する工程と、導電体と対向して、電子部品の電極端子を位置合わせする工程と、導電体を介して、接続端子と電極端子を接続する工程と、接続端子と電極端子の隙間に、第2の絶縁性樹脂を注入し、第2の絶縁性樹脂を硬化する工程とを具備する。   The method for manufacturing an electronic component mounting body according to the present invention electrically connects a wiring board provided with a plurality of connection terminals and an electronic component provided with a plurality of electrode terminals corresponding to the connection terminals. A method of manufacturing an electronic component mounting body, comprising: filling a transfer-type recess having a recess of two or more stages corresponding to a plurality of connection terminals with a conductive material; and heating the conductive material A step of forming a conductor by curing, a step of forming a space in the recess by curing shrinkage of the conductive material, a step of filling the space with the first insulating resin, and a transfer facing the connection terminal A step of aligning and placing the concave portion of the mold, a step of heating at a temperature at which at least the first insulating resin is in a semi-cured state, a step of peeling the transfer mold, an electron facing the conductor, The process of aligning the electrode terminals of the component and the conductor Through it, a step of connecting the connection terminal and the electrode terminal, the gap between the connection terminal and the electrode terminal, a second insulating resin is injected, and a step of curing the second insulating resin.

また、本発明の電子部品実装体の製造方法は、複数の接続端子が設けられている配線基板と、接続端子に対応して複数の電極端子が設けられている電子部品とを電気的に接続する電子部品実装体の製造方法であって、複数の電極端子に対応する2段以上の形状の凹部を備える転写型の凹部に、導電性材料を充填する工程と、導電性材料を加熱した後、硬化させることにより導電体を形成し、導電性材料の硬化収縮により凹部に空間部を形成する工程と、空間部に第1の絶縁性樹脂を充填する工程と、電極端子に対向して転写型の凹部を位置合わせして載置する工程と、少なくとも第1の絶縁性樹脂が半硬化状態になる温度で加熱する工程と、転写型を剥離する工程と、導電体と対向して、配線基板の接続端子を位置合わせする工程と、導電体を介して、接続端子と電極端子を接続する工程と、接続端子と電極端子の隙間に、第2の絶縁性樹脂を注入し、第2の絶縁性樹脂を硬化する工程とを具備する。   The method for manufacturing an electronic component mounting body according to the present invention electrically connects a wiring board provided with a plurality of connection terminals and an electronic component provided with a plurality of electrode terminals corresponding to the connection terminals. A method for manufacturing an electronic component mounting body, comprising: filling a transfer-type recess having a recess having two or more steps corresponding to a plurality of electrode terminals with a conductive material; and heating the conductive material A step of forming a conductor by curing, a step of forming a space in the recess by curing shrinkage of the conductive material, a step of filling the space with the first insulating resin, and a transfer facing the electrode terminal A step of aligning and placing the concave portion of the mold, a step of heating at a temperature at which at least the first insulating resin is in a semi-cured state, a step of peeling the transfer mold, and a wiring facing the conductor Step of aligning the connection terminals of the substrate and the conductor Through it, a step of connecting the connection terminal and the electrode terminal, the gap between the connection terminal and the electrode terminal, a second insulating resin is injected, and a step of curing the second insulating resin.

さらに凹部が、皿ビス形状であってもよい。   Furthermore, the concave portion may have a countersunk screw shape.

これらの方法により、第1の絶縁性樹脂に仮固定した状態で導電体を転写できるため、微細なピッチで接続された電子部品実装体を容易に作製できる。また、転写型の凹部により導電体の高さを均一にできるとともに、アスペクト比の大きな導電体を自由に形成することができる。   By these methods, the conductor can be transferred in a state of being temporarily fixed to the first insulating resin, so that an electronic component mounting body connected at a fine pitch can be easily manufactured. Further, the height of the conductor can be made uniform by the transfer-type recess, and a conductor having a large aspect ratio can be freely formed.

さらに、接続端子と電極端子を接続する工程が、圧着、圧接または超音波接合であってもよい。   Furthermore, the step of connecting the connection terminal and the electrode terminal may be crimping, pressure welding, or ultrasonic bonding.

この方法により、接続端子と電極端子との接続が容易で、生産性よく電子部品実装体を作製できる。   By this method, the connection between the connection terminal and the electrode terminal is easy, and an electronic component mounting body can be manufactured with high productivity.

さらに、接続端子と電極端子を接続する工程が、導電体の再溶融により行われてもよい。   Further, the step of connecting the connection terminal and the electrode terminal may be performed by remelting the conductor.

さらに、導電性材料が、はんだ粉またははんだペーストであってもよい。   Further, the conductive material may be a solder powder or a solder paste.

これらの方法により、強固な接続を実現するとともに、接続の安定性などの信頼性に優れた電子部品実装体を作製できる。   By these methods, it is possible to produce an electronic component mounting body that realizes strong connection and is excellent in reliability such as connection stability.

さらに、第1の絶縁性樹脂と第2の絶縁性樹脂が、熱硬化性樹脂からなってもよい。   Furthermore, the first insulating resin and the second insulating resin may be made of a thermosetting resin.

さらに、第1の絶縁性樹脂と第2の絶縁性樹脂が、同じ樹脂材料からなってもよい。   Furthermore, the first insulating resin and the second insulating resin may be made of the same resin material.

これらの方法により、導電体を固定すると同時に、配線基板と電子部品とを固着することにより電気的に接続することができるため、電子部品実装体を生産性よく作製できる。   By these methods, since the conductor can be fixed and at the same time, the wiring board and the electronic component can be electrically connected to each other, so that the electronic component mounting body can be manufactured with high productivity.

さらに、第1の絶縁性樹脂および第2の絶縁性樹脂の少なくとも一方は、フラックスを含んでもよい。   Furthermore, at least one of the first insulating resin and the second insulating resin may include a flux.

これにより、導電体の再溶融時の濡れ性を確保することができる。   Thereby, the wettability at the time of remelting of a conductor can be secured.

さらに、転写型が、低い弾性率および高い離型性を有する転写型樹脂であってもよい。   Further, the transfer mold may be a transfer resin having a low elastic modulus and a high releasability.

さらに、転写型樹脂が、熱硬化性シリコーン樹脂であってもよい。   Further, the transfer resin may be a thermosetting silicone resin.

これらの方法により、微細で均一な形状を有する導電体を容易に形成することができる。   By these methods, a conductor having a fine and uniform shape can be easily formed.

本発明によれば、転写型を用いて、電子部品の電極端子や配線基板の接続端子に微細な導電体を形成できるという大きな効果を奏する。また、導電体を介して、狭ピッチで多数の接続端子と電極端子との接続を高い信頼性で実現できるという大きな効果もある。   According to the present invention, there is a great effect that a fine conductor can be formed on an electrode terminal of an electronic component or a connection terminal of a wiring board using a transfer mold. In addition, there is a great effect that a large number of connection terminals and electrode terminals can be connected with high reliability at a narrow pitch via the conductor.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1と図2は、本発明の実施の形態1に係る電子部品実装体の製造方法を説明する工程断面図である。
(Embodiment 1)
1 and 2 are process cross-sectional views illustrating a method for manufacturing an electronic component mounting body according to Embodiment 1 of the present invention.

まず、図1(a)に示すように、例えば断面が皿ビス形状などの2段以上の形状を有する凹部110が形成された転写型100を用意する。そして、転写型100の凹部110は、導電体形成用孔120と導電体保持用孔130を備えている。さらに、転写型100は、例えば熱硬化性シリコーン樹脂などからなる低弾性率で高い離型性を有する転写型樹脂で形成されている。この理由は、第1に、シリコーン樹脂であるために、導電性樹脂やはんだに対する離型性に優れている。第2に、低弾性であるために、凹部に形成された複雑な形状の転写物でも変形などによるダメージを与えることなく剥離することができる。さらに、反りのある基板などに対しても、容易に反りに応じて変形し転写が可能であるなどの利点を有することによるものである。   First, as shown in FIG. 1 (a), a transfer mold 100 is prepared in which a recess 110 having a cross section having two or more steps such as a countersunk screw shape is formed. The recess 110 of the transfer mold 100 includes a conductor forming hole 120 and a conductor holding hole 130. Furthermore, the transfer mold 100 is formed of a transfer resin having a low elastic modulus and a high releasability, such as a thermosetting silicone resin. The reason for this is that, since it is a silicone resin, it is excellent in releasability from conductive resin and solder. Secondly, because of its low elasticity, even a complex-shaped transfer formed in the recess can be peeled without being damaged by deformation or the like. Further, this is because it has an advantage that it can be easily deformed and transferred in accordance with the warp even on a warped substrate.

ここで、転写型100の凹部110は、例えば断面が皿ビス形状などの2段以上の形状に形成した凹部110に対応する凸部を有する金型を用いて、転写型樹脂にインプリント法や注型法により形成できる。具体的には、例えば、金型に熱硬化性シリコーン樹脂などの転写型樹脂を流し込み、温度150℃、0.5時間の条件で硬化することにより形成することができる。   Here, the concave portion 110 of the transfer mold 100 is formed by using a mold having a convex portion corresponding to the concave portion 110 formed in a shape having two or more steps such as a countersunk screw shape, an imprint method on the transfer mold resin, or the like. It can be formed by a casting method. Specifically, for example, it can be formed by pouring a transfer type resin such as a thermosetting silicone resin into a mold and curing it at a temperature of 150 ° C. for 0.5 hours.

なお、凹部110は、例えば直径10μm〜300μm、高さ10μm〜300μm、アスペクト比0.2〜10程度である。さらに、転写型100の少なくとも凹部110に、さらに離型性を高めるために、例えばシリコーン系離型剤、フッ素系離型剤などを塗布してもよい。   The recess 110 has, for example, a diameter of 10 μm to 300 μm, a height of 10 μm to 300 μm, and an aspect ratio of about 0.2 to 10. Furthermore, in order to further improve the releasability, at least the concave portion 110 of the transfer mold 100 may be coated with, for example, a silicone-based release agent or a fluorine-based release agent.

つぎに、図1(b)に示すように、転写型100の凹部110内で、少なくとも導電体形成用孔120は充填するように、例えばはんだ粉やペースト状のはんだなどからなる導電性材料140の一定量が、例えばスキージ150などにより充填される。その結果、図1(c)に示すように、転写型100の凹部110に、導電性材料140が充電された転写型100が作製される。なお、導電性材料140は、導電フィラーを主体とする熱硬化性樹脂からなる導電性樹脂でもよい。   Next, as shown in FIG. 1B, a conductive material 140 made of, for example, solder powder or paste solder so that at least the conductor forming hole 120 is filled in the recess 110 of the transfer mold 100. A certain amount is filled with a squeegee 150, for example. As a result, as shown in FIG. 1C, the transfer mold 100 in which the conductive material 140 is charged in the recess 110 of the transfer mold 100 is manufactured. The conductive material 140 may be a conductive resin made of a thermosetting resin mainly composed of a conductive filler.

つぎに、図1(d)に示すように、導電性材料の融点以上の温度(150℃〜250℃程度)に加熱して、導電性材料を溶融させる。例えば、In−Snからなるはんだ粉の場合、150℃程度に加熱することにより、溶融させることができる。これにより、凹部110内で一旦溶融した後、自由表面が表面張力により半球状になった導電体160が形成される。このとき、導電性材料の体積収縮により、転写型100の凹部110の導電体保持用孔130程度の空間部170が形成される。なお、導電性材料が導電性樹脂の場合、その硬化温度以上に加熱することになる。例えば、熱硬化性樹脂がエポキシ樹脂の場合、加熱温度160℃で、加熱時間60分程度である。   Next, as shown in FIG.1 (d), it heats to the temperature (about 150 to 250 degreeC) more than melting | fusing point of an electroconductive material, and fuses an electroconductive material. For example, in the case of solder powder made of In—Sn, it can be melted by heating to about 150 ° C. As a result, the conductor 160 is formed in which the free surface is hemispherical due to surface tension after being once melted in the recess 110. At this time, due to the volume shrinkage of the conductive material, a space portion 170 that is about the conductor holding hole 130 of the recess 110 of the transfer mold 100 is formed. In addition, when a conductive material is a conductive resin, it heats more than the hardening temperature. For example, when the thermosetting resin is an epoxy resin, the heating temperature is 160 ° C. and the heating time is about 60 minutes.

つぎに、図1(e)に示すように、空間部170に第1の絶縁性樹脂180を、例えばスキージ150などにより充填する。ここで、第1の絶縁性樹脂180の硬化温度は、導電体160の融点や硬化温度より低いものが好ましい。なお、第1の絶縁性樹脂180は、例えば熱硬化性樹脂を含む接着剤が用いられる。そして、熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂や尿素樹脂などの内の1種もしくは2種以上の混合系が用いられる。   Next, as shown in FIG. 1E, the space 170 is filled with the first insulating resin 180, for example, with a squeegee 150 or the like. Here, the curing temperature of the first insulating resin 180 is preferably lower than the melting point or the curing temperature of the conductor 160. For the first insulating resin 180, for example, an adhesive containing a thermosetting resin is used. And as a thermosetting resin, 1 type, or 2 or more types of mixed systems, such as an epoxy resin, a phenol resin, a polyimide resin, a polyurethane resin, a melamine resin, a urea resin, are used, for example.

以上の工程により、図1(f)に示すように、転写型100の凹部110に導電体160と導電体160を保持するための第1の絶縁性樹脂180が充填された、転写型の中間構造体190が作製される。   Through the above steps, as shown in FIG. 1 (f), the intermediate portion of the transfer mold in which the concave portion 110 of the transfer mold 100 is filled with the conductor 160 and the first insulating resin 180 for holding the conductor 160. A structure 190 is produced.

以下に、図2を用いて、図1(f)に示す転写型の中間構造体190が作製された以降の製造方法について説明する。   Hereinafter, a manufacturing method after the transfer type intermediate structure 190 shown in FIG. 1F is manufactured will be described with reference to FIG.

つぎに、図2(a)に示すように、複数の接続端子210が形成された配線基板200の接続端子210と転写型の中間構造体190の凹部110面とを位置合わせする。   Next, as shown in FIG. 2A, the connection terminals 210 of the wiring board 200 on which the plurality of connection terminals 210 are formed and the surface of the recess 110 of the transfer-type intermediate structure 190 are aligned.

つぎに、図2(b)に示すように、配線基板200の接続端子210と対向して転写型の中間構造体190を載置する。この状態で、第1の絶縁性樹脂180の硬化温度以下の温度で加熱し、第1の絶縁性樹脂180を半硬化状態とする。例えば、第1の絶縁性樹脂180がエポキシ樹脂の場合には、加熱温度120℃、加熱時間60分程度である。これらの条件は、第1の絶縁性樹脂180の材料により異なるが、第1の絶縁性樹脂180の硬化温度以下で、かつ導電体160の融点以下であることが好ましい。また、第1の絶縁性樹脂180の半硬化状態とは、転写型100の剥離時に導電体160や第1の絶縁性樹脂180が接続端子210の転写される付着強度を有する状態である。   Next, as shown in FIG. 2B, a transfer-type intermediate structure 190 is placed facing the connection terminal 210 of the wiring board 200. In this state, the first insulating resin 180 is heated at a temperature equal to or lower than the curing temperature of the first insulating resin 180 to make the first insulating resin 180 semi-cured. For example, when the first insulating resin 180 is an epoxy resin, the heating temperature is 120 ° C. and the heating time is about 60 minutes. These conditions vary depending on the material of the first insulating resin 180, but are preferably not higher than the curing temperature of the first insulating resin 180 and not higher than the melting point of the conductor 160. In addition, the semi-cured state of the first insulating resin 180 is a state in which the conductor 160 and the first insulating resin 180 have adhesion strength to which the connection terminal 210 is transferred when the transfer mold 100 is peeled off.

つぎに、図2(c)に示すように、転写型を剥離することにより配線基板200の接続端子210の上に、半硬化状態の第1の絶縁性樹脂180で保持された導電体160が転写される。   Next, as shown in FIG. 2C, the conductor 160 held by the semi-cured first insulating resin 180 is formed on the connection terminals 210 of the wiring board 200 by peeling the transfer mold. Transcribed.

つぎに、図2(d)に示すように、半硬化状態の第1の絶縁性樹脂180で保持された導電体160が転写された配線基板200の接続端子210の上に第2の絶縁性樹脂220を形成する。そして、第2の絶縁性樹脂220は、少なくとも導電体160の高さ程度の厚みに形成することが好ましい。これは、導電体160の高さより薄いと、例えば半導体チップと配線基板とを固着するためのアンダーフィル材として用いることができないからである。ここで、第2の絶縁性樹脂220は、第1の絶縁性樹脂180と同様な、例えば熱硬化性樹脂を含む接着剤を用いることができる。そして、熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂や尿素樹脂などの内の1種もしくは2種以上の混合系が用いられる。   Next, as shown in FIG. 2D, the second insulating property is formed on the connection terminal 210 of the wiring board 200 onto which the conductor 160 held by the semi-cured first insulating resin 180 is transferred. Resin 220 is formed. The second insulating resin 220 is preferably formed to a thickness at least about the height of the conductor 160. This is because if it is thinner than the height of the conductor 160, for example, it cannot be used as an underfill material for fixing the semiconductor chip and the wiring board. Here, as the second insulating resin 220, an adhesive containing, for example, a thermosetting resin, similar to the first insulating resin 180, can be used. And as a thermosetting resin, 1 type, or 2 or more types of mixed systems, such as an epoxy resin, a phenol resin, a polyimide resin, a polyurethane resin, a melamine resin, a urea resin, are used, for example.

つぎに、図2(e)に示すように、複数の電極端子240を備えた、例えば半導体チップなどの電子部品230の電極端子240を配線基板200の接続端子210の上に保持された導電体160の上に位置合わせし、載置する。そして、電子部品230の電極端子240と配線基板200の接続端子210とが導電体160を介して接続するように加圧し、圧接または圧着する。このとき、導電体160の先端部は山型や半球状であるため、低い圧力で、例えば、接続端子210や電極端子240と接続することができる。また、導電体160の先端部に加圧力が集中し、接続端子210や電極端子240の食い込んだ状態にできるため、安定した接続が可能となる。   Next, as shown in FIG. 2 (e), a conductor having a plurality of electrode terminals 240 and holding the electrode terminals 240 of an electronic component 230 such as a semiconductor chip on the connection terminals 210 of the wiring board 200. Align and place on 160. Then, the electrode terminal 240 of the electronic component 230 and the connection terminal 210 of the wiring board 200 are pressurized so as to be connected via the conductor 160, and are pressed or pressed. At this time, since the tip end portion of the conductor 160 is mountain-shaped or hemispherical, it can be connected to the connection terminal 210 and the electrode terminal 240 with low pressure, for example. Further, since the applied pressure concentrates on the tip of the conductor 160 and the connection terminal 210 and the electrode terminal 240 are bitten, stable connection is possible.

そして、図2(f)に示すように、電子部品230の電極端子240と配線基板200の接続端子210とを導電体160を介して圧接した状態で、第1の絶縁性樹脂および第2の絶縁性樹脂の硬化温度以上で加熱し硬化させる。これにより、電子部品230と配線基板200が電気的に接続された電子部品実装体250が作製される。   Then, as shown in FIG. 2 (f), the first insulating resin and the second insulating resin are bonded in a state where the electrode terminal 240 of the electronic component 230 and the connection terminal 210 of the wiring board 200 are pressed through the conductor 160. Heat and cure above the curing temperature of the insulating resin. Thereby, the electronic component mounting body 250 in which the electronic component 230 and the wiring board 200 are electrically connected is manufactured.

本発明の実施の形態1によれば、半硬化状態の第1の絶縁性樹脂に仮固定して導電体を転写できるため、微細なピッチで接続された電子部品実装体を容易に作製できる。また、転写型の凹部内ではんだ粉を溶融させて導電体を形成するため、均一な形状の導電体を形成できる。さらに、転写型の凹部の形状により、導電体の形状を自由に設計できる。そのため、例えば導電体の先端を山型とすることにより、低加重での接続を可能とし、圧接時に電子部品などのクラックの発生を大幅に低減することができる。   According to Embodiment 1 of the present invention, since the conductor can be transferred by temporarily fixing to the semi-cured first insulating resin, it is possible to easily manufacture the electronic component mounting body connected at a fine pitch. In addition, since the conductor is formed by melting the solder powder in the transfer type recess, a conductor having a uniform shape can be formed. Furthermore, the shape of the conductor can be freely designed by the shape of the concave portion of the transfer mold. Therefore, for example, by making the tip of the conductor into a mountain shape, connection with a low load is possible, and the occurrence of cracks in electronic components or the like can be significantly reduced during pressure welding.

なお、本発明の実施の形態1では、第1の絶縁性樹脂と第2の絶縁性樹脂が異なる樹脂材料で形成される例で説明したが、これに限られない。例えば、第1の絶縁性樹脂と第2の絶縁性樹脂が同じでもよい。これにより、接着性や硬化温度の差を考慮することなく作製できるため、生産性に優れたものとできる。   Although Embodiment 1 of the present invention has been described with an example in which the first insulating resin and the second insulating resin are formed of different resin materials, the present invention is not limited thereto. For example, the first insulating resin and the second insulating resin may be the same. Thereby, since it can produce without considering the difference in adhesiveness or a curing temperature, it can be made excellent in productivity.

また、本発明の実施の形態1では、転写型の凹部を皿ビス形状などの2段以上の形状を例に説明したが、これに限られない。例えば、円錐や角錐形状でもよく、複数の導電体を均一に形成できる形状であれば、特に制限されない。   Further, in the first embodiment of the present invention, the transfer-type concave portion has been described as an example of a two-stage shape such as a countersunk screw shape, but the present invention is not limited to this. For example, a cone or a pyramid shape may be used, and there is no particular limitation as long as a plurality of conductors can be formed uniformly.

以下に、図3を用いて、本発明の実施の形態1に係る電子部品実装体の製造方法の変形例について説明する。   Below, the modification of the manufacturing method of the electronic component mounting body which concerns on Embodiment 1 of this invention is demonstrated using FIG.

図3において、実施の形態1とは、図2以降に示す製造工程において、電子部品の電極端子に導電体を転写した点で異なるものである。他の工程は、図2と同様であり、説明は省略する。   In FIG. 3, the first embodiment is different from the first embodiment in that the conductor is transferred to the electrode terminal of the electronic component in the manufacturing process shown in FIG. The other steps are the same as those in FIG.

つまり、まず、図3(a)に示すように、図1(f)の転写型の中間構造体190の凹部面と、複数の電極端子310が形成された、例えば半導体チップなどの電子部品300の電極端子310とを位置合わせする。   That is, first, as shown in FIG. 3A, an electronic component 300 such as a semiconductor chip, on which a concave surface of the transfer-type intermediate structure 190 of FIG. 1F and a plurality of electrode terminals 310 are formed. The electrode terminal 310 is aligned.

つぎに、図3(b)に示すように、電子部品300の電極端子310と転写型の中間構造体190の凹部110面とを対向させて載置する。この状態で、第1の絶縁性樹脂180の硬化温度以下の温度で加熱し、第1の絶縁性樹脂180を半硬化状態とする。例えば、第1の絶縁性樹脂180がエポキシ樹脂の場合には、加熱温度120℃、加熱時間60分程度である。   Next, as shown in FIG. 3B, the electrode terminal 310 of the electronic component 300 and the concave portion 110 surface of the transfer-type intermediate structure 190 are placed facing each other. In this state, the first insulating resin 180 is heated at a temperature equal to or lower than the curing temperature of the first insulating resin 180 to make the first insulating resin 180 semi-cured. For example, when the first insulating resin 180 is an epoxy resin, the heating temperature is 120 ° C. and the heating time is about 60 minutes.

つぎに、図3(c)に示すように、転写型を剥離することにより電子部品300の電極端子310の上に、半硬化状態の第1の絶縁性樹脂180で保持された導電体160が転写される。   Next, as shown in FIG. 3C, the conductor 160 held by the semi-cured first insulating resin 180 is formed on the electrode terminal 310 of the electronic component 300 by peeling the transfer mold. Transcribed.

つぎに、図3(d)に示すように、配線基板400の接続端子410の上の第2の絶縁性樹脂320を形成する。   Next, as shown in FIG. 3D, a second insulating resin 320 on the connection terminal 410 of the wiring board 400 is formed.

つぎに、図3(e)に示すように、複数の接続端子410を備えた配線基板400の上の第2の絶縁性樹脂320を介して、電子部品300の電極端子310の上に保持された導電体160と接続端子410とを位置合わせし、載置する。さらに、電子部品300の電極端子310と配線基板400の接続端子410とが導電体160を介して接続するように加圧し、圧接または圧着する。このとき、導電体160の先端部が山型や半球状であるため、低い圧力で、例えば、接続端子410や電極端子310と接続することができる。また、導電体160の先端部に加圧力が集中するため、接続端子410や電極端子310の食い込んだ状態での接続が可能となる。   Next, as shown in FIG. 3 (e), it is held on the electrode terminal 310 of the electronic component 300 through the second insulating resin 320 on the wiring board 400 having the plurality of connection terminals 410. The conductor 160 and the connection terminal 410 are aligned and placed. Further, the electrode terminal 310 of the electronic component 300 and the connection terminal 410 of the wiring board 400 are pressurized so as to be connected via the conductor 160, and are pressed or pressed. At this time, since the tip of the conductor 160 has a mountain shape or a hemispherical shape, it can be connected to, for example, the connection terminal 410 or the electrode terminal 310 with a low pressure. In addition, since the applied pressure is concentrated on the front end portion of the conductor 160, the connection with the connection terminal 410 and the electrode terminal 310 biting in is possible.

そして、図3(f)に示すように、電子部品300の電極端子310と配線基板400の接続端子410とを導電体160を介して圧接した状態で、第1の絶縁性樹脂180および第2の絶縁性樹脂320の硬化温度以上で加熱し硬化させる。これにより、電子部品300と配線基板400が電気的に接続された電子部品実装体450が作製される。   Then, as shown in FIG. 3 (f), the first insulating resin 180 and the second insulating resin 180 are connected in a state where the electrode terminal 310 of the electronic component 300 and the connection terminal 410 of the wiring board 400 are pressed through the conductor 160. The insulating resin 320 is cured at a temperature equal to or higher than the curing temperature. Thereby, the electronic component mounting body 450 in which the electronic component 300 and the wiring board 400 are electrically connected is manufactured.

本発明の実施の形態1の変形例によれば、実施の形態1と同様の効果が得られる。   According to the modification of the first embodiment of the present invention, the same effect as in the first embodiment can be obtained.

(実施の形態2)
以下に、図4を用いて、本発明の実施の形態2に係る電子部品実装体の製造方法について説明する。
(Embodiment 2)
Below, the manufacturing method of the electronic component mounting body which concerns on Embodiment 2 of this invention is demonstrated using FIG.

図4において、実施の形態1とは、図2(c)以降に示す製造工程において、第2の絶縁性樹脂の形成方法が異なるものである。他の工程は、実施の形態1と同様であり、説明は省略する。   In FIG. 4, the method for forming the second insulating resin is different from that of the first embodiment in the manufacturing process shown in FIG. Other steps are the same as those in the first embodiment, and a description thereof will be omitted.

つまり、まず、図4(a)に示すように、配線基板200の接続端子210の上に、半硬化状態の第1の絶縁性樹脂180に保持された導電体160を有する配線基板200を用意する。この配線基板200は、実施の形態1の製造方法により形成される電子部品実装体250の図2(c)に示すものである。   That is, first, as shown in FIG. 4A, a wiring board 200 having a conductor 160 held by a semi-cured first insulating resin 180 on a connection terminal 210 of the wiring board 200 is prepared. To do. This wiring board 200 is shown in FIG. 2C of the electronic component mounting body 250 formed by the manufacturing method of the first embodiment.

つぎに、図4(b)に示すように、電子部品500の電極端子510と導電体160とを対向させて位置合わせし載置する。そして、電子部品500の電極端子510と配線基板200の接続端子210とが導電体160を介して接続するように加圧し、圧接または圧着する。このとき、導電体160の先端部が山型や半球状であるため、低い圧力で、例えば、接続端子210や電極端子510と接続することができる。また、導電体160の先端部に加圧力が集中し、接続端子210や電極端子510の食い込んだ状態にできるため、安定した接続が可能となる。   Next, as shown in FIG. 4B, the electrode terminal 510 of the electronic component 500 and the conductor 160 are positioned and placed facing each other. Then, the electrode terminal 510 of the electronic component 500 and the connection terminal 210 of the wiring substrate 200 are pressurized so as to be connected via the conductor 160, and are pressed or pressed. At this time, since the tip of the conductor 160 has a mountain shape or a hemispherical shape, it can be connected to the connection terminal 210 and the electrode terminal 510 with a low pressure, for example. Further, since the applied pressure concentrates on the tip of the conductor 160 and the connection terminal 210 and the electrode terminal 510 are bitten, stable connection is possible.

つぎに、図4(c)に示すように、導電体160を配線基板200の接続端子210と電子部品500の電極端子510とに、例えば食い込ませた状態で、第2の絶縁性樹脂520を、例えばディスペンサなどの注入装置530を用いて隙間540に、例えば電子部品500の外周側面部から注入する。ここで、隙間540は、電子部品500と配線基板200が導電体160を介して形成される空間である。なお、第2の絶縁性樹脂520は、毛細管現象を利用して注入してもよく、さらに注入側以外を減圧することにより注入してもよい。   Next, as shown in FIG. 4C, the second insulating resin 520 is placed in a state in which the conductor 160 is bitten into the connection terminal 210 of the wiring board 200 and the electrode terminal 510 of the electronic component 500, for example. Injecting into the gap 540 from, for example, the outer peripheral side surface of the electronic component 500 using an injection device 530 such as a dispenser. Here, the gap 540 is a space in which the electronic component 500 and the wiring board 200 are formed via the conductor 160. Note that the second insulating resin 520 may be injected by utilizing a capillary phenomenon, or may be injected by reducing the pressure on the portion other than the injection side.

さらに、注入が完了した状態で、第1の絶縁性樹脂180および第2の絶縁性樹脂520の硬化温度以上の温度で加熱し、硬化する。例えば、第1の絶縁性樹脂180と第2の絶縁性樹脂520が、エポキシ樹脂の場合には、加熱温度160℃、加熱時間60分程度である。   Further, in a state where the injection is completed, the first insulating resin 180 and the second insulating resin 520 are heated and cured at a temperature equal to or higher than the curing temperature. For example, when the first insulating resin 180 and the second insulating resin 520 are epoxy resins, the heating temperature is about 160 ° C. and the heating time is about 60 minutes.

上記工程により、図4(d)に示すように、電子部品500と配線基板200が導電体160により電気的に接続された電子部品実装体550が作製される。   Through the above process, as shown in FIG. 4D, an electronic component mounting body 550 in which the electronic component 500 and the wiring board 200 are electrically connected by the conductor 160 is manufactured.

以下に、図5を用いて、本発明の実施の形態2に係る電子部品実装体の製造方法の変形例について説明する。   Below, the modification of the manufacturing method of the electronic component mounting body which concerns on Embodiment 2 of this invention is demonstrated using FIG.

図5において、実施の形態2とは、第1の絶縁性樹脂に保持された導電体が電子部品の電極端子の上に形成した点で異なるものである。他の工程は、図4と同様であり、説明は省略する。   In FIG. 5, the second embodiment is different from the second embodiment in that the conductor held by the first insulating resin is formed on the electrode terminal of the electronic component. The other steps are the same as those in FIG.

本発明の実施の形態2およびその変形例によれば、電子部品の電極端子または配線基板の接続端子と導電体とが、直接圧接により接続されるため、第2の絶縁性樹脂などが介在しない。その結果、接続の信頼性が、さらに向上した電子部品実装体を作製できる。   According to the second embodiment of the present invention and the modification thereof, the electrode terminal of the electronic component or the connection terminal of the wiring board and the conductor are directly connected by pressure contact, so that the second insulating resin or the like is not interposed. . As a result, it is possible to manufacture an electronic component mounting body with further improved connection reliability.

(実施の形態3)
以下に、図6を用いて、本発明の実施の形態3に係る電子部品実装体の製造方法について説明する。
(Embodiment 3)
Below, the manufacturing method of the electronic component mounting body which concerns on Embodiment 3 of this invention is demonstrated using FIG.

図6において、実施の形態1とは、圧接状態の導電体を再溶融させて、電子部品の電極端子と配線基板の接続端子を接続する点で異なるものである。   In FIG. 6, the first embodiment is different from the first embodiment in that the conductor in pressure contact state is remelted to connect the electrode terminal of the electronic component and the connection terminal of the wiring board.

つまり、まず、図6(a)に示すように、配線基板700の接続端子710の上に、半硬化状態の第1の絶縁性樹脂180に保持された導電体160を有する配線基板700を用意する。この配線基板700は、実施の形態1の製造方法により形成される電子部品実装体250の図2(c)と同様のものである。   That is, first, as shown in FIG. 6A, a wiring substrate 700 having a conductor 160 held by a semi-cured first insulating resin 180 on a connection terminal 710 of the wiring substrate 700 is prepared. To do. This wiring board 700 is the same as FIG. 2C of the electronic component mounting body 250 formed by the manufacturing method of the first embodiment.

つぎに、図6(b)に示すように、半硬化状態の第1の絶縁性樹脂180で保持された導電体160が転写された配線基板700の接続端子710の上に第2の絶縁性樹脂720を形成する。そして、第2の絶縁性樹脂720は、少なくとも導電体160の高さ程度の厚みに形成することが好ましい。これは、導電体160の高さより薄いと、例えば半導体チップとのアンダーフィル材として機能しないためである。ここで、第2の絶縁性樹脂720は、第1の絶縁性樹脂180と同様な、例えば熱硬化性樹脂を含む接着剤を用いることができる。そして、熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂や尿素樹脂などの内の1種もしくは2種以上の混合系が用いられる。   Next, as shown in FIG. 6B, the second insulating property is formed on the connection terminal 710 of the wiring board 700 onto which the conductor 160 held by the semi-cured first insulating resin 180 is transferred. Resin 720 is formed. The second insulating resin 720 is preferably formed to a thickness at least about the height of the conductor 160. This is because if it is thinner than the conductor 160, it does not function as an underfill material with a semiconductor chip, for example. Here, as the second insulating resin 720, for example, an adhesive containing a thermosetting resin similar to the first insulating resin 180 can be used. And as a thermosetting resin, 1 type, or 2 or more types of mixed systems, such as an epoxy resin, a phenol resin, a polyimide resin, a polyurethane resin, a melamine resin, a urea resin, are used, for example.

つぎに、図6(c)に示すように、複数の電極端子810を備えた、例えば半導体チップなどの電子部品800の電極端子810を配線基板700の接続端子710の上に保持された導電体160の上に位置合わせし、載置する。さらに、電子部品800の電極端子810と配線基板700の接続端子710とが導電体160を介して接触するように、加圧する。このとき、導電体160の山型や半球状であるため、小さな加圧力で、例えば、接続端子710や電極端子810と接続することができる。また、導電体160の先端部に加圧力が集中するため、接続端子710や電極端子810の食い込んだ状態での接続が可能となる。なお、この場合には、導電体160を再溶融させて電気的に接続させるため、必ずしも食い込んだ状態とするための加圧力は必要ない。   Next, as shown in FIG. 6 (c), a conductor having a plurality of electrode terminals 810 and holding the electrode terminals 810 of an electronic component 800 such as a semiconductor chip on the connection terminals 710 of the wiring board 700. Align and place on 160. Further, pressure is applied so that the electrode terminal 810 of the electronic component 800 and the connection terminal 710 of the wiring board 700 are in contact with each other through the conductor 160. At this time, since the conductor 160 has a mountain shape or a hemispherical shape, it can be connected to, for example, the connection terminal 710 or the electrode terminal 810 with a small applied pressure. In addition, since the applied pressure is concentrated on the tip of the conductor 160, connection in a state where the connection terminal 710 and the electrode terminal 810 are bitten is possible. In this case, since the conductor 160 is remelted and electrically connected, it is not always necessary to apply a pressing force to bring the conductor 160 into a bite state.

そして、図6(d)に示すように、電子部品800の電極端子810と配線基板700の接続端子710とを導電体160を介して接触させ、その間隔を保持した状態で、第1の絶縁性樹脂および第2の絶縁性樹脂の硬化温度以上で、かつ導電体の融点以上の温度で加熱する。これにより、例えばはんだからなる導電体160は、電子部品の電極端子や配線基板の接続端子との濡れ性が高いため、各端子面に広がろうとする。そして、電子部品と配線基板の間隔は一定に保持されているので、鼓状の導電層820が形成される。それとともに、第1の絶縁性樹脂と第2の絶縁性樹脂を硬化することにより、電子部品と配線基板が固着された電子部品実装体850が作製される。   6D, the electrode terminal 810 of the electronic component 800 and the connection terminal 710 of the wiring board 700 are brought into contact with each other through the conductor 160, and the first insulation is maintained while maintaining the distance therebetween. The resin is heated at a temperature equal to or higher than the curing temperature of the conductive resin and the second insulating resin and equal to or higher than the melting point of the conductor. Thereby, for example, the conductor 160 made of solder tends to spread on each terminal surface because it has high wettability with the electrode terminal of the electronic component and the connection terminal of the wiring board. And since the space | interval of an electronic component and a wiring board is kept constant, the drum-shaped conductive layer 820 is formed. At the same time, the first insulating resin and the second insulating resin are cured to produce an electronic component mounting body 850 in which the electronic component and the wiring board are fixed.

なお、導電体の融点と、第1の絶縁性樹脂および第2の絶縁性樹脂の硬化温度との関係は、特に制限されない。しかし、鼓状の導電層を形成する場合には、導電体の融点が、第1の絶縁性樹脂および第2の絶縁性樹脂の硬化温度より、低いものが好ましい。なぜなら、先に、第1の絶縁性樹脂および第2の絶縁性樹脂が硬化すると、導電体が溶融しても、各端子面上に広がることができないためである。   Note that the relationship between the melting point of the conductor and the curing temperatures of the first insulating resin and the second insulating resin is not particularly limited. However, when the drum-shaped conductive layer is formed, it is preferable that the melting point of the conductor is lower than the curing temperature of the first insulating resin and the second insulating resin. This is because, when the first insulating resin and the second insulating resin are cured first, even if the conductor is melted, it cannot spread on each terminal surface.

本発明の実施の形態3によれば、電子部品の電極端子と配線基板の接続端子とを導電層により確実に接続することができる。   According to the third embodiment of the present invention, the electrode terminal of the electronic component and the connection terminal of the wiring board can be reliably connected by the conductive layer.

また、導電体を溶融させて接続させるため、導電体と電極端子および接続端子との圧接時の加圧力を低荷重で行うことができる。その結果、電子部品の破損などが発生しにくい信頼性に優れた電子部品実装体を作製できる。   In addition, since the conductor is melted and connected, the applied pressure at the time of pressure contact between the conductor, the electrode terminal, and the connection terminal can be applied with a low load. As a result, it is possible to manufacture a highly reliable electronic component mounting body that is unlikely to cause damage to the electronic component.

以下に、図7を用いて、本発明の実施の形態3に係る電子部品実装体の製造方法の変形例について説明する。   Below, the modification of the manufacturing method of the electronic component mounting body which concerns on Embodiment 3 of this invention is demonstrated using FIG.

図7において、実施の形態3とは、第2の絶縁性樹脂の形成方法が異なるものである。   In FIG. 7, the second insulating resin is formed differently from the third embodiment.

つまり、まず、図7(a)に示すように、配線基板700の接続端子710の上に、半硬化状態の第1の絶縁性樹脂180に保持された導電体160を有する配線基板700を用意する。この配線基板700は、実施の形態1の製造方法により形成される電子部品実装体250の図2(c)に示すものである。   That is, first, as shown in FIG. 7A, a wiring board 700 having a conductor 160 held by a first insulating resin 180 in a semi-cured state on a connection terminal 710 of the wiring board 700 is prepared. To do. This wiring board 700 is shown in FIG. 2C of the electronic component mounting body 250 formed by the manufacturing method of the first embodiment.

つぎに、図7(b)に示すように、電子部品800の電極端子810と導電体160とを対向させて位置合わせし載置する。そして、電子部品800の電極端子810と配線基板700の接続端子710とが導電体160を介して接触するように、加圧する。   Next, as shown in FIG. 7B, the electrode terminal 810 of the electronic component 800 and the conductor 160 are aligned and placed facing each other. Then, pressure is applied so that the electrode terminal 810 of the electronic component 800 and the connection terminal 710 of the wiring board 700 are in contact with each other through the conductor 160.

さらに、導電体160を介して配線基板700の接続端子710と電子部品800の電極端子810とを接触させた状態で、第2の絶縁性樹脂720を、例えばディスペンサなどの注入装置830を用いて隙間840に注入する。ここで、隙間840は、電子部品800と配線基板700が導電体160によって形成される空間である。なお、第2の絶縁性樹脂720は、毛細管現象を利用して注入してもよく、さらに注入側以外を減圧することにより注入してもよい。これにより、図7(c)に示すように、第2の絶縁性樹脂720により、導電体160を介して電子部品800と配線基板700が接続された状態になる。   Further, in a state where the connection terminal 710 of the wiring substrate 700 and the electrode terminal 810 of the electronic component 800 are in contact with each other through the conductor 160, the second insulating resin 720 is used using an injection device 830 such as a dispenser. Inject into gap 840. Here, the gap 840 is a space in which the electronic component 800 and the wiring board 700 are formed by the conductor 160. Note that the second insulating resin 720 may be injected using a capillary phenomenon, or may be injected by reducing the pressure on the other side than the injection side. As a result, as shown in FIG. 7C, the electronic component 800 and the wiring board 700 are connected by the second insulating resin 720 via the conductor 160.

そして、図7(d)に示すように、電子部品800の電極端子810と配線基板700の接続端子710とを導電体160を介して接触させ、その間隔を保持した状態で、第1の絶縁性樹脂および第2の絶縁性樹脂の硬化温度以上で、かつ導電体の融点以上の温度で加熱する。これにより、例えばはんだからなる導電体は、電子部品800の電極端子810や配線基板700の接続端子710との濡れ性が高いため、各端子面に全体に広がろうとする。このとき、はんだの表面張力よりも各端子との濡れ性が高ければ、電子部品800と配線基板700の間隔が一定に保持されているため、鼓状の導電層820が形成される。それとともに、第1の絶縁性樹脂と第2の絶縁性樹脂を硬化することにより、電子部品800と配線基板700が固着された電子部品実装体850が作製される。   7D, the electrode terminal 810 of the electronic component 800 and the connection terminal 710 of the wiring board 700 are brought into contact with each other through the conductor 160, and the first insulation is maintained while maintaining the distance therebetween. The resin is heated at a temperature equal to or higher than the curing temperature of the conductive resin and the second insulating resin and equal to or higher than the melting point of the conductor. Thereby, for example, a conductor made of solder has high wettability with the electrode terminals 810 of the electronic component 800 and the connection terminals 710 of the wiring board 700, and therefore tends to spread over the entire terminal surfaces. At this time, if the wettability with each terminal is higher than the surface tension of the solder, the interval between the electronic component 800 and the wiring board 700 is kept constant, so that the drum-shaped conductive layer 820 is formed. At the same time, by curing the first insulating resin and the second insulating resin, the electronic component mounting body 850 to which the electronic component 800 and the wiring board 700 are fixed is manufactured.

なお、第1の絶縁性樹脂および第2の絶縁性樹脂の少なくとも一方は、はんだなどの導電体の再溶融時の各端子との濡れ性をさらに向上できるため、例えばフラックスなどを含有したものが好ましい。   In addition, since at least one of the first insulating resin and the second insulating resin can further improve the wettability with each terminal at the time of remelting a conductor such as solder, the one containing, for example, a flux or the like preferable.

本発明の実施の形態3の変形例によれば、実施の形態3と同様の効果が得られる。さらに、電子部品の電極端子または配線基板の接続端子と導電体とが、直接圧接により接続されるため、第2の絶縁性樹脂などが介在しない。その結果、接触抵抗のばらつきなどが小さく、安定した接続を実現した信頼性に優れた電子部品実装体を作製できる。   According to the modification of the third embodiment of the present invention, the same effect as in the third embodiment can be obtained. Furthermore, since the electrode terminal of the electronic component or the connection terminal of the wiring board and the conductor are directly connected by pressure contact, the second insulating resin or the like is not interposed. As a result, it is possible to manufacture a highly reliable electronic component mounting body in which variation in contact resistance is small and stable connection is realized.

本発明によれば、大規模集積化回路や撮像素子などに代表される大面積の半導体素子、またはそれらを搭載したパッケージなどの電子部品を配線基板に実装する技術分野において有用である。   INDUSTRIAL APPLICABILITY According to the present invention, it is useful in the technical field of mounting electronic components such as large-scale integrated circuits and large-area semiconductor elements typified by imaging elements or packages on which these are mounted on a wiring board.

本発明の実施の形態1に係る電子部品実装体の製造方法を説明する工程断面図Process sectional drawing explaining the manufacturing method of the electronic component mounting body which concerns on Embodiment 1 of this invention 本発明の実施の形態1に係る電子部品実装体の製造方法を説明する工程断面図Process sectional drawing explaining the manufacturing method of the electronic component mounting body which concerns on Embodiment 1 of this invention 本発明の実施の形態1に係る電子部品実装体の製造方法の変形例を説明する工程断面図Process sectional drawing explaining the modification of the manufacturing method of the electronic component mounting body which concerns on Embodiment 1 of this invention 本発明の実施の形態2に係る電子部品実装体の製造方法を説明する工程断面図Process sectional drawing explaining the manufacturing method of the electronic component mounting body which concerns on Embodiment 2 of this invention 本発明の実施の形態2に係る電子部品実装体の製造方法の変形例を説明する工程断面図Process sectional drawing explaining the modification of the manufacturing method of the electronic component mounting body which concerns on Embodiment 2 of this invention 本発明の実施の形態3に係る電子部品実装体の製造方法を説明する工程断面図Process sectional drawing explaining the manufacturing method of the electronic component mounting body which concerns on Embodiment 3 of this invention 本発明の実施の形態3に係る電子部品実装体の製造方法の変形例を説明する工程断面図Process sectional drawing explaining the modification of the manufacturing method of the electronic component mounting body which concerns on Embodiment 3 of this invention 従来の突起電極を説明する断面図Sectional drawing explaining the conventional protruding electrode

符号の説明Explanation of symbols

100 転写型
110 凹部
120 導電体形成用孔
130 導電体保持用孔
140 導電性材料
150 スキージ
160 導電体
170 空間部
180 第1の絶縁性樹脂
190 転写型の中間構造体
200,400,700 配線基板
210,410,710 接続端子
220,320,520,720 第2の絶縁性樹脂
230,300,500,800 電子部品
240,310,510,810 電極端子
250,450,550,850 電子部品実装体
530,830 注入装置
540,840 隙間
820 導電層
DESCRIPTION OF SYMBOLS 100 Transfer mold 110 Recessed part 120 Conductor formation hole 130 Conductor holding hole 140 Conductive material 150 Squeegee 160 Conductor 170 Space part 180 First insulating resin 190 Transfer type intermediate structure 200, 400, 700 Wiring board 210, 410, 710 Connection terminal 220, 320, 520, 720 Second insulating resin 230, 300, 500, 800 Electronic component 240, 310, 510, 810 Electrode terminal 250, 450, 550, 850 Electronic component mounting body 530 , 830 Injection device 540, 840 Gap 820 Conductive layer

Claims (13)

複数の接続端子が設けられている配線基板と、前記接続端子に対応して複数の電極端子が設けられている電子部品とを電気的に接続する電子部品実装体の製造方法であって、
複数の前記接続端子に対応する2段以上の形状の凹部を備える転写型の前記凹部に、導電性材料を充填する工程と、
前記導電性材料を加熱した後、硬化させることにより導電体を形成し、前記導電性材料の硬化収縮により前記凹部に空間部を形成する工程と、
前記空間部に第1の絶縁性樹脂を充填する工程と、
前記接続端子に対向して前記転写型の前記凹部を位置合わせして載置する工程と、
少なくとも前記第1の絶縁性樹脂が半硬化状態になる温度で加熱する工程と、
前記転写型を剥離する工程と、
前記配線基板の前記導電体が形成された面に第2の絶縁性樹脂を形成する工程と、
前記導電体と対向して、前記電子部品の前記電極端子を位置合わせする工程と、
前記導電体を介して、前記接続端子と前記電極端子を接続するとともに、前記第2の絶縁性樹脂を硬化する工程とを含むことを特徴とする電子部品実装体の製造方法。
A method of manufacturing an electronic component mounting body for electrically connecting a wiring board provided with a plurality of connection terminals and an electronic component provided with a plurality of electrode terminals corresponding to the connection terminals,
A step of filling a conductive material in the concave portion of the transfer mold provided with a concave portion having a shape of two or more stages corresponding to the plurality of connection terminals;
Heating the conductive material and then curing it to form a conductor, and forming a space in the recess by curing shrinkage of the conductive material;
Filling the space with a first insulating resin;
A step of aligning and placing the concave portion of the transfer mold facing the connection terminal;
Heating at least at a temperature at which the first insulating resin is in a semi-cured state;
Peeling the transfer mold;
Forming a second insulating resin on the surface of the wiring board on which the conductor is formed;
Facing the conductor and aligning the electrode terminals of the electronic component;
A method of manufacturing an electronic component mounting body, comprising: connecting the connection terminal and the electrode terminal via the conductor, and curing the second insulating resin.
複数の接続端子が設けられている配線基板と、前記接続端子に対応して複数の電極端子が設けられている電子部品とを電気的に接続する電子部品実装体の製造方法であって、
複数の前記電極端子に対応する2段以上の形状の凹部を備える転写型の前記凹部に、導電性材料を充填する工程と、
前記導電性材料を加熱した後、硬化させることにより導電体を形成し、前記導電性材料の硬化収縮により前記凹部に空間部を形成する工程と、
前記空間部に第1の絶縁性樹脂を充填する工程と、
前記電極端子に対向して前記転写型の前記凹部を位置合わせして載置する工程と、
少なくとも前記第1の絶縁性樹脂が半硬化状態になる温度で加熱する工程と、
前記転写型を剥離する工程と、
前記配線基板の前記電極端子が形成された面に第2の絶縁性樹脂を形成する工程と、
前記導電体と対向して、前記配線基板の前記接続端子を位置合わせする工程と、
前記導電体を介して、前記接続端子と前記電極端子を接続するとともに、前記第2の絶縁性樹脂を硬化する工程とを含むことを特徴とする電子部品実装体の製造方法。
A method of manufacturing an electronic component mounting body for electrically connecting a wiring board provided with a plurality of connection terminals and an electronic component provided with a plurality of electrode terminals corresponding to the connection terminals,
A step of filling a conductive material into the concave portion of the transfer mold provided with concave portions of two or more steps corresponding to the plurality of electrode terminals;
Heating the conductive material and then curing it to form a conductor, and forming a space in the recess by curing shrinkage of the conductive material;
Filling the space with a first insulating resin;
A step of aligning and placing the concave portion of the transfer mold facing the electrode terminal;
Heating at least at a temperature at which the first insulating resin is in a semi-cured state;
Peeling the transfer mold;
Forming a second insulating resin on the surface of the wiring board on which the electrode terminals are formed;
Facing the conductor, aligning the connection terminals of the wiring board;
A method of manufacturing an electronic component mounting body, comprising: connecting the connection terminal and the electrode terminal via the conductor, and curing the second insulating resin.
複数の接続端子が設けられている配線基板と、前記接続端子に対応して複数の電極端子が設けられている電子部品とを電気的に接続する電子部品実装体の製造方法であって、
複数の前記接続端子に対応する2段以上の形状の凹部を備える転写型の前記凹部に、導電性材料を充填する工程と、
前記導電性材料を加熱した後、硬化させることにより導電体を形成し、前記導電性材料の硬化収縮により前記凹部に空間部を形成する工程と、
前記空間部に第1の絶縁性樹脂を充填する工程と、
前記接続端子に対向して前記転写型の前記凹部を位置合わせして載置する工程と、
少なくとも前記第1の絶縁性樹脂が半硬化状態になる温度で加熱する工程と、
前記転写型を剥離する工程と、
前記導電体と対向して、前記電子部品の前記電極端子を位置合わせする工程と、
前記導電体を介して、前記接続端子と前記電極端子を接続する工程と、
前記接続端子と前記電極端子の隙間に、第2の絶縁性樹脂を注入し、前記第2の絶縁性樹脂を硬化する工程とを含むことを特徴とする電子部品実装体の製造方法。
A method of manufacturing an electronic component mounting body for electrically connecting a wiring board provided with a plurality of connection terminals and an electronic component provided with a plurality of electrode terminals corresponding to the connection terminals,
A step of filling a conductive material in the concave portion of the transfer mold provided with a concave portion having a shape of two or more stages corresponding to the plurality of connection terminals;
Heating the conductive material and then curing it to form a conductor, and forming a space in the recess by curing shrinkage of the conductive material;
Filling the space with a first insulating resin;
A step of aligning and placing the concave portion of the transfer mold facing the connection terminal;
Heating at least at a temperature at which the first insulating resin is in a semi-cured state;
Peeling the transfer mold;
Facing the conductor and aligning the electrode terminals of the electronic component;
Connecting the connection terminal and the electrode terminal via the conductor;
The manufacturing method of the electronic component mounting body characterized by including the process of inject | pouring 2nd insulating resin in the clearance gap between the said connection terminal and the said electrode terminal, and hardening | curing said 2nd insulating resin.
複数の接続端子が設けられている配線基板と、前記接続端子に対応して複数の電極端子が設けられている電子部品とを電気的に接続する電子部品実装体の製造方法であって、
複数の前記電極端子に対応する2段以上の形状の凹部を備える転写型の前記凹部に、導電性材料を充填する工程と、
前記導電性材料を加熱した後、硬化させることにより導電体を形成し、前記導電性材料の硬化収縮により前記凹部に空間部を形成する工程と、
前記空間部に第1の絶縁性樹脂を充填する工程と、
前記電極端子に対向して前記転写型の前記凹部を位置合わせして載置する工程と、
少なくとも前記第1の絶縁性樹脂が半硬化状態になる温度で加熱する工程と、
前記転写型を剥離する工程と、
前記導電体と対向して、前記配線基板の前記接続端子を位置合わせする工程と、
前記導電体を介して、前記接続端子と前記電極端子を接続する工程と、
前記接続端子と前記電極端子の隙間に、第2の絶縁性樹脂を注入し、前記第2の絶縁性樹脂を硬化する工程とを含むことを特徴とする電子部品実装体の製造方法。
A method of manufacturing an electronic component mounting body for electrically connecting a wiring board provided with a plurality of connection terminals and an electronic component provided with a plurality of electrode terminals corresponding to the connection terminals,
A step of filling a conductive material into the concave portion of the transfer mold provided with concave portions of two or more steps corresponding to the plurality of electrode terminals;
Heating the conductive material and then curing it to form a conductor, and forming a space in the recess by curing shrinkage of the conductive material;
Filling the space with a first insulating resin;
A step of aligning and placing the concave portion of the transfer mold facing the electrode terminal;
Heating at least at a temperature at which the first insulating resin is in a semi-cured state;
Peeling the transfer mold;
Facing the conductor, aligning the connection terminals of the wiring board;
Connecting the connection terminal and the electrode terminal via the conductor;
The manufacturing method of the electronic component mounting body characterized by including the process of inject | pouring 2nd insulating resin in the clearance gap between the said connection terminal and the said electrode terminal, and hardening | curing said 2nd insulating resin.
前記凹部が、皿ビス形状であることを特徴とする請求項1から請求項4までのいずれかに記載の電子部品実装体の製造方法。 The method for manufacturing an electronic component mounting body according to any one of claims 1 to 4, wherein the concave portion has a countersunk screw shape. 前記接続端子と前記電極端子を接続する工程が、圧着、圧接または超音波接合であることを特徴とする請求項1から請求項4までのいずれかに記載の電子部品実装体の製造方法。 The method for manufacturing an electronic component mounting body according to any one of claims 1 to 4, wherein the step of connecting the connection terminal and the electrode terminal is pressure bonding, pressure welding, or ultrasonic bonding. 前記接続端子と前記電極端子を接続する工程が、前記導電体の再溶融により行われることを特徴とする請求項1から請求項4までのいずれかに記載の電子部品実装体の製造方法。 The method for manufacturing an electronic component mounting body according to any one of claims 1 to 4, wherein the step of connecting the connection terminal and the electrode terminal is performed by remelting the conductor. 前記導電性材料が、はんだ粉またははんだペーストであることを特徴とする請求項1から請求項4までのいずれかに記載の電子部品実装体の製造方法。 The method for manufacturing an electronic component mounting body according to any one of claims 1 to 4, wherein the conductive material is solder powder or solder paste. 前記第1の絶縁性樹脂と前記第2の絶縁性樹脂が、熱硬化性樹脂からなることを特徴とする請求項1から請求項4までのいずれかに記載の電子部品実装体の製造方法。 The method for manufacturing an electronic component package according to any one of claims 1 to 4, wherein the first insulating resin and the second insulating resin are made of a thermosetting resin. 前記第1の絶縁性樹脂と前記第2の絶縁性樹脂が、同じ樹脂材料からなることを特徴とする請求項1から請求項4までのいずれかに記載の電子部品実装体の製造方法。 The method for manufacturing an electronic component mounting body according to any one of claims 1 to 4, wherein the first insulating resin and the second insulating resin are made of the same resin material. 前記第1の絶縁性樹脂および前記第2の絶縁性樹脂の少なくとも一方は、フラックスを含むことを特徴とする請求項1から請求項4までのいずれかに記載の電子部品実装体の製造方法。 5. The method of manufacturing an electronic component mounting body according to claim 1, wherein at least one of the first insulating resin and the second insulating resin contains a flux. 6. 前記転写型が、低い弾性率および高い離型性を有する転写型樹脂であることを特徴とする請求項1から請求項4までのいずれかに記載の電子部品実装体の製造方法。 The method for manufacturing an electronic component mounting body according to any one of claims 1 to 4, wherein the transfer mold is a transfer resin having a low elastic modulus and a high releasability. 前記転写型樹脂が、熱硬化性シリコーン樹脂であることを特徴とする請求項12に記載の電子部品実装体の製造方法。 13. The method of manufacturing an electronic component package according to claim 12, wherein the transfer resin is a thermosetting silicone resin.
JP2005142633A 2005-04-15 2005-05-16 Manufacturing method of electronic component mounting body Active JP4479582B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005142633A JP4479582B2 (en) 2005-05-16 2005-05-16 Manufacturing method of electronic component mounting body
CN2006800117409A CN101156238B (en) 2005-04-15 2006-04-14 Methods for manufacturing protruding electrode for connecting electronic component and electronic component mounted body
PCT/JP2006/307916 WO2006112384A1 (en) 2005-04-15 2006-04-14 Protruding electrode for connecting electronic component, electronic component mounted body using such electrode and methods for manufacturing such electrode and electronic component mounted body
US11/883,801 US8033016B2 (en) 2005-04-15 2006-04-14 Method for manufacturing an electrode and electrode component mounted body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142633A JP4479582B2 (en) 2005-05-16 2005-05-16 Manufacturing method of electronic component mounting body

Publications (2)

Publication Number Publication Date
JP2006319253A JP2006319253A (en) 2006-11-24
JP4479582B2 true JP4479582B2 (en) 2010-06-09

Family

ID=37539627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142633A Active JP4479582B2 (en) 2005-04-15 2005-05-16 Manufacturing method of electronic component mounting body

Country Status (1)

Country Link
JP (1) JP4479582B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436253B2 (en) 2008-05-23 2013-05-07 Panasonic Corporation Method of manufacturing mounting structure and mounting structure
JP6509529B2 (en) * 2014-11-13 2019-05-08 株式会社フジクラ Wiring board and method of manufacturing the same
JP7185252B2 (en) 2018-01-31 2022-12-07 三国電子有限会社 Method for producing connection structure
JP7160302B2 (en) * 2018-01-31 2022-10-25 三国電子有限会社 CONNECTED STRUCTURE AND METHOD OF MAKING CONNECTED STRUCTURE

Also Published As

Publication number Publication date
JP2006319253A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
TW501208B (en) Semiconductor device and manufacturing method of the same
WO2006112384A1 (en) Protruding electrode for connecting electronic component, electronic component mounted body using such electrode and methods for manufacturing such electrode and electronic component mounted body
CN101156238B (en) Methods for manufacturing protruding electrode for connecting electronic component and electronic component mounted body
WO2010070806A1 (en) Semiconductor device, flip-chip mounting method and flip-chip mounting apparatus
JP3450236B2 (en) Semiconductor device and manufacturing method thereof
WO2013027718A1 (en) Component-mounting printed circuit board and manufacturing method for same
KR20000063759A (en) High reliability non-conductive adhesives for non-solder flip chip bondings and flip chip bonding method using the same
US7994638B2 (en) Semiconductor chip and semiconductor device
JP3727587B2 (en) Mounting method of semiconductor device
JP2000277649A (en) Semiconductor and manufacture of the same
JP4479582B2 (en) Manufacturing method of electronic component mounting body
JP3116926B2 (en) Package structure and semiconductor device, package manufacturing method, and semiconductor device manufacturing method
JP5451053B2 (en) Flip chip mounting method and flip chip mounting apparatus
JP3763962B2 (en) Mounting method of chip parts on printed circuit board
JP3552660B2 (en) Method for manufacturing semiconductor device
JP2002016104A (en) Mounting method of semiconductor device and manufacturing method of semiconductor device mounted assembly
JP2000223534A (en) Apparatus for mounting semiconductor and method of mounting semiconductor chip
JP3078781B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2002231856A (en) Semiconductor device and its manufacturing method
JP4859376B2 (en) Electric structure and method for manufacturing electric structure
JP3337922B2 (en) Semiconductor device and manufacturing method thereof
JP2003297977A (en) Method for producing electronic component
JP2001308230A (en) Semiconductor device
TW530394B (en) Electrical device with metal plugs and method for making the same
JP3598058B2 (en) Circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3