JP4471795B2 - Electrolytic copper foil manufacturing method and printed wiring board - Google Patents
Electrolytic copper foil manufacturing method and printed wiring board Download PDFInfo
- Publication number
- JP4471795B2 JP4471795B2 JP2004273048A JP2004273048A JP4471795B2 JP 4471795 B2 JP4471795 B2 JP 4471795B2 JP 2004273048 A JP2004273048 A JP 2004273048A JP 2004273048 A JP2004273048 A JP 2004273048A JP 4471795 B2 JP4471795 B2 JP 4471795B2
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- electrolytic copper
- electrolytic
- depth
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 128
- 239000011889 copper foil Substances 0.000 title claims description 120
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000013078 crystal Substances 0.000 claims description 76
- 239000000758 substrate Substances 0.000 claims description 32
- 238000005530 etching Methods 0.000 claims description 30
- 238000003486 chemical etching Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 7
- 238000007788 roughening Methods 0.000 description 23
- 239000010410 layer Substances 0.000 description 20
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000004070 electrodeposition Methods 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- -1 and if necessary Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910000365 copper sulfate Inorganic materials 0.000 description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 229910000431 copper oxide Inorganic materials 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- BLZWCMCXDUHMGV-UHFFFAOYSA-J O.O.O.O.O.S(=O)(=O)([O-])[O-].S(=O)(=O)([O-])[O-].[Cu+4] Chemical compound O.O.O.O.O.S(=O)(=O)([O-])[O-].S(=O)(=O)([O-])[O-].[Cu+4] BLZWCMCXDUHMGV-UHFFFAOYSA-J 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- FRTIVUOKBXDGPD-UHFFFAOYSA-M sodium;3-sulfanylpropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CCCS FRTIVUOKBXDGPD-UHFFFAOYSA-M 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
Landscapes
- ing And Chemical Polishing (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Description
本発明は電解銅箔の製造方法に関するものであり、特に、銅箔表面に化学エッチング粗化を施すことにより、プリント基板との密着力が安定したエッチング粗化電解銅箔を提供しうる電解銅箔の製造方法に関するものである。
また、本発明は前記製造方法で製造した電解銅箔をプリント配線基板に張り合わせたプリント配線板に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing an electrolytic copper foil, and in particular, an electrolytic copper that can provide an etching roughened electrolytic copper foil with stable adhesion to a printed circuit board by roughening the surface of the copper foil by chemical etching. The present invention relates to a method for manufacturing a foil.
Moreover, this invention relates to the printed wiring board which bonded the electrolytic copper foil manufactured with the said manufacturing method to the printed wiring board.
電解銅箔は、通常Tiなどで製造されたドラムをカソードとして硫酸銅浴などの銅めっき浴中でドラムを回転しながら電着、剥離を行い製箔される。この銅箔のドラムに接触していた面がシャイニー面(以下S面と云う)、反対面がマット面(以下M面と云う)である。S面はいわばドラム表面のレプリカであり、ドラム表面の形状を写し取っているが、M面は銅めっき浴の種類・電解条件により平滑から凹凸の大なものまで種々製造されている。製造された電解銅箔(未処理銅箔)は、ユーザーの要求により主に片面(通常はM面)に銅などの電着粗化処理を施し、樹脂基板(以下樹脂と云うことがある)などとの接着強度を高めている。さらに、粗化処理後に耐食性や樹脂との密着力、多層基板では金属ペーストとの接触抵抗劣化を防止するなどの目的で、Ni,Cr,Znなどのめっきや、クロメート処理、有機防錆処理、シラン処理などが施される。 Electrodeposited copper foil is usually made by performing electrodeposition and peeling while rotating a drum in a copper plating bath such as a copper sulfate bath using a drum made of Ti or the like as a cathode. The surface in contact with the copper foil drum is a shiny surface (hereinafter referred to as S surface), and the opposite surface is a mat surface (hereinafter referred to as M surface). The S surface is a so-called replica of the drum surface, and the shape of the drum surface is copied, but the M surface is manufactured in various sizes from smooth to uneven, depending on the type of copper plating bath and the electrolysis conditions. The produced electrolytic copper foil (untreated copper foil) is subjected to a roughening treatment such as copper on one side (usually the M side) mainly by a user's request, and a resin substrate (hereinafter sometimes referred to as a resin). Increases adhesive strength. Furthermore, for the purpose of preventing corrosion resistance and adhesion with the resin after roughening treatment, and preventing deterioration of contact resistance with metal paste in multilayer substrates, etc., plating with Ni, Cr, Zn, chromate treatment, organic rust prevention treatment, Silane treatment or the like is performed.
プリント配線板に用いられる銅箔は、その用途から2種類に分類される。1つは銅箔からなる回路が露出する状態で使用される、いわゆる外層用基板としての銅箔で、このような使用に対する銅箔は、その片面のみが表面処理(粗化処理)されている。2つは2枚の基板間に挟まれて(埋め込まれて)使用される、いわゆる内層用基板としての銅箔で、銅箔の両面を共に樹脂などと密着させることから、両面が粗化処理されている。 Copper foils used for printed wiring boards are classified into two types according to their use. One is a copper foil as a so-called outer layer substrate that is used in a state where a circuit made of copper foil is exposed, and the copper foil for such use is subjected to surface treatment (roughening treatment) only on one side. . Two are copper foils that are sandwiched (embedded) between two substrates and are used as a so-called inner layer substrate. Both surfaces of the copper foil are in close contact with a resin or the like, so both surfaces are roughened. Has been.
近年、プリント配線板への高集積化から、配線回路のライン/スペースの幅が小さくなりつつあり、エッチングによる回路形成時の回路パターンの安定性がより重要となってきている。 In recent years, the line / space width of a wiring circuit is becoming smaller due to high integration on a printed wiring board, and the stability of a circuit pattern during circuit formation by etching is becoming more important.
このエッチングによる回路形成の安定性には、銅箔の厚さの他に、ある程度銅箔の結晶粒の大きさや形態、配向性などが影響しており、大きな結晶粒界面が選択エッチングされると、ファインパターン形成が難しくなるため、細かな粒状晶が望まれている。
また、銅箔表面の粗化処理において、従来の電着粗化ではピール強度を保つためにコブ状またはヒゲ状の析出物を表面に電着するため、回路形成時のエッチング処理により根残り(絶縁領域に銅コブなどが残存)が発生しファインパターン形成が難しくなるなどの問題があった。
In addition to the thickness of the copper foil, the size, form, orientation, etc. of the copper foil crystal grains influence the stability of circuit formation by this etching. When large crystal grain interfaces are selectively etched, Since fine pattern formation becomes difficult, fine granular crystals are desired.
In addition, in the roughening treatment of the copper foil surface, the conventional electrodeposition roughening method deposits bump-like or beard-like precipitates on the surface in order to maintain the peel strength. There are problems such as copper bumps remaining in the insulating region) and it becomes difficult to form fine patterns.
また、配線回路の巾が狭くなるため、樹脂との接触面積も小さくなることから、接着強度の向上が要望されており、上記の電着粗化量の増大や粗化形状のコントロールにより接着強度を上げている。
しかしながら、あまり粗度を上昇しすぎると銅箔の加工時に粗化膜が粉状になって脱落し、外観不良や電気特性の劣化の原因となる。
また、高周波特性の観点からも、粗度を上昇させると微細な粗化粒子が多量に付着した表面となり、表皮効果のため、表面の粗化層に電流が集中し、粒界での抵抗が大きくなり、その影響は無視できないレベルとなる。
In addition, since the width of the wiring circuit is narrowed, the contact area with the resin is also reduced, so there is a demand for improved adhesion strength. Adhesion strength is increased by increasing the amount of electrodeposition roughening and controlling the roughening shape. Is raised.
However, if the roughness is increased too much, the roughened film becomes powdery and falls off during the processing of the copper foil, which causes poor appearance and deterioration of electrical characteristics.
Also, from the viewpoint of high frequency characteristics, increasing the roughness results in a surface with a large amount of fine roughened particles adhering to it, and due to the skin effect, current concentrates on the roughened layer on the surface, and resistance at the grain boundary is reduced. It becomes larger and the impact is at a level that cannot be ignored.
また、銅箔の樹脂に対する接着性を向上させる他の方法として、銅箔表面を高温の強アルカリ液で処理して銅箔表面に微細な針状の酸化銅を形成する黒化処理とよばれる処理も行われている。
しかし、銅箔表面に形成された針状の酸化銅は、後工程でスルーホールめっきを施す時に、酸性のめっき液に酸化銅が溶解する、いわゆるハローイング現象が発生する。また、黒化処理は作業性が悪く、時間がかかるという問題もある。ハローイング現象を改良する方法として、黒化処理後にその形状を保持したまま還元して溶解し難くする方法も提案されているが、さらに工程数が増加するため望ましくない。
Another method for improving the adhesion of copper foil to resin is called blackening treatment in which the surface of the copper foil is treated with a high-temperature strong alkaline solution to form fine acicular copper oxide on the surface of the copper foil. Processing is also performed.
However, the acicular copper oxide formed on the surface of the copper foil generates a so-called haloing phenomenon in which copper oxide is dissolved in an acidic plating solution when through-hole plating is performed in a subsequent process. Further, the blackening process has a problem that workability is poor and takes time. As a method for improving the haloing phenomenon, a method for reducing the dissolution while maintaining the shape after the blackening treatment has been proposed, but it is not desirable because the number of steps is further increased.
このため、工程数が少なく、生産性に優れた方法として、エッチング粗化処理を施して、樹脂に対する接着性を向上させる方法が検討されている。
このエッチング粗化液として、無機酸または有機酸と酸化剤と添加剤を含有する液が多数提案されている。
例えば特許文献1には、無機酸+過酸化水素+トリアゾールなどの腐食防止剤+界面活性剤が開示されている。また、特許文献2には、無機酸+過酸化物+アゾール+ハロゲン化物を含有するエッチング液が示されている。
As this etching roughening liquid, many liquids containing an inorganic acid or organic acid, an oxidizing agent and an additive have been proposed.
For example, Patent Document 1 discloses a corrosion inhibitor such as an inorganic acid + hydrogen peroxide + triazole + a surfactant. Patent Document 2 discloses an etching solution containing inorganic acid + peroxide + azole + halide.
しかしながら、前記エッチング液を用いる方法においても、銅箔と樹脂基板との密着性が不十分である場合が多々あり、さらなる改良が求められていた。
本発明は、上記の問題に鑑み鋭意検討の結果、エッチング液からの改良と異なった方法、つまり、電解銅箔の結晶粒を制御することで、この解決を図り成功したものである。すなわち、粒状晶を持つ電解銅箔の表面を化学エッチング粗化することで樹脂との密着力を増大させる電解銅箔の製造方法を提供し、該製造方法で製造した電解銅箔を使用したプリント配線板を提供するものである。
However, even in the method using the etching solution, the adhesion between the copper foil and the resin substrate is often insufficient, and further improvement has been demanded.
As a result of intensive studies in view of the above problems, the present invention has succeeded in solving this problem by controlling the crystal grains of the electrolytic copper foil by a method different from the improvement from the etching solution, that is, by controlling the crystal grains. That is, a method for producing an electrolytic copper foil that increases the adhesion with a resin by chemically etching the surface of the electrolytic copper foil having granular crystals is provided, and a print using the electrolytic copper foil produced by the production method is provided. A wiring board is provided.
本発明において、電解銅箔の化学エッチング領域での結晶粒径が細かすぎると適度な粗化ができず、十分なピール強度が得られないことを踏まえ、本発明は、化学エッチング領域の結晶粒径の平均値を0.3μm以上とし、結晶粒径0.3μm以上の銅箔表面を化学エッチングする電解銅箔の製造方法である。 In the present invention, if the crystal grain size in the chemical etching region of the electrolytic copper foil is too fine, appropriate roughening cannot be performed, and sufficient peel strength cannot be obtained. This is a method for producing an electrolytic copper foil in which the average value of the diameter is 0.3 μm or more and the surface of the copper foil having a crystal grain size of 0.3 μm or more is chemically etched.
すなわち、本発明電解銅箔の製造方は、電解ドラムをカソードとし、該電解ドラムに銅箔を電析せしめて製箔した電解銅箔を50℃以上の雰囲気中で加熱処理して、該電解銅箔の少なくとも一方の表面が粒状晶であり、該表面から少なくとも深さXまでの領域の平均粒径が0.3μm以上である未処理銅箔とし、該未処理銅箔の前記粒状晶表面を化学エッチングにより、該粒状晶表面から前記深さXまでエッチング処理する製造方法である。 That is, the method for producing the electrolytic copper foil of the present invention comprises subjecting the electrolytic drum to a heat treatment in an atmosphere of 50 ° C. or higher by using the electrolytic drum as a cathode and depositing the copper foil on the electrolytic drum. At least one surface of the copper foil is a granular crystal, and an untreated copper foil having an average particle size of 0.3 μm or more in a region from the surface to at least the depth X is the granular crystal surface of the untreated copper foil. Is manufactured from the surface of the granular crystal to the depth X by chemical etching.
本発明において、前記未処理銅箔の粒状晶表面から化学エッチング処理される深さXまでの領域内に粒径が1μm以上の結晶粒が面積比で10%以上存在することが好ましい。 In the present invention, it is preferable that crystal grains having a grain size of 1 μm or more are present in an area ratio of 10% or more in a region from the grained crystal surface of the untreated copper foil to a depth X to be chemically etched.
また、本発明において、前記電解銅箔の加熱処理を、50℃以上で、式1に示すLMP値が7000以上となる条件で施し、加熱処理を施すことが好ましい。
式1:LMP=(T+273)×(20+Logt)
ここで、Tは温度(℃)、tは時間(Hr)である。
Moreover, in this invention, it is preferable to perform the heat processing of the said electrolytic copper foil on the conditions from which the LMP value shown to Formula 1 will be 7000 or more at 50 degreeC or more.
Formula 1: LMP = (T + 273) × (20 + Logt)
Here, T is temperature (° C.), and t is time (Hr).
本発明のプリント配線板は、電解ドラムをカソードとし、該電解ドラムに銅箔を電析せしめて製箔した電解銅箔を50℃以上の雰囲気中で加熱処理して、該電解銅箔の少なくとも一方の表面が粒状晶であり、該表面から少なくとも深さXまでの領域の平均粒径が0.3μm以上である未処理銅箔とし、該未処理銅箔の前記粒状晶表面を化学エッチングにより、該粒状晶表面から前記深さXまでエッチング処理して粗化処理銅箔とし、該粗化処理銅箔の粗化面をプリント配線板用基板に張り合わせてなる配線板である。 In the printed wiring board of the present invention, an electrolytic copper foil obtained by electrodepositing a copper foil on the electrolytic drum and forming a copper foil on the electrolytic drum is heat-treated in an atmosphere of 50 ° C. or more, and at least the electrolytic copper foil One surface is a granular crystal, and an untreated copper foil having an average particle size of 0.3 μm or more in an area from the surface to at least depth X is formed, and the granular crystal surface of the untreated copper foil is subjected to chemical etching. The wiring board is formed by etching from the surface of the granular crystal to the depth X to obtain a roughened copper foil, and the roughened surface of the roughened copper foil is bonded to a printed wiring board substrate.
本発明は、電解銅箔の化学エッチング処理される面の結晶粒を粒状晶とし、結晶粒径を制御した表面を化学エッチング処理することで、樹脂基板との密着力が増大し、優れたピール強度を有する電解銅箔を製造でき、該製造方法で製造した電解銅箔を使用した優れたプリント配線板を提供することができる。 In the present invention, the crystal grain of the surface of the electrolytic copper foil to be chemically etched is made into a granular crystal, and the surface of which the crystal grain size is controlled is chemically etched to increase the adhesive force with the resin substrate and to provide an excellent peel. An electrolytic copper foil having strength can be produced, and an excellent printed wiring board using the electrolytic copper foil produced by the production method can be provided.
本発明においては、表面を化学エッチング処理する未処理銅箔の表面(少なくとも基板と接合する表面)はその結晶粒が粒状晶であり、化学エッチングする少なくとも深さX(以下エッチング領域と言うことがある)までの平均粒径が0.3μm以上である。
本発明において樹脂基板と接合する銅箔表面の結晶粒を粒状晶とし、結晶粒の大きさを0.3μm以上とするのは、該銅箔表面を化学エッチング処理することにより、樹脂基板との間で優れた接着強度(ピール強度)を付与するためである。すなわち、銅箔表面の結晶粒を粒状晶とし、結晶粒の大きさを0.3μm以下とすると、銅箔表面を化学エッチングするとき、粒状晶の結晶が小さいだけ粒界が溶け易く、結晶粒自体が脱落してしまい安定したピール強度となる表面粗度(Rz)及び表面の均一性を得ることができないためである。
このため、粒状晶表面のピール強度を安定させるためには、化学エッチングを施す未処理銅箔の粒状晶表面の平均結晶粒径は0.3μm以上必要である。
In the present invention, the surface of the untreated copper foil whose surface is chemically etched (at least the surface to be bonded to the substrate) is a crystal grain, and at least the depth X at which chemical etching is performed (hereinafter referred to as an etching region). The average particle size is 0.3 μm or more.
In the present invention, the crystal grains on the surface of the copper foil to be bonded to the resin substrate are granular crystals, and the size of the crystal grains is 0.3 μm or more. This is to provide excellent adhesive strength (peel strength). That is, if the crystal grains on the surface of the copper foil are granular crystals and the size of the crystal grains is 0.3 μm or less, when the copper foil surface is chemically etched, the grain boundaries are easy to dissolve as the crystals of the granular crystals are small. This is because the surface roughness (Rz) and the uniformity of the surface, which itself falls off and becomes a stable peel strength, cannot be obtained.
For this reason, in order to stabilize the peel strength of the granular crystal surface, the average crystal grain size of the granular crystal surface of the untreated copper foil subjected to chemical etching needs to be 0.3 μm or more.
基板を形成する樹脂によっては、上記条件を満足しても充分なピール強度が得られない場合がある。かかる樹脂については、前記銅箔におけるエッチング領域内に、粒径が1μm以上の結晶粒が面積比で10%以上存在するよう熱処理することが好ましい。エッチング領域内に、粒径が1μm以上の結晶粒が面積比で10%以上存在すると、結晶粒の大きさが安定しているため均一な粗化ができると同時に結晶の大きさも大きいことで結晶粒自体の脱落をも防ぎRzも増すことが可能になり、ピール強度が向上し、基板との接着強度が向上すし、より好ましい電解銅箔を提供することができる。 Depending on the resin forming the substrate, sufficient peel strength may not be obtained even if the above conditions are satisfied. Such a resin is preferably heat-treated so that crystal grains having a grain size of 1 μm or more are present in an area of 10% or more in the etching region of the copper foil. If crystal grains having a grain size of 1 μm or more exist in the etching region in an area ratio of 10% or more, the crystal grains are stable and uniform roughening is achieved, and at the same time the crystals are large. It is possible to prevent the grains themselves from falling off and increase Rz, to improve the peel strength, to improve the adhesive strength with the substrate, and to provide a more preferable electrolytic copper foil.
本発明において、少なくとも表面が粒状晶からなり、エッチング領域の平均粒径が0.3μm以上である電解銅箔を作製するには、加熱処理温度50℃以上の雰囲気中に製箔された電解銅箔を保持する。特に、50℃以上で、式1に示すLMP値が7000以上となる加熱処理を施すことにより優れた未処理電解銅箔とすることができる。
式1:LMP=(T+273)×(20+Logt)
Tは温度(℃)、tは時間(Hr)
ここで、加熱処理温度を50℃以上とするのは、生産性、特に熱処理時間を考慮した設定であり、工業生産に適した時間内で粒状晶で平均結晶粒径0.3μm以上を生成させるためで、そのためには50℃以上とすることが必要である。
また、LMP値を7000以上とするのは、より工業的に適した加熱温度と熱処理時間で、少なくともエッチング領域(前記銅箔表面からの深さXまで)を粒状晶で平均結晶粒径0.3μm以上の銅箔に形成するためである。
In the present invention, in order to produce an electrolytic copper foil having at least a surface composed of granular crystals and an average particle size of an etching region of 0.3 μm or more, electrolytic copper produced in an atmosphere having a heat treatment temperature of 50 ° C. or more Hold the foil. In particular, an excellent untreated electrolytic copper foil can be obtained by performing heat treatment at 50 ° C. or higher so that the LMP value shown in Formula 1 is 7000 or higher.
Formula 1: LMP = (T + 273) × (20 + Logt)
T is temperature (° C.), t is time (Hr)
Here, the heat treatment temperature is set to 50 ° C. or more in consideration of productivity, particularly heat treatment time, and an average crystal grain size of 0.3 μm or more is generated with granular crystals within a time suitable for industrial production. For this reason, it is necessary to set the temperature to 50 ° C. or higher.
Further, the LMP value is set to 7000 or more at a heating temperature and heat treatment time more industrially suitable, and at least an etching region (up to a depth X from the surface of the copper foil) is a granular crystal with an average crystal grain size of 0.00. It is for forming in copper foil of 3 micrometers or more.
本発明においては、基板との接合面側におけるエッチング領域の粒状晶の平均粒径は、化学エッチング粗化を行うため、0.3μm以上であることが好適であり、平均粒径が0.3μm以上3μm以下において、非常に均一性のある適切な粗化表面が得られる。0.3μm以下では粗化膜が粉状に脱落する等の障害が起こり易く、均一性及びピール強度が安定するRzの値を満たすことはできず、また結晶粒径3μm以上であると粗化一つ一つが大きくなり過ぎてファインパータン化に不向きとなるためである。 In the present invention, the average particle size of the granular crystals in the etching region on the bonding surface side with the substrate is preferably 0.3 μm or more in order to perform chemical etching roughening, and the average particle size is 0.3 μm. In the range of 3 μm or less, an appropriate roughened surface having a very uniform property can be obtained. If the particle size is 0.3 μm or less, the roughened film is liable to fail such as falling off into a powdery state, and cannot satisfy the Rz value where the uniformity and peel strength are stable. This is because each one becomes too large to be suitable for fine patterning.
このようにして得られたエッチング粗化前の銅箔(未処理銅箔)は、基板との張り合わせに際して化学エッチング粗化が施され、必要に応じてNi,Zn、クロメート、シラン処理、有機系防錆処理等の表面処理を適宜行い、基板と接合しプリント配線板を形成する。 The copper foil before etching roughening (untreated copper foil) obtained in this way is subjected to chemical etching roughening at the time of bonding to the substrate, and if necessary, Ni, Zn, chromate, silane treatment, organic system Surface treatment such as rust prevention treatment is appropriately performed and bonded to the substrate to form a printed wiring board.
本発明の製造方法で製造する電解銅箔は、外層用として、あるいは内層用として提供することができる。
外層用電解銅箔としては、銅箔を加熱処理してエッチング領域に粒状晶で平均結晶粒径0.3μm以上の表面を生成し、片面のみを化学エッチング処理して外層用として提供する。
内層用としては、銅箔を加熱処理してエッチング領域に粒状晶で平均結晶粒径0.3μm以上の表面を生成し、その両面を化学エッチング処理して内層用として提供する。
外層型配線基板を製作するには、外層用電解銅箔の化学エッチング処理面を基板と張り合わせ、該貼り付けた銅箔に所定の配線を形成することでプリント配線板を製造することができる。
The electrolytic copper foil produced by the production method of the present invention can be provided for the outer layer or for the inner layer.
As the electrolytic copper foil for the outer layer, the copper foil is heat-treated to produce a granular crystal surface in the etching region with an average crystal grain size of 0.3 μm or more, and only one side is chemically etched to provide for the outer layer.
For the inner layer, the copper foil is heat-treated to produce a granular crystal surface in the etching region with an average crystal grain size of 0.3 μm or more, and both surfaces thereof are chemically etched and provided for the inner layer.
In order to manufacture an outer layer type wiring substrate, a printed wiring board can be manufactured by pasting the chemical etching treated surface of the outer layer electrolytic copper foil to the substrate and forming a predetermined wiring on the bonded copper foil.
一方、内層型の配線基板を製造するには、内層用の電解銅箔を使用し、該電解銅箔を基板に張り合わせ、該貼り付けた銅箔に所定の配線を形成する。次いで回路を構成した露出銅箔に他の基板を張り合わせ、内層型プリント配線板とする。
また、内層型配線板を製造する他の方法としては、外層用の電解銅箔を使用し、片面化学エッチング処理面を基板に張り合わせ、回路構成した後、露出面を化学エッチング処理して該エッチング面にさらに基板を張り合わせて内層型の配線板とする。
内層型配線板を製造するさらなる方法とし、高周波特性などの劣化がある程度許される用途においては、外層用電解銅箔を使用し、化学エッチング粗化されている面を基板と張り合わせ、所定の回路を構成する。化学エッチング処理面をまず基板と張り合わせることで、ファインなパターンの回路構成ができる。次いで露出している銅箔面に電着粗化を施し、該電着粗化面に他の基板を張り合わせ内層型配線基板とする。このようにすると、ファインなパターン構成ができ、かつ、化学エッチング処理によるピール強度よりもより強力なピール強度がでる電着処理により2枚目の基板を強固に張り合わせることができる。
On the other hand, in order to manufacture an inner layer type wiring substrate, an inner layer electrolytic copper foil is used, the electrolytic copper foil is bonded to the substrate, and a predetermined wiring is formed on the adhered copper foil. Next, another substrate is bonded to the exposed copper foil constituting the circuit to form an inner layer type printed wiring board.
In addition, as another method of manufacturing the inner layer type wiring board, an electrolytic copper foil for the outer layer is used, the one side chemical etching treatment surface is bonded to the substrate, the circuit is constituted, and the exposed surface is chemically etched to perform the etching. A substrate is further bonded to the surface to form an inner layer type wiring board.
As a further method of manufacturing inner layer type wiring boards, in applications where degradation of high frequency characteristics etc. is allowed to some extent, electrolytic copper foil for outer layers is used, and the surface that has been roughened by chemical etching is bonded to the substrate, and a predetermined circuit is formed. Constitute. A circuit structure with a fine pattern can be formed by first bonding the chemically etched surface to the substrate. Next, the exposed copper foil surface is subjected to electrodeposition roughening, and another substrate is bonded to the electrodeposition roughened surface to form an inner layer type wiring substrate. In this way, a fine pattern can be formed, and the second substrate can be firmly bonded by an electrodeposition process that produces a stronger peel strength than the chemical etching process.
結晶粒径の測定は、EBSD(Electron Back Scattering Diffraction)により行った。EBSDは銅箔表面からの結晶粒の深さ方向の分布を簡便に測定することができる装置である。 The crystal grain size was measured by EBSD (Electron Back Scattering Diffraction). The EBSD is an apparatus that can easily measure the distribution of crystal grains in the depth direction from the copper foil surface.
本発明エッチング粗化用銅箔を化学エッチング処理するエッチング粗化液としては、特に限定されるものではなくいずれの公知のエッチング液(浴)でもよい。通常は酸と酸化剤にキレート剤などの添加剤を付与した液であり、銅の結晶粒界を優先的に溶解するものが好ましい。例えば、前記特許文献1,2に開示されているエッチング粗化液の他に、メック株式会社のCZ−8100、同8101、三菱ガス化学株式会社のCPE−900などの市販品が使用可能である。
本発明の化学エッチング粗化の深さXは、銅箔表面に接着させる樹脂の種類により選択するが、その深さXは、表面から0.5〜3μm程度の深さまで到達するエッチング量が好ましい。溶解到達深さが0.5μm未満であると充分な粗化表面が得られず、一方3μmを越えても樹脂との密着性の向上は期待できず、むしろ、資源のロスや廃液処理費の増大につながるからである。
The etching roughening solution for chemically etching the etching roughening copper foil of the present invention is not particularly limited, and any known etching solution (bath) may be used. Usually, it is a liquid in which an additive such as a chelating agent is added to an acid and an oxidizing agent, and those that preferentially dissolve copper crystal grain boundaries are preferred. For example, in addition to the etching roughening solution disclosed in Patent Documents 1 and 2, commercially available products such as CZ-8100 and 8101 of MEC Co., Ltd. and CPE-900 of Mitsubishi Gas Chemical Co., Ltd. can be used. .
The chemical etching roughening depth X of the present invention is selected depending on the type of resin to be bonded to the copper foil surface, and the depth X is preferably an etching amount that reaches a depth of about 0.5 to 3 μm from the surface. . If the depth of dissolution is less than 0.5 μm, a sufficiently rough surface cannot be obtained. On the other hand, if it exceeds 3 μm, no improvement in adhesion to the resin can be expected. This leads to an increase.
本発明で製造された電解銅箔の化学エッチング粗化表面は、深い凹凸が一様に形成されており、樹脂との密着性に優れた表面となっている。例えば、本発明電解銅箔の製造方法を採用して多層プリント基板を製造する場合、加熱処理し所定の大きさの粒状結晶とした銅箔(未処理銅箔)を電解脱脂し、水洗した後、化学エッチング粗化液をスプレーして溶解到達深さを0.5〜3μm程度、例えば未処理銅箔表面からの深さXを2μm程度として化学エッチングして表面を粗化する。次いで水洗、乾燥する。このように表面粗化した電解銅箔を基板(プリプレグ)と積層プレスして張り合わせる。張り合わせた配線基板は銅箔表面の凹凸によるアンカー効果で両者は物理的に強固に接合されており、その後の工程、例えば、リフローはんだ付け時にプリント配線板に熱ストレスがかかっても、銅箔と基板との界面での剥離が生じるようなことはない。 The roughened chemical etching surface of the electrolytic copper foil produced according to the present invention has deep irregularities formed uniformly, and has a surface excellent in adhesion to the resin. For example, when a multilayer printed circuit board is manufactured by adopting the method for manufacturing an electrolytic copper foil of the present invention, a copper foil (untreated copper foil) that has been heat-treated and made into a granular crystal of a predetermined size is electrolytically degreased and washed with water. Then, a chemical etching roughening solution is sprayed to roughen the surface by chemical etching with a depth of dissolution of about 0.5 to 3 μm, for example, a depth X from the untreated copper foil surface of about 2 μm. Next, it is washed with water and dried. The surface-roughened electrolytic copper foil is laminated and pressed with a substrate (prepreg). The bonded wiring board is physically and firmly joined by the anchor effect due to the unevenness of the copper foil surface, and even if the printed wiring board is subjected to thermal stress during subsequent processes, for example, reflow soldering, No peeling at the interface with the substrate occurs.
基板としては、エポキシ樹脂、ポリエステル、ポリイミド、ポリアミドイミドおよびこれらとガラスクロス複合材や、フェノール樹脂―紙およびエポキシ樹脂―紙等の積層板等いずれを用いても良い。また、さらにヒートシンクとしてアルミニウムや鉄板を接合した上記の各種樹脂の積層板、シート又はフィルム類を用いることができる。
また、樹脂やゴム類を接着剤層として用いたセラミックス板、ガラス板等の無機質の材料も使用することができる。
As the substrate, any of epoxy resin, polyester, polyimide, polyamideimide and a glass cloth composite material thereof, a laminated plate of phenol resin-paper and epoxy resin-paper, or the like may be used. Further, a laminate, sheet or film of the above-mentioned various resins in which aluminum or an iron plate is bonded can be used as a heat sink.
Also, inorganic materials such as ceramic plates and glass plates using resin or rubber as the adhesive layer can be used.
以下、本発明を実施例により、より具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
Ti板をバフ研磨にてRz=1.5μmとしたものをカソードとして、それぞれのめっき浴・条件にて12μmの電解銅箔を作成した。
この後、エッチング粗化を行い、FR−4基材と加熱プレスして接合させて、ピール強度の測定を行った。
Electrolytic copper foil of 12 μm was prepared in each plating bath and conditions using a Ti plate buffed as Rz = 1.5 μm as a cathode.
Then, etching roughening was performed, and the FR-4 base material was hot-pressed and joined to measure the peel strength.
本発明例1
硫酸銅五水和物280g/l、硫酸100g/l、塩素イオン35ppmを含む硫酸酸性硫酸銅電解液に平均分子量3000の低分子量ゼラチン7ppm、ヒドロキシエチルセルロ−ス3ppm、3−メルカプト−1−プロパンスルホン酸ナトリウム1ppmを添加し、電解液温度55℃、流速0.3m/分、電流密度50A/dm2の条件で、電解銅箔を製箔し、50℃の雰囲気に3日間保持した。この銅箔の結晶状態を確認したところ銅箔の結晶状態は粒状晶であり、このM面から2μm(深さX)までの範囲の結晶粒は、平均で0.5μmであり、この範囲(エッチング領域)の1μm以上の結晶粒は12%であった。
この箔を、M面を最大2μmの深さまで化学エッチングをメック社製CZ8101を用いてスプレー式で行い、ピール強度等の測定用サンプルとした。
Invention Example 1
Copper sulfate pentahydrate 280 g / l, sulfuric acid 100 g / l, sulfuric acid acidic copper sulfate electrolyte containing 35 ppm of chlorine ions, low molecular weight gelatin with an average molecular weight of 3000 ppm, hydroxyethyl cellulose 3 ppm, 3-mercapto-1-propane 1 ppm of sodium sulfonate was added, and an electrolytic copper foil was formed under conditions of an electrolyte temperature of 55 ° C., a flow rate of 0.3 m / min, and a current density of 50 A / dm 2 , and kept in an atmosphere of 50 ° C. for 3 days. As a result of confirming the crystal state of the copper foil, the crystal state of the copper foil is a granular crystal, and the average crystal grain in the range from the M plane to 2 μm (depth X) is 0.5 μm. The crystal grains of 1 μm or more in the etching region) were 12%.
This foil was subjected to chemical etching with a MZ CZ8101 to a depth of 2 μm at maximum, and a sample for measuring peel strength and the like was obtained.
本発明例2
硫酸銅五水和物280g/l、硫酸130g/l、塩素イオン50ppmを含む硫酸酸性硫酸銅電解液にヒドロキシエチルセルロ−ス10ppm、3−メルカプト−1−プロパンスルホン酸ナトリウム1ppmを添加し、電解液温度60℃、流速0.8m/分、電流密度45A/dm2の条件で電解銅箔を製箔し、70℃の雰囲気に3日保持し未処理銅箔とした。この身処理銅箔の結晶状態を確認したところ、銅箔は粒状晶をもち、このM面から2μmまでの範囲の結晶粒は、平均で0.8μmであり、この範囲の1μm以上の結晶粒は17%であった。
この箔を、M面を最大2μmの深さまでメック社製CZ8101を用いてスプレー式で化学エッチング処理し、ピール強度等を測定する測定用サンプルとした。
Invention Example 2
Copper sulfate pentahydrate 280 g / l, sulfuric acid 130 g / l, sulfuric acid acidic copper sulfate electrolyte containing 50 ppm of chlorine ions, hydroxyethyl cellulose 10 ppm, sodium 3-mercapto-1-propanesulfonate 1 ppm An electrolytic copper foil was made under conditions of a liquid temperature of 60 ° C., a flow rate of 0.8 m / min, and a current density of 45 A / dm 2 , and kept in an atmosphere of 70 ° C. for 3 days to obtain an untreated copper foil. As a result of confirming the crystal state of the body-treated copper foil, the copper foil has a granular crystal, and the average crystal grain in the range from the M plane to 2 μm is 0.8 μm, and the crystal grain in this range is 1 μm or more. Was 17%.
This foil was subjected to chemical etching treatment by spraying using MZ CZ8101 to a depth of 2 μm at maximum, to obtain a measurement sample for measuring peel strength and the like.
本発明例3
実施例1の銅箔を80℃で1日保管後に、結晶状態を確認したところ、銅箔は粒状晶をもち、このM面から2μmまでの範囲の結晶粒は、平均で1.2μmであり、この範囲の1μm以上の結晶粒は27%であった。
この箔を、M面を最大2μmの深さまでメック社製CZ8101を用いてスプレー式で化学エッチング処理し、ピール強度等を測定する測定用サンプルとした。
Invention Example 3
After confirming the crystal state after storing the copper foil of Example 1 at 80 ° C. for 1 day, the copper foil had granular crystals, and the average crystal grains in the range from the M plane to 2 μm were 1.2 μm. The crystal grain size of 1 μm or more in this range was 27%.
This foil was subjected to chemical etching treatment by spraying using MZ CZ8101 to a depth of 2 μm at maximum, to obtain a measurement sample for measuring peel strength and the like.
本発明例4
実施例1の銅箔を200℃で5時間の加熱を行って、結晶状態を確認したところ、銅箔は粒状晶をもち、このM面から2μmまでの範囲の結晶粒は、平均で1.4μmであり、この範囲の1μm以上の結晶粒は45%であった。この箔を、M面を最大2μmの深さにメック社製CZ8101を用いてスプレー式で化学エッチング処理し、ピール強度等の測定用サンプルとした。
Invention Example 4
The copper foil of Example 1 was heated at 200 ° C. for 5 hours to confirm the crystal state. As a result, the copper foil had granular crystals, and the average number of crystal grains in the range from the M plane to 2 μm was 1. It was 4 μm, and the crystal grain size of 1 μm or more in this range was 45%. This foil was subjected to chemical etching treatment with a spray method using MZ CZ8101 at a maximum depth of 2 μm to obtain a sample for measuring peel strength and the like.
比較例1
本発明例1にてエッチング粗化を行なわず、ピール強度等の測定用サンプルとした。
Comparative Example 1
Etching roughening was not performed in Example 1 of the present invention, and a sample for measuring peel strength and the like was used.
比較例2
硫酸銅五水和物280g/l、硫酸80g/l、塩素イオン35ppmを含む硫酸酸性硫酸銅電解液に平均分子量3000の低分子量ゼラチン15ppm、ヒドロキシエチルセルロ−ス3ppm、3−メルカプト−1−プロパンスルホン酸ナトリウム1ppmを添加し、電解液温度30℃、流速0.2m/分、電流密度30A/dm2の条件で、電解銅箔を製箔した。この銅箔のM面から2μm深さまでの平均粒径は0.2μmで、粒状晶であった。この銅箔をピール強度等の測定用サンプルとした。
Comparative Example 2
Copper sulfate sulfate pentahydrate 280 g / l, sulfuric acid 80 g / l, sulfuric acid acidic copper sulfate electrolyte containing 35 ppm of chlorine ion, low molecular weight gelatin with average molecular weight of 3000 ppm, hydroxyethyl cellulose 3 ppm, 3-mercapto-1-propane 1 ppm of sodium sulfonate was added, and an electrolytic copper foil was produced under the conditions of an electrolyte temperature of 30 ° C., a flow rate of 0.2 m / min, and a current density of 30 A / dm 2 . The average particle size from the M surface to the depth of 2 μm of this copper foil was 0.2 μm and was a granular crystal. This copper foil was used as a sample for measuring peel strength and the like.
比較例3
電解液として、銅90g/l 、硫酸100g/l 、塩素イオン20ppm 、加水分解したニカワ300ppm を含む電解液に更に加水分解前のニカワを2ppm
添加したものを使用し、液温度55℃、電流密度は55A/dm2 の条件で、柱状晶の銅箔を製造した。この銅箔をピール強度等の測定用サンプルとした。
Comparative Example 3
As an electrolytic solution, an electrolytic solution containing 90 g / l of copper, 100 g / l of sulfuric acid, 20 ppm of chlorine ions, 300 ppm of hydrolyzed glue, and 2 ppm of glue before hydrolysis.
A copper foil having a columnar crystal was produced under the conditions that the added liquid temperature was 55 ° C. and the current density was 55 A / dm 2 . This copper foil was used as a sample for measuring peel strength and the like.
結果を下記表1に示す。 The results are shown in Table 1 below.
表1より明らかなように、本発明例においては、ピール強度が充分でていたが、比較例においては弱く、少々の曲げ加工などで剥離が生じた。 As apparent from Table 1, the peel strength was sufficient in the examples of the present invention, but weak in the comparative examples, and peeling occurred due to a slight bending work.
以上の結果のように、本発明は、ピール強度が高く、基板との接着が安定した電解銅箔を作成し、提供することができる。
As described above, the present invention can provide and provide an electrolytic copper foil having high peel strength and stable adhesion to the substrate.
Claims (4)
式1:LMP=(T+273)×(20+Logt)
ここで、Tは温度(℃)、tは時間(Hr)である。 3. The electrolytic copper foil is subjected to a heat treatment at 50 ° C. or more and an LMP value represented by Formula 1 is 7000 or more, and chemical etching treatment is performed on the heat-treated granular crystal surface. The manufacturing method of the electrolytic copper foil as described in any one of.
Formula 1: LMP = (T + 273) × (20 + Logt)
Here, T is temperature (° C.), and t is time (Hr).
An electrolytic copper foil obtained by electrodepositing a copper foil on the electrolytic drum and making it into a cathode is heat-treated in an atmosphere of 50 ° C. or higher, and at least one surface of the electrolytic copper foil is a granular crystal An untreated copper foil having an average particle size of 0.3 μm or more in a region from the surface to at least the depth X, and the granular crystal surface of the untreated copper foil is subjected to chemical etching to the depth from the granular crystal surface. A printed wiring board comprising: a roughened copper foil etched to a thickness X, and a roughened surface of the roughened copper foil bonded to a printed wiring board substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004273048A JP4471795B2 (en) | 2004-09-21 | 2004-09-21 | Electrolytic copper foil manufacturing method and printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004273048A JP4471795B2 (en) | 2004-09-21 | 2004-09-21 | Electrolytic copper foil manufacturing method and printed wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006089769A JP2006089769A (en) | 2006-04-06 |
JP4471795B2 true JP4471795B2 (en) | 2010-06-02 |
Family
ID=36231026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004273048A Expired - Lifetime JP4471795B2 (en) | 2004-09-21 | 2004-09-21 | Electrolytic copper foil manufacturing method and printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4471795B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6202905B2 (en) * | 2013-06-27 | 2017-09-27 | 株式会社クラレ | Circuit board and manufacturing method thereof |
WO2023190845A1 (en) * | 2022-03-30 | 2023-10-05 | 古河電気工業株式会社 | Copper foil and light-shielding material |
-
2004
- 2004-09-21 JP JP2004273048A patent/JP4471795B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2006089769A (en) | 2006-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3973197B2 (en) | Electrolytic copper foil with carrier foil and method for producing the same | |
JP3977790B2 (en) | Manufacturing method of ultra-thin copper foil with carrier, ultra-thin copper foil manufactured by the manufacturing method, printed wiring board using the ultra-thin copper foil, multilayer printed wiring board, chip-on-film wiring board | |
KR101090199B1 (en) | Copper foil for fine printed circuit and method for manufacturing the same | |
KR101154203B1 (en) | Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil | |
JP7453154B2 (en) | Surface treated copper foil, copper foil with carrier, copper clad laminates and printed wiring boards | |
JP3910623B1 (en) | Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board | |
TWI432615B (en) | A metal foil, a method for manufacturing the same, an insulating substrate, and a wiring substrate | |
JP2007186797A (en) | Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil | |
JP2008101267A (en) | Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil | |
JP2001177204A (en) | Surface-treated copper foil and method of manufacturing the same | |
EP1133220B1 (en) | Copper foil with low profile bond enhancement | |
JPH09217193A (en) | Non-cyanide brass plating bath mixture, production of metallic foil having brass layer and method for using non-cyanide brass plating bath | |
JP2008127618A (en) | Method for treating surface of copper foil through feeding alternating current | |
JPH0441696A (en) | Surface treatment of copper foil for printed circuit | |
JP4429539B2 (en) | Electrolytic copper foil for fine pattern | |
EP1424407B1 (en) | Method of formation of a NiP resistance layer by electroplating | |
JP3670185B2 (en) | Method for producing surface-treated copper foil for printed wiring board | |
JP2005288856A (en) | Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminated sheet using electrolytic copper foil with carrier foil | |
JP4217778B2 (en) | Conductive substrate with resistance layer, circuit board with resistance layer, and resistance circuit wiring board | |
TW202001000A (en) | Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board | |
JP3429290B2 (en) | Manufacturing method of copper foil for fine wiring | |
KR101623713B1 (en) | Copper foil for printing circuit | |
JP2006005149A (en) | Conductive substrate and circuit board material with resistive layer | |
JP4471795B2 (en) | Electrolytic copper foil manufacturing method and printed wiring board | |
JP2004131836A (en) | Electrolytic copper foil with carrier foil and its producing method, and copper clad laminated board using electrolytic copper foil with carrier foil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070403 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070815 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100209 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100302 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4471795 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140312 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |