[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4476649B2 - マイクロ電子機械システムの光学的多状態ラッチスイッチ - Google Patents

マイクロ電子機械システムの光学的多状態ラッチスイッチ Download PDF

Info

Publication number
JP4476649B2
JP4476649B2 JP2004070776A JP2004070776A JP4476649B2 JP 4476649 B2 JP4476649 B2 JP 4476649B2 JP 2004070776 A JP2004070776 A JP 2004070776A JP 2004070776 A JP2004070776 A JP 2004070776A JP 4476649 B2 JP4476649 B2 JP 4476649B2
Authority
JP
Japan
Prior art keywords
latch
optical
actuator
teeth
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004070776A
Other languages
English (en)
Other versions
JP2004287431A (ja
Inventor
エイ カビー ジョエル
エイ ファインバーグ キャスリーン
エイ ジャーマン クリスティン
エム ガルヴィン ピーター
マ ジュン
リン ピンエン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/712,203 external-priority patent/US6947624B2/en
Application filed by Xerox Corp filed Critical Xerox Corp
Publication of JP2004287431A publication Critical patent/JP2004287431A/ja
Application granted granted Critical
Publication of JP4476649B2 publication Critical patent/JP4476649B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3502Optical coupling means having switching means involving direct waveguide displacement, e.g. cantilever type waveguide displacement involving waveguide bending, or displacing an interposed waveguide between stationary waveguides
    • G02B6/3508Lateral or transverse displacement of the whole waveguides, e.g. by varying the distance between opposed waveguide ends, or by mutual lateral displacement of opposed waveguide ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/358Latching of the moving element, i.e. maintaining or holding the moving element in place once operation has been performed; includes a mechanically bistable system
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12145Switch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Description

本発明は、マイクロ電子機械システム(MEMS)の光学スイッチに関し、より具体的には、多状態(マルチステート)光学的ラッチングスイッチに関する。
電気通信産業は、競争の激化、絶え間ない帯域幅の需要、及びデータ中心のネットワーク・アーキテクチャへの更なる移行により劇的な変化を遂げている。第1世代のポイントからポイントへの波長分割多重システムは、ネットワークのバックボーン部分におけるトラフィック障害を緩和した。新しい相互接続アーキテクチャが、技術をネットワークの加入者側に近づけるにつれ、オペレータはサービスを光学層に提供するように要求されて、波長を切り換えて別ルートで通すことができるより融通性のあるネットワークが要求されるようになった。このことは、波長に対して敏捷な装置に対して多大の重要性及び需要を置くことになる。
波長の割り当てにより「ジャスト・イン・タイム」のサービスを提供し、さらに、光学層を高容量のバックボーン部分からループ部分に移動させているので、ネットワークの変化を、すべてが光学的なネットワークに向かうように駆り立てていて、基本的なネットワークの要件がその光学層で実行されるようになるであろう。
光学的なネットワークは、ポイント・ツー・ポイントの高密度波長分割多重方式(DWDM)搬送が、より動的で融通性があり、インテリジェントなネットワーキング・アーキテクチャになって、サービスの供給時間が改善される自然な進化である。光学的なネットワークの主要な要素は、光学ドメインに備えられ、構成され、通され、及び管理される波長(チャネル)である。インテリジェントな光通信は、最初に、周期的な光学的−電気的変換が信号の障害を監視して隔離するように要求される「不透明な」ネットワークとして配置される。より長い波長の範囲においては、光学的なネットワークは、信号がそのソースから完全に光学ドメイン内の宛先に搬送される「透明な」光学的なネットワークに進化する。
新進の光学的なネットワークの重要な要素は、光学的追加・削除型マルチプレクサ(OADM)である。OADMは、スルーチャネルに影響を与えることなく、特定の波長チャネルを削除するか又は追加するものである。固定のOADMは、ネットワークを単純化して、容易に、ポイント・ツー・ポイント・トポロジから固定のマルチ・ポイント構成に、費用効果のあるDWDMの移動を可能にすることができる。光学的−電気的変換なしで再構成が光学ドメインにおいて済んだ真の動的OADMは、動的に再構成可能な多地点DWDMの光学的なネットワークを可能にする。この動的に再構成可能な多地点アーキテクチャは、このアーキテクチャについてのネットワーク要素を可能にする真のOADMをもったネットワーク進化における次の主要な段階になることが予定されている。
光学スイッチング及び平面光回路のオンチップ・インテグレーション(集積又は統合)は、再構成可能な光学的追加・削除型マルチプレクサ(ROADM)のような多数の部品をもった光学機器の大きさ及び製造費用を大いに減らす可能性を有する。再構成可能な光学的追加・削除型マルチプレクサ(ROADM)についての現在の費用は、1チャネル当たり1,000ドルであり、長丁場の光学電気通信ネットワークに対する使用を制限することになっている。これらの使用を首都圏のネットワークの中に拡張するためには、性能を犠牲にすることなく、費用を1チャネル当たり100ドルのオーダーで減らす必要がある。
費用を減らすための1つの解決法は、部品の集積又は統合によるものであり、ここでの主要な費用の節約は包装においてである。平面光回路(PLC)技術を用いる光学的な統合について多くの手法が追求されている。これらの手法の大多数は、マルチプレクシング及びデマルチプレクシングのためのシリカのアレイ配列された導波路格子(AWG)と、デマルチプレクシングされた信号の追加・削除及び通過を遂行する熱光学(TO)スイッチとを統合することにより形成されたROADMをもった、シリカ・オン・シリコンのプラットフォームを用いるものである。低指数コントラストのシリカ・オン・シリコンのプラットフォームを用いることは、導波路を形成する大きな領域にわたり均一な厚い酸化膜が必要となることに起因して、これらの部品の収率をひどく制限することになる。TOスイッチを用いることは、高出力要求及び熱的なクロストークに起因して、発展の可能性を制限する。
デマルチプレクサ及びマルチプレクサ、可変光減衰器(VOA)、及び再構成可能な光学的追加・削除型マルチプレクサ(ROADM)のためのAWGのようなチップ大のフォトニック光波回路を製造するため、多数の材料及びスイッチング技術が検討されている。主要な材料のプラットフォームは、シリカウエハ、薄膜付着及びウエハボンディング技術の両方を用いるシリカ・オン・シリコン基板、シリコン基板上に定められたポリマー導波路、及びシリコン・オン・絶縁体基板を含む。主要なスイッチング技術は、熱光学的又は電子光学的効果のいずれかに基づくマッハ・ツェンダ(Mach-Zender)干渉計及びMEMS機械的導波路スイッチを含む。
シリカ導波路は、通常の単一モードファイバの光学特性に良好に適合する光学特性を有しており、したがってこれらと良好に連結するが、これらは導波路コアとクラッド材との間の低屈折率のコントラストに起因して厚いクラッド層を必要とし、これらを他のオンチップの光学装置と併せて製造及び集積又は統合するのに、平面的な加工技術を用いて製造することを困難にする。コアとクラッディングとの間の屈折率コントラストΔnが低いことにより、さらに、フォトニック光波回路を通る伝播中の光損失を制限するのに大きな曲げ半径が必要となって、チップ設置面積が大きくなりダイ収率が低くなる(<50%)。
さらに、シリカベースの導波路スイッチは、典型的には、約25ないし30dBの制限された消光比(ER)を有する熱光学効果を用いるマッハ・ツェンダ干渉に基づくものであり、シリカの低い熱光学的係数に起因して、かなりの電力を必要とし、異なる光学チャネル間での熱的なクロストークによる問題を有し、デジタル的光学応答ではなく正弦波的応答を有する。これらスイッチはさらに、電力が失われたときにはスイッチング状態を失う。
光学的、機械的及び電気的機能を一体的に統合するシリコン・オン・絶縁体(SOI)プラットフォームが必要とされている。シリコンのプラットフォームを用いることは、大規模なインフラストラクチャと、シリコン製造工場における半導体IC製造に利用可能なプロセス開発とを用いて部品を製造することを可能にする。MEMSスイッチ及び導波路を同じ材料、すなわち単結晶シリコン内に製造することにより、シリカ・オン・シリコンのような異質材料に存在するような如何なる応力及び歪みの問題もなくなる。シリコン内に製造することは、さらに、制御及び感知能力のためのCMOSマイクロ電子技術との統合、及び統合されたVOAを用いる信号調整を可能にする自由キャリアプラズマの分散効果を可能にする。シリコンの高屈折率コントラスト(n=3.5)は、リッジ形状の導波路構造を可能にし、最小の光学的曲げ損失で緊密な転回部を形成できるようにして、全体のチップの大きさをセンチメートルの寸法まで減らすことを可能にする。
本発明においては、光学的マイクロ電気機械システム(MEMS)スイッチが開示される。好ましい実施形態に係る光学的多状態ラッチングスイッチは、1つ又はそれ以上の駆動アクチュエータと、関連するラッチ歯をもった1つ又はそれ以上のラッチアクチュエータと、複数の光導波路を形成する可撓性片持ちばりプラットフォームと、駆動アクチュエータと前記片持ちばりプラットフォームとを連結する接続部と、1つ又はそれ以上のリンク歯を形成し、駆動アクチュエータに連結され、1つ又はそれ以上のラッチ状態位置を定めるように位置させられ、ラッチ歯に係合するように位置させられたリンク機構と、駆動アクチュエータ及びラッチアクチュエータを、均衡状態とラッチ状態との間で変化するように作動させるタイミングにされた電気刺激手段とを含む。光学MEMSスイッチは、M×Nの光信号スイッチングシステムとして用いられる。光学MEMSスイッチは、光学的状態を切り換えるために可撓性片持ちばりプラットフォーム上に形成された複数の光導波路からなり、光学スイッチの状態が駆動アクチュエータ及びラッチアクチュエータシステムにより変えられる。光学MEMS装置は、熱駆動アクチュエータと関連してラッチング機構を利用し、片持ちばりプラットフォームを位置合わせする。使用において、光学MEMS装置は、他の光学部品と統合して平面光回路(PLC)を形成するようにすることができる。スイッチ及びPLCが互いにシリコンチップ上に集積されると、再構成可能な光学的追加・削除型マルチプレクサ(ROADM)のような、コンパクトでより高い機能性をもった装置を製造することができるようになる。
図1を参照すると、光学的MEMS(マイクロ電子機械システム)スイッチ10の平面図が示されている。図示されるすべての光学的な移動する機械部品は、自己位置合わせ方法を用いて、SOIウエハの単結晶シリコンのデバイス層に製造される。光学的MEMSスイッチ10は、熱駆動アクチュエータ30と関連してラッチング機構20を利用し、一端58に固定された可撓性の片持ちばりのプラットフォーム50を位置合わせするようにする。可撓性片持ちばり50は、光学スラブ上に定められた1つ又はそれ以上の固定導波路40に切り換えるための1つ又はそれ以上の可動導波路を定める。SOIウエハのデバイス層に製造された部品は、埋められた酸化物層の犠牲的なエッチングにより残されることになる。使用において、光学的MEMSスイッチ10を平面光回路(PLC)と集積又は統合することができる。スイッチ及びPLCがシリコンチップ上で互いに集積又は統合されると、より高い機能性を持った装置、例えば再構成可能な光学的追加・削除型マルチプレクサ(R−OADM)のような装置を製造することができるようになる。
図1から図3に示されるように、光学スイッチ10は、1つ又はそれ以上の熱駆動アクチュエータ30を備え、このアクチュエータ30は、製造中に関連して形成された1つ又はそれ以上の熱ラッチアクチュエータ21を有し、各々の熱ラッチアクチュエータ21は並進ラッチ歯22を定めるようになっている。可撓性の片持ちばりプラットフォーム50は、複数の光導波路52及び54を定める。接続部34は1つ又はそれ以上の熱駆動アクチュエータ30を、可撓性片持ちばりプラットフォーム50に連結する。リンク機構24は、熱駆動アクチュエータ30を一組のリンク歯24に連結させ、該リンク歯は、ラッチが係合されたときラッチ歯22と接触する。リンク歯24及びラッチ歯22は、1つ又はそれ以上のラッチ状態の位置を定めるように空間的に配置され、電気刺激が、熱駆動アクチュエータ30及び熱ラッチアクチュエータ21を作動させて、以下にさらに完全に説明されるように、均衡状態とラッチ状態との間の切り換えを行うタイミングで与えられる。
光学MEMSスイッチ10は、光ファイバ伝送ネットワークのような種々の適用例において、光信号を種々の信号経路に沿って通す光学スイッチとして適用可能である。スイッチは、典型的には、M×Nの入力及び出力ポートの数により表示される。例えば、1×3のスイッチは、1つの入力を3つの出力の間で切り換えるものである。M×Nのスイッチは、従来は、導波路シャトルを用いることによるか、又は一連のM1×Nの片持ちスイッチをカスケードすることにより実装されていた。シャトルスイッチはM×Nのスイッチング機能を与えることができるが、これらは少なくとも2つの間隙を光経路に要求し、これは光損失を増加させることになる。同様に、一連のM個のカスケードされた片持ちスイッチは、M個の光間隙を有し、これはM>1の光損失を増加させることになる。導波路シャトルを用いずに、M個の導波路を支持する片持ちばりが撓まされるようになったM×Nの片持ちばり導波路スイッチを製造することにより、1つの光間隙が光経路に要求されるだけになり、間隙を通る伝播に関する光損失が半分に削減されるようになる。或いは、各々が単一の導波路を支持するM個の片持ちばりを可撓性をもって連結して、これらすべてを一緒に作動させるようにすることができる。さらに、シャトルに関連する2つの間隙からの反射は、干渉に起因して付加的な損失を生じさせることがある。
再び図1から図5に戻ると、2つの固定光導波路42及び44のそれぞれの間を切り換えるための可撓性片持ちばりプラットフォーム50上に形成された2つの光導波路52及び54をもった光学スイッチが示されている。この構成は、2つの光信号を同時に切り換えることを可能にする。付加的な光導波路を含むことにより、付加的な信号を同時に切り換えることができる。多数の信号を同時に切り換える能力は、多くの光学的な適用例において重要である。例えば、R−OADM(再構成可能な光学的追加・削除型マルチプレクサ)においては、入力信号が削除されると、新しい信号を出力に追加することができる。入力信号を削除ラインに送り、追加信号をスイッチの出力に送る追加・削除型機能は常に同時に行われるため、該入力信号及び該追加信号の両方に対して追加・削除型機能を実行する、単一の片持ちスイッチを実装することにより、必要とされる光学スイッチの数を減らすことができる。図3を参照すると、光学的多状態ラッチングスイッチ10は、ポリシリコンの固定具56を用いて、部品を基板60に取り付けるようにしている。光学的多状態ラッチングスイッチ10はさらに、ポリシリコンのくぼみ55を使用する。くぼみ55は、間隙の中の半分まで垂れ下がる隆起部とすることができる。くぼみ55は、固定具56と同様に、上面から間隙の中に半分まで下に垂れ下がる鐘乳石に似ているが、該間隙を通るのは半分までだけであり、形成された部品が基板60に対して静止摩擦を避けるような位置に置かれる。当業者にはよく知られているように、ポリシリコンの固定具を酸化物の代わりに利用することができる。ポリシリコンはさらに、一般に、MEMSにおいて静止摩擦を避けるために行われるように、くぼみを製造するのに用いることができる。
ここで図4を参照すると、図1に示される2×2スイッチについての駆動及びラッチ機構を作動するように用いられる信号のタイミングシーケンスが図示されており、図4においては、ハンドルウエハ又はベース基板60の電位がゼロであると仮定して電圧が表示されている。タイミング図表の第1部分は、ラッチングシーケンスを示す。ラッチングシーケンスの第1段階は、電圧+V1を各々のラッチアクチュエータ21の一端26に印加して、電圧−V1を各々のラッチアクチュエータ21の他端45に印加することである。ラッチアクチュエータ21における電圧は、アクチュエータ梁においてオーム加熱を誘起させて、熱膨張を生じさせ、図5に示される後続するラッチの開口(方向27)を生じさせることになる。ラッチアクチュエータ電圧がさらに印加されている間、駆動アクチュエータ30は電圧+V2により一端31が刺激され、電圧−V2により他端33が刺激されている。
図6は、結果としてもたらされる駆動アクチュエータの熱膨張により、リンク歯24が完全にラッチ歯22の右側にあるようにするのに十分な距離だけ、可撓性片持ちばりプラットフォーム50及びリンク機構28が右に動かされている状態を示す。次に、ラッチアクチュエータの電圧はゼロに戻り、ラッチは閉じる。ラッチングシーケンスを終了するために、駆動アクチュエータの電圧はゼロに戻る。駆動アクチュエータが冷えるにつれて、リンク歯24はラッチ歯22に向けて張力により引かれ(方向27)、ラッチ歯22は、スイッチを図7に示す所望のラッチ位置に保持する。図4の非ラッチ部分に示されるように、スイッチを元の状態に戻すために、同じ電圧のシーケンスが逆のタイミングで印加される。ラッチング能力のないスイッチとは違い、光学MEMSラッチングスイッチ10は、状態変化の間においてのみ電力を消費し、電力が遮断されたとしてもその状態を保つ。
図4に示されるタイミング図表は矩形の波形電圧パルスを示すが、この表示は基本的なタイミングを示すことを意味するに過ぎず、他の波形の使用を除外するものではないことを認識されたい。さらに、熱アクチュエータに印加される電圧は、ゼロに対して対称的である必要はない。しかしながら、上述のように等しいが反対極性のパルスを用いると、ラッチ及び非ラッチサイクル全体にわたり各アクチュエータの中心において一定のゼロ電圧となり、これは、アクチュエータとハンドルウエハ60との間の静電力を削減することになる。
2×2のスイッチング機能についての論理表は以下の通りである。
状態1:図5に示される追加・削除型機能
左側の可動導波路52(入力)が左側の固定導波路42(削除)に光学的に位置合わせされる。
右側の可動の導波路54(追加)が右側の固定導波路44(出力)に光学的に位置合わせされる。
状態2:図7に示される通過機能
左側の可動の導波路52(入力)が右側の固定導波路44(出力)に光学的に位置合わせされる。
状態1から状態2に変化するため、矢印37の方向の力Fを熱駆動アクチュエータ30により印加することができる。自由端を距離δxだけ撓ませるために、力Fを印加しなければならず、
Fは、F=(Ea3b/4L3)δxにより与えられる。
なお、Eはヤング率(単結晶シリコンについてE=1.65×105μN/μm2)、aは梁21の薄い方の断面寸法、bは梁の厚い方の断面寸法、及びLは梁の長さである。例えば、厚さが5μmで幅が20μmの1000μmの長さの梁は、自由端を8μmだけ撓ませるのに13.2の力を必要とし、これは4μmの導波路をもった片持ちばりを切り換えるのに十分な撓みである。
スイッチング力Fは、片持ちばり50の自由端、又は中間位置、又は要求に応じた場所に印加することができる。スイッチはさらに、反対方向の熱駆動アクチュエータ30からの力Fを印加することにより、反対方向に作動させることができる。場合によっては、片持ちばりがかなり長くて可撓性であることがあるため、これらを均衡位置に戻す強い復元力をもたないために、その片持ちばりの均衡位置を用いない方が好ましいことがある。むしろ、撓まされた位置だけを用いることが望ましいことがある。さらに、受け側の導波路を、撓まされた片持ちばりを離れる光の伝播方向により良く適合するように角度を付けることが有利となることがある。
複数の導波路を支持する片持ちばりは、厚いというより幅広いものとなることがあるため、以下の式
K=(Ea/4)(b/L)3
により予測されるように、面内におけるより面から外れる方向における方が剛性が少なくなるために、面から外れる方向に望ましくない撓みを受けることがある。
厚さ5μmで幅20μmの梁についての例として、垂直方向に対する水平方向の剛性比は(20/5)2である。梁は、水平方向には垂直方向に対して16倍の剛性がある。
平面から外れる方向の撓みを避けるために、片持ちばり50に沿った適切な位置をスイッチの接続部34に取り付けて、これらの方向の撓みを最小にするようにすることができる。さらに、幾つかの点において梁の幅を減らして(例えば、のこぎり状の)、その水平方向における剛性を減らすことができる。接合部を付加して、梁を水平方向により可撓性をもつようにすることができる。梁を双方向に撓むようにして、要求される偏向の大きさを減らすようにすることができる。梁を厚くするか又は補強して、面外れ方向に可撓性を少なくするようにすることができる(例えば、梁をより厚くするか又は付加的な梁のような上部構造を加えることにより)。
スイッチ及び導波路は、幅広く入手可能な半導体加工用機器を用いて、互いに単結晶のシリコンウエハ上で作られる。このようなオンチップ集積化は、別々の大きな部品を光ファイバに手動により連結させることに付随する複雑な位置合わせ問題を避け、光学スイッチの別々の部品の製造、組み立て、及び包装に関連する費用及び場所を省くものとなる。他の部品によるオンチップ一体化は、スイッチの製造及びこれらの複雑な装置の取り付けにおける費用を10分の1又はそれ以上下げることができる。現在、これらの部品は1チャネル当たり1000ドル以上の値段である。
図8から図11は、図1に示されるシステムの実施形態における2つの発展形態100を示す。第1の発展形態は、図1における2×2から図8における2×3への高いオーダのスイッチングに対するものである。図9Aに示される第2の選択肢は、単純な接続部の代わりに「フック」−ヒッチ132及び134を用いるものである。これらの発展形態について以下に説明する。
システムを2×2スイッチから2×3スイッチに増加するために、2つの付加的な要素が必要になる。第1のものは、固定導波路142、144及び146のそれぞれを定める別の固定導波路プラットフォームである。第2の要素は、図9Bに示されるように、歯のセット24の後ろに配置されたリンク機構28上の付加的な一対の歯25である。2×3スイッチの初期状態において、ラッチ歯は図9Bに示されるように外れている。この位置においては、図8及び図9Aに示されるように、最も右の可動導波路154が、最も左の固定導波路142と一致している。図4に示されて説明されたラッチング段階と同様な作動シーケンスを用いて、スイッチを図10Bに示される第2の状態に移動することができる。ここでは、ラッチアクチュエータ21に形成されたラッチ歯22が、リンク機構28上の一対の歯24及び25の間に係合し、図10Aに示されるように、2つの可動導波路152及び154は、最も左の一対の固定導波路142及び144のそれぞれと一致している。第3の状態は、別のラッチングシーケンスを、駆動装置上のより高い電圧で実行することにより達成することができる。図11A及び図11Bに示されるこの状態においては、ラッチ歯22はリンク歯の対の後ろで係合し、また、2つの可動導波路152及び154は、ここでは、最も右の固定導波路の対144及び146と一致する。
上述の2×3スイッチの例は、小さい値のN及びMについてのN×Mのスイッチングを達成する一般的な能力についての一実施形態である。各々のN×M構成は、十分な数の固定導波路及び可動導波路を必要とする。さらに、所望の組のスイッチ位置を達成するための別の設計の考え方を説明する。これらは、可動及び固定導波路の最初の相対的な位置合わせ及び間隔決め、並びに、リンク歯の数及び相対的位置を含む。
図8から図11に示される第2の選択肢は、接続部34についてのインターロック「フック」ヒッチ132及び134に代わるものである。用いられる実施形態及び製造工程により、「フック」ヒッチを用いて、スイッチの性能を低下させることがある応力の影響を緩和するようにすることができる。例えば、駆動アクチュエータ30における応力を誘起させるような工程の場合には、この応力は接続部34を通って伝送されて、導波路の均衡状態の位置合わせに影響を及ぼすことになる。「フック」ヒッチは、駆動アクチュエータ130を、均衡状態にある可動導波路プラットフォーム150から機械的に分離し、これにより該均衡状態におけるずれを誘起させる如何なる伝送される応力も排除されるようになる。
「フック」ヒッチはさらに、リンク機構に望ましくない回転をもたらすラッチ状態において生じる応力を緩和する。片持ち状にされた導波路プラットフォームの固定されていない端部が右に引っ張られると、該片持ち状にされたプラットフォームの曲げに起因して、該プラットフォームの並進運動に小さな時計回りの回転が伴う。単純な接続部が用いられている場合には、導波路プラットフォームの回転が接続部34を曲げ、これは次いで、リンク機構28の反時計回りの回転を生じさせ、さらに駆動アクチュエータを非対称的に歪ませることになる。リンク機構の回転及びアクチュエータの非対照的な歪みは、より大きな変位を必要とするシステムにおいて最も深酷である。しかしながら、「フック」ヒッチは、これらの問題について良好な対策をもたらす。図11Aに見られるように、「フック」ヒッチの組み合わせ132及び134は、片持ち状にされた導波路梁プラットフォームに取り付けられた左フック134と熱駆動アククヘータに取り付けられた右フック132との間の接触点にピボット点をもたらす。「フック」ヒッチは、このようにして片持ち状にされた導波路の回転運動を残りのシステムから分離して、回転を誘起することなしでリンク機構及び駆動装置が作動することを可能にするようにする。
本発明は、その精神又は本質的な特徴から離れることなく、他の特定の形態で実施することができる。説明された実施形態は、すべての点において、例示的なものに過ぎず、制限するものではないと考えられている。本発明の範囲は、したがって、上記の説明ではなく特許請求の範囲により示される。請求項について等価の意味及び範囲内にあるすべての変更は、この範囲にあるものとする。
本発明における光学MEMS(マイクロ電子機械システム)スイッチの切欠き平面図である。 図1の円「FIG.2」で囲んだ部分の拡大図である。 図2の横断面図である。 図1及び図2に示されるラッチ及び駆動スイッチを制御するタイミング図表である。 開口位置まで作動されたラッチを示す平面図である。 オーバーシュート位置まで作動された駆動スイッチを示す平面図である。 ラッチ位置におけるラッチ機構を示す平面図である。 本発明の別の実施形態における「フック」ヒッチ及びラッチ歯をもった光学MEMS装置の切欠き平面図である。 均衡状態の「フック」ヒッチを詳細に示す、図8の円「FIG.9A」の部分の拡大図である。 均衡状態のラッチ歯を詳細に示す、円「FIG.9B」の部分の拡大図である。 第1のスイッチ状態における「フック」ヒッチを詳細に示す図8の一部の拡大図である。 第1のスイッチ状態におけるラッチ歯を詳細に示す図8の一部の拡大図である。 第2のスイッチ状態における「フック」ヒッチを詳細に示す図8の一部の拡大図である。 第2のスイッチ状態におけるラッチ歯を詳細に示す図8の一部の拡大図である。
符号の説明
10:光学MEMS(マイクロ電子機械システム)スイッチ
20:ラッチング機構
21:熱ラッチアクチュエータ
22:ラッチ歯
24:リンク歯
28:リンク機構
30:熱駆動アクチュエータ
40:固定導波路
50:片持ちばりプラットフォーム
52、54:光導波路
60:単結晶シリコン

Claims (3)

  1. 光学的多状態ラッチングスイッチであって、
    ベース基板が横方向に広がる面に配置され、一の方向に沿って延在し、熱膨張により前記一の方向と直交する方向に沿って移動し得る1つ又はそれ以上の駆動アクチュエータと、
    前記面に配置され、前記直交する方向に沿って延在し、熱膨張により前記一の方向に沿って移動し得る1つ又はそれ以上のラッチアクチュエータであって、前記一の方向に沿って延在し且つ前記ラッチアクチュエータと連動して前記一の方向に沿って移動し得るラッチ歯を有している、前記ラッチアクチュエータと、
    前記面に配置され、前記駆動アクチュエータよりも前記ラッチ歯から更に離れた側において、前記駆動アクチュエータと並行に前記一の方向に沿って延在し、複数の光導波路を形成する可撓性片持ちばりプラットフォームと、
    前記面に配置され、前記可撓性片持ちばりプラットフォームの一方の端部において前記駆動アクチュエータと並行に前記一の方向に沿って延在し、前記可撓性片持ちばりプラットフォームの前記複数の光導波路の各々と対向してそれぞれが配置されている、複数の固定導波路と、
    前記面に配置され、前記駆動アクチュエータと前記片持ちばりプラットフォームとを前記直交する方向にて連結する接続部と、
    前記面に配置され、前記駆動アクチュエータ及び前記片持ちばりプラットフォームと連結された状態で、前記ラッチ歯と並行に前記一の方向に沿って延在し、前記駆動アクチュエータと連動して前記直交する方向に沿って移動し得る1つ又はそれ以上のリンク歯であって、前記駆動アクチュエータの移動と前記ラッチアクチュエータの移動を利用して、前記ラッチ歯と係合して1つ又はそれ以上のラッチ状態位置を定めるように前記ラッチ歯の近傍に位置する前記リンク歯と、
    前記駆動アクチュエータ及び前記ラッチアクチュエータを、均衡状態とラッチ状態との間で変化するように作動させるタイミングにされた電気刺激手段と、
    を含むことを特徴とする光学的多状態ラッチングスイッチ。
  2. 前記駆動アクチュエータと前記片持ちばりプラットフォームを係合させるフック・ヒッチを備える請求項1に記載の光学的多状態ラッチングスイッチ。
  3. 前記アクチュエータに対する前記電気刺激手段が、前記ラッチ歯及び前記リンク歯の接触面間の電圧差を減らすか又はなくすようにバイアスされる請求項1又は2に記載の光学的多状態ラッチングスイッチ。
JP2004070776A 2003-03-19 2004-03-12 マイクロ電子機械システムの光学的多状態ラッチスイッチ Expired - Fee Related JP4476649B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US45608603P 2003-03-19 2003-03-19
US45606303P 2003-03-19 2003-03-19
US10/712,203 US6947624B2 (en) 2003-03-19 2003-11-12 MEMS optical latching switch

Publications (2)

Publication Number Publication Date
JP2004287431A JP2004287431A (ja) 2004-10-14
JP4476649B2 true JP4476649B2 (ja) 2010-06-09

Family

ID=32830887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070776A Expired - Fee Related JP4476649B2 (ja) 2003-03-19 2004-03-12 マイクロ電子機械システムの光学的多状態ラッチスイッチ

Country Status (4)

Country Link
EP (1) EP1460462B1 (ja)
JP (1) JP4476649B2 (ja)
CA (1) CA2460765C (ja)
DE (1) DE602004015521D1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7162112B2 (en) * 2004-11-23 2007-01-09 Xerox Corporation Microfabrication process for control of waveguide gap size
US9158106B2 (en) 2005-02-23 2015-10-13 Pixtronix, Inc. Display methods and apparatus
US7999994B2 (en) 2005-02-23 2011-08-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US20070205969A1 (en) 2005-02-23 2007-09-06 Pixtronix, Incorporated Direct-view MEMS display devices and methods for generating images thereon
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US8519945B2 (en) 2006-01-06 2013-08-27 Pixtronix, Inc. Circuits for controlling display apparatus
EP2322971B1 (en) * 2005-02-23 2014-04-30 Pixtronix, Inc. Methods and Apparatus for Actuating Displays
US8310442B2 (en) 2005-02-23 2012-11-13 Pixtronix, Inc. Circuits for controlling display apparatus
US9082353B2 (en) 2010-01-05 2015-07-14 Pixtronix, Inc. Circuits for controlling display apparatus
US8526096B2 (en) 2006-02-23 2013-09-03 Pixtronix, Inc. Mechanical light modulators with stressed beams
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
US8169679B2 (en) 2008-10-27 2012-05-01 Pixtronix, Inc. MEMS anchors
BR112012019383A2 (pt) 2010-02-02 2017-09-12 Pixtronix Inc Circuitos para controlar aparelho de exibição
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549107B2 (en) * 2001-02-26 2003-04-15 Opticnet, Inc. Latching mechanism for MEMS actuator and method of fabrication
WO2002091025A2 (en) * 2001-05-04 2002-11-14 L3 Optics, Inc. Method and apparatus for detecting and latching the position of a mems moving member

Also Published As

Publication number Publication date
EP1460462B1 (en) 2008-08-06
CA2460765A1 (en) 2004-09-19
JP2004287431A (ja) 2004-10-14
DE602004015521D1 (de) 2008-09-18
EP1460462A1 (en) 2004-09-22
CA2460765C (en) 2010-07-06

Similar Documents

Publication Publication Date Title
JP4446159B2 (ja) マイクロ電子機械システムの光導波路スイッチ
US6947624B2 (en) MEMS optical latching switch
De Dobbelaere et al. Digital MEMS for optical switching
JP4476649B2 (ja) マイクロ電子機械システムの光学的多状態ラッチスイッチ
US6801679B2 (en) Multifunctional intelligent optical modules based on planar lightwave circuits
US6842563B2 (en) Waveguide grating-based wavelength selective switch actuated by micro-electromechanical system
Stepanovsky A comparative review of MEMS-based optical cross-connects for all-optical networks from the past to the present day
JP2009511956A (ja) 一体型超微小電気機械波長選択スイッチ及びその製造方法
US7242825B2 (en) Cantilever beam MEMS variable optical attenuator
US7298954B2 (en) Waveguide shuttle MEMS variable optical attenuator
US6968100B2 (en) MEMS waveguide shuttle optical latching switch
US20120230690A1 (en) Adjustable Multiple-Channel Optical Switch
US6449407B1 (en) Optical switch having equalized beam spreading in all connections
US6980727B1 (en) Methodology for a MEMS variable optical attenuator
US6766074B1 (en) Demultiplexer/multiplexer with a controlled variable path length device
US7796847B2 (en) Electrical stimuli of MEMS devices
EP1348988A2 (en) Optical switch with a geometry based on perpendicularly-oriented planar lightwave circuits
KR100696228B1 (ko) 광 집적 회로를 위한 기계적 빔 스티어링
Lin et al. Optical crossconnects for high‐capacity lightwave networks
WO2014155642A1 (ja) 光マトリックススイッチ及びその制御システム
Shibata et al. Silica-based 16× 16 optical matrix switch module with integrated driving circuits
Yuan et al. Optical switches
US6879754B2 (en) Drop-before-add optical switching and routing system employing grating-based wavelength selective switches
Ciminelli et al. Optical switching technologies and their applications
Hibino Thermo-Optic Devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees