[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4451680B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4451680B2
JP4451680B2 JP2004052606A JP2004052606A JP4451680B2 JP 4451680 B2 JP4451680 B2 JP 4451680B2 JP 2004052606 A JP2004052606 A JP 2004052606A JP 2004052606 A JP2004052606 A JP 2004052606A JP 4451680 B2 JP4451680 B2 JP 4451680B2
Authority
JP
Japan
Prior art keywords
pressure
outdoor
compressor
heat exchanger
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004052606A
Other languages
Japanese (ja)
Other versions
JP2005241155A (en
Inventor
正人 四十宮
正則 青木
敏也 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004052606A priority Critical patent/JP4451680B2/en
Publication of JP2005241155A publication Critical patent/JP2005241155A/en
Application granted granted Critical
Publication of JP4451680B2 publication Critical patent/JP4451680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

この発明は、従来作動流体として使用した冷媒HCFC22と比較して低沸点冷媒でオゾン層を破壊しない非塩素系冷媒を作動冷媒として用いる室外機と室内機が分れているスプリットタイプの空気調和機に、冷媒としてHCFC22を使用していた室外機と室内機との接続配管を流用するリプレースユースに関するものである。   The present invention is a split type air conditioner in which an outdoor unit and an indoor unit that use a non-chlorine refrigerant that does not destroy the ozone layer as a working refrigerant are separated from the refrigerant HCFC22 used as a working fluid. Furthermore, the present invention relates to a replacement use in which a connection pipe between an outdoor unit and an indoor unit that uses HCFC 22 as a refrigerant is used.

近年オゾン層保護等の地球環境問題から、空気調和機で一般的に使用されていたHCFC22等の冷媒は生産規制を受け、オゾン層を破壊しないHFC410Aなどの非塩素系冷媒を使用した空気調和機へと転換が行われている。   Air conditioners that use non-chlorine refrigerants such as HFC410A that have been subject to production restrictions and have not been destroyed by the ozone layer, because refrigerants such as HCFC22 that have been generally used in air conditioners in recent years due to global environmental problems such as ozone layer protection The conversion to is done.

我が国の空気調和機は室内機と室外機が分れたスプリットタイプのものが主流であり、室内機と室外機を接続する接続配管が存在する。業務用空気調和機等では、室外機と室内機の距離が長く、しかも天井裏、パイプシャフト等に埋め込まれた接続配管を使用することが多い為、室内機又は室外機を交換する時に、接続配管をそのまま再利用して使用するケースが多い。   In Japan, air conditioners are mainly split type, with indoor and outdoor units separated, and there are connecting pipes connecting the indoor and outdoor units. In commercial air conditioners, etc., the distance between the outdoor unit and the indoor unit is long, and connection pipes embedded in the ceiling, pipe shaft, etc. are often used. In many cases, pipes are reused as they are.

しかし、HCFC22冷媒の主要代替冷媒であるHFC410Aは、同一凝縮温度における圧力が、HCFCと比較して約1.6倍ある為、従来HCFC22を使用した空気調和機で用いていた接続配管を流用しようとすると、接続配管の耐圧が持たないケースが発生する。   However, HFC410A, which is the main alternative refrigerant of HCFC22 refrigerant, has a pressure at the same condensation temperature of about 1.6 times that of HCFC, so let's divert the connection piping used in the conventional air conditioner using HCFC22. Then, a case where the pressure resistance of the connection pipe does not occur occurs.

低沸点冷媒であるHFC410Aを使用する際に、従来冷媒HCFC22等で使用していた接続配管を圧力的に問題なく流用できるように、圧力感知装置を取り付け、設定の圧力に達した所で圧力制限手段を使用し吐出圧力を任意の制限圧力以下で運転を行うものがある(例えば、特許文献1参照)。
特開2003−2044号公報 特開2002−162126号公報
When using HFC410A, which is a low-boiling point refrigerant, a pressure sensing device is installed so that the connection piping used in the conventional refrigerant HCFC22 etc. can be diverted without any pressure problems, and the pressure limit is reached when the set pressure is reached. There are some which use the means to operate the discharge pressure below an arbitrary limit pressure (for example, see Patent Document 1).
JP 2003-2044 A JP 2002-162126 A

しかしながら、上記特許文献1記載のものでは、圧力感知後のアクチュエータ制御による冷凍サイクル系への遅延等が考慮されていない為、接続配管が許容する圧力をオーバーする恐れがある。   However, in the thing of the said patent document 1, since the delay to the refrigerating cycle system by the actuator control after pressure sensing, etc. are not considered, there exists a possibility of exceeding the pressure which connection piping accept | permits.

また、オーバーシュートを考慮して、圧力感知装置の感知圧力を下げると、凝縮温度の使用範囲が狭くなり、冷房過負荷条件等の運転時、極端な能力の低下を招く。したがって、HCFC22で使用していた低い許容圧力の接続配管を流用する場合、制御をかける圧力は、接続配管が許容する圧力に可能な限り近づけ、しかも許容される圧力をオーバーしないように制御する必要がある。   In addition, if the sensing pressure of the pressure sensing device is reduced in consideration of overshoot, the range of use of the condensation temperature is narrowed, causing an extreme decline in capacity during operation such as cooling overload conditions. Therefore, when diverting the low allowable pressure connection pipe used in HCFC22, it is necessary to control the pressure to be controlled as close as possible to the pressure allowed by the connection pipe and not to exceed the allowable pressure. There is.

具体的な問題としては、室外機は一般的に外風等の影響を受ける屋外に設置されている為、例えば冷房運転を行っている際、室外送風機の吹出し方向より強い外風の影響を受けた場合送風機風量が低下し、室外熱交換気の凝縮能力が低下し、急激な圧力上昇に至り、圧力制限手段を施しても、許容圧力を超えて運転するようなケースが頻発する恐れがある。また、圧力遮断器を有するような空気調和機の場合、圧力遮断器が作動し運転不能になる恐れがある。   As a specific problem, since outdoor units are generally installed outdoors that are affected by outside winds, for example, during cooling operation, they are affected by outside winds that are stronger than the blowing direction of the outdoor blower. In such a case, the air flow rate of the blower decreases, the condensation capacity of the outdoor heat exchange air decreases, the pressure increases rapidly, and even if pressure limiting means is applied, there may be frequent cases of operation exceeding the allowable pressure. . In the case of an air conditioner having a pressure circuit breaker, the pressure circuit breaker may operate and become inoperable.

この発明は、上記のような問題点を解決するためになされたもので、室外機が置かれる外風等の非安定環境において、強風時には使用圧力を出来るだけ抑制し、吐出圧力の異常上昇、圧力遮断器の動作による圧縮機停止といった問題を回避すると共に、無風あるいは、微風状態等比較的安定した運転を行うことが出来る状態では、出来るだけ運転可能な圧力範囲を広げて運転することにより能力を確保することができる空気調和機を提供することを目的とする。   The present invention was made to solve the above-described problems, and in an unstable environment such as an outdoor wind where an outdoor unit is placed, the operating pressure is suppressed as much as possible in a strong wind, and an abnormal increase in discharge pressure is caused. Capability to avoid problems such as compressor shutdown due to pressure circuit breaker operation and to expand the pressure range that can be operated as much as possible in a state where relatively stable operation such as no wind or light wind is possible. An object of the present invention is to provide an air conditioner capable of ensuring the above.

この発明に係る空気調和機は、圧縮機、四方弁、室外熱交換器、電子膨張弁、圧縮機の吐出側に接続される圧力遮断器、室外送風機を有する室外機と、室内熱交換器、室内送風機を有する室内機と、室外機と室内機とを接続する既設の接続配管と、室外機の圧縮機、四方弁、室外熱交換器、電子膨張弁、室内機の室内熱交換器、接続配管を有し、冷媒として非塩素系冷媒で低沸点冷媒を用いた冷凍サイクルと、冷凍サイクルの冷房運転時の高圧側圧力を検出する高圧側圧力検出手段とを備え、圧力遮断器の、空気調和機の運転を停止する遮断圧力を、既設の接続配管の許容圧力未満に設定し、高圧側圧力検出手段が検出した高圧側圧力が、圧力遮断器の遮断圧力より低くく設定した制限高圧側圧力より高くなった場合は、圧縮機又は室外送風機又は電子膨張弁を制御して、目標値になるまで高圧側圧力を下げ、一定時間、制限高圧側圧力を越えることがなければ、圧力遮断器の遮断圧力を越えない範囲で、高圧側圧力を上げるように制御することを特徴とする。   An air conditioner according to the present invention includes a compressor, a four-way valve, an outdoor heat exchanger, an electronic expansion valve, a pressure breaker connected to the discharge side of the compressor, an outdoor unit having an outdoor blower, an indoor heat exchanger, An indoor unit having an indoor blower, an existing connection pipe that connects the outdoor unit and the indoor unit, a compressor of the outdoor unit, a four-way valve, an outdoor heat exchanger, an electronic expansion valve, an indoor heat exchanger of the indoor unit, connection A refrigeration cycle having a piping and using a non-chlorine refrigerant as a refrigerant and a low-boiling point refrigerant, and a high-pressure side pressure detecting means for detecting a high-pressure side pressure during cooling operation of the refrigeration cycle. The high pressure side that is set lower than the allowable pressure of the existing connection piping and the high pressure side pressure detected by the high pressure side pressure detection means is set to be lower than the cutoff pressure of the pressure circuit breaker. If the pressure becomes higher than the pressure, the compressor or the outdoor fan Alternatively, control the electronic expansion valve to lower the high-pressure side pressure until it reaches the target value, and if the limited high-pressure side pressure is not exceeded for a certain period of time, the high-pressure side pressure is adjusted within the range that does not exceed the cutoff pressure of the pressure circuit breaker. It is controlled to raise.

この発明に係る空気調和機は、室外機が置かれる外風等の非安定環境において、強風時には使用圧力を出来るだけ抑制し、吐出圧力の異常上昇、圧力遮断による圧縮機停止といった問題を回避するとともに、無風あるいは、微風状態等比較的安定した運転を行うことが出来る状態では、出来るだけ運転可能な圧力範囲を広げて運転することにより能力を確保することが可能である。   The air conditioner according to the present invention suppresses the operating pressure as much as possible in an unstable environment such as an outside wind where the outdoor unit is placed, and avoids problems such as an abnormal increase in discharge pressure and a compressor stop due to pressure interruption. In addition, in a state where a relatively stable operation can be performed such as a windless state or a light wind state, it is possible to secure the capability by operating with a pressure range that can be operated as much as possible.

実施の形態1.
図1〜9は実施の形態1を示す図で、図1は制御対象の空気調和機の構成を示す簡略図、図2は室内機と室外機が接続配管により接続された状態を示す斜視図、図3は空気調和機の冷媒回路及び制御回路を示す図、図4は制御部の概念図、図5はインバータ駆動装置を示すブロック図、図6は代替冷媒の特性を示す図、図7は室外機に逆風が吹く状態を示す図、図8は冷房運転における圧力(凝縮温度)を示す図、図9は動作を示すフローチャートである。
Embodiment 1 FIG.
1 to 9 are diagrams showing Embodiment 1, FIG. 1 is a simplified diagram showing a configuration of an air conditioner to be controlled, and FIG. 2 is a perspective view showing a state in which an indoor unit and an outdoor unit are connected by a connection pipe. 3 is a diagram showing a refrigerant circuit and a control circuit of an air conditioner, FIG. 4 is a conceptual diagram of a control unit, FIG. 5 is a block diagram showing an inverter driving device, FIG. 6 is a diagram showing characteristics of an alternative refrigerant, FIG. FIG. 8 is a view showing a state where a back wind blows to the outdoor unit, FIG. 8 is a view showing a pressure (condensation temperature) in the cooling operation, and FIG. 9 is a flowchart showing the operation.

本実施の形態は、室外機が置かれる外風等の非安定環境において、強風時には使用圧力を出来るだけ抑制し、吐出圧力の異常上昇、圧力遮断による圧縮機停止といった問題を回避するとともに、無風あるいは、微風状態等比較的安定した運転を行うことが出来る状態では、出来るだけ運転可能な圧力範囲を広げて運転することにより能力を確保することができる例を説明する。   In the present embodiment, in an unstable environment such as an outdoor wind where the outdoor unit is placed, the operating pressure is suppressed as much as possible in the case of strong winds, and problems such as abnormal rise in discharge pressure and compressor shutdown due to pressure interruption are avoided. Or, in a state where a relatively stable operation such as a light wind can be performed, an example will be described in which the ability can be ensured by operating with a pressure range that can be operated as wide as possible.

図1に示すように、代替冷媒であるHFC冷媒を使用する空気調和機の室内機20と室外機30とは、HCFC22冷媒で使用していた既設の接続配管5、7を流用して接続されることが多い。   As shown in FIG. 1, an indoor unit 20 and an outdoor unit 30 of an air conditioner that uses an HFC refrigerant that is an alternative refrigerant are connected by diverting existing connection pipes 5 and 7 that have been used for an HCFC 22 refrigerant. Often.

図2に示すように、業務用空気調和機等では、室外機30と室内機20の距離が長く、しかも天井裏、パイプシャフト等に埋め込まれた接続配管5、7を使用することが多い為、室内機及び室外機又は何れか一方を交換する時に、接続配管5、7をそのまま再利用することが多い。   As shown in FIG. 2, in a commercial air conditioner or the like, the distance between the outdoor unit 30 and the indoor unit 20 is long, and connection pipes 5 and 7 embedded in the ceiling, pipe shaft, etc. are often used. When the indoor unit and / or the outdoor unit is replaced, the connection pipes 5 and 7 are often reused as they are.

空気調和機の冷媒回路及び制御回路の一部は図3のように構成される。室外機30の冷媒回路は、冷媒を圧縮して高温、高圧のガス冷媒を吐出する圧縮機1、冷房運転と暖房運転とで冷媒の流れ方向を切り換える四方弁2、室外空気と熱交換を行う室外熱交換器3、高圧の液冷媒を減圧膨張させて二相冷媒にする電子膨張弁4、圧縮機1に液冷媒が戻らないように液冷媒を貯留するアキュムレータ8、圧力を検知して電気回路を遮断して空気調和機の運転を停止させる圧力遮断器11の冷媒回路部品により構成され、その他に、室外熱交換器3に送風を行う室外送風機10、室外熱交換器3の温度を検知する室外熱交換器温度検知手段12(高圧側圧力検出手段の一例)等を備えている。   Part of the refrigerant circuit and the control circuit of the air conditioner is configured as shown in FIG. The refrigerant circuit of the outdoor unit 30 compresses the refrigerant and discharges the high-temperature and high-pressure gas refrigerant, the four-way valve 2 that switches the refrigerant flow direction between the cooling operation and the heating operation, and performs heat exchange with the outdoor air. Outdoor heat exchanger 3, electronic expansion valve 4 that decompresses and expands the high-pressure liquid refrigerant into a two-phase refrigerant, accumulator 8 that stores the liquid refrigerant so that the liquid refrigerant does not return to the compressor 1, and detects the pressure for electricity It is composed of refrigerant circuit components of the pressure circuit breaker 11 that shuts down the circuit and stops the operation of the air conditioner. In addition, the temperature of the outdoor fan 10 that blows air to the outdoor heat exchanger 3 and the temperature of the outdoor heat exchanger 3 are detected. An outdoor heat exchanger temperature detecting means 12 (an example of a high pressure side pressure detecting means) is provided.

室外機30の制御回路の一部は、室外熱交換器温度検知手段12の出力により位相制御部16を介して室外送風機10を制御するとともに、インバータ回路15を介して圧縮機1を制御するマイクロコンピュータで構成される制御部14を備える。   A part of the control circuit of the outdoor unit 30 controls the outdoor blower 10 via the phase control unit 16 by the output of the outdoor heat exchanger temperature detection means 12 and also controls the compressor 1 via the inverter circuit 15. The control part 14 comprised with a computer is provided.

制御部14は、図4の概念図に示すように、インバータ回路を介して圧縮機1を制御する圧縮機制御部(インバータ回路制御部)、例えば室外熱交換器温度検知手段12の出力により位相制御部16を介して室外送風機10を制御するファン制御部、冷媒回路の圧力を制御する際に電子膨張弁4の開度を制御する電子膨張弁制御部、冷房運転と暖房運転とで冷媒の流れ方向を切り換える四方弁2を制御する四方弁制御部、圧縮機1等の保護を行う保護制御部等を有する。   As shown in the conceptual diagram of FIG. 4, the control unit 14 is phased by the output of a compressor control unit (inverter circuit control unit) that controls the compressor 1 via an inverter circuit, for example, the outdoor heat exchanger temperature detection means 12. A fan control unit that controls the outdoor blower 10 via the control unit 16, an electronic expansion valve control unit that controls the opening degree of the electronic expansion valve 4 when controlling the pressure of the refrigerant circuit, and a cooling operation and a heating operation It has a four-way valve control unit for controlling the four-way valve 2 for switching the flow direction, a protection control unit for protecting the compressor 1 and the like.

図5に示すように、電源21に接続されたコンバータ回路18は直流電圧指令に基づきコンバータ制御部19により制御される。コンバータ回路18の出力である直流電圧が、インバータ回路15により、制御部14の圧縮機1のモータの回転子位置情報と交流出力電圧情報とに基づいて動作するインバータ制御部で制御されながら、疑似正弦波交流電圧に変換されて、圧縮機1のモータを駆動する。   As shown in FIG. 5, the converter circuit 18 connected to the power source 21 is controlled by a converter control unit 19 based on a DC voltage command. While the DC voltage that is the output of the converter circuit 18 is controlled by the inverter circuit 15 based on the rotor position information and AC output voltage information of the motor of the compressor 1 of the control unit 14, It is converted into a sine wave AC voltage to drive the motor of the compressor 1.

室内機20は、室内の空気と熱交換を行う室内熱交換器6、室内熱交換器6に送風を行う室内送風機9、室内熱交換器6の温度を検知する室内熱交換器温度検知手段13を備え、接続配管5、7により室外機30と接続され冷媒回路を構成している。   The indoor unit 20 includes an indoor heat exchanger 6 that exchanges heat with indoor air, an indoor fan 9 that blows air to the indoor heat exchanger 6, and an indoor heat exchanger temperature detection unit 13 that detects the temperature of the indoor heat exchanger 6. And is connected to the outdoor unit 30 by connection pipes 5 and 7 to constitute a refrigerant circuit.

冷房運転時の冷媒の流れは、圧縮機1、四方弁2、室外熱交換器3、電子膨張弁4、接続配管5、室内熱交換器6、接続配管7、四方弁2、アキュムレータ8、圧縮機1の順となる。接続配管5、7は低圧側となるので、既設配管を使用しても耐圧の問題は生じない。   The refrigerant flow during the cooling operation is as follows: compressor 1, four-way valve 2, outdoor heat exchanger 3, electronic expansion valve 4, connection pipe 5, indoor heat exchanger 6, connection pipe 7, four-way valve 2, accumulator 8, compression It becomes machine 1 order. Since the connecting pipes 5 and 7 are on the low-pressure side, there is no problem with pressure resistance even if existing pipes are used.

暖房運転時の冷媒の流れは、圧縮機1、四方弁2、接続配管7、室内熱交換器6、接続配管5、電子膨張弁4、室外熱交換器3、四方弁2、アキュムレータ8、圧縮機1の順となる。接続配管5、7は高圧側となり、既設配管を使用する場合は、耐圧の問題が生じる。従って、図3に示すように、圧縮機1の吐出側に吐出圧力を検知して、既設配管の許容圧力以下の遮断圧力を検出した場合に、運転を停止させる圧力遮断器11を備える。   The refrigerant flow during the heating operation is as follows: compressor 1, four-way valve 2, connection pipe 7, indoor heat exchanger 6, connection pipe 5, electronic expansion valve 4, outdoor heat exchanger 3, four-way valve 2, accumulator 8, compression It becomes machine 1 order. The connection pipes 5 and 7 are on the high pressure side, and when using existing pipes, a problem of pressure resistance occurs. Therefore, as shown in FIG. 3, a pressure circuit breaker 11 is provided to stop the operation when a discharge pressure is detected on the discharge side of the compressor 1 and a cut-off pressure equal to or lower than an allowable pressure of the existing piping is detected.

HCFC22冷媒を空調用に用いた際の設計圧力は2.8MPa(凝縮温度約65℃)前後で設計されるのが通常であり、一般的にはφ15.88mmまでの配管では0.8mm、φ19.05〜22.2mmであれば1.0mmの配管肉厚のものが使用されている。冷媒配管は、配管肉厚が同じであれば、管径が太いほど耐圧は低くなる。φ15.88mmまでの配管(配管肉厚0.8mm)の耐圧は、管径で異なるが、4.2MPa以上、φ19.05〜22.2mmの配管(配管肉厚1.0mm)の耐圧は、3.6MPa前後である。   The design pressure when the HCFC22 refrigerant is used for air conditioning is usually designed around 2.8 MPa (condensation temperature of about 65 ° C.), and generally 0.8 mm and φ19 for piping up to φ15.88 mm. If it is 0.05 to 22.2 mm, a pipe thickness of 1.0 mm is used. If the pipe thickness of the refrigerant pipe is the same, the greater the pipe diameter, the lower the pressure resistance. The pressure resistance of piping up to φ15.88 mm (pipe thickness 0.8 mm) varies depending on the pipe diameter, but the pressure resistance of piping (pipe thickness 1.0 mm) of 4.2 MPa or more and φ19.05 to 22.2 mm is as follows: It is around 3.6 MPa.

本実施の形態に利用される作動流体としては、例えばHCFC22の代替冷媒としてしばしば用いられるHFC410Aとする。
代替冷媒の冷媒特性を図6に示す。図に示すように、HFC410Aは、同一凝縮温度における圧力が、HCFC22と比較して約1.6倍ある。HFC410A冷媒は、HCFC22冷媒と比べると沸点が低い冷媒で有り、HCFC22冷媒と同一凝縮温度65℃では圧力が約4.17MPaとなり、HCFC22冷媒で使用していた既設の接続配管5、7の耐圧は、φ19.05〜22.2mmの配管(配管肉厚1.0mm)では、3.6MPa前後であるから、圧力的に十分な強度が維持出来ない接続配管が発生する。
The working fluid used in the present embodiment is, for example, HFC410A often used as an alternative refrigerant for HCFC22.
The refrigerant characteristics of the alternative refrigerant are shown in FIG. As shown in the figure, HFC410A has a pressure at the same condensation temperature about 1.6 times that of HCFC22. The HFC410A refrigerant has a lower boiling point than the HCFC22 refrigerant, and the pressure is about 4.17 MPa at the same condensation temperature of 65 ° C. as that of the HCFC22 refrigerant. , Φ19.05 to 22.2 mm pipe (pipe wall thickness 1.0 mm) is around 3.6 MPa, so that a connection pipe that cannot maintain sufficient strength in terms of pressure is generated.

従来使用されていた接続配管を流用する為には、凝縮器の熱交換器能力を上げる等して、圧力的に問題無いレベルまで運転する圧力を下げて、低い凝縮温度にて運転する必要が発生する。このような状況では、許容される圧力ぎりぎりまで運転することが望ましいこととなる。   In order to divert the connection pipes that have been used in the past, it is necessary to reduce the pressure to a level where there is no problem in terms of pressure by increasing the heat exchanger capacity of the condenser and to operate at a low condensation temperature. appear. In such a situation, it would be desirable to operate to the limit of allowable pressure.

暖房運転時に既設接続配管を保護するために圧力遮断器11を使用すると、何らかな理由で、圧縮機1の吐出圧力が急上昇した場合、圧力遮断器11が作動して運転が停止する。一例を挙げれば、図7に示すように、冷房運転時に、室外機30に逆風が吹き付けると、室外送風機10の回転数が急激にダウンして、凝縮器となる室外熱交換器3の圧力が上昇する。その圧力が圧力遮断器11の遮断圧力を越えると、圧力遮断器11が作動して、運転は停止する。遮断圧力は、既設接続配管の耐圧に合わせて設定されるので、冷房運転時であれば、既設接続配管は低圧であるから、代替冷媒対応の室外機であれば、遮断圧力程度では十分に耐えられるので、本来は運転を継続したい。   If the pressure circuit breaker 11 is used to protect the existing connection piping during the heating operation, if for some reason the discharge pressure of the compressor 1 rises rapidly, the pressure circuit breaker 11 is activated and the operation is stopped. For example, as shown in FIG. 7, when the back wind blows to the outdoor unit 30 during the cooling operation, the rotational speed of the outdoor blower 10 is drastically reduced, and the pressure of the outdoor heat exchanger 3 serving as a condenser is reduced. To rise. When the pressure exceeds the breaking pressure of the pressure breaker 11, the pressure breaker 11 is activated and the operation is stopped. Since the cutoff pressure is set according to the pressure resistance of the existing connection pipe, the existing connection pipe is low pressure during cooling operation. I want to continue driving.

そこで、冷房運転時の圧力遮断器11の作動を極力抑制するように、たとえ室外機30に逆風が吹き付ける悪条件下でも、圧力遮断器11が作動しないように、圧縮機1の吐出圧力を下げて運転するように制御する例を以下説明する。   Therefore, in order to suppress the operation of the pressure circuit breaker 11 during the cooling operation as much as possible, the discharge pressure of the compressor 1 is lowered so that the pressure circuit breaker 11 does not operate even under adverse conditions in which the back wind blows to the outdoor unit 30. An example of performing control so that the vehicle is operated will be described below.

図8に冷房運転における圧力(凝縮温度と同義)を示す。通常運転凝縮温度(圧力)を目標に圧縮機1の能力を制御する。凝縮温度は、室外熱交換器温度検知手段12から検知するが、圧力センサー(高圧側圧力検出手段の他の例)を用いてもよい。   FIG. 8 shows the pressure in the cooling operation (synonymous with the condensation temperature). The capacity of the compressor 1 is controlled with the normal operation condensing temperature (pressure) as a target. The condensation temperature is detected from the outdoor heat exchanger temperature detection means 12, but a pressure sensor (another example of the high pressure side pressure detection means) may be used.

通常冷房運転では、吐出圧力に影響をおよぼす凝縮器が室外熱交換器3となり、室外送風機10に、例えば逆風が吹いた時には、凝縮不良を起こし圧力が一時的に上昇し、制限凝縮温度B(圧力遮断器11の遮断圧力より低い)を越える。この場合には、逆風により圧力が遮断圧力を超える可能性があると判断し、運転圧力が運転凝縮温度Bになるように圧縮機1の容量制御又は室外送風機10の回転数制御又は電子膨張弁4の開度制御をかけ運転を行う。
制限高圧側圧力は、制限凝縮温度に相当する。
In the normal cooling operation, the condenser that affects the discharge pressure becomes the outdoor heat exchanger 3, and, for example, when a back wind blows to the outdoor fan 10, a condensation failure occurs and the pressure temporarily rises, and the limited condensation temperature B ( Lower than the cutoff pressure of the pressure circuit breaker 11). In this case, it is determined that there is a possibility that the pressure may exceed the shut-off pressure due to the back wind, and the capacity control of the compressor 1 or the rotational speed control of the outdoor blower 10 or the electronic expansion valve is performed so that the operation pressure becomes the operation condensation temperature B. Operation is performed with the opening degree control of 4.
The restricted high pressure side pressure corresponds to the restricted condensation temperature.

さらに強い逆風が吹き制限凝縮温度A(圧力遮断器11の遮断圧力より低いが、制限凝縮温度Bより高い)を越えた場合には、さらに運転圧力を下げ運転凝縮温度Aにて運転をさせる。一定時間圧力制限を越えることが無くなった場合、運転凝縮温度をA→B→通常という形に上げて、圧力が圧力遮断器11の遮断圧力を超えない範囲で、出来るだけ高い吐出圧力にて運転を行うことが可能となる。   When the stronger back wind exceeds the blowing restricted condensation temperature A (lower than the breaking pressure of the pressure circuit breaker 11 but higher than the restricted condensation temperature B), the operation pressure is further lowered to operate at the operation condensation temperature A. If the pressure limit is no longer exceeded for a certain period of time, increase the operation condensing temperature from A to B to normal, and operate at a discharge pressure as high as possible so long as the pressure does not exceed the shut-off pressure of the pressure breaker 11 Can be performed.

一方、室外が無風状態あるいは室外送風機10に対して順風が吹いている場合には、過渡的に吐出圧力が上昇することは無いため、通常の運転圧力にて運転することが可能となる。   On the other hand, when there is no wind outside or when normal wind is blowing against the outdoor blower 10, the discharge pressure does not rise transiently, so that it is possible to operate at normal operating pressure.

図9のフローチャートにより、本実施の形態の動作を総括する。
先ず、ステップS1で、空気調和機は冷房運転をしている。
ステップS2で、室外熱交換器3の温度は安定し、通常運転凝縮温度で運転している。
ステップS3で、室外熱交換器3の温度と制限凝縮温度Bとを比較する。
逆風等の影響により室外熱交換器3の温度が制限凝縮温度Bより高くなった場合は、さらにステップS4で、室外熱交換器3の温度と制限凝縮温度Aとを比較する(制限凝縮温度A>制限凝縮温度B)。
The operation of the present embodiment will be summarized with the flowchart of FIG.
First, in step S1, the air conditioner is performing a cooling operation.
In step S2, the temperature of the outdoor heat exchanger 3 is stabilized and is operated at the normal operation condensing temperature.
In step S3, the temperature of the outdoor heat exchanger 3 is compared with the limited condensation temperature B.
When the temperature of the outdoor heat exchanger 3 becomes higher than the limited condensation temperature B due to the influence of the back wind or the like, the temperature of the outdoor heat exchanger 3 is compared with the limited condensation temperature A in step S4 (the limited condensation temperature A). > Limited condensation temperature B).

室外熱交換器3の温度が制限凝縮温度Aより低い場合は、ステップS12で、室外送風機10の回転数アップ又は圧縮機1の回転数ダウン又は電子膨張弁4の開度アップの制御を行う。
ステップS13で、運転凝縮温度Bにて運転する。
ステップS14で、運転凝縮温度Bにおける連続運転時間の判定を行う(所定時間Δτbと比較する)。運転凝縮温度Bにおける連続運転時間が所定時間Δτbを越える場合は、ステップS2に戻り、通常運転凝縮温度にて運転する。また、運転凝縮温度Bにおける連続運転時間が所定時間Δτbを越えない場合は、ステップS4に戻る。
When the temperature of the outdoor heat exchanger 3 is lower than the limited condensation temperature A, in step S12, control is performed to increase the rotational speed of the outdoor fan 10, decrease the rotational speed of the compressor 1, or increase the opening of the electronic expansion valve 4.
In step S13, operation is performed at the operation condensing temperature B.
In step S14, the continuous operation time at the operation condensing temperature B is determined (compared with a predetermined time Δτb). When the continuous operation time at the operation condensing temperature B exceeds the predetermined time Δτb, the process returns to step S2 to operate at the normal operation condensing temperature. When the continuous operation time at the operation condensing temperature B does not exceed the predetermined time Δτb, the process returns to step S4.

ステップS4で、室外熱交換器3の温度が制限凝縮温度Aより高い場合は、ステップS5で、室外送風機10の回転数アップ又は圧縮機1の回転数ダウン又は電子膨張弁4の開度アップの制御を行う。
ステップS6で、運転凝縮温度Aにて運転する(運転凝縮温度A<運転凝縮温度B)。
In step S4, when the temperature of the outdoor heat exchanger 3 is higher than the limit condensation temperature A, in step S5, the rotational speed of the outdoor fan 10 is decreased, the rotational speed of the compressor 1 is decreased, or the opening degree of the electronic expansion valve 4 is increased. Take control.
In step S6, operation is performed at the operation condensing temperature A (operation condensing temperature A <operation condensing temperature B).

ステップS7で、運転凝縮温度Aを検知してから、所定時間Δτa経過したかを判定し、所定時間Δτa経過していない場合は、ステップS6に戻る。所定時間Δτa経過した場合は、ステップS8で、室外送風機10の回転数ダウン又は圧縮機1の回転数アップ又は電子膨張弁4の開度ダウンの制御を行う。
ステップS9で、運転凝縮温度Bにて運転する(運転凝縮温度B>運転凝縮温度A)。
In step S7, it is determined whether or not the predetermined time Δτa has elapsed since the operation condensation temperature A was detected. If the predetermined time Δτa has not elapsed, the process returns to step S6. When the predetermined time Δτa has elapsed, in step S8, control is performed to reduce the rotational speed of the outdoor fan 10, increase the rotational speed of the compressor 1, or decrease the opening of the electronic expansion valve 4.
In step S9, operation is performed at the operation condensing temperature B (operation condensing temperature B> operation condensing temperature A).

ステップS10で、室外熱交換器3の温度と制限凝縮温度Aとを比較する(制限凝縮温度A>制限凝縮温度B)。室外熱交換器3の温度が制限凝縮温度Aより高い場合は、ステップS6に戻り運転凝縮温度Aにて運転する。室外熱交換器3の温度が制限凝縮温度Aより低い場合は、ステップS11で、運転凝縮温度Bにおける連続運転時間の判定を行う(所定時間Δτbと比較する)。運転凝縮温度Bにおける連続運転時間が所定時間Δτbを越える場合は、ステップS2に戻り、通常運転凝縮温度にて運転する。また、運転凝縮温度Bにおける連続運転時間が所定時間Δτbを越えない場合は、ステップS9に戻る。   In step S10, the temperature of the outdoor heat exchanger 3 is compared with the limited condensation temperature A (limited condensation temperature A> limited condensation temperature B). When the temperature of the outdoor heat exchanger 3 is higher than the limit condensation temperature A, the operation returns to step S6 and operates at the operation condensation temperature A. When the temperature of the outdoor heat exchanger 3 is lower than the limit condensation temperature A, the continuous operation time at the operation condensation temperature B is determined in step S11 (compared with a predetermined time Δτb). When the continuous operation time at the operation condensing temperature B exceeds the predetermined time Δτb, the process returns to step S2 to operate at the normal operation condensing temperature. If the continuous operation time at the operation condensing temperature B does not exceed the predetermined time Δτb, the process returns to step S9.

上述の実施の形態によれば、室外機30が置かれる外風等の非安定環境において、強風時には使用圧力を出来るだけ抑制し、吐出圧力の異常上昇、圧力遮断器11による圧縮機停止といった問題を回避するとともに、無風あるいは、微風状態等比較的安定した運転を行うことが出来る状態では、出来るだけ運転可能な圧力範囲を広げて運転することにより能力を確保することができる。   According to the above-described embodiment, in an unstable environment such as an outdoor wind where the outdoor unit 30 is placed, the use pressure is suppressed as much as possible in a strong wind, the discharge pressure is abnormally increased, and the compressor is stopped by the pressure breaker 11. In a state where a relatively stable operation such as no wind or light wind can be performed, the capability can be ensured by widening the operable pressure range as much as possible.

実施の形態2.
図10は実施の形態2を示す図で、室外機が複数近接して設置される例を示す図である。
図に示すように、室外機30が複数近接して設置される場合には、冷房運転時に、室外機30からは室外熱交換器3と熱交換した高温の空気が吹き出される。この高温の吹き出し空気が、近くの他の室外機30に当たると、その室外機30の温度が上昇し、室外熱交換器3の温度も上昇して、運転凝縮温度を上げる。
Embodiment 2. FIG.
FIG. 10 is a diagram illustrating the second embodiment, and is a diagram illustrating an example in which a plurality of outdoor units are installed close to each other.
As shown in the figure, when a plurality of outdoor units 30 are installed close to each other, high-temperature air exchanged with the outdoor heat exchanger 3 is blown out from the outdoor unit 30 during the cooling operation. When this hot blown air hits another nearby outdoor unit 30, the temperature of the outdoor unit 30 rises, the temperature of the outdoor heat exchanger 3 also rises, and the operating condensing temperature is raised.

従って、この場合も圧力遮断器11が作動して、圧縮機1の運転が停止する恐れがある。上記実施の形態1と同様に圧縮機1の吐出圧力を下げる制御が有効になる。   Therefore, also in this case, the pressure circuit breaker 11 is activated, and the operation of the compressor 1 may be stopped. As in the first embodiment, control for reducing the discharge pressure of the compressor 1 is effective.

実施の形態3.
図11〜14は実施の形態3を示す図で、図11は空気調和機の冷媒回路図、図12は冷房運転時における吐出圧力の変化を示す図、図13はファンブロック時の制御のフローチャート、図14は逆風時の制御のフローチャートである。
Embodiment 3 FIG.
FIGS. 11 to 14 are diagrams showing Embodiment 3, FIG. 11 is a refrigerant circuit diagram of an air conditioner, FIG. 12 is a diagram showing a change in discharge pressure during cooling operation, and FIG. 13 is a flowchart of control during fan block. FIG. 14 is a flowchart of the control during headwind.

冷媒回路の構成は、実施の形態1の図3と同様である。制御回路の制御部14(マイクロコンピュータ)にタイマー17を備えている点が実施の形態1の図3と異なる。   The configuration of the refrigerant circuit is the same as that in FIG. 3 of the first embodiment. The point in which the control part 14 (microcomputer) of the control circuit is provided with a timer 17 is different from FIG. 3 of the first embodiment.

本実施の形態は、実施の形態1のように、冷房運転時に圧力遮断器11が作動しないように制御するのではなく、空気調和機の運転能力低下を抑えるために、冷房運転時に圧力遮断器11が動作することは許す。但し、圧力遮断器11の作動が逆風による誤検知の場合で、誤検知を繰り返すようであれば、運転圧力を下げて逆風の場合でも圧力遮断器11が作動しないように制御する。   The present embodiment does not control the pressure circuit breaker 11 not to operate during the cooling operation as in the first embodiment, but rather controls the pressure circuit breaker during the cooling operation in order to suppress a decrease in the operating capacity of the air conditioner. 11 is allowed to work. However, if the operation of the pressure circuit breaker 11 is an erroneous detection due to a back wind, and if the erroneous detection is repeated, the pressure breaker 11 is controlled not to operate even in the case of a reverse wind by reducing the operating pressure.

圧力遮断器11の作動が、例えば室外送風機10が、そのモータの温度が上昇して停止するファンブロック状態になり、室外熱交換器3の急な温度上昇による場合は、所定回数以上の遮断後、異常停止させ自動復帰させない制御を行う。   For example, when the outdoor blower 10 is in a fan block state where the temperature of the motor rises and stops due to the operation of the pressure breaker 11 and the outdoor heat exchanger 3 suddenly rises in temperature, , Control that stops abnormally and does not return automatically.

図12において、上段は冷房運転における逆風時の吐出圧力の変化を示し、下段は室外送風機10のファンブロックにより吐出圧力が異常に上昇したケースを示す。   In FIG. 12, the upper part shows the change in the discharge pressure during the back wind in the cooling operation, and the lower part shows a case where the discharge pressure is abnormally increased by the fan block of the outdoor blower 10.

まず、室外送風機10のファンブロック時に異常停止に至るメカニズムを説明する。圧力遮断を検知する制御部14(マイクロコンピュータ)には、一定時間Δτを検知するタイマーを複数設けている。本実施の形態においては、一定時間Δτの間に3回圧力遮断器11が遮断圧力を検知した場合に異常停止させ自動復帰させないものとする。   First, a mechanism that causes an abnormal stop during the fan block of the outdoor blower 10 will be described. The control unit 14 (microcomputer) that detects pressure interruption is provided with a plurality of timers that detect a certain time Δτ. In the present embodiment, when the pressure circuit breaker 11 detects the breaking pressure three times during a certain time Δτ, it is abnormally stopped and is not automatically returned.

冷房運転時にファンブロックにより室外送風機10が停止した場合には、室外熱交換器3の凝縮不良により吐出圧力が急激に上昇し、圧力遮断器11の遮断圧力まで到達し圧縮機1を一旦停止する。1回圧力遮断値まで圧力上昇すると、2回目の運転ではマイクロコンピュータからのアクチュエータ指令により室外送風機回転数アップ又は圧縮機周波数ダウン又は電子膨張弁開度アップ等により運転圧力を低下させようとするが、室外送風機10が停止している為、1回目と同様凝縮不良により圧力が急激に上昇し、圧力遮断器11の遮断圧力まで到達し停止する。3回目の起動でも同様の現象を起こし圧力遮断器11の遮断圧力まで到達し空気調和機は異常停止する。   When the outdoor blower 10 is stopped by the fan block during the cooling operation, the discharge pressure rapidly rises due to the condensation failure of the outdoor heat exchanger 3, reaches the cutoff pressure of the pressure breaker 11, and temporarily stops the compressor 1. . When the pressure rises to the pressure shut-off value once, the second operation tries to lower the operating pressure by increasing the rotational speed of the outdoor fan, decreasing the frequency of the compressor, or increasing the opening of the electronic expansion valve by an actuator command from the microcomputer. Since the outdoor blower 10 is stopped, the pressure rapidly rises due to the condensation failure as in the first time, reaches the cutoff pressure of the pressure circuit breaker 11, and stops. The same phenomenon occurs at the third start-up, reaching the shut-off pressure of the pressure circuit breaker 11, and the air conditioner stops abnormally.

図13のフローチャートにより、その動作を説明する。
先ず、ステップS21で冷房運転を行う。その運転中に、ファンブロックにより室外送風機10が停止すると(ステップS22)、圧縮機1の吐出圧力が上昇する(ステップS23)。吐出圧力が上昇して、圧力遮断器11が遮断圧力を検知すると(ステップS24)、圧縮機1を一旦停止し(ステップS25)、制御部14(マイクロコンピュータ)から運転圧力を下げるアクチュエータ指令を出し、2回目の運転を行う(ステップS26)。
The operation will be described with reference to the flowchart of FIG.
First, a cooling operation is performed in step S21. During the operation, when the outdoor fan 10 is stopped by the fan block (step S22), the discharge pressure of the compressor 1 is increased (step S23). When the discharge pressure rises and the pressure circuit breaker 11 detects the cutoff pressure (step S24), the compressor 1 is temporarily stopped (step S25), and an actuator command for lowering the operating pressure is issued from the control unit 14 (microcomputer). A second operation is performed (step S26).

しかし、ファンブロックにより室外送風機10が停止しているので、圧縮機1の吐出圧力が上昇する(ステップS27)。吐出圧力が上昇して、圧力遮断器11が遮断圧力を再度検知すると(ステップS28)、圧縮機1を一旦停止し(ステップS29)、制御部14(マイクロコンピュータ)から運転圧力を下げるアクチュエータ指令を出し、3回目の運転を行う(ステップS30)。しかし、ファンブロックにより室外送風機10が停止しているので、圧縮機1の吐出圧力が上昇して、圧力遮断器11が遮断圧力を再々度検知すると(ステップS31)、空気調和機を異常停止させ自動復帰させないものとする(ステップS32)。   However, since the outdoor blower 10 is stopped by the fan block, the discharge pressure of the compressor 1 increases (step S27). When the discharge pressure rises and the pressure circuit breaker 11 detects the shut-off pressure again (step S28), the compressor 1 is temporarily stopped (step S29), and an actuator command for lowering the operating pressure is issued from the control unit 14 (microcomputer). The third operation is performed (step S30). However, since the outdoor blower 10 is stopped by the fan block, when the discharge pressure of the compressor 1 rises and the pressure breaker 11 detects the breaking pressure again (step S31), the air conditioner is abnormally stopped. It is assumed that automatic restoration is not performed (step S32).

このようにファンブロックにより室外送風機10が停止した場合に、圧力遮断器11が3回遮断圧力を検知した場合に、ファンブロックと判断し空気調和機を異常停止させ自動復帰させないようにしたので、逆風等の過渡的な遮断圧力検知の場合には、空気調和機を異常停止させることがない。   As described above, when the outdoor blower 10 is stopped by the fan block, when the pressure breaker 11 detects the cutoff pressure three times, the fan block is determined to be an abnormal stop and the automatic recovery is not performed. In the case of transient shut-off pressure detection such as headwind, the air conditioner is not abnormally stopped.

一方、室外送風機10の吹き出し方向より逆風を受けた場合の運転について説明する。冷房運転中、室外吹き出し方向より逆風を受け、圧力上昇し圧力遮断器11の遮断圧力を超え、一旦停止する(T1)。1回遮断圧力を超えた2回目の運転では、通常の運転圧力よりも低めの運転圧力Bにて運転するよう、室外送風機10又は圧縮機1又は電子膨張弁4のアクチュエータ制御を行う。   On the other hand, the operation in the case of receiving back wind from the blowing direction of the outdoor blower 10 will be described. During the cooling operation, the wind blows from the outdoor blowing direction, the pressure rises, exceeds the cutoff pressure of the pressure circuit breaker 11, and temporarily stops (T1). In the second operation exceeding the cut-off pressure once, the actuator control of the outdoor blower 10 or the compressor 1 or the electronic expansion valve 4 is performed so that the operation is performed at the operation pressure B lower than the normal operation pressure.

この状態からさらに強い逆風を受けた場合には、再度圧力遮断器11が遮断圧力を検知し2回目の運転停止に入る(T2)。3回目の運転では、さらに運転圧力A(運転圧力A<運転圧力B)まで下げて運転を行い、前回圧力上昇時と同程度の逆風が吹いた場合(T3)でも、圧力遮断器11の遮断圧力まで上昇すること無く運転することが可能である。   When a stronger back wind is received from this state, the pressure circuit breaker 11 detects the breaking pressure again and enters the second operation stop (T2). In the third operation, operation is further reduced to the operating pressure A (operating pressure A <operating pressure B), and even if a reverse wind blows at the same level as the previous pressure increase (T3), the pressure breaker 11 is shut off. It is possible to operate without increasing the pressure.

その後T4において1回目に異常停止してからのΔτ1の間に3回の異常停止がなくなった為、この後再度圧力遮断器11の遮断圧力まで上昇しても、異常停止とはならない。またT4になった時に運転圧力をBまで戻す。その後逆風が吹かなくなり、Δτ2間に圧力遮断器11が遮断圧力を検知しないと通常の運転圧力に戻し運転を行う(T5)。   After that, since there are no three abnormal stops during Δτ1 after the first abnormal stop at T4, even if the pressure rises again to the shut-off pressure of the pressure circuit breaker 11, it does not stop abnormally. When T4 is reached, the operating pressure is returned to B. After that, if the reverse wind stops blowing and the pressure circuit breaker 11 does not detect the cut-off pressure during Δτ2, the operation is returned to the normal operation pressure (T5).

図14のフローチャートにより制御の流れを総括する。
冷房運転を行い(ステップS41)、通常運転圧力で運転する(ステップS42)。冷房運転中に室外機30に逆風が吹きつけた場合(ステップS43)、圧力遮断器11が遮断圧力を検知したかを判定し(ステップS44)、検知した場合は、一旦運転を停止した後、室外送風機回転数アップ又は圧縮機回転数ダウン又は電子膨張弁開度アップの制御を行い(ステップS45)、運転圧力Bにて運転する(ステップS46)。
The flow of control is summarized by the flowchart of FIG.
A cooling operation is performed (step S41), and operation is performed at a normal operation pressure (step S42). When the back wind blows on the outdoor unit 30 during the cooling operation (step S43), it is determined whether the pressure circuit breaker 11 has detected the shutoff pressure (step S44). The outdoor blower rotation speed is increased, the compressor rotation speed is decreased, or the electronic expansion valve opening is increased (step S45), and operation is performed at the operating pressure B (step S46).

次ぎに、前回の圧力遮断器11の遮断からΔτ2時間経過したかを判定し(ステップS47)、Δτ2時間経過した場合は、室外送風機回転数ダウン又は圧縮機回転数アップ又は電子膨張弁開度ダウンの制御を行い(ステップS55)ステップS42に戻る。   Next, it is determined whether Δτ2 hours have elapsed since the previous break of the pressure circuit breaker 11 (step S47). If Δτ2 hours have elapsed, the outdoor fan speed is reduced, the compressor speed is increased, or the electronic expansion valve opening is decreased. (Step S55), the process returns to step S42.

ステップS47でΔτ2時間経過しない場合は、圧力遮断器11が遮断圧力を再度検知したかを判定し(ステップS48)、検知しない場合はステップS46に戻る。検知した場合は、一旦運転を停止した後、室外送風機回転数アップ又は圧縮機回転数ダウン又は電子膨張弁開度アップの制御を行い(ステップS49)、運転圧力A(運転圧力A<運転圧力B)にて運転する(ステップS50)。   If Δτ2 hours have not elapsed in step S47, it is determined whether the pressure circuit breaker 11 has detected the breaking pressure again (step S48). If not detected, the process returns to step S46. If detected, once the operation is stopped, the outdoor fan speed is increased, the compressor speed is decreased, or the electronic expansion valve opening is increased (step S49), and the operating pressure A (operating pressure A <operating pressure B) is controlled. ) (Step S50).

前々回の圧力遮断器11の遮断からΔτ1時間経過したかを判定し(ステップS51)、Δτ1時間経過した場合は、室外送風機回転数ダウン又は圧縮機回転数アップ又は電子膨張弁開度ダウンの制御を行い(ステップS52)ステップS46に戻る。   It is determined whether Δτ1 hour has elapsed since the last interruption of the pressure circuit breaker 11 (step S51). If Δτ1 hour has elapsed, the control of the outdoor fan speed reduction, the compressor speed increase, or the electronic expansion valve opening degree control is performed. Perform (step S52) Return to step S46.

ステップS51でΔτ1時間経過しない場合は、圧力遮断器11が遮断圧力を再々度検知したかを判定し(ステップS53)、検知しない場合はステップS50に戻る。検知した場合は、空気調和機を異常停止させる(ステップS54)。   If Δτ1 hour has not elapsed in step S51, it is determined whether the pressure circuit breaker 11 has detected the breaking pressure again (step S53). If not detected, the process returns to step S50. If detected, the air conditioner is abnormally stopped (step S54).

このように圧力遮断器11の遮断頻度に応じて運転圧力を変更することにより、室外機30が設置される条件での室外送風機10に対する逆風による凝縮阻害の影響度合いを間接的に検知し、逆風による異常停止誤検知を発生する可能性を極力抑えるとともに、室外送風機10の回転数アップによる騒音値の悪化、圧縮機1の周波数低下による能力低下等を抑えることが可能となる。   In this way, by changing the operating pressure according to the shutoff frequency of the pressure breaker 11, the degree of influence of condensation inhibition by the backwind on the outdoor blower 10 under the condition where the outdoor unit 30 is installed is indirectly detected, and the backwind As a result, it is possible to suppress the possibility of erroneous detection of abnormal stop due to the above, and to suppress the deterioration of the noise value due to the increase in the rotational speed of the outdoor blower 10 and the decrease in capacity due to the decrease in the frequency of the compressor 1.

ファンブロックの異常発生時について説明したが、冷媒回路の詰まりにより圧力が急上昇する場合も、上記制御を適用可能である。   Although the description has been given of the occurrence of an abnormality in the fan block, the above control can also be applied when the pressure rapidly increases due to clogging of the refrigerant circuit.

実施の形態4.
図15は実施の形態4を示す図で、制御のフローチャートである。
上記実施の形態3では、圧力遮断器11の作動が逆風による誤検知の場合で、誤検知を繰り返すようであれば、運転圧力を下げて逆風の場合でも圧力遮断器11が作動しないように制御するものを説明したが、本実施の形態では、室外機30が複数近接して設置される場合で、冷房運転時に、室外機30からは室外熱交換器3と熱交換した高温の空気が吹き出され、この高温の吹き出し空気が、近くの他の室外機30に当たり、その室外機30の温度が上昇し、室外熱交換器3の温度も上昇して、運転凝縮温度を上げる場合の制御に関するものである。
Embodiment 4 FIG.
FIG. 15 shows the fourth embodiment and is a control flowchart.
In the third embodiment, if the operation of the pressure circuit breaker 11 is a false detection due to a back wind, and the erroneous detection is repeated, the pressure breaker 11 is controlled not to operate even in the case of a back wind by reducing the operating pressure. However, in the present embodiment, a plurality of outdoor units 30 are installed close to each other, and during the cooling operation, high-temperature air exchanged with the outdoor heat exchanger 3 is blown out from the outdoor unit 30. The high-temperature blown air hits another nearby outdoor unit 30, the temperature of the outdoor unit 30 rises, the temperature of the outdoor heat exchanger 3 rises, and the control for raising the operation condensing temperature. It is.

この場合の制御のフローは図15のようになるが、図15はステップS56(近くの室外機30の吹き出しの影響があり)が異なるだけであり、説明は省略する。   The control flow in this case is as shown in FIG. 15, but FIG. 15 is different only in step S <b> 56 (the influence of the blowout of the nearby outdoor unit 30), and the description is omitted.

この場合も、圧力遮断器11の遮断頻度に応じて運転圧力を変更することにより、室外機30が設置される条件での室外送風機10に対する近くの室外機30の吹き出しの影響による凝縮阻害の影響度合いを間接的に検知し、近くの室外機30の吹き出しの影響による異常停止誤検知を発生する可能性を極力抑えるとともに、室外送風機10の回転数アップによる騒音値の悪化、圧縮機1の周波数低下による能力低下等を抑えることを可能とする。   Also in this case, by changing the operating pressure according to the shutoff frequency of the pressure breaker 11, the influence of condensation inhibition due to the blowout of the nearby outdoor unit 30 on the outdoor blower 10 under the conditions where the outdoor unit 30 is installed. Indirectly detecting the degree to suppress the possibility of abnormal stop false detection due to the influence of the blowout of the nearby outdoor unit 30 as much as possible, the deterioration of the noise value due to the increase in the rotational speed of the outdoor blower 10, the frequency of the compressor 1 It is possible to suppress a decrease in capacity due to a decrease.

本発明は、HFC410A冷媒を使用した家庭用、業務用空気調和機等の室外機と室内機が分離しているスプリットタイプの空気調和機において、HCFC22冷媒を使用した空気調和機で用いていた接続配管を流用する場合に利用可能である。   The present invention relates to a split type air conditioner in which an indoor unit and an outdoor unit such as a home or commercial air conditioner using an HFC410A refrigerant are separated, and a connection used in an air conditioner using an HCFC22 refrigerant It can be used when diverting piping.

実施の形態1を示す図で、制御対象の空気調和機の構成を示す簡略図である。It is a figure which shows Embodiment 1, and is a simplified diagram which shows the structure of the air conditioner of control object. 実施の形態1を示す図で、室内機と室外機が接続配管により接続された状態を示す斜視図である。It is a figure which shows Embodiment 1, and is a perspective view which shows the state by which the indoor unit and the outdoor unit were connected by connection piping. 実施の形態1を示す図で、空気調和機の冷媒回路及び制御回路を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows the refrigerant circuit and control circuit of an air conditioner. 実施の形態1を示す図で、制御部の概念図である。It is a figure which shows Embodiment 1 and is a conceptual diagram of a control part. 実施の形態1を示す図で、インバータ駆動装置を示すブロック図である。FIG. 5 is a diagram illustrating the first embodiment and is a block diagram illustrating an inverter driving device. 実施の形態1を示す図で、代替冷媒の特性を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows the characteristic of an alternative refrigerant | coolant. 実施の形態1を示す図で、室外機に逆風が吹く状態を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows the state which a back wind blows in an outdoor unit. 実施の形態1を示す図で、冷房運転における圧力(凝縮温度)を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows the pressure (condensation temperature) in air_conditionaing | cooling operation. 実施の形態1を示す図で、動作を示すフローチャート図である。It is a figure which shows Embodiment 1, and is a flowchart figure which shows operation | movement. 実施の形態2を示す図で、室外機が複数近接して設置される例を示す図である。It is a figure which shows Embodiment 2, and is a figure which shows the example with which multiple outdoor units are installed in proximity. 実施の形態3を示す図で、空気調和機の冷媒回路図である。It is a figure which shows Embodiment 3, and is a refrigerant circuit figure of an air conditioner. 実施の形態3を示す図で、冷房運転時における吐出圧力の変化を示す図である。It is a figure which shows Embodiment 3, and is a figure which shows the change of the discharge pressure at the time of air_conditionaing | cooling operation. 実施の形態3を示す図で、ファンブロック時の制御のフローチャート図である。It is a figure which shows Embodiment 3, and is a flowchart figure of the control at the time of a fan block. 実施の形態3を示す図で、逆風時の制御のフローチャート図である。It is a figure which shows Embodiment 3, and is a flowchart figure of the control at the time of a headwind. 実施の形態4を示す図で、制御のフローチャート図である。It is a figure which shows Embodiment 4, and is a flowchart of control.

符号の説明Explanation of symbols

1 圧縮機、2 四方弁、3 室外熱交換器、4 電子膨張弁、5 接続配管、6 室内熱交換器、7 接続配管、8 アキュムレータ、9 室内送風機、10 室外送風機、11 圧力遮断器、12 室外熱交換器温度検知手段、13 室内熱交換器温度検知手段、14 制御部、15 インバータ回路、16 位相制御部、18 コンバータ回路、19 コンバータ制御部、17 タイマー、20 室内機、21 電源、30 室外機。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 Outdoor heat exchanger, 4 Electronic expansion valve, 5 Connection piping, 6 Indoor heat exchanger, 7 Connection piping, 8 Accumulator, 9 Indoor blower, 10 Outdoor blower, 11 Pressure circuit breaker, 12 Outdoor heat exchanger temperature detection means, 13 indoor heat exchanger temperature detection means, 14 control unit, 15 inverter circuit, 16 phase control unit, 18 converter circuit, 19 converter control unit, 17 timer, 20 indoor unit, 21 power supply, 30 Outdoor unit.

Claims (1)

圧縮機、四方弁、室外熱交換器、電子膨張弁、前記圧縮機の吐出側に接続される圧力遮断器、室外送風機を有する室外機と、
室内熱交換器、室内送風機を有する室内機と、
前記室外機と前記室内機とを接続する既設の接続配管と、
前記室外機の圧縮機、四方弁、室外熱交換器、電子膨張弁、前記室内機の室内熱交換器、前記接続配管を有し、冷媒として非塩素系冷媒で低沸点冷媒を用いた冷凍サイクルと、
前記冷凍サイクルの冷房運転時の高圧側圧力を検出する高圧側圧力検出手段と、を備え、
前記圧力遮断器の、当該空気調和機の運転を停止する遮断圧力を、前記既設の接続配管の許容圧力未満に設定し、
前記高圧側圧力検出手段が検出した高圧側圧力が、前記圧力遮断器の遮断圧力より低くく設定した制限高圧側圧力より高くなった場合は、前記圧縮機又は前記室外送風機又は前記電子膨張弁を制御して、目標値になるまで高圧側圧力を下げ、
一定時間、前記制限高圧側圧力を越えることがなければ、当該制限高圧側圧力を越えない範囲で、高圧側圧力を上げるように制御することを特徴とする空気調和機。
A compressor, a four-way valve, an outdoor heat exchanger, an electronic expansion valve, a pressure breaker connected to the discharge side of the compressor, an outdoor unit having an outdoor blower, and
An indoor heat exchanger, an indoor unit having an indoor blower, and
An existing connection pipe connecting the outdoor unit and the indoor unit;
Refrigeration cycle having a compressor, a four-way valve, an outdoor heat exchanger, an electronic expansion valve, an indoor heat exchanger of the indoor unit, and the connecting pipe, and using a low-boiling refrigerant as a refrigerant and a non-chlorine refrigerant. When,
A high pressure side pressure detecting means for detecting a high pressure side pressure during cooling operation of the refrigeration cycle,
The pressure breaker, the breaking pressure for stopping the operation of the air conditioner is set to be less than the allowable pressure of the existing connection pipe,
When the high pressure side pressure detected by the high pressure side pressure detection means is higher than the limited high pressure side pressure set lower than the cutoff pressure of the pressure circuit breaker, the compressor or the outdoor blower or the electronic expansion valve is turned on. Control, lower the high-pressure side pressure until it reaches the target value,
An air conditioner that is controlled to increase the high-pressure side pressure within a range that does not exceed the restricted high-pressure side pressure unless the restricted high-pressure side pressure is exceeded for a certain time.
JP2004052606A 2004-02-27 2004-02-27 Air conditioner Expired - Fee Related JP4451680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004052606A JP4451680B2 (en) 2004-02-27 2004-02-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004052606A JP4451680B2 (en) 2004-02-27 2004-02-27 Air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009235301A Division JP2010008041A (en) 2009-10-09 2009-10-09 Air conditioner

Publications (2)

Publication Number Publication Date
JP2005241155A JP2005241155A (en) 2005-09-08
JP4451680B2 true JP4451680B2 (en) 2010-04-14

Family

ID=35023069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052606A Expired - Fee Related JP4451680B2 (en) 2004-02-27 2004-02-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP4451680B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5171022B2 (en) * 2006-12-15 2013-03-27 東芝キヤリア株式会社 Air conditioner
JP2008309364A (en) * 2007-06-12 2008-12-25 Toyo Eng Works Ltd Heat pump type air conditioning device
JP2011196647A (en) * 2010-03-23 2011-10-06 Corona Corp Heat pump water heater
JP2012078077A (en) * 2010-10-06 2012-04-19 Hoshizaki Electric Co Ltd Refrigerating device
WO2019087405A1 (en) * 2017-11-06 2019-05-09 ダイキン工業株式会社 Air conditioning device
WO2019087406A1 (en) * 2017-11-06 2019-05-09 ダイキン工業株式会社 Air conditioning device

Also Published As

Publication number Publication date
JP2005241155A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
KR19990063277A (en) Steam line pressure control
JP2011149659A (en) Air conditioner
JP2008202905A (en) Air conditioner
JP4440883B2 (en) Air conditioner
CN113531861B (en) Control method of air conditioner and air conditioner
JP6594126B2 (en) Refrigeration cycle apparatus and control method thereof
JP2018204896A (en) Control device of multiple air conditioner, multiple air conditioner, control method of multiple air conditioner, and control program of multiple air conditioner
JP4451680B2 (en) Air conditioner
JP3445861B2 (en) Air conditioner
JP4844147B2 (en) Air conditioner
JP3868265B2 (en) Air conditioner
EP1347248B1 (en) Air conditioner and control method for the air conditioner
JP2020165315A (en) Air conditioner control device, air conditioner with the same, control method for air conditioner and control program for air conditioner
JP2010008041A (en) Air conditioner
JPWO2020003490A1 (en) Air conditioner
JP2002106984A (en) Control method and exchanging method for refrigerant circuit as well as refrigerant circuit device
JP6538418B2 (en) POWER SUPPLY CIRCUIT AND AIR CONDITIONER COMPRISING THE SAME
JP2002162126A (en) Air conditioner
JPH07120091A (en) Air conditioner
JP6881503B2 (en) Air conditioning system
JP4796949B2 (en) Air conditioner
JP2004360967A (en) Air conditioner
KR101133617B1 (en) Inverter air-conditioner and its controlling method
JP4224915B2 (en) Air conditioner
JP2005037003A (en) Air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100128

R150 Certificate of patent or registration of utility model

Ref document number: 4451680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees