[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4467415B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP4467415B2
JP4467415B2 JP2004347668A JP2004347668A JP4467415B2 JP 4467415 B2 JP4467415 B2 JP 4467415B2 JP 2004347668 A JP2004347668 A JP 2004347668A JP 2004347668 A JP2004347668 A JP 2004347668A JP 4467415 B2 JP4467415 B2 JP 4467415B2
Authority
JP
Japan
Prior art keywords
fuel
heat medium
fuel cell
temperature
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004347668A
Other languages
Japanese (ja)
Other versions
JP2006156252A (en
Inventor
孝昌 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004347668A priority Critical patent/JP4467415B2/en
Priority to KR1020050114702A priority patent/KR100724017B1/en
Priority to CN2008100829870A priority patent/CN101241998B/en
Priority to CNA2008100829885A priority patent/CN101241999A/en
Priority to US11/289,633 priority patent/US7691505B2/en
Priority to CNB2005101271868A priority patent/CN100405650C/en
Publication of JP2006156252A publication Critical patent/JP2006156252A/en
Priority to US12/708,346 priority patent/US8158287B2/en
Application granted granted Critical
Publication of JP4467415B2 publication Critical patent/JP4467415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池システムに関する。   The present invention relates to a fuel cell system.

固体高分子形燃料電池は、固体高分子電解質膜の一方の面にアノード(燃料極)を、他方の面にカソード(空気極)を接合一体化してセル(膜電極接合体)を形成し、アノードに対向する面に凹溝状の燃料流路を設けたプレートと、カソードに対向する面に凹溝状の酸化剤流路を設けたプレートとでセルを挟んで複数積層し、両端部にエンドプレートを添えて通しボルトで締め付けることにより燃料電池スタックが構成される。そして、燃料流路には燃料(水素又は水素主体の改質ガス)を流通させると共に、酸化剤流路には酸化剤(通常は空気)を流通させ、固体高分子電解質膜を介して電気化学反応を起こさせることにより直流電力を発電する。   A polymer electrolyte fuel cell is a cell (membrane electrode assembly) formed by joining and integrating an anode (fuel electrode) on one surface of a solid polymer electrolyte membrane and a cathode (air electrode) on the other surface, A plurality of layers are stacked with a cell sandwiched between a plate provided with a grooved fuel flow path on the surface facing the anode and a plate provided with a grooved oxidant flow path on the surface facing the cathode. A fuel cell stack is constructed by attaching an end plate and tightening with a through bolt. A fuel (hydrogen or hydrogen-based reformed gas) is circulated through the fuel channel, and an oxidant (usually air) is circulated through the oxidant channel, and electrochemically passed through the solid polymer electrolyte membrane. Direct current power is generated by causing a reaction.

このような固体高分子形燃料電池において、固体高分子電解質膜は飽和湿潤状態で適正に機能するため、反応ガス(燃料及び/又は酸化剤)を加湿器等で加湿した後にプレートの流路を流通させ、これにより固体高分子電解質膜を飽和湿潤状態に保持するようにしている。また、固体高分子形燃料電池の作動温度は約80℃であるが、電気化学反応は発熱反応であるため発電中に温度が上昇する。これを防止するために燃料電池スタック内に冷却プレートを組み込んでそのチャンネルに冷却水を流通させ、燃料電池スタックを作動温度に保持するようにしているのが一般的である。   In such a polymer electrolyte fuel cell, the polymer electrolyte membrane functions properly in a saturated and wet state. Therefore, after the reaction gas (fuel and / or oxidizer) is humidified with a humidifier or the like, the flow path of the plate is passed through. The solid polymer electrolyte membrane is maintained in a saturated and wet state by flowing. The operating temperature of the polymer electrolyte fuel cell is about 80 ° C., but since the electrochemical reaction is an exothermic reaction, the temperature rises during power generation. In order to prevent this, a cooling plate is generally incorporated in the fuel cell stack, and cooling water is circulated through the channel to keep the fuel cell stack at the operating temperature.

固体高分子形燃料電池を作動させる従来の燃料電池システムでは、システム停止時に冷却水の流れを停止させていた(特許文献1参照)。
特開2004−296340号公報
In a conventional fuel cell system that operates a polymer electrolyte fuel cell, the flow of cooling water is stopped when the system is stopped (see Patent Document 1).
JP 2004-296340 A

システム停止時に冷却水の流れを止めて、燃料電池スタックを自然冷却させると、燃料電池スタックはその外側から順に冷えていくため、燃料電池スタック内に温度差が生じる。燃料電池スタック内の水蒸気は、温度が低い場所から先に結露するため、自然冷却の過程で各セル内の水分布が変化する。これにより、次回起動時に各セルへの反応ガスの分配が不均一になり、発電時の各セル電圧が不安定になる。また、配管で接続されている燃料加湿器または空気加湿器の温度(水温)が電池温度より高い場合、反応ガスを止めていても燃料加湿器または空気加湿器から蒸気が電池に拡散して、電池内で結露するため、これによっても電池内の水分布が変化する。   If the flow of the cooling water is stopped when the system is stopped and the fuel cell stack is naturally cooled, the fuel cell stack cools in order from the outside, and thus a temperature difference occurs in the fuel cell stack. Since the water vapor in the fuel cell stack is condensed first from the place where the temperature is low, the water distribution in each cell changes in the course of natural cooling. Thereby, the distribution of the reaction gas to each cell becomes non-uniform at the next start-up, and each cell voltage at the time of power generation becomes unstable. Also, if the temperature of the fuel humidifier or air humidifier connected by piping (water temperature) is higher than the battery temperature, even if the reaction gas is stopped, the steam diffuses from the fuel humidifier or air humidifier to the battery, Since condensation occurs in the battery, this also changes the water distribution in the battery.

本発明はこうした課題に鑑みてなされたものであり、その目的は、燃料電池システムを起動したときの出力を安定化させる技術の提供にある。   The present invention has been made in view of these problems, and an object thereof is to provide a technique for stabilizing the output when the fuel cell system is activated.

本発明のある態様は、電解質膜の一方の面にアノードが接合され、前記電解質膜の他方の面にカソードが接合された膜電極接合体と、前記アノードに燃料を供給する燃料流路が設けられた燃料流路プレート、前記カソードに酸化剤を供給する酸化剤流路が設けられた酸化剤流路プレート、熱媒体が流通する熱媒体流路が設けられた熱媒体流路プレートとが組み合わされた積層体を含む燃料電池スタックと、前記熱媒体との熱交換により前記燃料を加湿する燃料加湿手段と、前記熱媒体との熱交換により前記酸化剤を加湿する酸化剤加湿手段と、前記燃料電池スタックから排出された熱媒体を冷却後に燃料加湿手段及び酸化剤加湿手段と熱交換して前記燃料電池スタックに投入して熱媒体を循環させる手段と、システム停止時に、負荷電流の遮断を行ったのち、所定の冷却停止条件が成立するまで前記熱媒体の循環を継続させる制御手段と、を備え、前記熱媒体を循環させる手段は、前記負荷電流の遮断の後、前記熱媒体が循環することで燃料加湿手段の温度または酸化剤加湿手段の温度と、燃料電池スタックの温度とを同等にすることを特徴とする。
In one aspect of the present invention, a membrane electrode assembly in which an anode is joined to one surface of an electrolyte membrane and a cathode is joined to the other surface of the electrolyte membrane, and a fuel flow path for supplying fuel to the anode are provided. A fuel flow path plate provided with an oxidant flow path plate provided with an oxidant flow path for supplying an oxidant to the cathode, and a heat medium flow path plate provided with a heat medium flow path through which the heat medium flows. A fuel cell stack including the laminated body, a fuel humidifying means for humidifying the fuel by heat exchange with the heat medium, an oxidant humidifying means for humidifying the oxidant by heat exchange with the heat medium, The heat medium discharged from the fuel cell stack is cooled and then heat exchanged with the fuel humidifying means and the oxidant humidifying means, and the heat medium is inserted into the fuel cell stack to circulate the heat medium. And a control means for continuing the circulation of the heat medium until a predetermined cooling stop condition is satisfied, and the means for circulating the heat medium is configured such that after the load current is interrupted, the heat medium By circulating, the temperature of the fuel humidifying means or the temperature of the oxidant humidifying means is made equal to the temperature of the fuel cell stack.

なお、燃料流路プレート、酸化剤流路プレートおよび熱媒体流路プレートはそれぞれが別部材であるとは限られず、たとえば、バイポーラプレートの一方の面に燃料流路を設け、他方の面に熱媒体流路を設けることにより、燃料流路プレートと熱媒体流路プレートとがひとつの部材で実現された構成も本発明に含まれる。   The fuel flow path plate, the oxidant flow path plate, and the heat medium flow path plate are not necessarily separate members. For example, the fuel flow path is provided on one surface of the bipolar plate, and the heat flow path is provided on the other surface. A configuration in which the fuel flow path plate and the heat medium flow path plate are realized by one member by providing the medium flow path is also included in the present invention.

上記構成によれば、システム停止後にも熱媒体を燃料電池スタックに流通させることにより、各セルの温度分布にばらつきが生じることが抑制されるため、各セルの水分布のばらつきが抑制される。この結果、次回起動時の各セルの発電量が均一化し、出力の安定化が実現される。   According to the above configuration, the distribution of the temperature distribution of each cell is suppressed by causing the heat medium to flow through the fuel cell stack even after the system is stopped, so that the variation of the water distribution of each cell is suppressed. As a result, the power generation amount of each cell at the next start-up becomes uniform, and the output is stabilized.

本発明の他の態様は、電解質膜の一方の面にアノードが接合され、前記電解質膜の他方の面にカソードが接合された膜電極接合体と、前記アノードに燃料を供給する燃料流路が設けられた燃料流路プレート、前記カソードに酸化剤を供給する酸化剤流路が設けられた酸化剤流路プレート、熱媒体が流通する熱媒体流路が設けられた熱媒体流路プレートとが組み合わされた積層体を含む燃料電池スタックと、前記熱媒体との熱交換により前記燃料を加湿する燃料加湿手段と、前記熱媒体との熱交換により前記酸化剤を加湿する酸化剤加湿手段と、前記燃料電池スタックから排出された熱媒体を冷却後に燃料加湿手段及び酸化剤加湿手段と熱交換して前記燃料電池スタックに投入して熱媒体を循環させる手段と、システム停止時に、所定の冷却停止条件が成立するまで前記熱媒体の循環を継続させるとともに、前記燃料または前記酸化剤の少なくとも一方の供給を継続させ、負荷電流をシステム停止から徐々に減少させて、所定の冷却停止条件が成立したときに前記負荷電流を遮断する制御手段と、を備え、前記熱媒体を循環させる手段は、前記負荷電流の遮断の後、前記熱媒体が循環することで燃料加湿手段の温度または酸化剤加湿手段の温度と、燃料電池スタックの温度とを同等にすることを備えることを特徴とする。
In another aspect of the present invention, a membrane electrode assembly in which an anode is joined to one surface of an electrolyte membrane and a cathode is joined to the other surface of the electrolyte membrane, and a fuel flow path for supplying fuel to the anode are provided. A fuel flow path plate provided, an oxidant flow path plate provided with an oxidant flow path for supplying an oxidant to the cathode, and a heat medium flow path plate provided with a heat medium flow path through which the heat medium flows. A fuel cell stack including a combined laminate, fuel humidifying means for humidifying the fuel by heat exchange with the heat medium, and oxidant humidifying means for humidifying the oxidant by heat exchange with the heat medium; Means for exchanging heat with the fuel humidifying means and oxidant humidifying means after cooling the heat medium discharged from the fuel cell stack, and circulating the heat medium into the fuel cell stack; and a predetermined cooling stop when the system is stopped. The circulation of the heat medium is continued until the condition is satisfied, the supply of at least one of the fuel or the oxidant is continued, and the load current is gradually decreased from the system stop to satisfy a predetermined cooling stop condition. Control means for interrupting the load current, and the means for circulating the heat medium is the temperature of the fuel humidifying means or the oxidant humidifying means by circulating the heat medium after the load current is interrupted. And the temperature of the fuel cell stack are made equal to each other.

上記構成によれば、システム停止後に電極が酸化することが抑制されるので、燃料電池の耐久性および出力の安定性を向上させることができる。   According to the above configuration, since the electrode is suppressed from being oxidized after the system is stopped, the durability and output stability of the fuel cell can be improved.

上記構成において、制御手段は、システム停止から所定の冷却停止条件の成立時までの間に、燃料電池スタックから排出される熱媒体の温度と、燃料電池スタックに投入される熱媒体の温度との温度差が所定の範囲になるように、熱媒体の循環量を調節してもよい。これによれば、燃料電池スタック内の各セルの水分布をより均一化させることができる。   In the above configuration, the control means is configured to calculate the temperature of the heat medium discharged from the fuel cell stack and the temperature of the heat medium input to the fuel cell stack between the time when the system is stopped and a predetermined cooling stop condition is satisfied. The circulation amount of the heat medium may be adjusted so that the temperature difference falls within a predetermined range. According to this, the water distribution of each cell in the fuel cell stack can be made more uniform.

上記構成において、制御手段は、燃料電池スタックから排出される熱媒体の温度が外気温度の関数で定まる値より低くなったことを冷却停止条件として定めてもよい。また、制御手段は、システム停止後から所定時間を経過したことを冷却停止条件として定めてもよい。これによれば、熱媒体の循環を適度な期間で終了させることにより、電力消費を低減させることができる。   In the above configuration, the control means may determine that the temperature of the heat medium discharged from the fuel cell stack is lower than a value determined by a function of the outside air temperature as a cooling stop condition. The control means may determine that a predetermined time has elapsed since the system stop as a cooling stop condition. According to this, power consumption can be reduced by terminating the circulation of the heat medium in an appropriate period.

なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。   A combination of the above-described elements as appropriate can also be included in the scope of the invention for which patent protection is sought by this patent application.

本発明によれば、燃料電池システム起動時の出力安定性を向上させることができる。   According to the present invention, it is possible to improve the output stability when starting the fuel cell system.

以下、本発明の実施形態を図面を用いて説明する。図1は、本発明の実施形態に係る燃料電池システム10の全体構成を示す。燃料電池システム10は、燃料電池スタック20、燃料供給手段30、燃料加湿器40、空気供給手段50、空気加湿器60、熱媒体用熱交換器70、配管80、制御バルブ86、循環ポンプ90および制御部100を備える。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an overall configuration of a fuel cell system 10 according to an embodiment of the present invention. The fuel cell system 10 includes a fuel cell stack 20, a fuel supply means 30, a fuel humidifier 40, an air supply means 50, an air humidifier 60, a heat exchanger for heat medium 70, a pipe 80, a control valve 86, a circulation pump 90, and A control unit 100 is provided.

燃料電池スタック20は、高分子電解質膜の一方の面にアノードが接合され、電解質膜の他方の面にカソードが接合された膜電極接合体と、アノードに燃料を供給する燃料流路が設けられた燃料流路プレート、カソードに酸化剤を供給する酸化剤流路が設けられた酸化剤流路プレート、熱媒体が流通する熱媒体流路が設けられた熱媒体流路プレートとが組み合わされた積層体を含む。燃料電池スタック20は、公知の構成とすることができ、その典型例として、特開2004−185938の図1および図2に示された構成、あるいは特開2004−185934号の図1に示された構成が挙げられる。本実施形態の燃料電池スタック20において、発電に用いられる燃料および空気、ならびにアノードおよび/またはカソードの冷却に用いられる熱媒体の流れの方向は、重力方向の並行流とする。本実施形態では、熱媒体として水が用いられるが、熱の受け渡しが可能であれば、他の液体や気体を用いることができる。以下、熱媒体として用いられる水を冷却水とよぶ。   The fuel cell stack 20 is provided with a membrane electrode assembly in which an anode is joined to one surface of a polymer electrolyte membrane and a cathode is joined to the other surface of the electrolyte membrane, and a fuel flow path for supplying fuel to the anode. The fuel flow path plate, the oxidant flow path plate provided with the oxidant flow path for supplying the oxidant to the cathode, and the heat medium flow path plate provided with the heat medium flow path through which the heat medium flows are combined. Includes laminates. The fuel cell stack 20 may have a known configuration, and a typical example thereof is the configuration shown in FIGS. 1 and 2 of Japanese Patent Application Laid-Open No. 2004-185938 or FIG. 1 of Japanese Patent Application Laid-Open No. 2004-185934. Configuration. In the fuel cell stack 20 of the present embodiment, the flow direction of the fuel and air used for power generation and the flow of the heat medium used for cooling the anode and / or cathode are parallel flows in the direction of gravity. In this embodiment, water is used as the heat medium, but other liquids and gases can be used as long as heat can be transferred. Hereinafter, water used as a heat medium is referred to as cooling water.

燃料供給手段30は、燃料となる水素を供給する手段である。たとえば、燃料供給手段30は、天然ガスやメタンガス等の炭化水素系ガスを貯留する燃料タンク、燃料タンクから供給される炭化水素系ガスから硫黄成分を除去する脱硫器、および脱硫後の炭化水素系ガスを改質して水素を取り出す改質装置で主に構成される。   The fuel supply means 30 is means for supplying hydrogen as fuel. For example, the fuel supply means 30 includes a fuel tank that stores a hydrocarbon gas such as natural gas or methane gas, a desulfurizer that removes sulfur components from the hydrocarbon gas supplied from the fuel tank, and a hydrocarbon system after desulfurization. It consists mainly of a reformer that reforms gas and extracts hydrogen.

燃料加湿器40は、燃料供給手段30から供給される燃料を加湿する。具体的には、燃料加湿器40は、燃料加湿タンク42および燃料用熱交換器44を含み、燃料加湿タンク42に入れられ、燃料用熱交換器44によって昇温された水を用いて、バブリング方式により燃料を加湿して、燃料の相対湿度を100%RHにする。   The fuel humidifier 40 humidifies the fuel supplied from the fuel supply means 30. Specifically, the fuel humidifier 40 includes a fuel humidification tank 42 and a fuel heat exchanger 44, and is used for bubbling with water that is put in the fuel humidification tank 42 and heated by the fuel heat exchanger 44. The fuel is humidified by the method, and the relative humidity of the fuel is set to 100% RH.

空気供給手段50は、酸化剤となる酸素を含む空気を供給する手段である。たとえば、空気供給手段50は、外気を取り込むブロア、および必要に応じて設けられるエアフィルタで構成される。   The air supply means 50 is a means for supplying air containing oxygen as an oxidant. For example, the air supply means 50 includes a blower that takes in outside air and an air filter that is provided as necessary.

空気加湿器60は、空気供給手段50から供給される空気を加湿する。具体的には、空気加湿器60は、空気加湿タンク62を含み、空気加湿タンク62に入れられた水を用いて、バブリング方式により空気を加湿して、空気の相対湿度を100%RHにする。   The air humidifier 60 humidifies the air supplied from the air supply means 50. Specifically, the air humidifier 60 includes an air humidification tank 62, and uses water contained in the air humidification tank 62 to humidify the air by a bubbling method so that the relative humidity of the air becomes 100% RH. .

熱媒体用熱交換器70は、外気などとの熱交換により、燃料電池スタック20から排出された冷却水の温度を下げる。熱媒体用熱交換器70により、燃料電池スタック20から排出された冷却水の温度を効率的に下げることができる。   The heat exchanger for heat medium 70 lowers the temperature of the cooling water discharged from the fuel cell stack 20 through heat exchange with outside air or the like. With the heat exchanger for heat medium 70, the temperature of the cooling water discharged from the fuel cell stack 20 can be lowered efficiently.

配管80は、燃料電池スタック20に設けられた熱媒体流路を流通して排出された冷却水が再び熱媒体流路に供給されるような冷却水の循環が可能な構成を備える。具体的には、燃料電池スタック20から排出された冷却水は、熱媒体用熱交換器70にまず導かれ、熱媒体用熱交換器70の下流に設けられた分岐点82において、燃料加湿器40に向かうラインと、空気加湿器60に向かうラインとに所定の分配比で分岐する。燃料電池スタック20から排出された冷却水の一部は、燃料加湿器40が有する燃料用熱交換器44を流通し、燃料電池スタック20から排出された冷却水の残りは、空気加湿器60に直接供給される。燃料用熱交換器44を流通した後の冷却水は、空気加湿器60の上流で上述した空気加湿器60に向かうラインを流れる冷却水と合流点84で合流する。合流後の冷却水は、空気加湿器60の空気加湿タンク62を流通した後、空気加湿器60から排出される。循環ポンプ90は、空気加湿器60から排出された冷却水を汲み上げて、所定の水量の冷却水として燃料電池スタック20に送り込む。   The pipe 80 has a configuration capable of circulating the cooling water such that the cooling water discharged through the heat medium flow path provided in the fuel cell stack 20 is supplied to the heat medium flow path again. Specifically, the cooling water discharged from the fuel cell stack 20 is first guided to the heat medium heat exchanger 70, and at a branch point 82 provided downstream of the heat medium heat exchanger 70, the fuel humidifier Branches into a line toward 40 and a line toward the air humidifier 60 at a predetermined distribution ratio. A part of the cooling water discharged from the fuel cell stack 20 flows through the fuel heat exchanger 44 of the fuel humidifier 40, and the rest of the cooling water discharged from the fuel cell stack 20 goes to the air humidifier 60. Supplied directly. The cooling water after flowing through the fuel heat exchanger 44 joins at the junction 84 with the cooling water flowing on the line toward the air humidifier 60 described above upstream of the air humidifier 60. The combined cooling water is discharged from the air humidifier 60 after flowing through the air humidification tank 62 of the air humidifier 60. The circulation pump 90 pumps up the cooling water discharged from the air humidifier 60 and sends it to the fuel cell stack 20 as a predetermined amount of cooling water.

制御バルブ86は、分岐点82の合流点84との間に設けられた開閉度が可変のバルブである。制御バルブ86の開度を調節することにより、冷却水の分配比を補正することができる。なお、制御バルブ86の設置は不可欠ではなく、運転条件によって冷却水の分配比を補正する必要がない場合には不要である。   The control valve 86 is a valve having a variable opening / closing degree provided between the junction 82 and the junction 84. By adjusting the opening degree of the control valve 86, the distribution ratio of the cooling water can be corrected. The installation of the control valve 86 is not indispensable, and is unnecessary when it is not necessary to correct the distribution ratio of the cooling water according to the operating conditions.

制御部100は、燃料電池スタック20による発電量を制御する他、制御バルブ86の開度や、循環ポンプ90を調節して冷却水の水量を制御する。また、制御部100は、必要に応じて、燃料供給手段30からの燃料供給量および空気供給手段50からの空気供給量を制御する。   In addition to controlling the amount of power generated by the fuel cell stack 20, the control unit 100 controls the amount of cooling water by adjusting the opening of the control valve 86 and the circulation pump 90. Further, the control unit 100 controls the fuel supply amount from the fuel supply unit 30 and the air supply amount from the air supply unit 50 as necessary.

(システム停止時の動作)
燃料電池システム10におけるシステム停止時の動作について説明する。以下の説明では、燃料電池スタック20に設けられた冷却水の入口付近の温度を、冷却水入口温度(T1)と呼び、燃料電池スタック20に設けられた冷却水の出口付近の温度を、冷却水出口温度(T2)と呼ぶ。また、燃料加湿器40で加湿された燃料の温度を加湿燃料温度(T3)と呼び、空気加湿器60で加湿された空気の温度を加湿空気温度(T4)と呼ぶ。さらに、燃料電池スタック20に設けられた燃料の入口付近の露点を燃料露点(T5)と呼び、燃料電池スタック20に設けられた空気の入口付近の露点を空気露点(T6)と呼ぶ。なお、T1、T2、T3、T4、T5およびT6は、必要に応じて図示しない温度センサにより計測され、計測された値は制御部100に送信される。
(Operation when the system is stopped)
The operation of the fuel cell system 10 when the system is stopped will be described. In the following description, the temperature near the cooling water inlet provided in the fuel cell stack 20 is referred to as a cooling water inlet temperature (T1), and the temperature near the cooling water outlet provided in the fuel cell stack 20 is cooled. Called water outlet temperature (T2). Further, the temperature of the fuel humidified by the fuel humidifier 40 is called a humidified fuel temperature (T3), and the temperature of the air humidified by the air humidifier 60 is called a humidified air temperature (T4). Furthermore, the dew point near the fuel inlet provided in the fuel cell stack 20 is called a fuel dew point (T5), and the dew point near the air inlet provided in the fuel cell stack 20 is called an air dew point (T6). T1, T2, T3, T4, T5, and T6 are measured by a temperature sensor (not shown) as necessary, and the measured values are transmitted to the control unit 100.

制御部100は、システム停止時に、循環ポンプ90による冷却水の循環を継続したまま、負荷電流を遮断する。冷却水の循環は、後述する冷却停止条件が成立するまで続けられる。次に、制御部100は、燃料供給手段30からの燃料の供給および空気供給手段50からの空気の供給を停止させる。燃料の供給停止と空気の供給停止の順番はどちらが先でもよく、両者を同時に停止させてもよい。制御部100は、負荷電流遮断後に冷却停止条件が成立するか否かを判定する。冷却停止条件としては、たとえば、電池温度、冷却水出口温度(T2)、加湿燃料温度(T3)、または加湿空気温度(T5)のいずれかが設定温度になったことが挙げられる。この場合、設定温度は、たとえば、(外気温度+5)℃のような外気温度の関数で定められる。このほか、冷却停止条件として、負荷電流遮断後から一定時間が経過したこと採用してもよい。このような冷却停止条件の成立をもって冷却水の循環を停止することにより、各セルの水分布の均一化を図りつつ、電力消費を低減させることができる。   When the system is stopped, the control unit 100 interrupts the load current while continuing the circulation of the cooling water by the circulation pump 90. The circulation of the cooling water is continued until a cooling stop condition described later is satisfied. Next, the control unit 100 stops the supply of fuel from the fuel supply unit 30 and the supply of air from the air supply unit 50. Either the fuel supply stop or the air supply stop may be performed first, or both may be stopped simultaneously. The control unit 100 determines whether the cooling stop condition is satisfied after the load current is interrupted. As the cooling stop condition, for example, any one of the battery temperature, the cooling water outlet temperature (T2), the humidified fuel temperature (T3), or the humidified air temperature (T5) has become a set temperature. In this case, the set temperature is determined by a function of the outside air temperature such as (outside air temperature + 5) ° C., for example. In addition, as a cooling stop condition, it may be adopted that a certain time has elapsed after the load current is cut off. By stopping the circulation of the cooling water when such a cooling stop condition is satisfied, it is possible to reduce power consumption while making the water distribution of each cell uniform.

なお、制御部100は、負荷電流遮断後の冷却水循環時に、冷却水出口温度(T2)と冷却水入口温度(T1)との差が所定温度、たとえば2℃以下になるように、循環ポンプ90を用いて冷却水の水量を調節してもよい。これによれば、燃料電池スタック20内の冷却水の流れ方向の温度分布がなだらかになるため、各セル内における水分布に差が生じにくくすることができる。   In addition, the control unit 100 circulates the circulating pump 90 so that the difference between the cooling water outlet temperature (T2) and the cooling water inlet temperature (T1) becomes a predetermined temperature, for example, 2 ° C. or less, during the cooling water circulation after the load current is interrupted. May be used to adjust the amount of cooling water. According to this, since the temperature distribution in the flow direction of the cooling water in the fuel cell stack 20 becomes gentle, the difference in the water distribution in each cell can be made difficult to occur.

図2は、負荷遮断後に冷却水循環を継続したとき(以下、強制冷却と呼ぶ)の温度変化を示すグラフである。また、図は、負荷遮断と同時に冷却水循環を停止して自然冷却を行ったとき(以下、自然冷却と呼ぶ)の温度変化(比較例)を示すグラフである。温度の計測は、電池表面の2カ所、燃料加湿器40の表面、および空気加湿器60の表面の計4点で行った。この結果、強制冷却時には、負荷電流遮断後から1時間以内に各温度がばらつくことなく、速やかに40℃以下に低下することが確認された。一方、自然冷却時には、システム停止後から4時間以上経過しても、各温度は40℃以上を保ち、かつ各温度にばらつきが見られることがわかる。
FIG. 2 is a graph showing a temperature change when cooling water circulation is continued after load interruption (hereinafter referred to as forced cooling). FIG. 4 is a graph showing a temperature change (comparative example) when the cooling water circulation is stopped and natural cooling is performed simultaneously with load interruption (hereinafter referred to as natural cooling). The temperature was measured at a total of four points: two locations on the battery surface, the surface of the fuel humidifier 40, and the surface of the air humidifier 60. As a result, it was confirmed that during forced cooling, each temperature did not vary within 1 hour after the load current was interrupted, and quickly decreased to 40 ° C. or lower. On the other hand, at the time of natural cooling, it can be seen that each temperature is kept at 40 ° C. or more and variation is observed in each temperature even if 4 hours or more have passed after the system is stopped.

は、強制冷却後にシステムを起動したときの、セル電流および各セルの電圧の変化を示すグラフである。また、図5は、自然冷却後にシステムを起動したときの、セル電流および各セルの電圧の変化(比較例)を示すグラフである。自然冷却後のシステム起動後の各セル電圧には、ばらつきが見られる。自然冷却時には、燃料電池スタック20の外側から順に冷えていくため、燃料電池スタック20内に温度差が生じる。燃料電池スタック20内の水蒸気は、温度が低い場所から先に結露するため、自然冷却の過程で各セル内の水分布が変化する。これにより、次回起動時に各セルへの反応ガスの分配が不均一になり、発電時の各セル電圧が不安定になる。また、配管80で接続されている燃料加湿器40または空気加湿器60の温度(水温)が電池温度より高い場合、反応ガスを止めていても燃料加湿器40または空気加湿器60から蒸気が燃料電池スタック20に拡散して、燃料電池スタック20内で結露するため、これによっても燃料電池スタック20内の水分布が変化する。
FIG. 3 is a graph showing changes in cell current and voltage of each cell when the system is started after forced cooling. FIG. 5 is a graph showing changes in cell current and voltage of each cell (comparative example) when the system is started after natural cooling. Variations are observed in each cell voltage after system startup after natural cooling. At the time of natural cooling, the fuel cell stack 20 cools in order from the outside, so that a temperature difference occurs in the fuel cell stack 20. The water vapor in the fuel cell stack 20 condenses first from a place where the temperature is low, so that the water distribution in each cell changes in the course of natural cooling. Thereby, the distribution of the reaction gas to each cell becomes non-uniform at the next start-up, and each cell voltage at the time of power generation becomes unstable. In addition, when the temperature (water temperature) of the fuel humidifier 40 or the air humidifier 60 connected by the pipe 80 is higher than the battery temperature, the steam is generated from the fuel humidifier 40 or the air humidifier 60 even if the reaction gas is stopped. Since it diffuses in the cell stack 20 and dew condensation occurs in the fuel cell stack 20, the water distribution in the fuel cell stack 20 also changes.

一方、強制冷却後のシステム起動後の各セル電圧には、比較例のようなばらつきが見られず、出力が安定していることが確認された。これは、負荷遮断後にも冷却水循環を継続したことによって、冷却の過程において燃料電池スタック20内に温度差が生じることが抑制された結果、燃料電池スタック20内の水分布が一様になったためであると考えられる。また、負荷遮断後にも冷却水循環を継続したことによって、燃料加湿器40または空気加湿器60と燃料電池スタック20の温度が同等に推移するため、燃料加湿器40または空気加湿器60から燃料電池スタック20に蒸気が拡散することが抑制されることも出力安定化の要因となっている。   On the other hand, in each cell voltage after the system startup after forced cooling, there was no variation as in the comparative example, and it was confirmed that the output was stable. This is because the water circulation in the fuel cell stack 20 becomes uniform as a result of suppressing the temperature difference in the fuel cell stack 20 during the cooling process by continuing the circulation of the cooling water even after the load is cut off. It is thought that. Further, since the cooling water circulation is continued even after the load is cut off, the temperature of the fuel humidifier 40 or the air humidifier 60 and the fuel cell stack 20 changes to be equal. Therefore, the fuel cell stack from the fuel humidifier 40 or the air humidifier 60 Suppression of vapor diffusion to 20 is also a factor in stabilizing the output.

本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。   The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. Embodiments to which such modifications are added Can also be included in the scope of the present invention.

例えば、上述の実施の形態では、負荷電流遮断後に燃料および空気の供給も遮断されているが、燃料および空気の少なくとも一方の供給停止は、冷却停止条件が成立したことを条件としてもよい。負荷電流遮断後の燃料または空気の供給量は、運転時と同じでもよく、徐々に減少させてもよい。負荷電流遮断後に燃料の供給を継続することにより、アノード電極が酸化することが抑制される。この際に、燃料供給手段30が燃料を窒素で置換して供給することにより、酸素を混入させることなく、燃料電池スタック20と燃料供給用の配管から燃料を追い出すことができるので、アノード電極の酸化が抑制されるとともに、次回起動時の燃料濃度の適切に保つことができ、出力の安定性をより向上させることができる。また、空気供給手段50が空気を窒素で置換して供給することにより、燃料電池スタック20と空気供給用の配管から酸素を追い出すことができるので、カソード電極の酸化が抑制され、燃料電池の耐久性および出力の安定性をより向上させることができる。   For example, in the above-described embodiment, the supply of fuel and air is also interrupted after the load current is interrupted. However, the supply stop of at least one of fuel and air may be made on the condition that the cooling stop condition is satisfied. The amount of fuel or air supplied after the load current is interrupted may be the same as that during operation, or may be gradually decreased. By continuing the fuel supply after the load current is cut off, the anode electrode is suppressed from being oxidized. At this time, the fuel supply means 30 replaces the fuel with nitrogen and supplies it, so that the fuel can be expelled from the fuel cell stack 20 and the fuel supply pipe without mixing oxygen. Oxidation is suppressed, and the fuel concentration at the next start-up can be kept appropriate, and the output stability can be further improved. Further, since the air supply means 50 replaces the air with nitrogen and supplies the oxygen, the oxygen can be expelled from the fuel cell stack 20 and the air supply pipe, so that the oxidation of the cathode electrode is suppressed and the durability of the fuel cell is improved. Performance and output stability can be further improved.

燃料および空気の少なくとも一方の供給停止を、冷却停止条件が成立したことを条件とすることに加えて、システム停止時には、負荷電流を徐々に下げていき、冷却停止条件が成立したことを条件として、負荷電流を遮断してもよい。これによれば、燃料電池スタック20内の酸素が速やかに消費されるため、電極の酸化がより迅速に抑制される。   In addition to the supply stop of at least one of fuel and air being conditioned on the condition that the cooling stop condition is satisfied, when the system is stopped, the load current is gradually decreased and the condition that the cooling stop condition is satisfied is satisfied. The load current may be cut off. According to this, since the oxygen in the fuel cell stack 20 is consumed quickly, the oxidation of the electrode is suppressed more quickly.

実施形態に係る燃料電池システムの全体構成を示す図である。It is a figure showing the whole fuel cell system composition concerning an embodiment. 強制冷却時の温度変化を示すグラフである。It is a graph which shows the temperature change at the time of forced cooling. 強制冷却後にシステムを起動したときの、セル電流および各セルの電圧の変化を示すグラフである。It is a graph which shows the change of the cell current and the voltage of each cell when starting a system after forced cooling. 自然冷却時の温度変化(比較例)を示すグラフである。It is a graph which shows the temperature change (comparative example) at the time of natural cooling. 自然冷却後にシステムを起動したときの、セル電流および各セルの電圧の変化(比較例)を示すグラフである。It is a graph which shows the change (comparative example) of a cell current and the voltage of each cell when starting a system after natural cooling.

符号の説明Explanation of symbols

10 燃料電池システム、20 燃料電池スタック、30 燃料供給手段、40 燃料加湿器、50 空気供給手段、60 空気加湿器、70 熱媒体用熱交換器、80 配管、86 制御バルブ、90 循環ポンプ、100 制御部。   DESCRIPTION OF SYMBOLS 10 Fuel cell system, 20 Fuel cell stack, 30 Fuel supply means, 40 Fuel humidifier, 50 Air supply means, 60 Air humidifier, 70 Heat exchanger for heat medium, 80 Piping, 86 Control valve, 90 Circulation pump, 100 Control unit.

Claims (6)

電解質膜の一方の面にアノードが接合され、前記電解質膜の他方の面にカソードが接合された膜電極接合体と、前記アノードに燃料を供給する燃料流路が設けられた燃料流路プレート、前記カソードに酸化剤を供給する酸化剤流路が設けられた酸化剤流路プレート、熱媒体が流通する熱媒体流路が設けられた熱媒体流路プレートとが組み合わされた積層体を含む燃料電池スタックと、
前記熱媒体との熱交換により前記燃料を加湿する燃料加湿手段と、
前記熱媒体との熱交換により前記酸化剤を加湿する酸化剤加湿手段と、
前記燃料電池スタックから排出された熱媒体を冷却後に燃料加湿手段及び酸化剤加湿手段と熱交換して前記燃料電池スタックに投入して熱媒体を循環させる手段と、
システム停止時に、負荷電流の遮断を行ったのち、所定の冷却停止条件が成立するまで前記熱媒体の循環を継続させる制御手段と、を備え、
前記熱媒体を循環させる手段は、前記負荷電流の遮断の後、前記熱媒体が循環することで燃料加湿手段の温度または酸化剤加湿手段の温度と、燃料電池スタックの温度とを同等にすることを特徴とする燃料電池システム。
A membrane electrode assembly in which an anode is joined to one surface of an electrolyte membrane, and a cathode is joined to the other surface of the electrolyte membrane; and a fuel channel plate provided with a fuel channel for supplying fuel to the anode; A fuel comprising a laminate in which an oxidant flow path plate provided with an oxidant flow path for supplying an oxidant to the cathode and a heat medium flow path plate provided with a heat medium flow path through which the heat medium flows are combined. A battery stack,
Fuel humidifying means for humidifying the fuel by heat exchange with the heat medium;
An oxidizing agent humidifying means for humidifying the oxidizing agent by heat exchange with the heat medium;
Means for exchanging heat with the fuel humidifying means and the oxidant humidifying means after cooling the heat medium discharged from the fuel cell stack, and circulating the heat medium into the fuel cell stack;
A control means for continuing circulation of the heat medium until a predetermined cooling stop condition is satisfied after the load current is interrupted when the system is stopped;
The means for circulating the heat medium equalizes the temperature of the fuel humidifying means or the temperature of the oxidant humidifying means and the temperature of the fuel cell stack by circulating the heat medium after the load current is interrupted. A fuel cell system.
前記制御手段は、前記負荷電流の遮断の後、前記所定の冷却停止条件が成立するまで前記燃料または前記酸化剤の少なくとも一方の供給を継続することを特徴とする請求項1に記載の燃料電池システム。   2. The fuel cell according to claim 1, wherein the control unit continues supplying at least one of the fuel and the oxidant after the load current is interrupted until the predetermined cooling stop condition is satisfied. 3. system. 電解質膜の一方の面にアノードが接合され、前記電解質膜の他方の面にカソードが接合された膜電極接合体と、前記アノードに燃料を供給する燃料流路が設けられた燃料流路プレート、前記カソードに酸化剤を供給する酸化剤流路が設けられた酸化剤流路プレート、熱媒体が流通する熱媒体流路が設けられた熱媒体流路プレートとが組み合わされた積層体を含む燃料電池スタックと、
前記熱媒体との熱交換により前記燃料を加湿する燃料加湿手段と、
前記熱媒体との熱交換により前記酸化剤を加湿する酸化剤加湿手段と、
前記燃料電池スタックから排出された熱媒体を冷却後に燃料加湿手段及び酸化剤加湿手段と熱交換して前記燃料電池スタックに投入して熱媒体を循環させる手段と、
システム停止時に、所定の冷却停止条件が成立するまで前記熱媒体の循環を継続させるとともに、前記燃料または前記酸化剤の少なくとも一方の供給を継続させ、負荷電流をシステム停止から徐々に減少させて、所定の冷却停止条件が成立したときに前記負荷電流を遮断する制御手段と、を備え、
前記熱媒体を循環させる手段は、前記負荷電流の遮断の後、前記熱媒体が循環することで燃料加湿手段の温度または酸化剤加湿手段の温度と、燃料電池スタックの温度とを同等にすることを備えることを特徴とする燃料電池システム。
A membrane electrode assembly in which an anode is joined to one surface of the electrolyte membrane, and a cathode is joined to the other surface of the electrolyte membrane; and a fuel channel plate provided with a fuel channel for supplying fuel to the anode; A fuel comprising a laminate in which an oxidant flow path plate provided with an oxidant flow path for supplying an oxidant to the cathode and a heat medium flow path plate provided with a heat medium flow path through which the heat medium flows are combined. A battery stack,
Fuel humidifying means for humidifying the fuel by heat exchange with the heat medium;
An oxidizing agent humidifying means for humidifying the oxidizing agent by heat exchange with the heat medium;
Means for exchanging heat with the fuel humidifying means and the oxidant humidifying means after cooling the heat medium discharged from the fuel cell stack, and circulating the heat medium into the fuel cell stack;
When the system is stopped, the circulation of the heat medium is continued until a predetermined cooling stop condition is satisfied, and the supply of at least one of the fuel or the oxidant is continued, and the load current is gradually decreased from the system stop, Control means for interrupting the load current when a predetermined cooling stop condition is satisfied,
The means for circulating the heat medium equalizes the temperature of the fuel humidifying means or the temperature of the oxidant humidifying means and the temperature of the fuel cell stack by circulating the heat medium after the load current is interrupted. A fuel cell system comprising:
前記制御手段は、前記システム停止から所定の冷却停止条件の成立時までの間に、前記燃料電池スタックから排出される熱媒体の温度と、燃料電池スタックに投入される熱媒体の温度との温度差が所定の範囲になるように、熱媒体の循環量を調節することを特徴とする請求項1乃至3のいずれか1項に記載の燃料電池システム。   The control means includes a temperature between a temperature of the heat medium discharged from the fuel cell stack and a temperature of the heat medium charged into the fuel cell stack between the system stop and a predetermined cooling stop condition. The fuel cell system according to any one of claims 1 to 3, wherein the circulation amount of the heat medium is adjusted so that the difference falls within a predetermined range. 前記制御手段は、前記燃料電池スタックから排出される熱媒体の温度が外気温度の関数で定まる値より低くなったことを前記冷却停止条件として定めることを特徴とする請求項1乃至4のいずれか1項に記載の燃料電池システム。   5. The cooling stop condition as defined in claim 1, wherein the control means determines that the temperature of the heat medium discharged from the fuel cell stack is lower than a value determined by a function of an outside air temperature as the cooling stop condition. 2. The fuel cell system according to item 1. 前記制御手段は、システム停止後から所定時間を経過したことを前記冷却停止条件として定めることを特徴とする請求項1乃至4のいずれか1項に記載の燃料電池システム
The fuel cell system according to any one of claims 1 to 4, wherein the control unit determines that the predetermined time has elapsed since the system stop as the cooling stop condition.
JP2004347668A 2004-11-30 2004-11-30 Fuel cell system Expired - Fee Related JP4467415B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004347668A JP4467415B2 (en) 2004-11-30 2004-11-30 Fuel cell system
KR1020050114702A KR100724017B1 (en) 2004-11-30 2005-11-29 Fuel Cell System and Method for Operating the Same
CNA2008100829885A CN101241999A (en) 2004-11-30 2005-11-30 Method for operating fuel cell system
US11/289,633 US7691505B2 (en) 2004-11-30 2005-11-30 Fuel cell system
CN2008100829870A CN101241998B (en) 2004-11-30 2005-11-30 Fuel cell system
CNB2005101271868A CN100405650C (en) 2004-11-30 2005-11-30 Fuel cell system and its operation method
US12/708,346 US8158287B2 (en) 2004-11-30 2010-02-18 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004347668A JP4467415B2 (en) 2004-11-30 2004-11-30 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2006156252A JP2006156252A (en) 2006-06-15
JP4467415B2 true JP4467415B2 (en) 2010-05-26

Family

ID=36634253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347668A Expired - Fee Related JP4467415B2 (en) 2004-11-30 2004-11-30 Fuel cell system

Country Status (2)

Country Link
JP (1) JP4467415B2 (en)
CN (3) CN101241999A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041388A (en) * 2006-08-04 2008-02-21 Matsushita Electric Ind Co Ltd Fuel cell system
JP5298500B2 (en) * 2006-11-06 2013-09-25 富士電機株式会社 Method for stopping fuel cell power generator and fuel cell power generator
KR100813275B1 (en) 2007-01-23 2008-03-13 삼성전자주식회사 Fuel cell system and managing method thereof
JP2008190743A (en) * 2007-02-01 2008-08-21 Mitsubishi Heavy Ind Ltd Humidifier and fuel cell system
JP2008190741A (en) * 2007-02-01 2008-08-21 Mitsubishi Heavy Ind Ltd Humidifier and fuel cell system
JP5138324B2 (en) * 2007-05-21 2013-02-06 株式会社荏原製作所 Reformer and fuel cell system
JP4847946B2 (en) 2007-12-28 2011-12-28 三菱鉛筆株式会社 mechanical pencil
KR100986525B1 (en) 2008-02-25 2010-10-07 현대자동차주식회사 Evaporative cooling type fuel cell system and stack cooling method for the same
JP5613374B2 (en) * 2009-01-22 2014-10-22 パナソニック株式会社 Fuel cell system
JP2010232065A (en) * 2009-03-27 2010-10-14 Osaka Gas Co Ltd Solid polymer fuel cell system and stopping method therefor
JP6573149B2 (en) * 2015-02-25 2019-09-11 株式会社Ihi Fuel cell power generation apparatus and method
CN107681177A (en) * 2017-08-14 2018-02-09 中国东方电气集团有限公司 A kind of fuel cell system and the vehicles for including it
CN111326772B (en) * 2018-12-14 2022-03-04 中国科学院大连化学物理研究所 Fuel cell system based on broad-spectrum fuel and operation method thereof
WO2020230417A1 (en) * 2019-05-14 2020-11-19 パナソニックIpマネジメント株式会社 Hydrogen system
JP7434142B2 (en) * 2020-12-18 2024-02-20 株式会社東芝 Operating method of fuel cell system and fuel cell system
CN113764706B (en) * 2020-12-31 2023-03-21 厦门大学 Secondary fuel cell with active circulation system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100519130B1 (en) * 2001-05-23 2005-10-04 마츠시타 덴끼 산교 가부시키가이샤 Fuel cell power generating device
JP2003142138A (en) * 2001-10-31 2003-05-16 Matsushita Electric Ind Co Ltd Fuel cell power generating device
US7192669B2 (en) * 2001-11-30 2007-03-20 Matsushita Electric Industrial Co., Ltd. System and method of fuel cell power generation
JP4003130B2 (en) * 2003-01-30 2007-11-07 富士電機ホールディングス株式会社 Fuel cell power generator and its operation method

Also Published As

Publication number Publication date
CN101241999A (en) 2008-08-13
JP2006156252A (en) 2006-06-15
CN101241998B (en) 2011-03-16
CN101241998A (en) 2008-08-13
CN100405650C (en) 2008-07-23
CN1783562A (en) 2006-06-07

Similar Documents

Publication Publication Date Title
JP4467415B2 (en) Fuel cell system
JP4886170B2 (en) Fuel cell system
US8158287B2 (en) Fuel cell
JP2007157718A (en) Operation method of fuel cell, and fuel cell system
JP2007273276A (en) Fuel cell power generation system and its operation method
JP2004031135A (en) Fuel cell and its control method
WO2009113305A1 (en) Fuel cell system and method of operating the same
JP4028320B2 (en) Fuel circulation fuel cell system
US20070154745A1 (en) Purging a fuel cell system
US20080032164A1 (en) Fuel cell cooling and water management system
JP2002298898A (en) Solid polymer type fuel cell
JP5241187B2 (en) Fuel cell system
JP5411901B2 (en) Fuel cell system
JP2006066112A (en) Fuel cell system
JP2007294319A (en) Fuel cell system
JP4601406B2 (en) Fuel cell system
JP2007141744A (en) Fuel cell system
JP5212765B2 (en) Fuel cell system
JP2005353305A (en) Fuel cell system
JP2011154802A (en) Fuel cell system
JP3561659B2 (en) Fuel cell system
JP2010135071A (en) Fuel cell, method for operating same, and fuel cell device
JP2010129454A (en) Fuel cell unit
JP5266782B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2009134977A (en) Fuel cell system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100223

R151 Written notification of patent or utility model registration

Ref document number: 4467415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees