[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4474011B2 - Hydrogen supply device for vehicles equipped with fuel cells - Google Patents

Hydrogen supply device for vehicles equipped with fuel cells Download PDF

Info

Publication number
JP4474011B2
JP4474011B2 JP2000077285A JP2000077285A JP4474011B2 JP 4474011 B2 JP4474011 B2 JP 4474011B2 JP 2000077285 A JP2000077285 A JP 2000077285A JP 2000077285 A JP2000077285 A JP 2000077285A JP 4474011 B2 JP4474011 B2 JP 4474011B2
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
amount
storage
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000077285A
Other languages
Japanese (ja)
Other versions
JP2001268721A (en
Inventor
克三 佐保田
滋和 木崎
毅昭 島田
芳雄 縫谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000077285A priority Critical patent/JP4474011B2/en
Publication of JP2001268721A publication Critical patent/JP2001268721A/en
Application granted granted Critical
Publication of JP4474011B2 publication Critical patent/JP4474011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,燃料電池を搭載した車両の水素供給装置,特に,燃料電池に水素を供給する水素供給源を備えた水素供給装置に関する。この種の水素供給源には,高圧水素タンク,液体水素タンク,水素貯蔵合金を充填したタンク,アルコール,ガソリン等の原料から水素を生成する改質器等が該当する。
【0002】
【関連の技術】
本出願人は,先に,前記改質器の応答遅れに対応し得る水素供給装置として,燃料電池の必要水素量を改質器により充足することができないとき,それを充足すべく,改質器により生成された水素を貯蔵することが可能な水素貯蔵器を備えたものを提案している(特願平11−164939号明細書および図面参照)。
【0003】
【発明が解決しようとする課題】
燃料電池の運転に必要な水素量,つまり燃料電池の必要水素量は,例えば車両の走行モードをスポーツモードまたはエコノミーモードに切換える走行モード切換装置により決定される。水素貯蔵器からの充足用水素の放出は,例えば車両の加速時に必要となるが,その加速時の充足用水素量はスポーツモードの場合と,エコノミーモードの場合とでは異なり,加速性能を向上すべく,前者の方が後者よりも大となる。
【0004】
そこで,充足用水素量を各モードについて調節し,また加速操作に対応すべく,迅速な水素供給を行うことが必要となるが,先行技術にはこのような工夫はなされていない。
【0005】
【課題を解決するための手段】
本発明は,燃料電池の必要水素量に応じて充足用水素量を決定し,しかもその充足用水素を迅速に燃料電池に供給し得るようにした前記水素供給装置を提供することを目的とする。
【0006】
前記目的を達成するため本発明によれば,車両に搭載された燃料電池に水素を供給する水素供給源を備えた水素供給装置において,前記燃料電池の必要水素量を前記水素供給源により充足することができないとき,それを充足すべく,前記水素供給源から供給された水素を貯蔵することが可能な水素貯蔵器と,前記燃料電池の必要水素量を決定する第1手段と,その第1手段からの情報により前記水素貯蔵器から放出される充足用水素量を決定する第2手段とを備え,前記水素貯蔵器は,前記水素供給源から供給された水素を貯蔵するための水素貯蔵合金を備えた第1貯蔵部と,その第1貯蔵部に直列に接続され,該第1貯蔵部の水素貯蔵合金から放出された気体水素を貯蔵して前記燃料電池に供給する,水素貯蔵合金を備えない第2貯蔵部とを有する,燃料電池を搭載した車両の水素供給装置が提供される。
【0007】
前記のように構成すると,燃料電池の必要水素量を,それに応じて決められた量の充足用水素により満たすことが可能である。即ち,水素供給源からの水素量がaで,例えばエコノミーモードの加速時における燃料電池の必要水素量が2aであるとき,充足用水素量aを燃料電池に供給することができ,一方,スポーツモードの加速時における燃料電池の必要水素量が3aであるとき,充足用水素量2aを燃料電池に供給することができる。しかも,その供給水素は,第1貯蔵部に直列に接続され且つ水素貯蔵合金を備えない第2貯蔵部に蓄えられた気体水素であるから迅速な供給が可能である。
【0008】
【発明の実施の形態】
図1に示す水素供給装置1は,水素を燃料とする燃料電池2を電源とする電気自動車に搭載される。
【0009】
水素供給装置1において,水素供給源としての改質器3は,アルコール,ガソリン等の原料から水素を主成分とする改質ガスを生成するもので,その供給側が燃料電池2の改質ガス入口側に供給管路4を介して接続される。空気用供給管路5において,その導入側にエアクリーナ6,モータ7を持つスーパチャージャ8およびインタクーラ9が装置され,また導出側は燃料電池2の空気入口側に接続される。その供給管路5の燃料電池2近傍に第1二方弁V1が装置される。燃料電池2の一対の接続端子は一対の導線10を介して車両駆動モータ11に接続され,またそれら導線10にモータ駆動用補助バッテリ12の一対の接続端子が一対の導線13を介して接続される。
【0010】
燃料電池2の改質ガス出口側および空気出口側はそれぞれ排出管路14,15を介して蒸発器用燃焼器16に接続され,また空気用排出管路15の燃焼器16近傍に第2二方弁V2が装置される。蒸発器17の一方の入口側にメタノールタンク18の一方の出口側が供給管路19を介して接続され,その供給管路19にポンプ20が装置される。また蒸発器17の他方の入口側には水タンク21の出口側が供給管路22を介して接続され,その供給管路22にポンプ23が装置される。蒸発器17の出口側はメタノールおよび水分よりなる混合蒸気用供給管路24を介して改質器3の導入側に接続される。またメタノールタンク18の他方の出口側は別の供給管路25を介して改質器始動用燃焼器26に接続され,その供給管路25にメタノールタンク18側より順次,ポンプ27および第3二方弁V3が装置される。また供給管路25において,ポンプ27および第3二方弁V3間がさらに別の供給管路28を介して蒸発器用燃焼器16の電気ヒータキャタライザ29に接続され,その供給管路28の電気ヒータキャタライザ29近傍に第4二方弁V4が装置される。改質器始動用燃焼器26は,グロープラグ30,電池31およびそれと燃焼器26間に存するスイッチ32を有する加熱回路33を備えている。
【0011】
改質ガス用供給管路4に,その改質器3側より順次,第5二方弁V5,CO除去器34,第1三方弁3V1,熱交換器35,第2三方弁3V2,流量計36および逆止弁Vが装置される。空気用供給管路5において,燃料電池2近傍の第1二方弁V1上流側から分岐した供給管路37がさらに三つに分岐して改質器始動用燃焼器26,改質器3およびCO除去器34に接続され,その供給管路37の燃焼器26近傍,改質器3近傍およびCO除去器34近傍にそれぞれ第6〜第8二方弁V6〜V8が装置される。空気は,燃焼器26においては燃焼と温度制御のために用いられ,また改質器3においては温度制御のために用いられ,さらにCO除去器34では改質ガス中に含まれるCOをCO2に酸化するために用いられる。CO除去器34の出口側に存する第1三方弁3V1は第1バイパス管路38を介して燃料電池2の改質ガス用排出管路14に接続される。
【0012】
また改質ガス用供給路4において,熱交換器35の下流側に存する第2三方弁3V2と,流量計36および逆止弁V間とが第2バイパス管路39によって接続されている。その第2バイパス管路39に,第2三方弁3V2側より順次,流量計40,熱交換器41,水分除去器42,第9二方弁V9,水素吸蔵−移動器43,第10二方弁V10および流量計44が装置される。水素吸蔵−移動器43は,入口と出口を持つ,いわゆるスルー型タンクを有し,その入口は第2バイパス管路39の上流側に,また出口は第2バイパス管路39の下流側にそれぞれ接続される。水素吸蔵−移動器43に加熱装置45が付設される。その加熱装置45は改質ガス流通用管路46を有し,その管路46の入口側は,改質ガス用供給管路4において,改質器3および第5二方弁V5間に接続され,その出口側は第5二方弁V5およびCO除去器34間に接続される。管路46の入口側に第11二方弁V11が装置される。
【0013】
水素貯蔵器47は,燃料電池2の必要水素量を改質器3により充足することができないとき,それを充足すべく,改質器3により生成された水素を貯蔵するもので,第1貯蔵部48と,それに接続管49を介して直列に接続された第2貯蔵部50とを有する。その第1貯蔵部48の入口と,第2バイパス管路39における第9二方弁V9および水素吸蔵−移動器43の入口間とが,水素吸蔵−移動器43から第1貯蔵部48へ水素を移動させる移動管路51により接続され,その管路51に,水素吸蔵−移動器43側より順次,第12二方弁V12および流量計52が装置される。第2貯蔵部50の出口は,供給管路53を介して,改質ガス用供給管路4における逆止弁Vおよび燃料電池2の入口間に接続される。その供給管路53には第2貯蔵部50側より順次,第13二方弁V13,流量計54,レギュレータ55および流量制御弁56が装置される。
【0014】
第1貯蔵部48に,ヒータ57,バッテリ58およびスイッチ59を有する加熱回路60と,ラジエータ,水ポンプ,水タンク等を備えた冷却部61を有する冷却回路62が付設される。
【0015】
水素吸蔵−移動器43のタンク内には第1水素貯蔵合金MH1が充填される。また水素貯蔵器47における第1貯蔵部48のタンク内に第2水素貯蔵合金MH2が充填される。図2に示すように,第1水素貯蔵合金MH1は60℃,0.07MPa程度で水素を吸蔵し,一方,約200℃で5MPa程度の水素を放出する,といった特性を有する。このような水素貯蔵合金としては,例えばLaNi4.05Co0.6Al0.35合金が用いられる。第2水素貯蔵合金MH2は60℃,1MPa程度で水素を吸蔵し,一方,80℃MPa程度の水素を放出するといった特性を有する。このような水素貯蔵合金としては,例えばMmNi4.01Co0.6Mn0.34Al0.05(Mm:ミッシュメタル)合金が用いられる。
【0016】
したがって,常温下においては第2貯蔵部50内は第2水素貯蔵合金MH2から放出された気体水素によって満たされており,その気体水素圧は約1MPa以下である。一方,第1貯蔵部48が加熱され,第2水素貯蔵合金MH2の温度が80℃以上になると,第2貯蔵部50内の気体水素圧は約2MPa以上といったように高い状態に保持される。
【0017】
燃料電池2,車両駆動モータ11,グロープラグ30を有する加熱回路33のスイッチ32,各ポンプ20,23,27ならびにヒータ57を有する加熱回路60のスイッチ59等は,始動スイッチ63をON状態にすることによってECU64を介して作動制御され,一方,始動スイッチ63をOFF状態にすることによって不作動となる。
【0018】
ECU64に燃料電池2の必要水素量を決定する第1手段65が接続されている。その第1手段65は,例えば走行モード切換装置であって,その装置65はスポーツモードとエコノミーモードとの切換えを行う。即ち,スポーツモードの場合の加速時にはその加速性能を向上させるべく,燃料電池2はエコノミーモードの場合の加速時よりも多くの充足用水素を必要とする。そこで,スポーツモードの場合にはECU64からの制御信号によって水素貯蔵器47における第1貯蔵部48の加熱回路60を閉成し,且つそれを保持して,その第1貯蔵部48を加熱することにより,前記のように第2貯蔵部50内の気体水素圧を高く保持する。これにより充足用水素量の増加が図られる。
【0019】
一方,エコノミーモードに切換えられているときは,加速性を向上させる必要はないので,ECU64からの制御信号によって水素貯蔵器47における第1貯蔵部48の加熱回路60を開成状態に保持して,その第2貯蔵部50内の気体水素圧を前記のように低く保持する。これにより充足用水素量はスポーツモードの場合よりも減少する。
【0020】
したがって,ECU64および加熱回路60は,走行モード切換装置(第1手段)65からの情報により水素貯蔵器47から放出される充足用水素量を決定する第2手段を構成する。
【0021】
次に,図1および図3〜図5を参照して各種モードについて説明する。
【0022】
A.始動モードこのモード開始前において,水素貯蔵器47の第2貯蔵部50における気体水素圧は常温下において約1MPa以下に保持されているとする。第1〜第13二方弁V1〜V13および流量制御弁46は「閉」状態であり,また第1三方弁3V1は改質ガスを蒸発器用燃焼器16に供給し得るように,つまり燃焼器16側に切換られており,一方,第2三方弁3V2は,改質ガスを水素吸蔵−移動器43に供給し得るように,つまり水素吸蔵−移動器43側にそれぞれ切換えられている。
【0023】
図1,図3において,始動スイッチ63をON状態にすると,スーパチャージャ8が作動し,空気が,エアクリーナ6,スーパチャージャ8およびインタクーラ9を経て,第1二方弁V1が「開」で,燃料電池2に供給され,また第6〜第8二方弁V6〜V8が「開」で,改質器3の燃焼器26,改質器3およびCO除去器34にそれぞれ供給される。燃料電池2から排出された空気は,第2二方弁V2が「開」で,蒸発器用燃焼器16に導入される。
【0024】
蒸発器用燃焼器16の電気ヒータキャタライザ29が通電され,それが昇温すると,ポンプ27が作動すると共に第4二方弁V4が「開」で,メタノールが電気ヒータキャタライザ29に噴射され,そのメタノールを燃焼器16で燃焼させて蒸発器17の加熱が行われる。
【0025】
第13二方弁V13が「開」で,水素貯蔵器47の第2貯蔵部50からの供給水素がレギュレータ55で0.15MPa程度に調圧され,次いで流量制御弁56で供給量を調節された後燃料電池2に供給され,それが運転を開始する。第2貯蔵部50からの水素供給量は流量計54により検知され,また第2貯蔵部50の水素量の減少に伴い,そこには第1貯蔵部48から気体水素が供給される。燃料電池2における余剰水素は蒸発器用燃焼器16に導入され,そこで燃焼されて蒸発器17の加熱に利用される。
【0026】
改質器始動用燃焼器26において,グロープラグ30を有する加熱回路33のスイッチ32が閉じてそのグロープラグ30が通電される。第3二方弁V3が「開」で,メタノールが燃焼器26に噴射され,そのメタノールの燃焼により改質器3が加熱される。改質器3の供給口部分のガス温度を検知して,それが所定値に達したときを改質器3の加熱完了としてスイッチ32が開き,グロープラグ30への通電が停止される。
【0027】
蒸発器17にメタノールおよび水が噴射されてメタノールおよび水分よりなる混合蒸気が生成され,その混合蒸気が改質器3に供給されて改質が行われる。
【0028】
改質ガスは,かなりのCOを含んでおり,第5二方弁V5が「開」で,CO除去器34に導入され,次いで,第1三方弁3V1が燃焼器16側へ切換えられているので,第1バイパス管路38を経て燃焼器16に導入され,そこで水素等の可燃成分が燃焼される。
【0029】
改質ガスのCO濃度を検知するか,または改質ガス温度と時間との関係からCO濃度を調べ,そのCO濃度が所定値以下になったとき,第1,第2三方弁3V1,3V2が燃料電池2側へ切換えられ,改質ガスが燃料電池2に供給される。
【0030】
暖機中の改質器3からの改質ガス量は燃料電池2を運転するのに十分ではないが,その不足分は第2貯蔵部50の供給水素によって補われ,これにより燃料電池2の出力の安定化が図られる。改質ガス量の増加に伴い水素供給量が漸次,減少制御される。
【0031】
改質器3の供給口部における改質ガスの温度および圧力がそれぞれ200℃,0.16MPa程度に達したとき,その改質器3が定常モードに達した,と判断され,第2貯蔵部50側の第13二方弁V13および流量制御弁56が閉じられ,以後,改質器3による自立運転モードに移行する。
【0032】
改質ガスが,50℃の冷却水を流通させた熱交換器35を経たときには,その温度は80℃程度に,また圧力は0.15MPa程度にそれぞれ降下しており,このような温度および圧力を有する改質ガスが燃料電池2において燃料として用いられている。
【0033】
B.定常走行中における水素吸蔵・水素移動モード図1,図4に示すように,水素吸蔵モードの開始に伴い第2三方弁3V2が水素吸蔵−移動器43側に切換えられる。
【0034】
第2三方弁3V2における改質ガスの温度は80℃程度,圧力は0.15MPa程度であるが,その改質ガスは,50℃の冷却水を流通させた熱交換器41により温度を60℃程度に下げられ,次いで水分除去器42により水分を除去される。
【0035】
第9二方弁V9が「開」で,60℃,0.07MPa程度の改質ガスが水素吸蔵−移動器43に導入されて,その水素が第1水素貯蔵合金MH1に吸蔵される。この吸蔵により合金MH1は昇温するが,その合金MH1の温度は改質ガスの冷却作用によって60℃程度に保持される。
【0036】
水素吸蔵−移動器43を通過した改質ガスは,第10二方弁V10が「開」で,逆止弁Vを経て燃料電池2に供給され,その運転が継続される。
【0037】
水素吸蔵−移動器43の入,出口側に在る両流量計40,44の積算流量の差により水素吸蔵−移動器43の水素吸蔵量が検知される。その移動器43の水素吸蔵量が満状態に達していない場合は前記吸蔵過程が継続される。
【0038】
水素吸蔵−移動器43の水素吸蔵量が満状態に達すると,水素移動モードへ移行すべく第2三方弁3V2が燃料電池2側へ切換えられる。
【0039】
第9,第10,第13二方弁V9,V10,V13が「閉」で,且つ第12二方弁V12が「開」で,水素の移動が可能となる。また第11二方弁V11が「開」で,且つ第5二方弁V5が「閉」で,200℃程度の高温改質ガスが加熱装置45を流通した後,CO除去器34,熱交換器35等を経て燃料電池2に供給され,その運転が継続される。
【0040】
このように水素吸蔵−移動器43の第1水素貯蔵合金MH1が改質器3の排出熱によって加熱され,その温度が200℃程度に,また圧力が約5MPa程度に上昇すると吸蔵水素が放出される。
【0041】
第1貯蔵部48の第2水素貯蔵合金MH2は加熱回路60により60℃程度に加熱され,水素吸蔵−移動器43からの放出水素は60℃,約1MPa程度で第2水素貯蔵合金MH2に吸蔵される。この吸蔵による合金MH2の温度上昇は冷却回路62により抑制されて,その温度は60℃程度に保持される。
【0042】
移動管路51の流量計52により,水素吸蔵−移動器43の水素放出量が満状態の量の7割を超えたことが検知されたとき,第5二方弁V5が「開」で,且つ第11二方弁V11が「閉」で,水素吸蔵−移動器43の加熱が停止される。その移動器43からは,その余熱を利用した第1水素貯蔵合金MH1の吸熱反応で水素の放出が続行される。これにより水素吸蔵−移動器43の温度を下げて,次の水素吸蔵モードを再開する際のタイムラグを減少させることができる。
【0043】
移動管路51の流量計52の積算流量が,その水素吸蔵−移動器43の満状態の量に達したとき,第12二方弁V12が「閉」で,第1貯蔵部48への水素移動が停止される。この時点で,第1貯蔵部48における水素吸蔵量は満状態とされる。
【0044】
C.加速モード図1,図5に示すように,燃料電池2の運転開始後,走行モード切換装置65の切換状態が確認される。
【0045】
走行モード切換装置65がスポーツモードに切換えられている場合には第1貯蔵部48がヒータ57により80℃以上に加熱されて,その温度に保持される。これにより第2水素貯蔵合金MH2から水素が放出されて第2貯蔵部50内の気体水素圧が約2MPa以上に保持される。
【0046】
一方,エコノミーモードの場合は前記加熱は行われない。
【0047】
アクセル操作量が所定値を超えた場合,加速モードに移行する。
【0048】
第2三方弁3V2が燃料電池2側へ切換えられていない場合は燃料電池2側への切換えが行われ,また第10二方弁V10が閉じられる。
【0049】
第13二方弁V13が「開」で,第2貯蔵部50の充足用水素がレギュレータ55および流量制御弁56によって,スポーツモードまたはエコノミーモードに適合するように調整された後燃料電池2に供給される。
【0050】
充足用水素量が十分か否かが流量計54を用いて判断され,十分でない場合は第1貯蔵部48が,予め設定された温度になるまで加熱され,これにより充足用水素の不足分が補われる。
【0051】
アクセル操作量が所定値以下となったとき加速モードは終了する。
【0052】
前記第1手段としては,走行モード切換装置65に代えてギアシフト切換装置を用いることも可能である。この場合,2速,3速固定モードのときに,加速性能を向上させるべく,第1貯蔵部48の加熱が行われ,一方,D4モードのときは前記加熱は行われない。
【0053】
また前記第1手段としては,走行モード切換装置65に代えて電気エネルギの残量検知装置を用いることも可能である。この装置には,例えば,図1に示すように車両駆動モータ11の補助バッテリ12における充電量の残量検知装置66が該当する。この場合,充電量の残量が少ないとき,補助バッテリ12のアシスト出力を低減するか,または出力無しの状況下で加速性能を向上させるべく,第1貯蔵部48の加熱が行われ,一方,充電量の残量が多いときは前記加熱は行われない。
【0054】
図6は水素貯蔵器47の一例を示す。この例においては第1,第2貯蔵部48,50の小,大径タンク67,68が平行に並べられて第1貯蔵部48の入口管69と第2貯蔵部50の出口管70とが同一方向に向けられ,また第1貯蔵部48の出口管71と第2貯蔵部50の入口管72とが接続管73により接続されている。小径タンク67内に第2水素貯蔵合金MH2が充填され,またそのタンク67にはヒータ57および冷却回路62の一部が設けられるが,それらは図面には省略されている。
【0055】
図7は水素貯蔵器47の他例を示す。この例においては,第1貯蔵部48の小径タンク74が,第2貯蔵部50の大径タンク75内に,その内面との間に大きな空間を存して設置され,小径タンク74の一端部が大径タンク75の一端壁76に支持されている。小径タンク74の入口管77および大径タンク75の出口管78は端壁76から外部に突出する。小径タンク74内には第2水素貯蔵合金MH2が充填され,その他端部の出口側には,合金MH2を小径タンク74内に保持すると共に水素を通過させるためのフィルタ79が設けられている。小径タンク74には,ヒータ57および冷却回路62の一部が設けられるが,それらは図面には省略されている。
【0056】
【発明の効果】
請求項1記載の発明によれば,燃料電池の必要水素量を水素供給源により充足することができないとき,それを充足すべく,水素供給源から供給された水素を貯蔵することが可能な水素貯蔵器と,燃料電池の必要水素量を決定する第1手段と,その第1手段からの情報により水素貯蔵器から放出される充足用水素量を決定する第2手段とを備え,前記水素貯蔵器は,前記水素供給源から供給された水素を貯蔵するための水素貯蔵合金を備えた第1貯蔵部と,その第1貯蔵部に直列に接続され,該第1貯蔵部の水素貯蔵合金から放出された気体水素を貯蔵して前記燃料電池に供給する,水素貯蔵合金を備えない第2貯蔵部とを有するように構成したので,燃料電池の必要水素量を,それに応じて決められた量の充足用水素量により満たすことが可能であり,しかもその充足用水素を,水素貯蔵合金を備えないタンク状の第2貯蔵部から迅速に燃料電池に供給し得るようにした車両用水素供給装置を提供することができる。
【0057】
請求項2記載の発明によれば,車両の走行モードまたはギアシフトに応じた充足用水素量の供給を迅速に行うことが可能な車両用水素供給装置を提供することができる。
【0058】
請求項3記載の発明によれば,電気エネルギ発生源,例えばバッテリの出力不足を燃料電池の出力により確実に補うことが可能な前記車両用水素供給装置を提供することができる。
【図面の簡単な説明】
【図1】水素供給システムの説明図である。
【図2】第1および第2水素貯蔵合金の水素吸放出特性図である。
【図3】始動モードのフローチャートである。
【図4】水素吸蔵・水素移動モードのフローチャートである。
【図5】加速モードのフローチャートである。
【図6】水素貯蔵器の一例の平面図である。
【図7】水素貯蔵器の他例の横断平面図である。
【符号の説明】
1…………………水素供給装置
2…………………燃料電池
3…………………改質器(水素供給源)
47………………水素貯蔵器
48………………第1貯蔵部
50………………第2貯蔵部
60,64………加熱回路,ECU(第2手段)
65………………走行モード切換装置(第1手段)
66………………充電量の残量検知装置(第1手段)
MH2……………第2水素貯蔵合金
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen supply device for a vehicle equipped with a fuel cell, and more particularly to a hydrogen supply device including a hydrogen supply source for supplying hydrogen to a fuel cell. Such hydrogen supply sources include high-pressure hydrogen tanks, liquid hydrogen tanks, tanks filled with hydrogen storage alloys, reformers that generate hydrogen from raw materials such as alcohol and gasoline.
[0002]
[Related technologies]
The applicant previously stated that as a hydrogen supply device that can cope with the response delay of the reformer, when the required hydrogen amount of the fuel cell cannot be satisfied by the reformer, the reformer is required to satisfy it. Has been proposed (see Japanese Patent Application No. 11-164939 and drawings), which is equipped with a hydrogen reservoir capable of storing hydrogen produced by the vessel.
[0003]
[Problems to be solved by the invention]
The amount of hydrogen required for the operation of the fuel cell, that is, the amount of hydrogen required for the fuel cell is determined by, for example, a travel mode switching device that switches the travel mode of the vehicle to the sport mode or the economy mode. The release of sufficient hydrogen from the hydrogen reservoir is necessary, for example, during vehicle acceleration. The amount of hydrogen during acceleration is different between the sports mode and economy mode, improving acceleration performance. Therefore, the former is larger than the latter.
[0004]
Therefore, it is necessary to adjust the amount of hydrogen for sufficiency for each mode and to supply hydrogen quickly in order to cope with the acceleration operation, but such a device has not been made in the prior art.
[0005]
[Means for Solving the Problems]
It is an object of the present invention to provide the hydrogen supply device that determines the amount of hydrogen for filling in accordance with the amount of hydrogen required for the fuel cell, and that can supply the sufficient amount of hydrogen to the fuel cell quickly. .
[0006]
In order to achieve the above object, according to the present invention, in a hydrogen supply apparatus including a hydrogen supply source that supplies hydrogen to a fuel cell mounted on a vehicle, the hydrogen supply source satisfies the required hydrogen amount of the fuel cell. In order to satisfy the demand, the hydrogen storage capable of storing the hydrogen supplied from the hydrogen supply source, the first means for determining the required hydrogen amount of the fuel cell, and the first Second means for determining the amount of hydrogen to be released from the hydrogen storage according to information from the means, the hydrogen storage comprising a hydrogen storage alloy for storing hydrogen supplied from the hydrogen supply source a first reservoir provided with a, are connected in series to the first storage unit, and supplies before Symbol fuel cell to store the released gaseous hydrogen from the hydrogen storage alloy of the first storage unit, a hydrogen storage alloy second storage unit without a Having the hydrogen supply device of a vehicle equipped with a fuel cell is provided.
[0007]
If comprised as mentioned above, it is possible to satisfy | fill the required amount of hydrogen of a fuel cell with the quantity of sufficient hydrogen determined according to it. That is, when the amount of hydrogen from the hydrogen supply source is a, for example, the required amount of hydrogen in the fuel cell at the time of acceleration in the economy mode is 2a, the sufficient hydrogen amount a can be supplied to the fuel cell. When the required hydrogen amount of the fuel cell at the time of mode acceleration is 3a, the sufficient hydrogen amount 2a can be supplied to the fuel cell. Moreover, since the supplied hydrogen is gaseous hydrogen stored in the second storage unit that is connected in series to the first storage unit and does not include a hydrogen storage alloy, rapid supply is possible.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
A hydrogen supply device 1 shown in FIG. 1 is mounted on an electric vehicle using a fuel cell 2 that uses hydrogen as a fuel.
[0009]
In the hydrogen supply device 1, a reformer 3 as a hydrogen supply source generates a reformed gas mainly composed of hydrogen from a raw material such as alcohol or gasoline, and its supply side is a reformed gas inlet of the fuel cell 2. Is connected to the side via a supply line 4. In the air supply pipe 5, a supercharger 8 having an air cleaner 6 and a motor 7 and an intercooler 9 are installed on the introduction side, and a lead-out side is connected to an air inlet side of the fuel cell 2. A first two-way valve V1 is installed near the fuel cell 2 in the supply line 5. A pair of connection terminals of the fuel cell 2 are connected to the vehicle drive motor 11 via a pair of conductors 10, and a pair of connection terminals of a motor driving auxiliary battery 12 are connected to the conductors 10 via a pair of conductors 13. The
[0010]
The reformed gas outlet side and the air outlet side of the fuel cell 2 are connected to the evaporator combustor 16 via the exhaust pipes 14 and 15 respectively, and the second two-way near the combustor 16 of the air exhaust pipe 15. Valve V2 is installed. One outlet side of the methanol tank 18 is connected to one inlet side of the evaporator 17 via a supply line 19, and a pump 20 is connected to the supply line 19. Further, the outlet side of the water tank 21 is connected to the other inlet side of the evaporator 17 via a supply line 22, and a pump 23 is installed in the supply line 22. The outlet side of the evaporator 17 is connected to the introduction side of the reformer 3 through a mixed steam supply pipe 24 made of methanol and moisture. The other outlet side of the methanol tank 18 is connected to a reformer start combustor 26 via another supply line 25. The pump 27 and the third second line are connected to the supply line 25 sequentially from the methanol tank 18 side. A direction valve V3 is provided. Further, in the supply line 25, the pump 27 and the third two-way valve V 3 are connected to the electric heater catalyzer 29 of the evaporator combustor 16 via a further supply line 28, and the electric heater in the supply line 28 is connected. A fourth two-way valve V4 is installed in the vicinity of the catalyzer 29. The reformer starting combustor 26 includes a heating circuit 33 having a glow plug 30, a battery 31, and a switch 32 existing between the glow plug 30 and the battery 31.
[0011]
From the reformer 3 side, the fifth two-way valve V5, the CO remover 34, the first three-way valve 3V1, the heat exchanger 35, the second three-way valve 3V2, and the flow meter 36 and a check valve V are installed. In the air supply line 5, the supply line 37 branched from the upstream side of the first two-way valve V1 in the vicinity of the fuel cell 2 is further branched into three to form the reformer start combustor 26, the reformer 3 and The sixth to eighth two-way valves V6 to V8 are connected to the CO remover 34, near the combustor 26, the reformer 3 and the CO remover 34 in the supply pipe 37, respectively. The air is used for combustion and temperature control in the combustor 26, and is used for temperature control in the reformer 3. Further, the CO remover 34 converts CO contained in the reformed gas into CO 2. Used to oxidize. The first three-way valve 3 </ b> V <b> 1 existing on the outlet side of the CO remover 34 is connected to the reformed gas discharge conduit 14 of the fuel cell 2 via the first bypass conduit 38.
[0012]
Further, in the reformed gas supply path 4, the second three-way valve 3 </ b> V <b> 2 existing on the downstream side of the heat exchanger 35 and the flow meter 36 and the check valve V are connected by a second bypass line 39. The flow meter 40, heat exchanger 41, moisture remover 42, ninth two-way valve V9, hydrogen storage-moving device 43, and tenth two-way are sequentially connected to the second bypass line 39 from the second three-way valve 3V2 side. Valve V10 and flow meter 44 are installed. The hydrogen storage-transfer device 43 has a so-called through-type tank having an inlet and an outlet. The inlet is upstream of the second bypass conduit 39 and the outlet is downstream of the second bypass conduit 39. Connected. A heating device 45 is attached to the hydrogen storage-moving device 43. The heating device 45 has a reformed gas distribution pipe 46, and the inlet side of the pipe 46 is connected between the reformer 3 and the fifth two-way valve V 5 in the reformed gas supply pipe 4. The outlet side is connected between the fifth two-way valve V5 and the CO remover 34. An eleventh two-way valve V11 is installed on the inlet side of the conduit 46.
[0013]
The hydrogen storage unit 47 stores the hydrogen generated by the reformer 3 in order to satisfy the required hydrogen amount of the fuel cell 2 when the reformer 3 cannot satisfy the first storage. Part 48 and a second storage part 50 connected in series via a connecting pipe 49 thereto. Hydrogen between the inlet of the first storage section 48 and the inlets of the ninth two-way valve V9 and the hydrogen storage-mover 43 in the second bypass conduit 39 is transferred from the hydrogen storage-mover 43 to the first storage section 48. The twelfth two-way valve V12 and the flow meter 52 are sequentially installed in the pipeline 51 from the hydrogen storage-moving device 43 side. The outlet of the second storage unit 50 is connected between the check valve V and the inlet of the fuel cell 2 in the reformed gas supply line 4 via the supply line 53. A thirteenth two-way valve V13, a flow meter 54, a regulator 55, and a flow control valve 56 are sequentially installed in the supply line 53 from the second storage unit 50 side.
[0014]
A heating circuit 60 having a heater 57, a battery 58, and a switch 59, and a cooling circuit 62 having a cooling unit 61 having a radiator, a water pump, a water tank, and the like are attached to the first storage unit 48.
[0015]
The tank of the hydrogen storage-transfer device 43 is filled with the first hydrogen storage alloy MH1. Further, the second hydrogen storage alloy MH2 is filled in the tank of the first storage unit 48 in the hydrogen storage 47. As shown in FIG. 2, the first hydrogen storage alloy MH1 has a characteristic that it absorbs hydrogen at about 60 ° C. and about 0.07 MPa, and releases about 5 MPa of hydrogen at about 200 ° C. As such a hydrogen storage alloy, for example, a LaNi 4.05 Co 0.6 Al 0.35 alloy is used. The second hydrogen storage alloy MH2 has a characteristic of storing hydrogen at 60 ° C. and about 1 MPa, and releasing hydrogen of about 2 MPa at 80 ° C. As such a hydrogen storage alloy, for example, an MmNi 4.01 Co 0.6 Mn 0.34 Al 0.05 (Mm: Misch metal) alloy is used.
[0016]
Therefore, at room temperature, the second storage unit 50 is filled with gaseous hydrogen released from the second hydrogen storage alloy MH2, and the gaseous hydrogen pressure is about 1 MPa or less. On the other hand, when the 1st storage part 48 is heated and the temperature of the 2nd hydrogen storage alloy MH2 becomes 80 degreeC or more, the gaseous hydrogen pressure in the 2nd storage part 50 is hold | maintained at a high state like about 2 MPa or more.
[0017]
The fuel cell 2, the vehicle drive motor 11, the switch 32 of the heating circuit 33 having the glow plug 30, the pumps 20, 23 and 27, the switch 59 of the heating circuit 60 having the heater 57, etc. turn on the start switch 63. Accordingly, the operation is controlled via the ECU 64, and the operation is disabled by turning off the start switch 63.
[0018]
A first means 65 for determining the required hydrogen amount of the fuel cell 2 is connected to the ECU 64. The first means 65 is, for example, a travel mode switching device, and the device 65 switches between a sport mode and an economy mode. That is, in order to improve the acceleration performance during acceleration in the sport mode, the fuel cell 2 requires more hydrogen for charging than during acceleration in the economy mode. Therefore, in the case of the sports mode, the heating circuit 60 of the first storage unit 48 in the hydrogen storage device 47 is closed and held by the control signal from the ECU 64, and the first storage unit 48 is heated. Therefore, the gas hydrogen pressure in the second storage unit 50 is kept high as described above. This increases the amount of hydrogen for sufficiency.
[0019]
On the other hand, when the mode is switched to the economy mode, it is not necessary to improve the acceleration, so the control circuit from the ECU 64 holds the heating circuit 60 of the first storage unit 48 in the hydrogen storage unit 47 in an open state. The gaseous hydrogen pressure in the second storage unit 50 is kept low as described above. As a result, the amount of hydrogen for sufficiency is smaller than that in the sport mode.
[0020]
Therefore, the ECU 64 and the heating circuit 60 constitute a second means for determining the amount of hydrogen to be discharged from the hydrogen reservoir 47 based on information from the travel mode switching device (first means) 65.
[0021]
Next, various modes will be described with reference to FIGS. 1 and 3 to 5.
[0022]
A. Start Mode Before the start of this mode, it is assumed that the gaseous hydrogen pressure in the second storage unit 50 of the hydrogen store 47 is maintained at about 1 MPa or less at room temperature. The first to thirteenth two-way valves V1 to V13 and the flow rate control valve 46 are in the “closed” state, and the first three-way valve 3V1 can supply the reformed gas to the evaporator combustor 16, that is, the combustor. On the other hand, the second three-way valve 3V2 is switched to the hydrogen storage-mover 43 side so that the reformed gas can be supplied to the hydrogen storage-transfer device 43.
[0023]
1 and 3, when the start switch 63 is turned on, the supercharger 8 is activated, the air passes through the air cleaner 6, the supercharger 8, and the intercooler 9, and the first two-way valve V1 is "open". The fuel cell 2 is supplied, and the sixth to eighth two-way valves V6 to V8 are “open” and supplied to the combustor 26, the reformer 3 and the CO remover 34 of the reformer 3, respectively. The air discharged from the fuel cell 2 is introduced into the evaporator combustor 16 when the second two-way valve V2 is “open”.
[0024]
When the electric heater catalyzer 29 of the evaporator combustor 16 is energized and its temperature rises, the pump 27 operates and the fourth two-way valve V4 is “open”, and methanol is injected into the electric heater catalyzer 29. Is combusted in the combustor 16 to heat the evaporator 17.
[0025]
The thirteenth two-way valve V13 is “open”, the supply hydrogen from the second storage unit 50 of the hydrogen storage 47 is adjusted to about 0.15 MPa by the regulator 55, and then the supply amount is adjusted by the flow control valve 56. After that, it is supplied to the fuel cell 2, which starts operation. The amount of hydrogen supplied from the second storage unit 50 is detected by the flow meter 54, and gaseous hydrogen is supplied from the first storage unit 48 as the amount of hydrogen in the second storage unit 50 decreases. Surplus hydrogen in the fuel cell 2 is introduced into the evaporator combustor 16 where it is burned and used to heat the evaporator 17.
[0026]
In the reformer starting combustor 26, the switch 32 of the heating circuit 33 having the glow plug 30 is closed and the glow plug 30 is energized. The third two-way valve V3 is “open”, methanol is injected into the combustor 26, and the reformer 3 is heated by the combustion of the methanol. When the gas temperature at the supply port of the reformer 3 is detected and reaches a predetermined value, the heating of the reformer 3 is completed, the switch 32 is opened, and the energization to the glow plug 30 is stopped.
[0027]
Methanol and water are injected into the evaporator 17 to generate a mixed steam composed of methanol and moisture, and the mixed steam is supplied to the reformer 3 for reforming.
[0028]
The reformed gas contains a considerable amount of CO, and the fifth two-way valve V5 is “open” and introduced into the CO remover 34, and then the first three-way valve 3V1 is switched to the combustor 16 side. Therefore, it is introduced into the combustor 16 through the first bypass line 38, where combustible components such as hydrogen are combusted.
[0029]
The CO concentration of the reformed gas is detected, or the CO concentration is checked from the relationship between the reformed gas temperature and the time. When the CO concentration falls below a predetermined value, the first and second three-way valves 3V1, 3V2 Switching to the fuel cell 2 side is performed, and the reformed gas is supplied to the fuel cell 2.
[0030]
The amount of reformed gas from the reformer 3 during the warm-up is not sufficient to operate the fuel cell 2, but the shortage is compensated by the hydrogen supplied from the second storage unit 50, thereby The output is stabilized. As the reformed gas amount increases, the hydrogen supply amount is gradually controlled to decrease.
[0031]
When the temperature and pressure of the reformed gas at the supply port of the reformer 3 reach about 200 ° C. and about 0.16 MPa, respectively, it is determined that the reformer 3 has reached the steady mode, and the second storage unit The thirteenth two-way valve V13 and the flow control valve 56 on the 50 side are closed, and thereafter, the operation mode shifts to the self-sustaining operation mode by the reformer 3.
[0032]
When the reformed gas passes through the heat exchanger 35 in which 50 ° C. cooling water is circulated, the temperature drops to about 80 ° C. and the pressure drops to about 0.15 MPa. Is used as fuel in the fuel cell 2.
[0033]
B. As shown in FIGS. 1 and 4, the second three-way valve 3 </ b> V <b> 2 is switched to the hydrogen storage-mover 43 side as the hydrogen storage mode starts.
[0034]
The temperature of the reformed gas in the second three-way valve 3V2 is about 80 ° C. and the pressure is about 0.15 MPa. The reformed gas is heated to 60 ° C. by the heat exchanger 41 in which 50 ° C. cooling water is circulated. Then, the moisture is removed by the moisture remover 42.
[0035]
When the ninth two-way valve V9 is “open”, a reformed gas of about 60 ° C. and about 0.07 MPa is introduced into the hydrogen storage-transfer device 43 , and the hydrogen is stored in the first hydrogen storage alloy MH1. This occlusion raises the temperature of the alloy MH1, but the temperature of the alloy MH1 is maintained at about 60 ° C. by the cooling action of the reformed gas.
[0036]
The reformed gas that has passed through the hydrogen storage-transfer device 43 is supplied to the fuel cell 2 through the check valve V when the tenth two-way valve V10 is “open”, and the operation is continued.
[0037]
The amount of hydrogen occluded in the hydrogen occlusion-mover 43 is detected based on the difference between the integrated flow rates of the flow meters 40, 44 on the inlet and outlet sides of the hydrogen occlusion-mover 43. When the hydrogen storage amount of the mobile device 43 has not reached the full state, the storage process is continued.
[0038]
When the hydrogen storage amount of the hydrogen storage-transfer device 43 reaches a full state, the second three-way valve 3V2 is switched to the fuel cell 2 side to shift to the hydrogen transfer mode.
[0039]
The ninth, tenth, and thirteenth two-way valves V9, V10, and V13 are “closed” and the twelfth two-way valve V12 is “open”, thereby allowing hydrogen to move. Further, after the eleventh two-way valve V11 is “open” and the fifth two-way valve V5 is “closed” and high-temperature reformed gas of about 200 ° C. flows through the heating device 45, the CO remover 34, heat exchange It is supplied to the fuel cell 2 through the vessel 35 and the like, and its operation is continued.
[0040]
As described above, the first hydrogen storage alloy MH1 of the hydrogen storage-transfer device 43 is heated by the exhaust heat of the reformer 3, and when the temperature rises to about 200 ° C. and the pressure rises to about 5 MPa, the stored hydrogen is released. The
[0041]
The second hydrogen storage alloy MH2 in the first storage section 48 is heated to about 60 ° C. by the heating circuit 60, and the hydrogen released from the hydrogen storage-transfer device 43 is stored in the second hydrogen storage alloy MH2 at about 60 ° C. and about 1 MPa. Is done. The temperature rise of the alloy MH2 due to the occlusion is suppressed by the cooling circuit 62, and the temperature is maintained at about 60 ° C.
[0042]
When the flow meter 52 of the moving line 51 detects that the hydrogen storage amount of the hydrogen storage-moving device 43 exceeds 70% of the full amount, the fifth two-way valve V5 is “open”, Further, the eleventh two-way valve V11 is “closed”, and the heating of the hydrogen storage-moving device 43 is stopped. From the transfer device 43, the release of hydrogen is continued by the endothermic reaction of the first hydrogen storage alloy MH1 using the residual heat. Thereby, the temperature of the hydrogen storage-moving device 43 can be lowered, and the time lag when restarting the next hydrogen storage mode can be reduced.
[0043]
When the integrated flow rate of the flow meter 52 of the moving line 51 reaches the full amount of the hydrogen storage-moving device 43, the twelfth two-way valve V12 is “closed” and the hydrogen to the first storage unit 48 is closed. The movement is stopped. At this point, the hydrogen storage amount in the first storage unit 48 is full.
[0044]
C. Acceleration Mode As shown in FIGS. 1 and 5, after the operation of the fuel cell 2 is started, the switching state of the travel mode switching device 65 is confirmed.
[0045]
When the traveling mode switching device 65 is switched to the sport mode, the first storage unit 48 is heated to 80 ° C. or more by the heater 57 and is maintained at that temperature. As a result, hydrogen is released from the second hydrogen storage alloy MH2, and the gaseous hydrogen pressure in the second storage unit 50 is maintained at about 2 MPa or more.
[0046]
On the other hand, in the economy mode, the heating is not performed.
[0047]
When the accelerator operation amount exceeds a predetermined value, the acceleration mode is entered.
[0048]
When the second three-way valve 3V2 is not switched to the fuel cell 2 side, switching to the fuel cell 2 side is performed, and the tenth two-way valve V10 is closed.
[0049]
The thirteenth two-way valve V13 is “open”, and the hydrogen for filling in the second storage unit 50 is adjusted by the regulator 55 and the flow rate control valve 56 so as to conform to the sport mode or economy mode, and then supplied to the fuel cell 2 Is done.
[0050]
Whether or not the amount of hydrogen for sufficiency is sufficient is determined using the flow meter 54. If the amount is not sufficient, the first storage unit 48 is heated until reaching a preset temperature. Be compensated.
[0051]
The acceleration mode ends when the accelerator operation amount becomes equal to or less than a predetermined value.
[0052]
As the first means, it is also possible to use a gear shift switching device instead of the travel mode switching device 65. In this case, in the 2nd speed and 3rd speed fixed mode, the first storage section 48 is heated to improve acceleration performance, while in the D4 mode, the heating is not performed.
[0053]
Further, as the first means, an electric energy remaining amount detecting device can be used in place of the traveling mode switching device 65. This device corresponds to, for example, a remaining charge detection device 66 for the amount of charge in the auxiliary battery 12 of the vehicle drive motor 11 as shown in FIG. In this case, when the remaining amount of charge is small, the first storage unit 48 is heated to reduce the assist output of the auxiliary battery 12 or improve the acceleration performance in the absence of output, The heating is not performed when the remaining amount of charge is large.
[0054]
FIG. 6 shows an example of the hydrogen reservoir 47. In this example, the small and large-diameter tanks 67 and 68 of the first and second storage parts 48 and 50 are arranged in parallel, and the inlet pipe 69 of the first storage part 48 and the outlet pipe 70 of the second storage part 50 are arranged. The outlet pipe 71 of the first storage section 48 and the inlet pipe 72 of the second storage section 50 are connected by a connection pipe 73. The small-diameter tank 67 is filled with the second hydrogen storage alloy MH2, and the tank 67 is provided with a part of the heater 57 and the cooling circuit 62, which are omitted in the drawing.
[0055]
FIG. 7 shows another example of the hydrogen storage 47. In this example, the small-diameter tank 74 of the first storage unit 48 is installed in the large-diameter tank 75 of the second storage unit 50 with a large space between the inner surface and one end of the small-diameter tank 74. Is supported by one end wall 76 of the large-diameter tank 75. An inlet pipe 77 of the small diameter tank 74 and an outlet pipe 78 of the large diameter tank 75 protrude from the end wall 76 to the outside. The small-diameter tank 74 is filled with the second hydrogen storage alloy MH2, and a filter 79 for holding the alloy MH2 in the small-diameter tank 74 and allowing hydrogen to pass therethrough is provided on the outlet side at the other end. The small-diameter tank 74 is provided with a part of the heater 57 and the cooling circuit 62, which are omitted in the drawing.
[0056]
【The invention's effect】
According to the first aspect of the present invention, when the required hydrogen amount of the fuel cell cannot be satisfied by the hydrogen supply source, the hydrogen that can be stored from the hydrogen supply source in order to satisfy the hydrogen amount is satisfied. A first means for determining the amount of hydrogen required for the fuel cell; and a second means for determining the amount of hydrogen to be discharged from the hydrogen reservoir according to information from the first means. The vessel is connected in series to the first storage part having a hydrogen storage alloy for storing hydrogen supplied from the hydrogen supply source, and from the hydrogen storage alloy of the first storage part. supplied to the fuel cell to store the released gaseous hydrogen, since it is configured to have a second storage unit having no hydrogen storage alloy, the necessary amount of hydrogen fuel cells, as determined accordingly It is satisfied by fulfillment for hydrogen amount in the amount An ability, yet can be the fulfillment for hydrogen, to provide a vehicle hydrogen supply apparatus that can be supplied quickly to the fuel cell from the second reservoir tank shaped without a hydrogen storage alloy.
[0057]
According to the second aspect of the present invention, it is possible to provide a vehicular hydrogen supply device that can rapidly supply a sufficient amount of hydrogen for the driving mode or gear shift of the vehicle.
[0058]
According to the third aspect of the present invention, it is possible to provide the vehicle hydrogen supply device that can reliably compensate for the shortage of the output of the electric energy generation source, for example, the battery, by the output of the fuel cell.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a hydrogen supply system.
FIG. 2 is a hydrogen absorption / release characteristic diagram of the first and second hydrogen storage alloys.
FIG. 3 is a flowchart of a start mode.
FIG. 4 is a flowchart of a hydrogen storage / hydrogen transfer mode.
FIG. 5 is a flowchart of an acceleration mode.
FIG. 6 is a plan view of an example of a hydrogen reservoir.
FIG. 7 is a cross-sectional plan view of another example of a hydrogen reservoir.
[Explanation of symbols]
1 ………………… Hydrogen supply device 2 ………………… Fuel cell 3 ………………… Reformer (hydrogen supply source)
47 ……………… Hydrogen storage device 48 ……………… First storage unit 50 ……………… Second storage unit 60, 64 ……… Heating circuit, ECU (second means)
65 ……………… Running mode switching device (first means)
66 ……………… Remaining charge amount detection device (first means)
MH2 ……………… Second hydrogen storage alloy

Claims (3)

車両に搭載された燃料電池(2)に水素を供給する水素供給源(3)を備えた水素供給装置において,
前記燃料電池(2)の必要水素量を前記水素供給源(3)により充足することができないとき,それを充足すべく,前記水素供給源(3)から供給された水素を貯蔵することが可能な水素貯蔵器(47)と,前記燃料電池(2)の必要水素量を決定する第1手段(65,66)と,その第1手段(65,66)からの情報により前記水素貯蔵器(47)から放出される充足用水素量を決定する第2手段(60,64)とを備え,
前記水素貯蔵器(47)は,前記水素供給源(3)から供給された水素を貯蔵するための水素貯蔵合金(MH2)を備えた第1貯蔵部(48)と,その第1貯蔵部(48)に直列に接続され,該第1貯蔵部(48)の水素貯蔵合金(MH2)から放出された気体水素を貯蔵して前記燃料電池(2)に供給する,水素貯蔵合金(MH2)を備えない第2貯蔵部(50)とを有することを特徴とする,燃料電池を搭載した車両の水素供給装置。
In a hydrogen supply device comprising a hydrogen supply source (3) for supplying hydrogen to a fuel cell (2) mounted on a vehicle,
When the required hydrogen amount of the fuel cell (2) cannot be satisfied by the hydrogen supply source (3), it is possible to store the hydrogen supplied from the hydrogen supply source (3) to satisfy it. A hydrogen storage device (47), a first means (65, 66) for determining the amount of hydrogen required for the fuel cell (2), and the hydrogen storage device (65, 66) according to information from the first means (65, 66). 47) a second means (60, 64) for determining the amount of sufficiency hydrogen released from
The hydrogen reservoir (47), the hydrogen source first storage portion with a hydrogen storage alloy (MH2) for storing the supplied hydrogen from (3) and (48), the first storage section thereof ( connected in series to the 48), said first reservoir (supplied before Symbol fuel cell to store the released gaseous hydrogen from the hydrogen storage alloy (MH2) 48) (2), hydrogen storage alloy (MH2) A hydrogen supply device for a vehicle equipped with a fuel cell, comprising: a second storage unit (50) not provided with the fuel cell.
前記第1手段は,車両の走行モード切換装置(65)およびギアシフト切換装置の一方である,請求項1記載の燃料電池を搭載した車両の水素供給装置。 The hydrogen supply device for a vehicle equipped with a fuel cell according to claim 1, wherein the first means is one of a vehicle travel mode switching device (65) and a gear shift switching device. 前記第1手段は,電気エネルギの残量検知装置(66)である,請求項1記載の燃料電池を搭載した車両の水素供給装置。 2. The hydrogen supply apparatus for a vehicle equipped with a fuel cell according to claim 1, wherein the first means is an electric energy remaining amount detection device (66).
JP2000077285A 2000-03-17 2000-03-17 Hydrogen supply device for vehicles equipped with fuel cells Expired - Fee Related JP4474011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000077285A JP4474011B2 (en) 2000-03-17 2000-03-17 Hydrogen supply device for vehicles equipped with fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000077285A JP4474011B2 (en) 2000-03-17 2000-03-17 Hydrogen supply device for vehicles equipped with fuel cells

Publications (2)

Publication Number Publication Date
JP2001268721A JP2001268721A (en) 2001-09-28
JP4474011B2 true JP4474011B2 (en) 2010-06-02

Family

ID=18594877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000077285A Expired - Fee Related JP4474011B2 (en) 2000-03-17 2000-03-17 Hydrogen supply device for vehicles equipped with fuel cells

Country Status (1)

Country Link
JP (1) JP4474011B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024526A (en) * 2005-07-12 2007-02-01 Tokyo Gas Co Ltd Gas meter
JP4353154B2 (en) * 2005-08-04 2009-10-28 トヨタ自動車株式会社 Fuel cell vehicle
FR2893187A1 (en) * 2005-11-10 2007-05-11 Air Liquide ELECTRIC POWER CONSUMER INSTALLATION USING A FUEL CELL AND METHOD OF SUPPLYING SUCH A INSTALLATION

Also Published As

Publication number Publication date
JP2001268721A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
JP3229023B2 (en) Hydrogen gas supply system for hydrogen engine
JP4944300B2 (en) Fuel cell system
JP2002221298A (en) Hydrogen storage apparatus
JP2006142924A (en) Hydrogen tank cooling device of hydrogen fuel automobile
JPH09306531A (en) Fuel cell system
WO2006068227A1 (en) Fuel cell system
JP2002121001A (en) Hydrogen supply device
JP4700161B2 (en) Hydrogen storage alloy regeneration system for fuel cell operation
JP5533399B2 (en) Fuel cell system
US20040101722A1 (en) Fuel cell system with heat exchanger for heating a reformer and vehicle containing same
US20030175563A1 (en) Fuel cell facility and method for operating a fuel cell facility
US6974645B2 (en) Fuel cell system
JP2006177535A (en) Device and method for detecting deterioration of hydrogen storage material of hydrogen storage tank, and hydrogen storage supply system
JP4474011B2 (en) Hydrogen supply device for vehicles equipped with fuel cells
JP4346055B2 (en) Hydrogen supply system for equipment using hydrogen as fuel
US7083874B2 (en) Fuel cell power generation system
JP4384773B2 (en) Hydrogen supply system for equipment using hydrogen as fuel
JP2002170587A (en) Fuel battery system
JP2004253258A (en) Fuel cell system and its control method
JP2001213605A (en) Hydrogen supply system for device using hydrogen as fuel
JP2001213607A (en) Hydrogen supply system for device using hydrogen as fuel
JP2001213606A (en) Hydrogen supply system for device using hydrogen as fuel
JP4673617B2 (en) Fuel cell system and control method thereof
JP2000088196A (en) On-vehicle hydrogen storage alloy system
JP2004360728A (en) Hydrogen charging method and hydrogen charging device to pressure hydrogen tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees