[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4461593B2 - Method for producing porous hydrostatic gas bearing - Google Patents

Method for producing porous hydrostatic gas bearing Download PDF

Info

Publication number
JP4461593B2
JP4461593B2 JP2000259852A JP2000259852A JP4461593B2 JP 4461593 B2 JP4461593 B2 JP 4461593B2 JP 2000259852 A JP2000259852 A JP 2000259852A JP 2000259852 A JP2000259852 A JP 2000259852A JP 4461593 B2 JP4461593 B2 JP 4461593B2
Authority
JP
Japan
Prior art keywords
porous
sintered body
metal sintered
porous metal
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000259852A
Other languages
Japanese (ja)
Other versions
JP2002070860A (en
Inventor
秀夫 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2000259852A priority Critical patent/JP4461593B2/en
Publication of JP2002070860A publication Critical patent/JP2002070860A/en
Application granted granted Critical
Publication of JP4461593B2 publication Critical patent/JP4461593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質金属焼結体を用いた多孔質静圧気体軸受及びその製造方法に関する。
【0002】
【発明が解決しようとする課題】
多孔質静圧気体軸受は、すぐれた高速安定性と高い負荷容量をもつものとして、従来から注目されており、種々研究もなされているが実用化に際してはいくつかの克服すべき問題がある。
【0003】
ラジアル及びスラスト軸受として用いられる多孔質静圧気体軸受として、ラジアル軸受面を有した円筒状の多孔質金属焼結体と、スラスト軸受面を有した環状の多孔質金属焼結体とをハウジングに装着してなるものでは、通常、両多孔質金属焼結体の細孔に気体を供給する通路をハウジングに予め形成するが、この通路形成作業は、金属製の剛体のハウジングの内周面及び端面に対して行わなければならないために、煩雑であって面倒な作業となり、コストアップの要因となる上に、ハウジングの内周面及び端面側の各通路への気体導入通路を同じくハウジングに予め形成する必要があり、これによってもコストアップを招来することになる。
【0004】
また、外周面に単に環状の凹所を予め形成した円筒状の多孔質金属焼結体をハウジングに装着後に、当該凹所を、多孔質金属焼結体の細孔に気体を供給する通路として用いる多孔質静圧気体軸受では、多孔質金属焼結体の細孔に気体を供給できる領域が限定されて狭くなり、特に、スラスト軸受として機能する気体噴出を所望に得られない場合が生じ得る。
【0005】
本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、コスト低下を図り得ると共に、多孔質金属焼結体の細孔に気体を供給できる領域を広くできて、スラスト軸受として機能する気体噴出をも所望になし得る多孔質静圧気体軸受及びその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明の第一の態様の多孔質静圧気体軸受は、多孔質金属焼結体を具備しており、多孔質金属焼結体の内部には、当該多孔質金属焼結体の細孔に気体を供給する気体供給通路が設けられており、多孔質金属焼結体には、一端が多孔質金属焼結体の外周面で開口し、他端が気体供給通路に開口して当該気体供給通路に気体を導入する気体導入通路が設けられている。
【0007】
第一の態様の多孔質静圧気体軸受によれば、多孔質金属焼結体の内部に気体供給通路が設けられているために、気体供給通路の周りの全てを多孔質金属焼結体の細孔への気体供給領域とし得、而して、多孔質金属焼結体の細孔に気体を供給できる領域を広くし得て、スラスト軸受として機能する気体の噴出をも所望になし得、また、斯かる多孔質金属焼結体と、この多孔質金属焼結体が嵌装されたハウジングとを具備した多孔質静圧気体軸受を構成する場合には、ハウジングに特に気体供給通路を予め形成する必要がなく、したがって、コスト低下を十分に図り得る。
【0008】
本発明の第二の態様の多孔質静圧気体軸受では、第一の態様の多孔質静圧気体軸受において、気体供給通路は、多孔質金属焼結体の外周面と内周面との間に、外部に露出することなしに当該内周面を取り囲んで且つ多孔質金属焼結体の隔壁部を間にして軸方向に配列された複数個の環状通路からなる。
【0009】
第二の態様の多孔質静圧気体軸受によれば、気体供給通路が隔壁部を間にして軸方向に配列された複数個の環状通路からなるために、換言すれば、複数個の環状通路の間に隔壁部が存在するために、隔壁部の支持機能を発現できる結果、多孔質金属焼結体の細孔に気体を供給できる領域を広くするために気体供給通路を軸方向に長く伸ばした場合にしばしば生じ得る多孔質金属焼結体の撓みを斯かる隔壁部の支持機能によりほぼなくし得る。
【0010】
本発明の第三の態様の多孔質静圧気体軸受では、第二の態様の多孔質静圧気体軸受において、多孔質金属焼結体の隔壁部には、複数個の環状通路を互いに連通させる複数個の円柱状の連通路が設けられている。
【0011】
第三の態様の多孔質静圧気体軸受によれば、複数個の環状通路が連通路により互いに連通されているために、環状通路相互の気体圧を均一にし得る。
【0012】
本発明の第四の態様の多孔質静圧気体軸受では、第一から第三のいずれかの態様の多孔質静圧気体軸受において、多孔質金属焼結体は、円筒状のハウジング内に嵌装されており、その両端面で外部に露出している。
【0013】
第四の態様の多孔質静圧気体軸受によれば、ハウジングにより多孔質金属焼結体の外周面の封孔処理を行うことができ、多孔質金属焼結体の細孔の外周面での開口から無駄に気体が噴出することをなくし得ると共に、多孔質金属焼結体の両端面をスラスト軸受面として使用できる。
【0014】
本発明の第五の態様の多孔質静圧気体軸受では、第一から第四のいずれかの態様の多孔質静圧気体軸受において、多孔質金属焼結体には、その内周面とその一端面とが交差する近傍で一端が外部に開口する排気用通路が設けられており、排気用通路は、無細孔の管体で画成されている。
【0015】
第五の態様の多孔質静圧気体軸受によれば、内周面と一端面とが交差する近傍で外部に開口する排気用通路を設けているために、斯かる近傍で互いに衝突し合う内周面から噴出された気体と一端面から噴出された気体とを排気用通路から排出でき、この衝突し合う気体による多孔質静圧気体軸受の作用低下をなくし得、しかも、排気用通路が無細孔の管体で画成されているために、多孔質金属焼結体の細孔からの気体が排気用通路へ直接的に流入しなく、気体を無駄なく利用できる。
【0016】
無細孔の管体としては、本発明の第六の態様の多孔質静圧気体軸受のように、金属製又は樹脂製のパイプであるのが好ましいが、気体が漏れないその他の管体であってもよい。
【0017】
本発明の第一の態様の多孔質静圧気体軸受の製造方法は、金属粉を含む円筒状の内側及び外側圧粉体であって、内側圧粉体の外周面及び外側圧粉体の内周面のうちのいずれか一方に環状の凹所が形成されている当該内側及び外側圧粉体を準備する準備工程と、この準備した外側圧粉体内に内側圧粉体を挿着して外側圧粉体と内側圧粉体との組み合わせ体を作製する組み合わせ体作製工程と、この作製した組み合わせ体を焼結して、外側圧粉体の内周面と内側圧粉体の外周面とを一体化すると共に、凹所からなる環状の気体供給通路が内部に設けられた一体物としての多孔質金属焼結体を作製する多孔質金属焼結体作製工程と、この多孔質金属焼結体作製工程後、気体供給通路に気体を導入する気体導入通路を多孔質金属焼結体に形成するべく、気体供給通路に連通する穴を多孔質金属焼結体に穿つ穿孔工程とを具備する。
【0018】
第一の態様の製造方法によれば、いずれか一方に環状の凹所が形成されている内側圧粉体と外側圧粉体との組み合わせ体から、気体供給通路を内部に設けた一体物としての多孔質金属焼結体を作製するために、気体供給通路を容易に形成でき、しかも、多孔質金属焼結体の細孔への気体供給領域が広い気体供給通路を作製でき、また、斯かる多孔質金属焼結体と、この多孔質金属焼結体が嵌装されたハウジングとを具備した多孔質静圧気体軸受を構成する場合には、ハウジングに特に気体供給通路を予め形成する必要がなく、したがって、コスト低下を十分に図り得る。
【0019】
本発明の第二の態様の製造方法では、第一の態様の製造方法において、内側及び外側圧粉体は、金属粉に加えて無機質粉を含んでおり、また、本発明の第三の態様の製造方法では、第二の態様の製造方法において、金属粉は、少なくとも錫、燐及び銅を含んでおり、無機質粉は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つを含んでおり、本発明の第四の態様の製造方法では、第三の態様の製造方法において、金属粉は、更に、ニッケル又はマンガンを含んでいる。
【0020】
第二の態様の製造方法によれば、内側及び外側圧粉体が金属粉に加えて無機質粉を含んでいるために、焼結後、軸受面を形成するために研削加工が多孔質金属焼結体の一面に施される際に、金属粉の焼結で形成された多孔質金属焼結体の金属部分が塑性流動して多孔質金属焼結体の細孔の開口を閉じようとしても、脆性な無機質部分で金属部分の塑性流動が分断されて細孔の開口の閉塞が好ましく阻止され、而して、軸受面の形成後も、細孔の目詰まりが抑制された理想的な絞り構造となった細孔を有した多孔質静圧気体軸受を得ることができる。
【0021】
また、第三の態様の製造方法において、無機質粉として特に黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウムを含んでいると、これらは固体潤滑材として機能するので、多孔質静圧気体軸受に支持される回転軸又はスライダの静止時又は始動時に相互に接触しても、これらに損傷が生じ難くフェールセーフな多孔質静圧気体軸受となる。
【0022】
多孔質金属焼結体を形成するための金属粉は、その粒径が30μmから150μmのものを、好ましくは45μmから75μmのものを用いるのが好ましく、同じく無機質粉は、その粒径が30μmから300μmのものを、好ましくは45μmから150μmのものを用いるのが好ましく、斯かる金属粉及び無機質粉を用いた多孔質金属焼結体の焼結密度及び多孔度は焼結時間及び焼結温度で異なるが、例えば、2トン乃至7トン/m程度の加圧下で且つ還元性雰囲気もしくは真空中で800〜1150℃の温度で20〜60分間焼結した場合には、概ね焼結密度は、5.15g/cm乃至6.19g/cm、多孔度は21.1%乃至34.1%(含油率換算)である。
【0023】
本発明の第五の態様の製造方法は、第一から第四のいずれかの態様の製造方法において、多孔質金属焼結体を円筒状のハウジング内に嵌装する嵌装工程を更に具備しており、本発明の第六の態様の製造方法は、第一から第五のいずれかの態様の製造方法において、軸受面となる多孔質金属焼結体の面を研削する研削工程を更に具備している。
【0024】
本発明で製造される多孔質静圧気体軸受は、多孔質金属焼結体をそのままの剥き出しで回転軸又はスライダに用いられてもよいのであるが、第五の態様の製造方法のように、多孔質金属焼結体をハウジング内に嵌装して、ハウジング付で回転軸又はスライダに用いられてもよく、斯かるハウジングで多孔質金属焼結体の外周面が覆われていると、多孔質金属焼結体の外周面からの気体の排出をなくし得、気体の消費量を抑えることができる。本発明による多孔質静圧気体軸受では、通常、第六の態様の製造方法のように、研削によりスラスト及び/又はラジアル軸受面が形成され、この研削加工における加工代は、概ね0.2mm以下の範囲で行われるのがよい。
【0025】
本発明による第七の態様の方法は、準備工程では、軸方向に配列された複数個の環状の凹所が形成されている内側及び外側圧粉体を準備し、多孔質金属焼結体作製工程では、外側圧粉体の内周面と内側圧粉体の外周面との一体化により複数個の環状の凹所からなる複数個の環状通路を具備した気体供給通路を形成する上記のいずれかの方法であって、更に、多孔質金属焼結体作製工程後に、複数個の環状通路を互いに連通させる複数個の円柱状の連通路を形成するべく、環状通路に連通する穴を多孔質金属焼結体に穿つ穿孔工程を更に具備する。
【0026】
第七の態様の方法によれば、多孔質金属焼結体作製工程後に、気体供給通路に連通する連通路用の穴を多孔質金属焼結体に穿つために、内側及び外側圧粉体に予め連通路を形成する場合と比較して、作業性がよく正確な連通路を形成できる。
【0027】
なお、本発明の多孔質静圧気体軸受としては、スラスト軸受若しくはラジアル軸受又はスラスト軸受及びラジアル軸受兼用の軸受のいずれでもよい。
【0028】
以下、本発明及び本発明の実施の形態を、図面を参照してその好ましい例に基づいて説明する。なお本発明はこれらの例に限定されないのである。
【0029】
【発明の実施の形態】
図1及び図2において、本例のスラスト軸受及びラジアル軸受兼用の多孔質静圧気体軸受1は、円筒状の多孔質金属焼結体2と同じく円筒状のハウジング8とを具備しており、多孔質金属焼結体2の内部には、当該多孔質金属焼結体2の細孔に気体を供給する気体供給通路3が設けられており、また多孔質金属焼結体2には、一端4が多孔質金属焼結体2の円筒状の外周面5で開口し、他端6が気体供給通路3に開口して当該気体供給通路3に気体、本例では高圧空気を導入する気体導入通路7が設けられており、多孔質金属焼結体2は、円筒状のハウジング8内に嵌装されており、その環状の両端面9及び10で外部に露出している。
【0030】
多孔質金属焼結体2の円筒状の内周面11と両端面9及び10とには、研削加工が施されて、内周面11がラジアル軸受面として、両端面9及び10がスラスト軸受面として形成されている。なお、両端面9及び10のうちの一方の端面のみをスラスト軸受面としてもよく、この場合には、他方の端面にシリコン樹脂等を塗布して当該端面での多孔質金属焼結体2の細孔に対する封孔処理を施すとよい。
【0031】
気体供給通路3は、多孔質金属焼結体2の外周面5と内周面11との間に、外部に露出することなしに内周面11を取り囲んで且つ多孔質金属焼結体2の隔壁部12を間にして軸方向に配列された複数個、本例では二個の環状通路13を具備している。
【0032】
多孔質金属焼結体の隔壁部12には、気体導入通路7に加えて、二個の環状通路13を互いに連通させる複数個の円柱状の連通路14(図7参照)が設けられている。
【0033】
金属製であって剛性のハウジング8は、気体導入通路7に連通すると共にねじが切られた接続通路15を具備しており、接続通路15に空気供給プラグが取付けられるようになっている。ハウジング8の円筒状の内周面16がぴったりと多孔質金属焼結体2の外周面5に接触していることにより、外周面5での多孔質金属焼結体2の細孔の開口が封止されている。なお、外周面5での封孔処理をより完全なものとするために、ハウジング8の内周面16と多孔質金属焼結体2の外周面5との間に、シリコン樹脂等からなる接着剤を介在させてもよい。
【0034】
以上の多孔質静圧気体軸受1において、接続通路15に供給された高圧空気は、気体導入通路7を介して環状通路13に供給され、環状通路13に供給された高圧空気は、多孔質金属焼結体2の細孔を介して内周面11並びに両端面9及び10から噴出されて、回転軸18(図8参照)との間に高圧空気膜を形成し、而して、多孔質静圧気体軸受1は、回転軸18をラジアル方向及びスラスト方向において回転自在に支持する。
【0035】
多孔質静圧気体軸受1によれば、多孔質金属焼結体2の内部に気体供給通路3が設けられているために、気体供給通路3の周りの全てを多孔質金属焼結体2の細孔への気体供給領域とし得、而して、多孔質金属焼結体2の細孔に空気を供給できる領域を広くできて、スラスト軸受として機能する空気の噴出をも所望に十分になし得、また、ハウジング8に特に気体供給通路を予め形成する必要がなく、したがって、コスト低下を十分に図り得る。
【0036】
また、多孔質静圧気体軸受1によれば、気体供給通路3が隔壁部12を間にして軸方向に配列された二個の環状通路13からなるために、換言すれば、環状通路13の間に隔壁部12が存在するために、隔壁部12の支持機能を発現できる結果、多孔質金属焼結体2の細孔に空気を供給できる領域を大きくするために気体供給通路3を単に軸方向に長く伸ばした場合にしばしば生じ得る多孔質金属焼結体2の撓みを斯かる隔壁部12の支持機能によりほぼなくし得て、しかも、環状通路13が連通路14でもって互いに連通されているために、環状通路13相互の気体圧を均一にし得る。
【0037】
加えて、多孔質静圧気体軸受1によれば、ハウジング8により多孔質金属焼結体2の外周面5の封孔処理を行うことができ、多孔質金属焼結体2の細孔の外周面5での開口から無駄に気体が噴出することをなくし得ると共に、多孔質金属焼結体2の両端面9及び10をスラスト軸受面として使用できる。
【0038】
以上のような多孔質静圧気体軸受1は次のようにして製造できる。すなわち、先ず、例えば錫、燐、ニッケル、銅及び黒鉛からなる図3及び図4に示すような円筒状の別体の内側及び外側圧粉体41及び42であって、内側圧粉体41の外周面及び外側圧粉体42の内周面のいずれか一方、本例では内側圧粉体41の外周面43に二個の環状の凹所44が形成されている内側及び外側圧粉体41及び42を準備する。
【0039】
内側及び外側圧粉体41及び42の夫々は、例えば、重量比で錫4〜10%、ニッケル10〜40%、燐0.5〜4%、黒鉛3〜10%及び残部銅からなる混合粉を、2〜7トン/cmの圧力を加えて成形することにより作製される。
【0040】
次に、外側圧粉体42内に内側圧粉体41を挿着して図5に示すような外側圧粉体42と内側圧粉体41との組み合わせ体45を作製し、この作製した組み合わせ体45を、還元性雰囲気もしくは真空中で800〜1150℃の温度で20〜60分間焼結して、外側圧粉体42の内周面46と内側圧粉体41の外周面43とを一体化すると共に、凹所44からなる複数個の環状通路13を具備した環状の気体供給通路3が内部に設けられた一体物としての図6に示すような多孔質金属焼結体2を作製する。
【0041】
多孔質金属焼結体2を作製後、その円筒状の内周面11並びに環状の端面9及び10を、旋削加工後、研削加工して内周面11並びに端面9及び10を軸受面として形成する。研削加工における加工代は、概ね0.2mm以下の範囲で行なうとよい。
【0042】
多孔質金属焼結体2の作製工程後であって内周面11並びに端面9及び10の研削加工工程後、気体供給通路3に気体を導入する気体導入通路7を多孔質金属焼結体2に形成するべく、気体供給通路3の環状通路13の夫々に連通する穴を多孔質金属焼結体2にドリル等により穿つと共に、環状通路13を互いに連通させる複数個の円柱状の連通路14を形成するべく、環状通路13の夫々に連通する穴を多孔質金属焼結体2に同じくドリル等により穿つ。
【0043】
これらの穿孔工程後、図7に示すように、多孔質金属焼結体2を、予め接続通路15が形成された円筒状のハウジング8内に、気体導入通路7と接続通路15とが連通するようにして、嵌装することにより、図1及び図2に示すような多孔質静圧気体軸受1を得ることができる。
【0044】
なお、軸受面の形成のための内周面11並びに端面9及び10の旋削加工、研削加工及び気体導入通路7の形成のための多孔質金属焼結体2に対する穴の穿孔は、多孔質金属焼結体2をハウジング8内に嵌装した後に行ってもよい。
【0045】
以上の製造方法によれば、前述の特長をもった多孔質静圧気体軸受1を得ることができる上に、凹所44が形成されている内側圧粉体41と外側圧粉体42との組み合わせ体45から、気体供給通路3を内部に設けた一体物としての多孔質金属焼結体2を作製するために、気体供給通路3を容易に形成でき、しかも、多孔質金属焼結体2の細孔への気体供給領域が大面積となる気体供給通路3を作製でき、また、ハウジング8に特に気体供給通路3を予め形成する必要がなく、したがって、コスト低下を十分に図り得る。
【0046】
また、上記の製造方法によれば、内側及び外側圧粉体41及び42が金属粉に加えて無機質粉を含んでいるために、焼結後、軸受面を形成するために研削加工が多孔質金属焼結体2に施される際に、金属粉の焼結で形成された多孔質金属焼結体2の金属部分が塑性流動して多孔質金属焼結体2の細孔の開口を閉じようとしても、脆性な無機質部分で金属部分の塑性流動が分断されて細孔の開口の閉塞が阻止され、而して、軸受面の形成後も、細孔の目詰まりが抑制された理想的な絞り構造となった細孔を有した多孔質静圧気体軸受1を得ることができる。
【0047】
また、無機質粉として黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウムなどの固体潤滑材を使用した場合は、多孔質静圧気体軸受1に支持される回転軸18の静止時又は始動時に相互に接触しても、これらに損傷が生じ難くフェールセーフな多孔質静圧気体軸受1となる。
【0048】
更に上記の方法によれば、多孔質金属焼結体2の作製工程後に、環状通路13に連通する連通路用の穴を多孔質金属焼結体2に穿つために、内側及び外側圧粉体41及び42に予め連通路を形成する場合と比較して、作業性がよく正確な連通路14を形成できることになる。
【0049】
ところで、多孔質静圧気体軸受1において、例えば端面10を回転軸18に対するスラスト軸受面として用いると、端面10の細孔の開口から噴出して内周面11に向かう空気51と、内周面11の細孔の開口から噴出して端面10に向かう空気52とが衝突、干渉して、多孔質静圧気体軸受1の作用を低下させる場合が生じ得るが、図8に示すように、多孔質金属焼結体2に、内周面11と端面10とが交差する近傍で一端53が外部に開口すると共に、多孔質金属焼結体2に嵌装された無細孔の管体である金属製又は樹脂製のパイプ54で画成された複数個の排気用通路55を設けて、前述の干渉し合う空気51及び52を排気用通路55を介して外部に排出すると、衝突し合う空気51及び52による多孔質静圧気体軸受1の作用の低下をなくし得、しかも、排気用通路55が無細孔のパイプ54で画成されているために、多孔質金属焼結体2の細孔からの空気が排気用通路55へ直接的に流入しなく、高圧空気を無駄なく利用できることになる。なお、この場合には、ハウジング8に、一方では排気用通路55に連通し、他方では外部に連通する貫通孔56を排気用通路55に対応して設けるとよい。
【0050】
なお、上記は、円筒状の多孔質静圧気体軸受1の例であるが、板状の多孔質静圧気体軸受も同様である。
【0051】
【発明の効果】
本発明によれば、コスト低下を図り得ると共に、多孔質金属焼結体の細孔に気体を供給できる領域を広くできて、スラスト軸受として機能する気体噴出をも所望になし得る多孔質静圧気体軸受及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の好ましい例の斜視図である。
【図2】図1に示す例の断面図である。
【図3】図1に示す例の製造方法の説明図である。
【図4】図1に示す例の製造方法の説明図である。
【図5】図1に示す例の製造方法の説明図である。
【図6】図1に示す例の製造方法の説明図である。
【図7】図1に示す例の製造方法の説明図である。
【図8】本発明の実施の形態の好ましい他の例の断面図である。
【符号の説明】
1 多孔質静圧気体軸受
2 多孔質金属焼結体
3 気体供給通路
7 気体導入通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous hydrostatic gas bearing using a porous metal sintered body and a method for producing the same.
[0002]
[Problems to be solved by the invention]
Porous hydrostatic gas bearings have been attracting attention as having excellent high-speed stability and high load capacity, and various studies have been made, but there are some problems to be overcome in practical use.
[0003]
As a porous hydrostatic gas bearing used as a radial and thrust bearing, a cylindrical porous metal sintered body having a radial bearing surface and an annular porous metal sintered body having a thrust bearing surface are provided in a housing. In the case of mounting, a passage for supplying gas to the pores of both porous metal sintered bodies is usually formed in the housing in advance, and this passage forming operation is performed by the inner peripheral surface of the metal rigid housing and Since it has to be performed on the end face, it is a complicated and troublesome operation, which increases the cost. In addition, the gas introduction passages to the inner peripheral surface of the housing and each passage on the end face side are also provided in the housing in advance. This needs to be formed, and this also causes an increase in cost.
[0004]
In addition, after mounting the cylindrical porous metal sintered body in which an annular recess is simply formed on the outer peripheral surface in the housing, the recess is used as a passage for supplying gas to the pores of the porous metal sintered body. In the porous hydrostatic gas bearing to be used, the region where the gas can be supplied to the pores of the porous metal sintered body is limited and narrowed, and in particular, there may be a case where gas ejection functioning as a thrust bearing cannot be obtained as desired. .
[0005]
The present invention has been made in view of the above points, and the object of the present invention is to reduce the cost and widen the region where gas can be supplied to the pores of the porous metal sintered body, It is an object of the present invention to provide a porous static pressure gas bearing that can also achieve gas ejection functioning as a thrust bearing, and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
The porous static pressure gas bearing according to the first aspect of the present invention includes a porous metal sintered body, and the porous metal sintered body has pores in the porous metal sintered body. A gas supply passage for supplying gas is provided, and the porous metal sintered body has one end opened at the outer peripheral surface of the porous metal sintered body and the other end opened at the gas supply passage. A gas introduction passage for introducing gas into the passage is provided.
[0007]
According to the porous hydrostatic gas bearing of the first aspect, since the gas supply passage is provided inside the porous metal sintered body, the entire area around the gas supply passage is made of the porous metal sintered body. It can be used as a gas supply area to the pores, and thus the area where gas can be supplied to the pores of the porous metal sintered body can be widened, and the gas jet functioning as a thrust bearing can be made desired. Further, when a porous hydrostatic gas bearing comprising such a porous metal sintered body and a housing fitted with the porous metal sintered body is configured, a gas supply passage is provided in the housing in advance. There is no need to form it, and therefore the cost can be sufficiently reduced.
[0008]
In the porous hydrostatic gas bearing of the second aspect of the present invention, in the porous hydrostatic gas bearing of the first aspect, the gas supply passage is between the outer peripheral surface and the inner peripheral surface of the porous metal sintered body. In addition, a plurality of annular passages that surround the inner peripheral surface without being exposed to the outside and are arranged in the axial direction with the partition walls of the porous metal sintered body interposed therebetween.
[0009]
According to the porous hydrostatic gas bearing of the second aspect, the gas supply passage is composed of a plurality of annular passages arranged in the axial direction with the partition wall therebetween, in other words, a plurality of annular passages. As a result of the partition wall being present between them, the support function of the partition wall can be expressed. As a result, the gas supply passage is elongated in the axial direction to widen the region where gas can be supplied to the pores of the porous metal sintered body. In this case, the deformation of the porous metal sintered body, which can often occur in this case, can be almost eliminated by the support function of the partition wall.
[0010]
In the porous hydrostatic gas bearing of the third aspect of the present invention, in the porous hydrostatic gas bearing of the second aspect, a plurality of annular passages communicate with each other in the partition wall portion of the porous metal sintered body. A plurality of columnar communication passages are provided.
[0011]
According to the porous hydrostatic gas bearing of the third aspect, since the plurality of annular passages are connected to each other by the communication passage, the gas pressures between the annular passages can be made uniform.
[0012]
In the porous hydrostatic gas bearing of the fourth aspect of the present invention, in the porous hydrostatic gas bearing of any one of the first to third aspects, the porous metal sintered body is fitted in a cylindrical housing. It is exposed to the outside at both end faces.
[0013]
According to the porous hydrostatic gas bearing of the fourth aspect, the outer peripheral surface of the porous metal sintered body can be sealed by the housing, and the outer peripheral surface of the pores of the porous metal sintered body can be processed. Gas can be prevented from being unnecessarily ejected from the opening, and both end faces of the porous metal sintered body can be used as thrust bearing surfaces.
[0014]
In the porous hydrostatic gas bearing of the fifth aspect of the present invention, in the porous hydrostatic gas bearing of any one of the first to fourth aspects, the porous metal sintered body includes an inner peripheral surface thereof and its An exhaust passage having one end opened to the outside is provided in the vicinity where the one end surface intersects, and the exhaust passage is defined by a non-porous tube.
[0015]
According to the porous hydrostatic gas bearing of the fifth aspect, since the exhaust passage opening to the outside is provided in the vicinity where the inner peripheral surface and the one end surface intersect, the inner surfaces that collide with each other in the vicinity are provided. The gas ejected from the peripheral surface and the gas ejected from one end surface can be exhausted from the exhaust passage, and the action of the porous static pressure gas bearing due to the colliding gas can be eliminated, and there is no exhaust passage. Since it is defined by the fine tube, the gas from the fine pores of the porous metal sintered body does not flow directly into the exhaust passage, and the gas can be used without waste.
[0016]
The non-porous tube is preferably a metal or resin pipe like the porous static pressure gas bearing of the sixth aspect of the present invention, but other tubes that do not leak gas. There may be.
[0017]
The method for producing a porous hydrostatic gas bearing according to the first aspect of the present invention includes cylindrical inner and outer green compacts containing metal powder, and includes the outer peripheral surface of the inner green compact and the outer green compact. A preparatory step of preparing the inner and outer green compacts in which an annular recess is formed in any one of the peripheral surfaces, and an outer compact by inserting the inner green compact into the prepared outer green compact A combined body manufacturing process for manufacturing a combined body of the green compact and the inner green compact, and sintering the manufactured combined body, the inner peripheral surface of the outer green compact and the outer peripheral surface of the inner green compact. A porous metal sintered body producing step for producing a porous metal sintered body as an integrated body in which an annular gas supply passage made of a recess is provided inside, and the porous metal sintered body To form a gas introduction passage for introducing gas into the gas supply passage after the production process in the porous metal sintered body A hole communicating with the gas supply passage; and a boring step of boring the porous metal sintered body.
[0018]
According to the manufacturing method of the first aspect, from a combination of an inner green compact and an outer green compact in which one of the annular recesses is formed, as an integrated body provided with a gas supply passage inside In order to produce a porous metal sintered body, a gas supply passage can be easily formed, and a gas supply passage having a wide gas supply area to the pores of the porous metal sintered body can be produced. When configuring a porous static pressure gas bearing comprising such a porous metal sintered body and a housing fitted with the porous metal sintered body, it is necessary to previously form a gas supply passage in the housing in advance. Therefore, the cost can be sufficiently reduced.
[0019]
In the manufacturing method of the second aspect of the present invention, in the manufacturing method of the first aspect, the inner and outer green compacts contain inorganic powder in addition to the metal powder, and the third aspect of the present invention. In the manufacturing method of the second aspect, in the manufacturing method of the second aspect, the metal powder contains at least tin, phosphorus, and copper, and the inorganic powder includes graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, and oxidation. In the manufacturing method of the fourth aspect of the present invention, at least one of silicon and silicon carbide is contained. In the manufacturing method of the third aspect, the metal powder further contains nickel or manganese.
[0020]
According to the production method of the second aspect, since the inner and outer green compacts contain inorganic powder in addition to the metal powder, the grinding process is performed to form the bearing surface after sintering. When applied to one side of the bonded body, the metal portion of the porous metal sintered body formed by sintering metal powder is plastically flowed to close the pore openings of the porous metal sintered body. This is an ideal diaphragm where the plastic flow of the metal part is interrupted by the brittle inorganic part, and the clogging of the pore opening is preferably prevented, and the clogging of the pore is suppressed even after the bearing surface is formed. A porous hydrostatic gas bearing having the structured pores can be obtained.
[0021]
In addition, in the manufacturing method of the third aspect, when inorganic powder contains graphite, boron nitride, graphite fluoride, calcium fluoride, etc., these function as solid lubricants. Even if the rotating shafts or sliders to be supported come into contact with each other when they are stationary or started, they are unlikely to be damaged, resulting in a fail-safe porous hydrostatic gas bearing.
[0022]
The metal powder for forming the porous metal sintered body preferably has a particle size of 30 μm to 150 μm, preferably 45 μm to 75 μm. Similarly, the inorganic powder has a particle size of 30 μm to 30 μm. It is preferable to use 300 μm, preferably 45 μm to 150 μm. The sintered density and porosity of the porous metal sintered body using such metal powder and inorganic powder are determined by the sintering time and the sintering temperature. Although it is different, for example, when sintered at a temperature of 800 to 1150 ° C. for 20 to 60 minutes in a reducing atmosphere or vacuum under a pressure of about 2 to 7 ton / m 2 , the sintered density is approximately 5.15 g / cm 2 to 6.19 g / cm 2 and the porosity is 21.1% to 34.1% (in terms of oil content).
[0023]
The manufacturing method according to the fifth aspect of the present invention further includes a fitting step of fitting the porous metal sintered body into the cylindrical housing in the manufacturing method according to any one of the first to fourth aspects. The manufacturing method according to the sixth aspect of the present invention further comprises a grinding step of grinding the surface of the porous metal sintered body to be the bearing surface in the manufacturing method according to any one of the first to fifth aspects. is doing.
[0024]
The porous hydrostatic gas bearing manufactured in the present invention may be used as a rotating shaft or a slider by exposing the porous metal sintered body as it is, like the manufacturing method of the fifth aspect, A porous metal sintered body may be fitted in a housing and used for a rotating shaft or a slider with a housing. When the outer peripheral surface of the porous metal sintered body is covered with such a housing, the porous metal sintered body is porous. The gas discharge from the outer peripheral surface of the sintered metal can be eliminated, and the gas consumption can be suppressed. In the porous hydrostatic gas bearing according to the present invention, as in the manufacturing method of the sixth aspect, a thrust and / or radial bearing surface is usually formed by grinding, and the machining allowance in this grinding is approximately 0.2 mm or less. It is good to be performed in the range.
[0025]
According to a seventh aspect of the present invention, in the preparation step, a porous metal sintered body is prepared by preparing inner and outer green compacts having a plurality of annular recesses arranged in the axial direction. In the process, any one of the above-mentioned methods of forming a gas supply passage having a plurality of annular passages composed of a plurality of annular recesses by integrating the inner peripheral surface of the outer green compact and the outer peripheral surface of the inner green compact. Further, after forming the porous metal sintered body, the hole communicating with the annular passage is made porous in order to form a plurality of cylindrical communication passages that communicate the plurality of annular passages with each other. A drilling step for drilling the sintered metal body is further provided.
[0026]
According to the method of the seventh aspect, the inner and outer green compacts are formed in the porous metal sintered body after the porous metal sintered body preparation step so as to make holes in the porous metal sintered body communicating with the gas supply passage. Compared with the case where the communication path is formed in advance, it is possible to form an accurate communication path with good workability.
[0027]
In addition, as a porous static pressure gas bearing of this invention, any of a thrust bearing, a radial bearing, or a thrust bearing and a radial bearing can be used.
[0028]
Hereinafter, the present invention and embodiments of the present invention will be described based on preferred examples with reference to the drawings. The present invention is not limited to these examples.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2, the porous static pressure gas bearing 1 serving as a thrust bearing and a radial bearing of this example includes a cylindrical housing 8 as well as a cylindrical porous metal sintered body 2. Inside the porous metal sintered body 2, there is provided a gas supply passage 3 for supplying gas to the pores of the porous metal sintered body 2, and the porous metal sintered body 2 has one end 4 is opened at the cylindrical outer peripheral surface 5 of the porous metal sintered body 2, and the other end 6 is opened into the gas supply passage 3 to introduce gas into the gas supply passage 3, in this example, high-pressure air. A passage 7 is provided, and the porous metal sintered body 2 is fitted in a cylindrical housing 8 and is exposed to the outside at both annular end faces 9 and 10 thereof.
[0030]
The cylindrical inner peripheral surface 11 and both end surfaces 9 and 10 of the porous metal sintered body 2 are ground so that the inner peripheral surface 11 serves as a radial bearing surface, and both end surfaces 9 and 10 include thrust bearings. It is formed as a surface. Only one end face of both end faces 9 and 10 may be a thrust bearing surface. In this case, silicon resin or the like is applied to the other end face, and the porous metal sintered body 2 at the end face is applied. Sealing treatment for the pores may be performed.
[0031]
The gas supply passage 3 surrounds the inner peripheral surface 11 without being exposed to the outside between the outer peripheral surface 5 and the inner peripheral surface 11 of the porous metal sintered body 2 and the porous metal sintered body 2. A plurality of, in this example, two annular passages 13 arranged in the axial direction with the partition wall 12 interposed therebetween are provided.
[0032]
In addition to the gas introduction passage 7, a plurality of columnar communication passages 14 (see FIG. 7) that connect the two annular passages 13 to each other are provided in the partition wall portion 12 of the porous metal sintered body. .
[0033]
The rigid housing 8 made of metal has a connection passage 15 that is in communication with the gas introduction passage 7 and is threaded, and an air supply plug is attached to the connection passage 15. Since the cylindrical inner peripheral surface 16 of the housing 8 is in close contact with the outer peripheral surface 5 of the porous metal sintered body 2, pore openings of the porous metal sintered body 2 on the outer peripheral surface 5 are formed. It is sealed. In order to make the sealing process on the outer peripheral surface 5 more complete, an adhesive made of silicon resin or the like is provided between the inner peripheral surface 16 of the housing 8 and the outer peripheral surface 5 of the porous metal sintered body 2. An agent may be interposed.
[0034]
In the porous static pressure gas bearing 1 described above, the high-pressure air supplied to the connection passage 15 is supplied to the annular passage 13 via the gas introduction passage 7, and the high-pressure air supplied to the annular passage 13 is porous metal. It is ejected from the inner peripheral surface 11 and both end surfaces 9 and 10 through the pores of the sintered body 2 to form a high-pressure air film between the rotating shaft 18 (see FIG. 8) and thus porous. The static pressure gas bearing 1 supports the rotary shaft 18 so as to be rotatable in the radial direction and the thrust direction.
[0035]
According to the porous hydrostatic gas bearing 1, since the gas supply passage 3 is provided inside the porous metal sintered body 2, all of the surroundings of the gas supply passage 3 are made of the porous metal sintered body 2. It can be used as a gas supply area to the pores, and thus the area where the air can be supplied to the pores of the porous metal sintered body 2 can be widened, and the ejection of air functioning as a thrust bearing can be sufficiently performed as desired. In addition, it is not necessary to form a gas supply passage in the housing 8 in advance, and therefore the cost can be sufficiently reduced.
[0036]
Further, according to the porous hydrostatic gas bearing 1, the gas supply passage 3 includes the two annular passages 13 arranged in the axial direction with the partition wall 12 interposed therebetween. Since the partition wall portion 12 exists between them, the support function of the partition wall portion 12 can be expressed. As a result, the gas supply passage 3 is simply pivoted to increase the area where air can be supplied to the pores of the porous metal sintered body 2. The bending of the porous metal sintered body 2 that can often occur when elongated in the direction can be almost eliminated by the support function of the partition wall 12, and the annular passages 13 communicate with each other through the communication passages 14. Therefore, the gas pressure between the annular passages 13 can be made uniform.
[0037]
In addition, according to the porous static pressure gas bearing 1, the outer peripheral surface 5 of the porous metal sintered body 2 can be sealed by the housing 8, and the outer periphery of the pores of the porous metal sintered body 2 can be processed. Gas can be prevented from being unnecessarily ejected from the opening in the surface 5, and both end surfaces 9 and 10 of the porous metal sintered body 2 can be used as thrust bearing surfaces.
[0038]
The porous static pressure gas bearing 1 as described above can be manufactured as follows. That is, first, cylindrical inner and outer green compacts 41 and 42 made of, for example, tin, phosphorus, nickel, copper, and graphite as shown in FIGS. Either the outer peripheral surface or the inner peripheral surface of the outer green compact 42, in this example, the inner and outer green compact 41 in which two annular recesses 44 are formed in the outer peripheral surface 43 of the inner green compact 41. And 42 are prepared.
[0039]
Each of the inner and outer green compacts 41 and 42 is, for example, a mixed powder composed of 4 to 10% tin, 10 to 40% nickel, 0.5 to 4% phosphorus, 3 to 10% graphite, and the balance copper. Is produced by applying a pressure of 2 to 7 ton / cm 2 .
[0040]
Next, the inner green compact 41 is inserted into the outer green compact 42 to produce a combined body 45 of the outer green compact 42 and the inner green compact 41 as shown in FIG. The body 45 is sintered in a reducing atmosphere or vacuum at a temperature of 800 to 1150 ° C. for 20 to 60 minutes, and the inner peripheral surface 46 of the outer green compact 42 and the outer peripheral surface 43 of the inner green compact 41 are integrated. In addition, a porous metal sintered body 2 as shown in FIG. 6 is manufactured as an integrated body in which an annular gas supply passage 3 having a plurality of annular passages 13 formed of recesses 44 is provided. .
[0041]
After the porous metal sintered body 2 is produced, the cylindrical inner peripheral surface 11 and the annular end surfaces 9 and 10 are turned and then ground to form the inner peripheral surface 11 and the end surfaces 9 and 10 as bearing surfaces. To do. The machining allowance in grinding is preferably performed within a range of approximately 0.2 mm or less.
[0042]
After the manufacturing process of the porous metal sintered body 2 and after the grinding process of the inner peripheral surface 11 and the end faces 9 and 10, the gas introduction passage 7 for introducing gas into the gas supply passage 3 is provided in the porous metal sintered body 2. In order to form a plurality of cylindrical communication passages 14, holes that communicate with the annular passages 13 of the gas supply passage 3 are drilled in the porous metal sintered body 2 with a drill or the like, and the annular passages 13 communicate with each other. Are formed in the porous metal sintered body 2 with a drill or the like.
[0043]
After these drilling steps, as shown in FIG. 7, the porous metal sintered body 2 is communicated with the gas introduction passage 7 and the connection passage 15 in the cylindrical housing 8 in which the connection passage 15 is formed in advance. Thus, the porous static pressure gas bearing 1 as shown in FIG.1 and FIG.2 can be obtained by fitting.
[0044]
In addition, drilling of holes in the porous metal sintered body 2 for forming the inner peripheral surface 11 and the end surfaces 9 and 10 for forming the bearing surface, turning, grinding, and forming the gas introduction passage 7 is performed using the porous metal. It may be performed after the sintered body 2 is fitted in the housing 8.
[0045]
According to the above manufacturing method, the porous hydrostatic gas bearing 1 having the above-described features can be obtained, and the inner green compact 41 and the outer green compact 42 in which the recess 44 is formed are provided. In order to produce the porous metal sintered body 2 as an integrated body provided with the gas supply passage 3 from the combination body 45, the gas supply passage 3 can be easily formed, and the porous metal sintered body 2 can be formed. The gas supply passage 3 having a large area for supplying gas to the pores can be produced, and it is not necessary to form the gas supply passage 3 in the housing 8 in advance, so that the cost can be sufficiently reduced.
[0046]
Further, according to the above manufacturing method, since the inner and outer green compacts 41 and 42 contain inorganic powder in addition to the metal powder, the grinding process is porous to form a bearing surface after sintering. When applied to the metal sintered body 2, the metal portion of the porous metal sintered body 2 formed by sintering the metal powder is plastically flowed to close the pore openings of the porous metal sintered body 2. Even so, the plastic flow of the metal part is interrupted by the brittle inorganic part, and the clogging of the pore is prevented after the bearing surface is formed. It is possible to obtain a porous hydrostatic gas bearing 1 having pores having a narrowed structure.
[0047]
Further, when a solid lubricant such as graphite, boron nitride, fluorinated graphite, or calcium fluoride is used as the inorganic powder, the rotary shaft 18 supported by the porous hydrostatic gas bearing 1 is mutually stationary or started. Even if they come into contact with each other, the porous static pressure gas bearing 1 is not easily damaged and is fail-safe.
[0048]
Further, according to the above-described method, the inner and outer green compacts are formed in order to pierce the porous metal sintered body 2 with holes for communication passages communicating with the annular passage 13 after the manufacturing process of the porous metal sintered body 2. Compared to the case where the communication passages are formed in advance in 41 and 42, the work passage 14 can be formed with good workability and accuracy.
[0049]
By the way, in the porous static pressure gas bearing 1, for example, when the end surface 10 is used as a thrust bearing surface with respect to the rotating shaft 18, the air 51 ejected from the opening of the pores of the end surface 10 toward the inner peripheral surface 11, and the inner peripheral surface 11 may be caused to collide with and interfere with the air 52 ejected from the opening of the 11 pores and directed toward the end face 10 to reduce the action of the porous hydrostatic gas bearing 1, but as shown in FIG. The porous metal sintered body 2 is a non-porous tube fitted to the porous metal sintered body 2 with one end 53 opening to the outside in the vicinity where the inner peripheral surface 11 and the end face 10 intersect. When a plurality of exhaust passages 55 defined by metal or resin pipes 54 are provided and the above-mentioned interfering airs 51 and 52 are discharged to the outside through the exhaust passages 55, the airs that collide with each other. Low action of the porous hydrostatic gas bearing 1 due to 51 and 52 In addition, since the exhaust passage 55 is defined by the non-porous pipe 54, the air from the pores of the porous metal sintered body 2 directly flows into the exhaust passage 55. Therefore, high-pressure air can be used without waste. In this case, the housing 8 may be provided with a through hole 56 communicating with the exhaust passage 55 on the one hand and communicating with the outside on the other side corresponding to the exhaust passage 55.
[0050]
The above is an example of the cylindrical porous hydrostatic gas bearing 1, but the same applies to the plate-like porous hydrostatic gas bearing.
[0051]
【The invention's effect】
According to the present invention, it is possible to reduce the cost, and it is possible to widen a region where gas can be supplied to the pores of the porous metal sintered body, and it is possible to achieve a desired gas ejection functioning as a thrust bearing. A gas bearing and a manufacturing method thereof can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view of a preferred example of an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the example shown in FIG.
FIG. 3 is an explanatory diagram of the manufacturing method of the example shown in FIG. 1;
4 is an explanatory diagram of the manufacturing method of the example shown in FIG. 1. FIG.
FIG. 5 is an explanatory diagram of the manufacturing method of the example shown in FIG. 1;
6 is an explanatory diagram of the manufacturing method of the example shown in FIG. 1. FIG.
7 is an explanatory diagram of the manufacturing method of the example shown in FIG. 1. FIG.
FIG. 8 is a cross-sectional view of another preferred example of an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Porous static pressure gas bearing 2 Porous metal sintered compact 3 Gas supply path 7 Gas introduction path

Claims (7)

金属粉を含む円筒状の内側及び外側圧粉体であって、内側圧粉体の外周面及び外側圧粉体の内周面のうちのいずれか一方に環状の凹所が形成されている当該内側及び外側圧粉体を準備する準備工程と、この準備した外側圧粉体内に内側圧粉体を挿着して外側圧粉体と内側圧粉体との組み合わせ体を作製する組み合わせ体作製工程と、この作製した組み合わせ体を焼結して、外側圧粉体の内周面と内側圧粉体の外周面とを一体化すると共に、凹所からなる環状の気体供給通路が内部に設けられた一体物としての多孔質金属焼結体を作製する多孔質金属焼結体作製工程と、この多孔質金属焼結体作製工程後、気体供給通路に気体を導入する気体導入通路を多孔質金属焼結体に形成するべく、気体供給通路に連通する穴を多孔質金属焼結体に穿つ穿孔工程とを具備する、多孔質静圧気体軸受の製造方法。  Cylindrical inner and outer green compacts containing metal powder, in which an annular recess is formed in one of the outer peripheral surface of the inner green compact and the inner peripheral surface of the outer green compact Preparatory process for preparing inner and outer green compacts, and a combination body manufacturing process for producing a combination of outer green compact and inner green compact by inserting the inner green compact into the prepared outer green compact And sintering the produced combined body to integrate the inner peripheral surface of the outer green compact and the outer peripheral surface of the inner green compact, and an annular gas supply passage made of a recess is provided inside. Porous metal sintered body preparation step for producing a porous metal sintered body as an integrated body, and a gas introduction passage for introducing gas into the gas supply passage after the porous metal sintered body preparation step In order to form the sintered body, a hole communicating with the gas supply passage is made in the porous metal sintered body. Comprising the steps, a porous hydrostatic gas manufacturing method of a bearing. 内側及び外側圧粉体は、金属粉に加えて無機質粉を含んでいる請求項1に記載の多孔質静圧気体軸受の製造方法。  The method for producing a porous hydrostatic gas bearing according to claim 1, wherein the inner and outer green compacts include inorganic powder in addition to the metal powder. 金属粉は、少なくとも錫、燐及び銅を含んでおり、無機質粉は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つを含んでいる請求項2に記載の多孔質静圧気体軸受の製造方法。  The metal powder contains at least tin, phosphorus, and copper, and the inorganic powder contains at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide. The manufacturing method of the porous static pressure gas bearing of Claim 2. 金属粉は、更に、ニッケル又はマンガンを含んでいる請求項3に記載の多孔質静圧気体軸受の製造方法。  The method for producing a porous hydrostatic gas bearing according to claim 3, wherein the metal powder further contains nickel or manganese. 多孔質金属焼結体を円筒状のハウジング内に嵌装する嵌装工程を更に具備している請求項1から4のいずれか一項に記載の多孔質静圧気体軸受の製造方法。  The manufacturing method of the porous hydrostatic gas bearing as described in any one of Claim 1 to 4 further equipped with the fitting process which fits a porous metal sintered compact in a cylindrical housing. 軸受面となる多孔質金属焼結体の面を研削する研削工程を更に具備する請求項1から5のいずれか一項に記載の多孔質静圧気体軸受の製造方法。  The manufacturing method of the porous static pressure gas bearing as described in any one of Claim 1 to 5 further equipped with the grinding process of grinding the surface of the porous metal sintered compact used as a bearing surface. 準備工程では、軸方向に配列された複数個の環状の凹所が形成されている内側及び外側圧粉体を準備し、多孔質金属焼結体作製工程では、外側圧粉体の内周面と内側圧粉体の外周面との一体化により複数個の環状の凹所からなる複数個の環状通路を具備した気体供給通路を形成する請求項1から6のいずれか一項に記載の多孔質静圧気体軸受の製造方法であって、更に、多孔質金属焼結体作製工程後に、複数個の環状通路を互いに連通させる複数個の円柱状の連通路を形成するべく、環状通路に連通する穴を多孔質金属焼結体に穿つ穿孔工程を更に具備する多孔質静圧気体軸受の製造方法。  In the preparation step, inner and outer green compacts having a plurality of annular recesses arranged in the axial direction are prepared, and in the porous metal sintered body manufacturing step, the inner peripheral surface of the outer green compact A gas supply passage having a plurality of annular passages comprising a plurality of annular recesses is formed by integrating the outer peripheral surface and the outer peripheral surface of the inner green compact. A method for producing a high-pressure static pressure gas bearing, and further, after the porous metal sintered body manufacturing step, communicates with the annular passage so as to form a plurality of cylindrical communication passages that communicate the plurality of annular passages with each other. A method for producing a porous hydrostatic gas bearing, further comprising a drilling step of drilling a hole to be formed in the porous metal sintered body.
JP2000259852A 2000-08-29 2000-08-29 Method for producing porous hydrostatic gas bearing Expired - Fee Related JP4461593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000259852A JP4461593B2 (en) 2000-08-29 2000-08-29 Method for producing porous hydrostatic gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000259852A JP4461593B2 (en) 2000-08-29 2000-08-29 Method for producing porous hydrostatic gas bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009293559A Division JP4983904B2 (en) 2009-12-24 2009-12-24 Porous static pressure gas bearing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002070860A JP2002070860A (en) 2002-03-08
JP4461593B2 true JP4461593B2 (en) 2010-05-12

Family

ID=18747965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259852A Expired - Fee Related JP4461593B2 (en) 2000-08-29 2000-08-29 Method for producing porous hydrostatic gas bearing

Country Status (1)

Country Link
JP (1) JP4461593B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282710A (en) * 2004-03-29 2005-10-13 Oiles Ind Co Ltd Porous static pressure gas bearing and its manufacturing method

Also Published As

Publication number Publication date
JP2002070860A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
JP4385618B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
GB724603A (en) Permeable fluid bearing
US6342306B1 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
EP0237627A2 (en) Gas bearing and method of making it
JP4461593B2 (en) Method for producing porous hydrostatic gas bearing
JP2008002650A (en) Dynamic-pressure bearing unit, its manufacturing method, and spindle motor
US20030072662A1 (en) Two-piece powdered metal suction fitting
JP4983904B2 (en) Porous static pressure gas bearing and manufacturing method thereof
US8104317B2 (en) Compact oil transfer manifold
JP4442012B2 (en) Porous static pressure gas bearing and manufacturing method thereof
JP3083287B2 (en) Rotary joint seal lubrication structure
CN101134460B (en) Master cylinder, master cylinder body, and method for producing master cylinder
JP2000346164A (en) Porous hydrostatic gas screw
JP5965783B2 (en) Method for producing hydrostatic gas radial bearing
CN212297274U (en) Gas bearing, compressor and air conditioning unit
JP2000225505A (en) Spindle device
JP2008231576A (en) Bearing material for porous static pressure gas bearing and porous static pressure gas bearing using the same
JP5131256B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
JP3620814B2 (en) Porous composite bearing
JP2010025208A (en) Roll device
JP2006097797A (en) Porous static pressure gas bearing and its manufacturing method
JP2000009142A (en) Manufacture of bearing device and bearing device
JP4465840B2 (en) Method for producing porous hydrostatic gas bearing
JP2002338368A (en) Silicon carbide sintered parts, mechanical seal using the same and its manufacturing method
JPH0736141Y2 (en) Gear pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

LAPS Cancellation because of no payment of annual fees