[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4478844B2 - Printed wiring board manufacturing method and printed wiring board manufactured by the method - Google Patents

Printed wiring board manufacturing method and printed wiring board manufactured by the method Download PDF

Info

Publication number
JP4478844B2
JP4478844B2 JP36885999A JP36885999A JP4478844B2 JP 4478844 B2 JP4478844 B2 JP 4478844B2 JP 36885999 A JP36885999 A JP 36885999A JP 36885999 A JP36885999 A JP 36885999A JP 4478844 B2 JP4478844 B2 JP 4478844B2
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
plating
circuit
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36885999A
Other languages
Japanese (ja)
Other versions
JP2001185846A (en
Inventor
直之 浦崎
茂晴 有家
豊樹 伊藤
健次 高井
昭士 中祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP36885999A priority Critical patent/JP4478844B2/en
Publication of JP2001185846A publication Critical patent/JP2001185846A/en
Application granted granted Critical
Publication of JP4478844B2 publication Critical patent/JP4478844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プリント配線板の製造方法とその方法によって製造されたプリント配線板に関する。
【0002】
【従来の技術】
近年、電子機器の軽薄短小化、多機能化及び高速化が進むと共に、ビルドアップ配線板が使用されてきており、バイアホールの微小化が進んでいる。このようなビルドアップ配線板の製造には、内層配線板に絶縁樹脂層を形成した後、炭酸ガスレーザを照射してバイアホールの穴あけを行い、デスミア処理後、無電解めっき等によってその層間接続用の穴内壁と絶縁樹脂層の表面の金属化を行った後、絶縁樹脂層の表面にめっきレジストを形成し、パターン電気めっきして回路導体を形成した後、めっきレジストを剥離しクイックエッチングにより、無電解めっきをエッチング除去することにより、回路を形成する方法がある。
【0003】
【発明が解決しようとする課題】
このビルドアップ多層配線板は、回路を形成するために無電解めっきをエッチング除去する時に回路となるパターンも同時にエッチング液によって削られる。
また、その上にさらに、回路が形成された基板を内層回路板として多層回路を形成するために熱硬化性樹脂との密着を促進するために、銅表面を酸化/還元する処理が一般的に行われている。この酸化/還元処理の前処理として過硫酸アンモニウム等の化学エッチング液で銅表面を薄くエッチング除去して酸化/還元処理を行っている。
この2回のエッチング処理により導体回路がエッチング除去され、配線の細りや断線等の歩留りが低下するという課題があり、また、断線が起きなかった場合でも、回路銅箔の厚さが薄くなるため、熱サイクル試験等の接続信頼性が低下するという課題があった。
【0004】
本発明は、生産性に優れ、かつ接続信頼性の低下しない微細配線に適したプリント配線板の製造方法とその方法によって製造されたプリント配線板を提供することを目的とする。
【0005】
【課題を解決するための手段】
発明は、以下のことを特徴とする。
(1)内層回路を有する内層回路板の上に、樹脂層を形成し、内層に達する穴をあけ、穴内壁を金属化し、外層回路を形成するプリント配線板の製造方法において、樹脂層の表面に無電解銅めっきにより下地銅めっきを形成し、下地銅めっき表面にめっきレジストを形成して電気銅めっきにより回路の形状に導体を形成し、めっきレジストを除去してそのめっきレジストの下にあった下地銅めっきを、蟻酸を主成分とするエッチング液によりエッチング除去して外層回路を形成すると共に、その表面を粗化し、ベンゾトリアゾール水溶液にプリント配線板を浸漬し、さらに前記外層回路表面に樹脂層を形成するプリント配線板の製造方法。
(2)(1)の方法で製造されたプリント配線板。
【0006】
【発明の実施の形態】
本発明において、使用される樹脂は、熱硬化性樹脂を用いることが好ましく、中でもエポキシ樹脂であることがより好ましい。このようなエポキシ樹脂は、エポキシ樹脂及び硬化剤を含む熱硬化性樹脂組成物からなり、この熱硬化性樹脂組成物には、さらに、必要に応じて硬化促進剤、触媒、エラストマ、難燃剤などを加えてもよい。
【0007】
エポキシ樹脂は、分子内にエポキシ基を有するものであればどのようなものでもよく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェノールのジグリシジリエーテル化物、ナフタレンジオールのジグリシジリエーテル化物、フェノール類のジグリシジリエーテル化物、アルコール類のジグリシジルエーテル化物、及びこれらのアルキル置換体、ハロゲン化物、水素添加物などがある。これらは併用してもよく、エポキシ樹脂以外の成分が不純物として含まれていてもよい。
【0008】
本発明で使用するエポキシ樹脂用硬化剤は、エポキシ樹脂を硬化させるものであれば、限定することなく使用でき、例えば、多官能フェノール類、アミン類、イミダゾール化合物、酸無水物、有機リン化合物およびこれらのハロゲン化物などがある。
【0009】
多官能フェノール類の例として、単環二官能フェノールであるヒドロキノン、レゾルシノール、カテコール,多環二官能フェノールであるビスフェノールA、ビスフェノールF、ナフタレンジオール類、ビフェノール類、及びこれらのハロゲン化物、アルキル基置換体などがある。更に、これらのフェノール類とアルデヒド類との重縮合物であるノボラック、レゾールがある。
【0010】
アミン類の例としては、脂肪族あるいは芳香族の第一級アミン、第二級アミン、第三級アミン、第四級アンモニウム塩及び脂肪族環状アミン類、グアニジン類、尿素誘導体等がある。
【0011】
これらの化合物の一例としては、N、N−ベンジルジメチルアミン、2−(ジメチルアミノメチル)フェノール、2、4、6−トリス(ジメチルアミノメチル)フェノール、テトラメチルグアニジン、トリエタノールアミン、N、N’−ジメチルピペラジン、1、4−ジアザビシクロ[2、2、2]オクタン、1、8−ジアザビシクロ[5、4、0]−7−ウンデセン、1、5−ジアザビシクロ[4、4、0]−5−ノネン、ヘキサメチレンテトラミン、ピリジン、ピコリン、ピペリジン、ピロリジン、ジメチルシクロヘキシルアミン、ジメチルヘキシルアミン、シクロヘキシルアミン、ジイソブチルアミン、ジ−n−ブチルアミン、ジフェニルアミン、N−メチルアニリン、トリ−n−プロピルアミン、トリ−n−オクチルアミン、トリ−n−ブチルアミン、トリフェニルアミン、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラメチルアンモニウムアイオダイド、トリエチレンテトラミン、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、ジシアンジアミド、トリルビグアニド、グアニル尿素、ジメチル尿素等がある。
【0012】
イミダゾール化合物の例としては、イミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、1−ベンジル−2−メチルイミダゾール、2−ヘプタデシルイミダゾール、4、5−ジフェニルイミダゾール、2−メチルイミダゾリン、2−フェニルイミダゾリン、2−ウンデシルイミダゾリン、2−ヘプタデシルイミダゾリン、2−イソプロピルイミダゾール、2、4−ジメチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−エチルイミダゾリン、2−フェニル−4−メチルイミダゾリン、ベンズイミダゾール、1−シアノエチルイミダゾールなどがある。
【0013】
酸無水物の例としては、無水フタル酸、ヘキサヒドロ無水フタル酸、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物等がある。
【0014】
有機リン化合物としては、有機基を有するリン化合物であれば特に限定せれずに使用でき、例えば、ヘキサメチルリン酸トリアミド、リン酸トリ(ジクロロプロピル)、リン酸トリ(クロロプロピル)、亜リン酸トリフェニル、リン酸トリメチル、フェニルフォスフォン酸、トリフェニルフォスフィン、トリ−n−ブチルフォスフィン、ジフェニルフォスフィンなどがある。
【0015】
これらの硬化剤は、単独、あるいは、組み合わせて用いることもできる。
これらエポキシ樹脂用硬化剤の配合量は、エポキシ基の硬化反応を進行させることができれば、特に限定することなく使用できるが、好ましくは、エポキシ基1モルに対して、0.01〜5.0当量の範囲で、特に好ましくは0.8〜1.2当量の範囲で使用する。
【0016】
また、本発明の熱硬化性エポキシ樹脂組成物には、必要に応じて硬化促進剤を配合してもよい。代表的な硬化促進剤として、第三級アミン、イミダゾール類、第四級アンモニウム塩等があるが、これに限定されるものではない。
【0017】
本発明の配線板用樹脂組成物には、さらに、セラミック系ウイスカーを加えることができる。このようなセラミック系ウィスカーは、弾性率が200GPa以上であることが好ましく、200GPa未満では、配線板材料あるいは配線板として用いたときに十分な剛性が得られない。
このようなものとして、例えば、硼酸アルミニウム、ウォラストナイト、チタン酸カリウム、塩基性硫酸マグネシウム、窒化けい素、及びα−アルミナの中から選ばれた1以上のものを用いることができる。なかでも、硼酸アルミニウムウィスカーと、チタン酸カリウムウィスカーは、モース硬度が、一般的なプリプレグ基材に用いるEガラスとほぼ同等であり、従来のプリプレグと同様のドリル加工性を得ることができる。硼酸アルミニウムウィスカーは、弾性率がほぼ400GPaと高く、樹脂ワニスと混合し易く、さらに好ましい。
【0018】
このウィスカーの平均直径は、0.3μm〜3μmであることが好ましく、さらには、0.5μm〜1μmの範囲がさらに好ましい。このウィスカーの平均直径が、0.3μm以下であると、樹脂ワニスへの混合が困難となり、3μmを越えると、微視的な樹脂への分散が十分でなく、表面の凹凸が大きくなり好ましくない。
また、この平均直径と平均長さの比は、10以上であることが、さらに剛性を高めることができ、好ましい、さらに好ましくは、20以上である。この比が10未満であると、繊維としての補強効果が小さくなる。この平均長さの上限は、100μmであり、さらに好ましくは50μmである。この上限を越えると、樹脂ワニス中への分散が困難となる他、2つの導体回路に1つのウィスカーが接触する確率が高くなり、ウィスカーの繊維に沿って銅イオンのマイグレーションが発生する確率が高くなる。
【0019】
また、多層プリント配線板の、剛性、耐熱性及び耐湿性を高めるために、樹脂との濡れ性や結合性に優れたカップリング剤で表面処理した電気絶縁性のウィスカーを使用することが好ましく、このようなカップリング剤として、シリコン系カップリング剤、チタン系カップリング剤、アルミニウム系カップリング剤、ジルコニウム系カップリング剤、ジルコアルミニウム系カップリング剤、クロム系カップリング剤、ボロン系カップリング剤、リン系カップリング剤、アミノ酸系カップリング剤等から選択して使用することができる。
【0020】
熱硬化性樹脂とセラミック系ウィスカーの割合は、硬化した樹脂中のウィスカーの体積分率が5%〜50%の範囲となるように調整することが好ましい。硬化した樹脂中のウィスカーの体積分率が5%未満であると、銅箔付プリプレグ(銅箔/熱硬化性樹脂層)が切断時に樹脂が細かく砕けて飛散するなど、取扱が著しく困難であり、配線板としたときに剛性が低くなる。一方ウィスカーの体積分率が50%を越えると、加熱加圧成形時の穴や回路間隙への埋め込みが不十分となり、成形後にボイドやかすれを発生し、絶縁性が低下する。また、樹脂とウィスカーの割合は、硬化した樹脂中のウィスカーの体積分率は、20〜40%であることが、さらに好ましい。
【0021】
また、本発明の樹脂と金属層からなる積層板は、上記の樹脂組成物を、メチルエチルケトンやイソプロピルアルコールなどのような溶剤に溶解して樹脂ワニスとしたものをガラス布に含浸したプリプレグとし、加熱・乾燥して半硬化状にしたものと銅箔やアルミニウム箔などの金属箔と重ね、加熱・加圧して積層一体化したものや、金属箔にその樹脂ワニスをブレードコータ、ロッドコータ、ナイフコータ、スクイズコータ、リバースロールコータ、トランスファロールコータ等によって、均一な厚さに塗布し、加熱・乾燥して半硬化状にしたもの、あるいは、そのような金属箔付樹脂層を、内層回路板の上に重ね、加熱・加圧して積層一体化したもの、上記のプリプレグを加熱硬化した樹脂板の上にめっきしたもの、内層回路板の上に、その樹脂ワニスをブレードコータ、ロッドコータ、ナイフコータ、スクイズコータ、リバースロールコータ、トランスファロールコータ等によって、均一な厚さに塗布し、加熱・乾燥して硬化したものの表面にめっきしたもの、あるいは、金属箔付樹脂層を、内層回路板の上に重ね、加熱・加圧して積層一体化したものから金属箔をエッチング除去した後にその表面にめっきをしたものなどがある。
【0022】
内層回路を形成した内層回路板には、通常のプリント配線板に用いる内層回路板を用いることができ、プリント配線板用銅張り積層板の不要な銅箔をエッチング除去して回路を形成したもの、あるいは必要に応じて、プリント配線板用両面銅張り積層板に穴をあけ、無電解めっきを行って穴内壁にめっき金属を形成し、さらに必要ならば電解めっきを行って回路導体に必要な厚さとし、不要な銅箔とめっき金属をエッチング除去して回路を形成したものが使用できる。
【0023】
内層回路を形成した内層回路板の上に、上記の金属箔付樹脂層を、重ね、加熱・加圧して積層一体化した後に、内層回路に達する穴を、この金属箔の上から、レーザを照射してあけることができる。また、金属箔の厚さが厚い場合には、一旦金属箔をエッチング除去して、めっきによって金属層を形成した後に、その金属層の上からレーザを照射してバイアホールをあけることができる。このときには、めっきの前に樹脂層を粗化しておくことが好ましく、一般的な酸性の酸化性粗化液やアルカリ性の酸化性粗化液を用いることができる。例えば、酸性の酸化性粗化液としては、クロム/硫酸粗化液があり、アルカリ性の酸化性粗化液は過マンガン酸カリウム粗化液等を用いることができる。
樹脂層を酸化性の粗化液で粗化した後は、絶縁樹脂表面の酸化性粗化液を化学的に中和する必用があるが、これも一般的な手法を取り入れることができる。
例えば、クロム/硫酸粗化液を用いたときには、亜硫酸水素ナトリウム10g/lを用いて室温で5分間処理し、また、過マンガン酸カリウム粗化液を用いたときには、硫酸150ml/lと過酸化水素水15ml/lの水溶液に室温で5分間浸漬して中和を完了させるなどである。
【0024】
レーザ照射によるあなあけに用いるレーザ加工機のレーザの種類については、炭酸ガスレーザ、UV−YAGレーザ等、特に制限されない。穴あけ条件は、金属箔の厚さと樹脂の種類及び樹脂の厚さにより調整しなければならず、実験的に求めるのが好ましく、エネルギー量としては、0.001W〜1Wの範囲内であって、レーザ発振用の電源をパルス状に印加し、一度に大量のエネルギーが集中しないよう制御しなければならない。この穴あけ条件の調整は、内層回路板の内層回路に達する穴があけられることと、穴径をできるだけ小さくするために、レーザ発振用の電源を駆動するパルス波形デューティー比で1/1000〜1/10の範囲で、1〜20ショット(パルス)であることが好ましい。波形デューティー比が1/1000未満であると穴をあけるのに時間がかかりすぎ効率的でなく、1/10を越えると照射エネルギーが大きすぎて穴径が1mm以上に大きくなり実用的でない。ショット(パルス)数は、穴内の接着剤が内層回路に達するところまで蒸発できるようにする数を実験的に求めればよく、1ショット未満では穴があけられず、20ショットを越えると、1ショットのパルスの波形デューティー比が1/1000近くであっても穴径が大きくなり実用的でない。
また、金属層の表面は、あまりに平滑であると、レーザ光を反射してしまい蒸散しないこともあるので、適当に粗化してあることが好ましい。粗化の程度は、レーザ光を吸収できる程度の色相を呈すればよく、例えば、塩化第二銅と塩酸からなる化学エッチング液や過硫酸アンモニウム溶液などで表面の金属色が曇る程度でよい。
【0025】
バイアホールを形成した後に、バイアホール内の接着剤のかすを除去するためのにデスミア処理を行うことが好ましく、このデスミア処理は、一般的な酸性の酸化性粗化液やアルカリ性の酸化性粗化液を用いることができる。例えば、酸性の酸化性粗化液としては、クロム/硫酸粗化液があり、アルカリ性の酸化粗化液は過マンガン酸カリウム粗化液等を用いることができる。
樹脂層を酸化性の粗化液で粗化した後は、絶縁樹脂表面の酸化性粗化液を化学的に中和する必用があるが、これも一般的な手法を取り入れることができる。
例えば、クロム/硫酸粗化液を用いたときには、亜硫酸水素ナトリウム10g/lを用いて室温で5分間処理し、また、過マンガン酸カリウム粗化液を用いたときには、硫酸150ml/lと過酸化水素水15ml/lの水溶液に室温で5分間浸漬して中和を完了させるなどである。
【0026】
このようにした後に外層回路としての導体を形成するために行う銅めっきは、無電解めっきと同じ方法でもよいし、薄く無電解めっきした後に、たとえば、硫酸銅浴やピロリン酸銅浴のような電解めっきを行って回路導体に必要な厚さとすることができる。このときに重要なのは、形成したバイアホールの内壁に無電解めっきをし、内層回路導体と外層回路とを接続するめっき銅を形成することである。その後に、回路導体の厚さが1〜15μm位の厚さならば無電解めっきでも形成できるし、15μmを越えるようならば電解めっきを併用することもできる。好ましくは、精密な配線を形成するには、無電解めっきで形成するのが表面が平坦になり好ましい。また、めっきの前にめっきレジストを形成し、回路の形状にのみめっきを行うことによって回路を形成する。
このようにして銅めっきした後、めっきレジストを剥離除去し、その下にあった薄い銅めっきをエッチング除去して回路を形成する。
【0027】
導体回路の表面処理液としては、種々のものが使用できるが、エッチング速度及び表面の凹凸の形成性等の点から蟻酸を主成分とするエッチングが好ましい
【0028】
【実施例】
実施例1
図1(a)に示すように、厚さ0.4mmのガラス布−エポキシ樹脂含浸両面銅張り積層板であるMCL−679(日立化成工業株式会社製、商品名)を使用し、穴あけ、無電解銅めっきを行い、スルーホール101に穴埋め材として熱硬化性樹脂M−650TH(製、商品名)を印刷穴埋めし加熱・硬化させ通常のサブトラクト法によって穴埋めしたスルーホール101を有する内層回路1を形成した内層板を作製した。その後に、熱風乾燥機を用い130℃、30分間加熱乾燥した。
図1(b)に示すように、熱硬化性樹脂層4としてビルドアップフィルムAS−9000E(日立化成工業株式会社製、商品名)と内層板とを重ね170℃で、60分間、2.5MPaの圧力で、加熱・加圧して積層一体化した。
図1(c)に示すように、前記硬化した熱硬化性樹脂層4を、炭酸ガスレーザによって、エネルギー密度20J/cm2、発振時間5μsec、発振周波数500Hz、4パルスの条件で、照射することにより、前記内層板の内層回路1が露出するまで除去して、IVH5を形成した。
前記硬化した熱硬化性樹脂層4の基板表面とIVH5の壁面を、粗化剤である7%のアルカリ過マンガン酸水溶液を用いて、液温70℃、時間10分間の条件で粗化した。
前記粗化を施した基板の表面及びバイアホール壁面に無電解銅めっき触媒付与処理液であるHS−202B(日立化成工業株式会社製、商品名)に、室温で10分間基板を接触させ基板表面及びバイアホール壁面に触媒を付与した。
図1(d)に示すように、前記触媒を付与した基板の表面及びバイアホールの壁面に、無電解銅めっき液であるCUST−201(日立化成工業株式会社製、商品名)に、基板を浸漬し無電解銅めっき6を0.3μmの厚さに行った。めっき膜厚の測定は、SFT8000(セイコー電子株式会社製、商品名)を使用した。
前記無電解銅めっき6の表面に、ドライフィルムであるフォテックRY3025(日立化成工業株式会社製、商品名)をラミネートし、間隙となる部分にめっきレジスト7を形成した。
図1(e)に示すように、前記めっきレジスト7を形成した基板を、硫酸銅めっき液を用いて導体回路の厚さが15μmとなるように電気めっきを行った。
前記電気めっきを行った基板を、剥離液RS−2000(アトテック製、商品名)を用いて、50℃、スプレイ圧2.0kg/cm2、1分間の条件で一般的なスプレー式剥離機を用いてめっきレジストを剥離した。
図1(f)に示すように、無電解銅めっき6の上にパターンめっきが施された基板の、下地銅の除去と導体回路の表面に凹凸を形成する液として、CZ−8100(メック株式会社製、商品名)を用いて下地銅と導体回路表面の粗化を同時に行った。エッチング量は、3μmの設定で行った。
熱処理を150℃、60分間の条件で一般的な熱風乾燥機を用いて行った。
前記下地銅が除去された基板の樹脂表面が露出した部分のめっき触媒を除去するために、粗化剤である7%のアルカリ過マンガン酸水溶液を用いて、液温70℃、時間5分間の条件で処理した。
工程n.
銅表面の酸化防止のため、ベンゾトリアゾール1wt%水溶液に基板を浸漬した。
工程b〜nまでの工程を繰り返し、2層ビルドアップ基板を作製した。
【0029】
参考例1
実施例1のエッチング液に変えて、NBD(荏原電産株式会社製、商品名)を使用した以外は、実施例1と同様にして作製した。
【0030】
参考例2
実施例1のエッチング液に変えて、CPE−900(三菱瓦斯化学製、商品名)を使用した以外は、実施例1と同様にして作製した。
【0031】
比較例1
実施例1のエッチング液に変えて、過硫酸アンモニウムを無電解めっき銅のエッチング液として使用した。
【0032】
比較例2
実施例1のエッチング液に変えて、塩化第二銅エッチング液を無電解めっき銅のエッチング液として使用した。
【0033】
比較例3
実施例1のエッチング液に変えて、塩化第二鉄エッチング液を無電解めっき銅のエッチング液として使用した。
【0034】
以上のように作製した基板に、以下の試験を行った。結果を表1に示す。
(試験)
・気相熱衝撃試験:熱衝撃試験器サーマショックチャンバーTSR−103(TABAI製、商品名)を用い−65℃、30分⇔125℃、30分の条件を1サイクルとし、接続抵抗の変化を測定した。接続抵抗の測定には、ヒューレットパッカード製マルチメータ3457Aを用いて測定した。
【0035】
【表1】

Figure 0004478844
(微細配線形成性)
×:L/S=50μm/50μm 配線形成不可
・○:L/S=30μm/30μm 配線形成可能
・◎:L/S=20μm/20μm 配線形成可能
(気相熱衝撃試験)
×:500サイクル未満で導通抵抗変化率10%以上
・○:500サイクル以上1000サイクル未満で導通抵抗変化率10%以上
・◎:1000サイクル以上で導通抵抗変化率10%未満
【0036】
【発明の効果】
以上に説明したとおり、本発明によって、層間の薄型化、配線の微細化、また、IVHの接続信頼性に優れ、生産性に優れた多層プリント配線板の製造方法を提供することができる。
【図面の簡単な説明】
【図1】(a)〜(f)は、それぞれ本発明の一実施例を説明するための各工程を示す断面図である。
【符号の説明】
1.内層回路 2.穴埋め材
3.内層回路板 4.熱硬化性樹脂
5.IVH 6.無電解銅めっき
7.めっきレジスト 8.無電解めっき銅エッチング
9.ビルドアップ基板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a printed wiring board manufacturing method and a printed wiring board manufactured by the method.
[0002]
[Prior art]
In recent years, electronic devices have become lighter, thinner, multifunctional, and faster, and build-up wiring boards have been used, and via holes have been miniaturized. For manufacturing such a build-up wiring board, an insulating resin layer is formed on the inner wiring board, then a via hole is formed by irradiating a carbon dioxide laser, and after desmearing, the interlayer connection is performed by electroless plating or the like. After metallizing the inner wall of the hole and the surface of the insulating resin layer, forming a plating resist on the surface of the insulating resin layer, pattern electroplating to form a circuit conductor, then peeling the plating resist and performing quick etching, There is a method of forming a circuit by etching away electroless plating.
[0003]
[Problems to be solved by the invention]
In this build-up multilayer wiring board, the pattern that becomes a circuit when the electroless plating is removed by etching in order to form a circuit is simultaneously shaved by the etching solution.
Further, in order to promote adhesion with a thermosetting resin in order to form a multilayer circuit using the substrate on which the circuit is formed as an inner circuit board, a process of oxidizing / reducing the copper surface is generally used. Has been done. As a pretreatment of this oxidation / reduction treatment, the copper surface is thinly removed with a chemical etching solution such as ammonium persulfate to carry out the oxidation / reduction treatment.
The conductor circuit is etched and removed by these two etching processes, and there is a problem that the yield such as thinning or disconnection of the wiring is reduced, and even if no disconnection occurs, the thickness of the circuit copper foil is reduced. There was a problem that the connection reliability of the thermal cycle test and the like was lowered.
[0004]
An object of the present invention is to provide a method for manufacturing a printed wiring board that is excellent in productivity and suitable for fine wiring that does not deteriorate connection reliability, and a printed wiring board manufactured by the method.
[0005]
[Means for Solving the Problems]
The invention is characterized by the following.
(1) In a method of manufacturing a printed wiring board, a resin layer is formed on an inner circuit board having an inner circuit, a hole reaching the inner layer, a hole inner wall is metalized, and an outer circuit is formed. Then, a base copper plating is formed by electroless copper plating , a plating resist is formed on the surface of the base copper plating , a conductor is formed into a circuit shape by electrolytic copper plating , and the plating resist is removed and is placed under the plating resist. and the underlying copper plating, thereby forming an outer layer circuit are etched away with an etchant mainly composed of formic acid, to roughen the surface, a benzotriazole solution by immersing the printed wiring board, the further the outer circuit surface A method for producing a printed wiring board for forming a resin layer .
(2) A printed wiring board manufactured by the method of (1).
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the resin used is preferably a thermosetting resin, and more preferably an epoxy resin. Such an epoxy resin is composed of a thermosetting resin composition containing an epoxy resin and a curing agent. The thermosetting resin composition further includes a curing accelerator, a catalyst, an elastomer, a flame retardant, and the like as necessary. May be added.
[0007]
The epoxy resin may be anything as long as it has an epoxy group in the molecule, and is a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, an alicyclic epoxy resin, or an aliphatic chain. Epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, diglycidyl etherified product of biphenol, diglycidyl etherified product of naphthalenediol, diglycidyl etherified product of phenols, alcohols And diglycidyl etherified products thereof, alkyl substitution products thereof, halides, hydrogenated products, and the like. These may be used in combination, and components other than the epoxy resin may be contained as impurities.
[0008]
The curing agent for epoxy resin used in the present invention can be used without limitation as long as it cures the epoxy resin. For example, polyfunctional phenols, amines, imidazole compounds, acid anhydrides, organophosphorus compounds and These halides are included.
[0009]
Examples of polyfunctional phenols include monocyclic bifunctional phenols hydroquinone, resorcinol, catechol, polycyclic bifunctional phenols bisphenol A, bisphenol F, naphthalenediols, biphenols, and their halides, alkyl group substitution There is a body. Furthermore, there are novolak and resol which are polycondensates of these phenols and aldehydes.
[0010]
Examples of amines include aliphatic or aromatic primary amines, secondary amines, tertiary amines, quaternary ammonium salts and aliphatic cyclic amines, guanidines, urea derivatives, and the like.
[0011]
Examples of these compounds include N, N-benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol, tetramethylguanidine, triethanolamine, N, N '-Dimethylpiperazine, 1,4-diazabicyclo [2,2,2] octane, 1,8-diazabicyclo [5,4,0] -7-undecene, 1,5-diazabicyclo [4,4,0] -5 -Nonene, hexamethylenetetramine, pyridine, picoline, piperidine, pyrrolidine, dimethylcyclohexylamine, dimethylhexylamine, cyclohexylamine, diisobutylamine, di-n-butylamine, diphenylamine, N-methylaniline, tri-n-propylamine, tri -N-octylamine, tri-n -Butylamine, triphenylamine, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, triethylenetetramine, diaminodiphenylmethane, diaminodiphenyl ether, dicyandiamide, tolylbiguanide, guanylurea, dimethylurea and the like.
[0012]
Examples of imidazole compounds include imidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, 2- Heptadecylimidazole, 4,5-diphenylimidazole, 2-methylimidazoline, 2-phenylimidazoline, 2-undecylimidazoline, 2-heptadecylimidazoline, 2-isopropylimidazole, 2,4-dimethylimidazole, 2-phenyl-4 -Methylimidazole, 2-ethylimidazoline, 2-phenyl-4-methylimidazoline, benzimidazole, 1-cyanoethylimidazole and the like.
[0013]
Examples of the acid anhydride include phthalic anhydride, hexahydrophthalic anhydride, pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, and the like.
[0014]
The organic phosphorus compound is not particularly limited as long as it is a phosphorus compound having an organic group. For example, hexamethylphosphoric triamide, tri (dichloropropyl) phosphate, tri (chloropropyl) phosphate, phosphorous acid Examples include triphenyl, trimethyl phosphate, phenylphosphonic acid, triphenylphosphine, tri-n-butylphosphine, and diphenylphosphine.
[0015]
These curing agents can be used alone or in combination.
The compounding amount of these epoxy resin curing agents can be used without particular limitation as long as the curing reaction of the epoxy group can proceed, but preferably 0.01 to 5.0 with respect to 1 mol of the epoxy group. It is used in the range of equivalents, particularly preferably in the range of 0.8 to 1.2 equivalents.
[0016]
Moreover, you may mix | blend a hardening accelerator with the thermosetting epoxy resin composition of this invention as needed. Typical curing accelerators include, but are not limited to, tertiary amines, imidazoles, and quaternary ammonium salts.
[0017]
A ceramic whisker can be further added to the resin composition for a wiring board of the present invention. Such ceramic whiskers preferably have an elastic modulus of 200 GPa or more. If it is less than 200 GPa, sufficient rigidity cannot be obtained when used as a wiring board material or a wiring board.
As such, for example, one or more selected from aluminum borate, wollastonite, potassium titanate, basic magnesium sulfate, silicon nitride, and α-alumina can be used. Among them, aluminum borate whisker and potassium titanate whisker have Mohs hardness almost equivalent to E glass used for a general prepreg base material, and can obtain drilling workability similar to that of a conventional prepreg. The aluminum borate whisker has a high elastic modulus of about 400 GPa and is easy to mix with the resin varnish, and is more preferable.
[0018]
The average diameter of the whisker is preferably 0.3 μm to 3 μm, and more preferably 0.5 μm to 1 μm. If the average diameter of the whisker is 0.3 μm or less, mixing with the resin varnish becomes difficult, and if it exceeds 3 μm, the microscopic dispersion in the resin is not sufficient, and the surface unevenness becomes large, which is not preferable. .
Further, the ratio of the average diameter to the average length is preferably 10 or more, and the rigidity can be further increased, preferably 20 or more. When this ratio is less than 10, the reinforcing effect as a fiber becomes small. The upper limit of this average length is 100 μm, more preferably 50 μm. Exceeding this upper limit makes it difficult to disperse in the resin varnish, and increases the probability that one whisker will come into contact with the two conductor circuits, and the probability that migration of copper ions will occur along the fibers of the whisker. Become.
[0019]
In addition, in order to increase the rigidity, heat resistance and moisture resistance of the multilayer printed wiring board, it is preferable to use an electrically insulating whisker that has been surface-treated with a coupling agent having excellent wettability and bondability with a resin, Examples of such coupling agents include silicon coupling agents, titanium coupling agents, aluminum coupling agents, zirconium coupling agents, zircoaluminum coupling agents, chromium coupling agents, and boron coupling agents. , A phosphorus coupling agent, an amino acid coupling agent and the like.
[0020]
The ratio between the thermosetting resin and the ceramic whisker is preferably adjusted so that the volume fraction of the whisker in the cured resin is in the range of 5% to 50%. If the volume fraction of whiskers in the cured resin is less than 5%, the prepreg with copper foil (copper foil / thermosetting resin layer) will be shattered and scattered during cutting, making handling extremely difficult. When the wiring board is used, the rigidity is lowered. On the other hand, if the volume fraction of whiskers exceeds 50%, the holes and circuit gaps are not sufficiently embedded in the heat and pressure molding, voids and blurring occur after molding, and the insulating properties are lowered. Moreover, as for the ratio of resin and whisker, it is more preferable that the volume fraction of the whisker in the cured resin is 20 to 40%.
[0021]
In addition, a laminate comprising the resin and metal layer of the present invention is a prepreg in which the above resin composition is dissolved in a solvent such as methyl ethyl ketone or isopropyl alcohol to form a resin varnish, which is impregnated into a glass cloth.・ Dried and semi-cured and laminated with metal foil such as copper foil and aluminum foil, laminated by heating and pressurizing, and resin varnish to metal foil with blade coater, rod coater, knife coater, Apply a uniform thickness with a squeeze coater, reverse roll coater, transfer roll coater, etc., heat and dry to make it semi-cured, or such a resin layer with metal foil on the inner circuit board Are laminated and integrated by heating and pressurizing, the above prepreg is plated on a heat-cured resin plate, and on the inner circuit board. Resin varnish coated with a uniform thickness with a blade coater, rod coater, knife coater, squeeze coater, reverse roll coater, transfer roll coater, etc., heated and dried, and plated on the surface, or metal foil In some cases, a resin layer is laminated on an inner circuit board, heated and pressed, laminated and integrated, and then the metal foil is removed by etching and then the surface is plated.
[0022]
The inner layer circuit board on which the inner layer circuit is formed can be the inner layer circuit board used for ordinary printed wiring boards, and the circuit is formed by etching away unnecessary copper foil from the copper-clad laminate for printed wiring boards Or, if necessary, drill holes in the double-sided copper-clad laminate for printed wiring boards, perform electroless plating to form plated metal on the inner walls of the holes, and if necessary, perform electrolytic plating to provide the necessary circuit conductor Thickness, unnecessary copper foil and plated metal removed by etching to form a circuit can be used.
[0023]
Overlay the above resin layer with metal foil on the inner layer circuit board on which the inner layer circuit is formed, heat and pressurize and integrate the layers, and then make a laser hole from the top of this metal foil to reach the inner layer circuit. Can be opened by irradiation. When the metal foil is thick, the metal foil is once removed by etching and a metal layer is formed by plating, and then a via hole can be formed by irradiating a laser on the metal layer. At this time, it is preferable to roughen the resin layer before plating, and a general acidic oxidizing roughening solution or an alkaline oxidizing roughening solution can be used. For example, as the acidic oxidizing roughening liquid, there is a chromium / sulfuric acid roughening liquid, and as the alkaline oxidizing roughening liquid, a potassium permanganate roughening liquid or the like can be used.
After the resin layer is roughened with an oxidizing roughening solution, it is necessary to chemically neutralize the oxidizing roughening solution on the surface of the insulating resin, but a general method can also be adopted.
For example, when a chromium / sulfuric acid roughening solution is used, it is treated with sodium hydrogen sulfite 10 g / l at room temperature for 5 minutes, and when a potassium permanganate roughening solution is used, 150 ml / l of sulfuric acid is peroxidized. For example, it is immersed in an aqueous solution of 15 ml / l of hydrogen water at room temperature for 5 minutes to complete neutralization.
[0024]
The type of laser of the laser processing machine used for drilling by laser irradiation is not particularly limited, such as a carbon dioxide gas laser or a UV-YAG laser. The drilling conditions must be adjusted according to the thickness of the metal foil, the type of resin and the thickness of the resin, and are preferably obtained experimentally. The amount of energy is within the range of 0.001 W to 1 W, It is necessary to control the laser oscillation power supply so that a large amount of energy is not concentrated at a time by applying a pulsed power supply. The adjustment of the drilling conditions is performed by adjusting the pulse waveform duty ratio for driving the laser oscillation power source to 1/1000 to 1/1 in order to make a hole reaching the inner layer circuit of the inner layer circuit board and to make the hole diameter as small as possible. In the range of 10, it is preferably 1 to 20 shots (pulses). If the waveform duty ratio is less than 1/1000, it takes too much time to make a hole and is not efficient. If it exceeds 1/10, the irradiation energy is too large and the hole diameter becomes 1 mm or more, which is not practical. The number of shots (pulses) should be determined experimentally so that the adhesive in the hole can evaporate to reach the inner layer circuit. If less than one shot, a hole cannot be drilled. Even if the waveform duty ratio of the pulse is near 1/1000, the hole diameter becomes large and is not practical.
In addition, if the surface of the metal layer is too smooth, it may reflect the laser beam and may not evaporate. The degree of roughening only needs to exhibit a hue that can absorb laser light. For example, the surface may be clouded with a chemical etching solution composed of cupric chloride and hydrochloric acid or an ammonium persulfate solution.
[0025]
After the via hole is formed, it is preferable to perform a desmear treatment to remove the debris of the adhesive in the via hole. This desmear treatment may be performed using a general acidic oxidizing roughening solution or an alkaline oxidizing roughening solution. Chemical solution can be used. For example, an acidic oxidizing roughening solution includes a chromium / sulfuric acid roughening solution, and an alkaline oxidizing roughening solution may be a potassium permanganate roughening solution.
After the resin layer is roughened with an oxidizing roughening solution, it is necessary to chemically neutralize the oxidizing roughening solution on the surface of the insulating resin, but a general method can also be adopted.
For example, when a chromium / sulfuric acid roughening solution is used, it is treated with sodium hydrogen sulfite 10 g / l at room temperature for 5 minutes, and when a potassium permanganate roughening solution is used, 150 ml / l of sulfuric acid is peroxidized. For example, it is immersed in an aqueous solution of 15 ml / l of hydrogen water at room temperature for 5 minutes to complete neutralization.
[0026]
The copper plating performed to form the conductor as the outer layer circuit after the above may be the same method as the electroless plating, or after thinly electroless plating, for example, a copper sulfate bath or a copper pyrophosphate bath Electroplating can be performed to the required thickness for the circuit conductor. What is important at this time is to perform electroless plating on the inner wall of the formed via hole to form plated copper for connecting the inner layer circuit conductor and the outer layer circuit. Thereafter, if the thickness of the circuit conductor is about 1 to 15 μm, it can be formed by electroless plating, and if it exceeds 15 μm, electrolytic plating can be used in combination. Preferably, in order to form a precise wiring, it is preferable to form by electroless plating because the surface becomes flat. Moreover, a plating resist is formed before plating, and a circuit is formed by performing plating only on the shape of the circuit.
After copper plating in this manner, the plating resist is peeled and removed, and the thin copper plating underneath is removed by etching to form a circuit.
[0027]
The surface treatment solution of the conductor circuit, various materials can be used, an etching solution mainly composed of formic acid is preferred in view of formability or the like of the unevenness of the etching rate and surface.
[0028]
【Example】
Example 1
As shown in FIG. 1 (a), MCL-679 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a 0.4 mm thick glass cloth-epoxy resin impregnated double-sided copper-clad laminate, The inner layer circuit 1 having the through-hole 101 that has been subjected to electrolytic copper plating, filled with a thermosetting resin M-650TH (manufactured, trade name) as a filling material in the through-hole 101, heated and cured, and filled with a normal subtract method. The formed inner layer board was produced. Then, it heat-dried at 130 degreeC for 30 minutes using the hot air dryer.
As shown in FIG.1 (b), as the thermosetting resin layer 4, buildup film AS-9000E (made by Hitachi Chemical Co., Ltd., a brand name) and an inner layer board are piled up at 170 degreeC for 60 minutes, 2.5 MPa. The layers were integrated by heating and pressurizing at a pressure of.
As shown in FIG. 1C, the cured thermosetting resin layer 4 is irradiated by a carbon dioxide laser under the conditions of an energy density of 20 J / cm 2 , an oscillation time of 5 μsec, an oscillation frequency of 500 Hz, and 4 pulses. The inner layer circuit 1 was removed until the inner layer circuit 1 was exposed to form IVH5.
The substrate surface of the cured thermosetting resin layer 4 and the wall surface of IVH5 were roughened using a 7% alkaline permanganate aqueous solution as a roughening agent at a liquid temperature of 70 ° C. for 10 minutes.
The substrate surface is brought into contact with HS-202B (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is an electroless copper plating catalyst application treatment solution, on the roughened substrate surface and via hole wall surface at room temperature for 10 minutes. And a catalyst was provided to the via-hole wall surface.
As shown in FIG. 1 (d), on the surface of the substrate provided with the catalyst and the wall surface of the via hole, the substrate is placed on CUST-201 (trade name, manufactured by Hitachi Chemical Co., Ltd.) which is an electroless copper plating solution. Immersion electroless copper plating 6 was performed to a thickness of 0.3 μm. For the measurement of the plating film thickness, SFT8000 (Seiko Electronics Co., Ltd., trade name) was used.
The surface of the electroless copper plating 6 was laminated with a dry film FOTEC RY3025 (trade name, manufactured by Hitachi Chemical Co., Ltd.), and a plating resist 7 was formed in the gap portion.
As shown in FIG.1 (e), the board | substrate in which the said plating resist 7 was formed was electroplated so that the thickness of a conductor circuit might be set to 15 micrometers using a copper sulfate plating solution.
For the electroplated substrate, a general spray-type peeling machine was used under the conditions of 50 ° C., spray pressure 2.0 kg / cm 2 , 1 minute using a stripping solution RS-2000 (product name, manufactured by Atotech). The plating resist was peeled off.
As shown in FIG. 1 (f), CZ-8100 (MEC Co., Ltd.) was used as a liquid for removing the underlying copper and forming irregularities on the surface of the conductor circuit of the substrate plated with pattern on the electroless copper plating 6. The surface of the base copper and the surface of the conductor circuit were simultaneously roughened using a product made by the company. The etching amount was set at 3 μm.
The heat treatment was performed using a general hot air dryer under conditions of 150 ° C. and 60 minutes.
In order to remove the plating catalyst in the exposed portion of the resin surface of the substrate from which the base copper was removed, a 7% alkaline permanganate aqueous solution as a roughening agent was used, and the temperature was 70 ° C. for 5 minutes. Processed with conditions.
Step n.
In order to prevent oxidation of the copper surface, the substrate was immersed in a 1 wt% aqueous solution of benzotriazole.
Steps b to n were repeated to produce a two-layer buildup substrate.
[0029]
Reference example 1
It was produced in the same manner as in Example 1 except that NBD (trade name, manufactured by Ebara Densan Co., Ltd.) was used instead of the etching solution in Example 1.
[0030]
Reference example 2
It was produced in the same manner as in Example 1 except that CPE-900 (trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used instead of the etching solution in Example 1.
[0031]
Comparative Example 1
Instead of the etching solution of Example 1, ammonium persulfate was used as the etching solution for electroless plating copper.
[0032]
Comparative Example 2
Instead of the etching solution of Example 1, a cupric chloride etching solution was used as an etching solution for electroless plating copper.
[0033]
Comparative Example 3
Instead of the etching solution of Example 1, a ferric chloride etching solution was used as an etching solution for electroless plating copper.
[0034]
The following tests were performed on the substrates produced as described above. The results are shown in Table 1.
(test)
-Vapor phase thermal shock test: Thermal shock tester Therma Shock Chamber TSR-103 (manufactured by Tabai, trade name) -65 ° C, 30 minutes to 125 ° C, 30 minutes as one cycle, and change in connection resistance It was measured. The connection resistance was measured using a Hewlett-Packard multimeter 3457A.
[0035]
[Table 1]
Figure 0004478844
(Fine wiring formability)
X : L / S = 50 μm / 50 μm Wiring cannot be formed ○: L / S = 30 μm / 30 μm Wiring can be formed ・ ◎: L / S = 20 μm / 20 μm Wiring can be formed (vapor phase thermal shock test)
* : Conduction resistance change rate of 10% or more at less than 500 cycles-○: Conduction resistance change rate of 10% or more at 500 cycles or more and less than 1000 cycles-A: Conduction resistance change rate of less than 10% at 1000 cycles or more
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method for manufacturing a multilayer printed wiring board that is thin in layers, miniaturized wiring, excellent in connection reliability of IVH, and excellent in productivity.
[Brief description of the drawings]
FIGS. 1A to 1F are cross-sectional views showing respective steps for explaining an embodiment of the present invention.
[Explanation of symbols]
1. Inner layer circuit 2. hole filling material Inner layer circuit board 4. 4. Thermosetting resin IVH 6. 6. Electroless copper plating Plating resist 8. Electroless plating copper etching9. Build-up board

Claims (2)

内層回路を有する内層回路板の上に、樹脂層を形成し、内層に達する穴をあけ、穴内壁を金属化し、外層回路を形成するプリント配線板の製造方法において、樹脂層の表面に無電解銅めっきにより下地銅めっきを形成し、下地銅めっき表面にめっきレジストを形成して電気銅めっきにより回路の形状に導体を形成し、めっきレジストを除去してそのめっきレジストの下にあった下地銅めっきを、蟻酸を主成分とするエッチング液によりエッチング除去して外層回路を形成すると共に、その表面を粗化し、ベンゾトリアゾール水溶液にプリント配線板を浸漬し、さらに前記外層回路表面に樹脂層を形成するプリント配線板の製造方法。In the method of manufacturing a printed wiring board in which a resin layer is formed on an inner layer circuit board having an inner layer circuit, a hole reaching the inner layer is formed, the inner wall of the hole is metalized, and an outer layer circuit is formed, the surface of the resin layer is electrolessly formed. Form the base copper plating by copper plating , form a plating resist on the surface of the base copper plating , form a conductor in the shape of the circuit by electrolytic copper plating , remove the plating resist, and the base copper that was under the plating resist the plating, thereby forming an outer layer circuit are etched away with an etchant mainly composed of formic acid, to roughen the surface, immersing the printed wiring board benzotriazole solution, a further resin layer on the outer surface of the circuit A method of manufacturing a printed wiring board to be formed . 請求項1の方法で製造されたプリント配線板。The printed wiring board manufactured by the method of Claim 1.
JP36885999A 1999-12-27 1999-12-27 Printed wiring board manufacturing method and printed wiring board manufactured by the method Expired - Lifetime JP4478844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36885999A JP4478844B2 (en) 1999-12-27 1999-12-27 Printed wiring board manufacturing method and printed wiring board manufactured by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36885999A JP4478844B2 (en) 1999-12-27 1999-12-27 Printed wiring board manufacturing method and printed wiring board manufactured by the method

Publications (2)

Publication Number Publication Date
JP2001185846A JP2001185846A (en) 2001-07-06
JP4478844B2 true JP4478844B2 (en) 2010-06-09

Family

ID=18492944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36885999A Expired - Lifetime JP4478844B2 (en) 1999-12-27 1999-12-27 Printed wiring board manufacturing method and printed wiring board manufactured by the method

Country Status (1)

Country Link
JP (1) JP4478844B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040346B2 (en) * 2007-02-15 2012-10-03 パナソニック株式会社 Method for manufacturing printed wiring board
JP5138459B2 (en) * 2008-05-15 2013-02-06 新光電気工業株式会社 Wiring board manufacturing method
JP6950233B2 (en) * 2017-03-28 2021-10-13 昭和電工マテリアルズ株式会社 Thermosetting resin composition for adhesion of build-up film, thermosetting resin composition, prepreg, laminate, laminate, multilayer printed wiring board and semiconductor package

Also Published As

Publication number Publication date
JP2001185846A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
US5879568A (en) Process for producing multilayer printed circuit board for wire bonding
KR101807901B1 (en) Resin composition, cured resin product, wiring board, and manufacturing method for wiring board
JP2009147323A (en) Method of manufacturing multilayer printed wiring board, and multilayer printed wiring board
JP5023732B2 (en) Laminated board
JP4359797B2 (en) Manufacturing method of multilayer printed wiring board
JP4478844B2 (en) Printed wiring board manufacturing method and printed wiring board manufactured by the method
JP2693005B2 (en) Metal core substrate and manufacturing method thereof
JPH11177237A (en) Build-up multilayer printed wiring board and manufacture thereof
US5419946A (en) Adhesive for printed wiring board and production thereof
JP3865083B2 (en) Manufacturing method of multilayer printed wiring board
JP4055026B2 (en) Manufacturing method of build-up multilayer printed wiring board
JP2005251895A (en) Multilayer wiring board and its manufacturing method
JP4370490B2 (en) Build-up multilayer printed wiring board and manufacturing method thereof
JP4505908B2 (en) Method for manufacturing printed wiring board
JP5378954B2 (en) Prepreg and multilayer printed wiring boards
JP6569367B2 (en) Resin composition, carrier film with resin, carrier film with insulating resin, primer layer for plating process, method for producing primer layer for plating process, carrier film with primer for plating process, wiring board, and method for producing wiring board
JP2005005458A (en) Method for manufacturing multilayer wiring board
JP2003069232A (en) Wiring board and its manufacturing method
JP2002134880A (en) Manufacturing method of printed wiring board
JP2001177255A (en) Printed wiring board and manufacturing method therefor
JP2001223469A (en) Buildup wiring board and its manufacturing method
JP4505907B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2001179876A (en) Method for manufacturing insulating resin with copper foil
JP2001177211A (en) Drilling method and method manufacturing printed wiring board using it
JP2001177258A (en) Multilayer interconnection board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3