[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4449109B2 - Non-aqueous electrolyte secondary battery and manufacturing method thereof - Google Patents

Non-aqueous electrolyte secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP4449109B2
JP4449109B2 JP22884299A JP22884299A JP4449109B2 JP 4449109 B2 JP4449109 B2 JP 4449109B2 JP 22884299 A JP22884299 A JP 22884299A JP 22884299 A JP22884299 A JP 22884299A JP 4449109 B2 JP4449109 B2 JP 4449109B2
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
electrode terminal
package
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22884299A
Other languages
Japanese (ja)
Other versions
JP2001052748A (en
Inventor
敏之 温田
宏行 福留
武義 野阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP22884299A priority Critical patent/JP4449109B2/en
Publication of JP2001052748A publication Critical patent/JP2001052748A/en
Application granted granted Critical
Publication of JP4449109B2 publication Critical patent/JP4449109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は扁平型で密閉式の非水電解質二次電池、特に周縁部の樹脂の融着により発電要素がフィルム状パッケージに封止、内包された非水電解質二次電池及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、電子技術の大きな進歩により、一般ユーザー向けの携帯機器の小型軽量化が進んでいる。
電池のパッケージの面から小型軽量化の進歩に関して、特に非水電解液系の密閉式電池に使われていた材質が、鉄又はステンレス鋼等の重い材質から、アルミニウム等の軽い材質へ転換している。例えば、ラミネートフィルムに関しては、アルミニウム箔を芯材として、その両面に合成樹脂層を配しているものが主流となっている。
【0003】
次に係るラミネートフィルムを用いた従来の非水電解質二次電池の製造方法を説明する。
従来の製造方法では、先ず、一個の電池毎にラミネートフィルム周縁部の一部を除くその他のラミネートフィルム周縁部を融着封口させることでラミネートフィルムを袋状とする。
次に融着封口されていないラミネートフィルム周縁部を開口部とし、係る開口部からこの袋の中に発電要素である正極板、負極板及びセパレータからなる極群を挿入すると共に非水電解液を注入する。
最後に、開口部から電極端子の先端部が突出した状態で開口部を封口する。
以上の工程により非水電解質二次電池の製造は行われていた。
【発明が解決しようとする課題】
【0004】
しかし、以上の従来の非水電解質二次電池の製造方法では、開口部以外のラミネートフィルム周縁部の融着封口を行い、その後、減圧や注液を行った後に、開口部を融着封口するため、ラミネートフィルム周縁部の融着封口を2度以上行う必要があった。この様に2度以上融着封口を行うことでシワ等のムラがラミネートフィルムの周縁部、特にリード先端部が突出しているラミネートフィルムの周縁部に生じ、非水電解質二次電池の密閉性が低下し、歩留まりが著しく低下する等の問題があった。
【0005】
本発明は以上の従来技術における問題に鑑みてなされたものであって、歩留まりを向上させ、密閉性を向上させると共に、工程数を削減することで生産性の高い安価な非水電解質二次電池及びその製造方法を供給することを目的とする。
【0006】
【課題を解決するための手段】
前記課題を解決する本出願第1の発明は、金属箔の内面に融着性樹脂フィルムを配したラミネートフィルム製パッケージ内に正極、負極及びセパレータから構成される極群からなる発電要素を有し、係るパッケージの周縁部が融着封口され、正極及び負極それぞれに接続された電極端子が前記発電要素から前記周縁部の外部に貫通する態様でなる非水電解質二次電池であって、前記発電要素内の、その一部分が電解液保持性の高いゲル電解質から成り、前記パッケージの全周縁部が略同時に融着封口されてなることを特徴とする非水電解質二次電池である。
【0007】
したがって、本出願第1の発明の非水電解質二次電池によれば、前記パッケージの全周縁部が略同時に融着封口されてなることから、密閉性が向上され、歩留まりが向上される利点がある。
【0008】
また、本出願第2の発明は、金属箔の内面に融着性樹脂フィルムを配したラミネートフィルム製パッケージ内に正極、負極及びセパレータから構成される極群と非水電解質とからなる発電要素を有し、係るパッケージの周縁部が融着封口され、正極及び負極それぞれに接続された電極端子が前記発電要素から前記周縁部の外部に貫通する態様でなる非水電解質二次電池であって、前記発電要素内の、その一部分が電解液保持性の高いゲル電解質から成り、前記パッケージの全周縁部に圧痕パターンが略均一に分散されてなることを特徴とする非水電解質二次電池である。
【0009】
したがって、本出願第2の発明の非水電解質二次電池によれば、前記パッケージの全周縁部に圧痕パターンが略均一に分散されてなることから、パッケージ全体の強度を向上せしめ、密閉性を向上させることができる。また、製品検査時に係るパターンを検査指標とすることで、不良製品を確実に発見することができる。
また、融着封止時の樹脂の流出を防止することができる。更にラミネートフィルムの熱膨張等の応力を分散させることができ、密閉性を向上させることができる。
【0010】
また、本出願第3の発明は、前記電極端子が位置する前記周縁部に前記融着性樹脂フィルムの一部が突出する態様でなることを特徴とする。
【0011】
したがって、本出願第3の発明の非水電解質二次電池によれば、前記電極端子が位置する前記周縁部に前記融着性樹脂フィルムの一部が突出する態様でなることから、電極端子の周縁部側に位置する部位が前記融着性樹脂フィルムによって被覆され、曲げ等によって前記電極端子が前記パッケージに触れ、電流が漏洩することを防止できる。
また、前記パッケージの全周縁部の応力集中を回避し、パッケージ全体の強度を向上させる。
更に、電極端子が位置するパッケージの周縁部の応力集中を回避させ、密閉性を向上させ、強度を向上させる利点がある。
また、電極端子が位置するパッケージの周縁部が前記融着性樹脂フィルムにより、均一な圧着面を有することから、密閉性が向上される。
【0012】
また、本出願第4の発明は、ラミネートフィルムに絞り加工を施す絞り加工工程と、
セパレータ、正極板及び負極板を保液性の高いゲル電解質を介して積層又は巻回させ、発電要素である極群を形成し、正極端子及び負極端子と前記極群とを接続させる接続工程と、
前記発電要素を内包させ、電極端子をラミネートフィルム周縁部の外部に露出させる態様で、絞り加工が施されたラミネートフィルムとラミネートフィルムとを重ね合わせる重ね工程と、
重ね合わされたラミネートフィルムの全周縁部を同時に押圧し、融着封口する封止工程と
からなることを特徴とする非水電解質二次電池の製造方法である。
【0013】
したがって、本出願第4の発明の非水電解質二次電池の製造方法によれば、ラミネートフィルムに絞り加工を施す絞り加工工程と、
セパレータ、正極板及び負極板を電解液保持性の高いゲル電解質を介して積層又は巻回させ、発電要素である極群を形成し、正極端子及び負極端子と前記極群とを接続させる接続工程と、
前記発電要素を内包させ、電極端子ラミネートフィルム周縁部の外部に露出させる態様で、絞り加工が施されたラミネートフィルムとラミネートフィルムとを重ね合わせる重ね工程と、
重ね合わされたラミネートフィルムの全周縁部を同時に押圧し、融着封口する封止工程と、
からなることを特徴とするので、複雑な工程を要さず、生産性及び作業性が向上される利点がある。
また、保液性の高いゲル電解質を採用していることから漏液することなく、安全にラミネートフィルムを融着封口することができる。
また、封口工程にて、重ねられたラミネートフィルムの全周縁部を同時に融着封口することから、融着封口時の不良を防止でき、歩留まりを向上させることができる。
【0014】
また、本出願第5の発明は、所定気圧に雰囲気を減圧した上で前記封止工程を行うことを特徴とする。
【0015】
したがって、本出願第6の発明の非水電解質二次電池の製造方法によれば、所定気圧に雰囲気を減圧した上で前記封止工程を行うことから、極群間の密着性が向上し、その結果として電池特性が向上される。
【0016】
また、本出願第6の発明は、前記所定気圧を0.5気圧以下とすることを特徴とする。
【0017】
電池特性は減圧に伴い向上する。係る観点からは減圧の程度はより高くすることが好ましい。
しかし、減圧度を高くするとそれに伴い、多大な時間や大規模な設備を要する。
そこで、所定気圧を0.5気圧以下程度にすることで、減圧に必要とされる大規模な設備を要さず、減圧に要する時間も短縮することができ、製造ラインのサイクルタイム短縮を実現できる。即ち、作業性及び生産性を向上させることができ、更にコストを低減させて工業的適用を容易にすることができる。
【0018】
また、本出願第7は、前記封止工程は、前記電極端子と重ね合わされたラミネートフィルムの全周縁部との重合領域において、シート部材を介在させた押圧を行う工程としたことを特徴とする。
【0019】
したがって、本出願第7の発明の非水電解質二次電池の製造方法によれば、前記封止工程は、前記電極端子と重ね合わされたラミネートフィルムの全周縁部との重合領域において、シート部材を介在させた押圧を行う工程としたことを特徴とすることから、前記電極端子に熱又は機械的負荷を与えることなく、安全確実に封口を行うことができる利点がある。
【0020】
【発明の実施の形態】
以下に本発明の実施の形態の非水電解質二次電池及びその製造方法につき図面を参照して説明する。
【0021】
実施の形態
図1は本発明の実施の形態のラミネートフィルムの断面図、図2は本発明の実施の形態の非水電解質二次電池を下面より見た断面図、図3は本発明の実施の形態の非水電解質二次電池のA―A’断面図である。
まず、図1を参照して本発明の実施の形態の非水電解質二次電池のラミネートフィルムについて、その構成を説明する。
係るラミネートフィルム1は3重構造であり、外面に保護層として強度の高いポリエチレンテレフタレート又はナイロン等の樹脂フィルム2を配し、内面に変性ポリプロピレン等の融着性樹脂フィルム3を配し、芯材にアルミニウム箔等の金属箔4を配することで構成されている。
また、融着性樹脂フィルム3は、ラミネートフィルム1の基材、即ち芯材となるアルミニウム又はアルミニウム合金等との接着性の良い酸変性ポリオレフィン、アイオノマー、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体及びエチレン−メタクリル酸共重合体等の金属接着性樹脂を用いることが好ましい。
しかし、端子との接続部分に金属接着層を設けるのであればポリプロピレン又はポリエチレン等を用いることも可能である。
【0022】
次に、図2及び図3を参照して、本発明の実施の形態の非水電解質二次電池の構成を説明する。
図2及び図3に示すように本発明の実施の形態の非水電解質二次電池の構成は、ラミネートフィルム製パッケージ(以下、パッケージ5)内に正極板6、負極板7、セパレータ8及び電解液保持性の高いゲル電解質(図示せず)で構成される極群9からなる発電要素10を有している。
また、発電要素10はパッケージ5の内部に極群9を2つ重ねられて構成されている。更に、発電要素10の負極板7は負極端子11に接続しており、正極板6は正極端子12に接続している。尚、係る発電要素10は電解液保持性の高いゲル電解質を有しており、漏液を防止する効果を奏する。また、ゲル電解質はセパレータ8の基材多孔中に含浸されているが、発電要素10のうち一以上の要素に塗布又は含浸されればよいため、これに限定されない。
更に、本実施の形態の非水電解質二次電池で用いられるゲル電解質は、例えばフッ素を含むアルキル骨格を有し、官能基として重合性官能基を分子構造に持つモノマーから重合して生成する重合体をゲル骨格マトリクスとして固体状に形成されたものとする。また、前記重合性官能基とは、ビニルケトン系又はビニル系であり、例えば、アクリロイル基、メタクリロイル基、アリル基である。フッ素を含むモノマーを重合してなる重合生成体は骨格にフッ素を含むアルカンを有することから溶媒分子や溶質分子との相互作用が小さい。また、化学的・電気化学的に安定である。また、主骨格に酸エステル構造が残るが、適度な極性基の存在によって溶媒のシネリシスを防止できることから上述のゲル電解質を採用することが好ましい。
また、上述のゲル電解質について更に詳細に説明すると、ポリエチレンオキシド、ポリエチレンオキシドのコポリマー、ポリアクリロニトリル、ポリ弗化ビニリデン、ポリ弗化ビニリデンのコポリマー、6弗化プロピレンのコポリマー、ポリメチルメタクリレート、ポリアクリルアミド、ポリカーボネート類又は等ヘテロ原子をポリマー分子内に有する直鎖又は等ヘテロ原子をポリマー分子内に有する架橋体を用いることが好ましい。
【0023】
更に加えて、パッケージ5の周縁部13には密閉性を向上させるべく、略均一な圧痕パターン14が配されている。
係る圧痕パターン14は、周縁部13を押圧封口する工具端面(図示せず)によりパッケージを封口時に周縁部13に形成されるものである。即ち、圧痕パターン14は工具端面に施されたパターン(図示せず)が転写されることにより形成される。
ここで言う圧痕パターン14が略均一であるとは、前記工具端面に存在するパターンと同一の圧痕パターン14が単一の封口工程により周縁部13に形成されることをいう。従って、工具による押圧が複数回にわたることにより、複合パターンが形成された場合には圧痕パターン14は略均一ではない。
一方、予め工具端面上に形成されるパターン同士の間隔(例えば、ドットの間隔)が不均一である場合に、工具端面上のパターン自体が不均一、不連続である結果として、係るパターンが転写された周縁部13上の圧痕パターン14が不均一、不連続となる場合がある。
その場合、工具端面上のパターンと同一の圧痕パターン14のみが周縁部13に存在する限り、本発明の言うところの圧痕パターン14が略均一である場合に該当する。
以上の様に、パッケージ5の周縁部13はその全ての周縁部13が略同時に融解封口されたものであるため、シワ等の発生が認められず、密閉性及び気密性が向上され、歩留まりが向上される効果を奏する。
【0024】
次に、本発明の実施の形態の非水電解質二次電池の製造方法を図1、図2、図3及び図4を参照して説明する。
図4は本発明の実施の形態の非水電解質二次電池の製造工程図である。
図4に示すように本発明の実施の形態の非水電解質二次電池の製造方法は、まず切断工程15でラミネートフィルム1を所定の大きさ、例えば最終的な製品に近い形状に切断する。
次に絞り加工工程16で、所定寸法に切断されたラミネートフィルム(図示せず)に絞り加工を施す。
【0025】
また、接続工程17にて正極板6と当接するセパレータ8の一面及び負極板11と当接するセパレータ8の一面に電解液保持性の高いゲル電解質(図示せず)を塗布又は含浸させた後、セパレータ8、正極板6及び負極板7を積層又は巻回させ、発電要素10である極群9を形成させた後に、極群9を正極端子12及び負極端子11(電極端子)と接続する。
尚、本実施の形態ではセパレータ8にゲル電解質を塗布又は含浸させるが、セパレータ8、正極板12及び負極板11のうち全ての要素又は一以上の要素に塗布又は含浸させてもよい。
【0026】
次に、重ね工程18にて、絞り加工工程16を経た絞り済みラミネートフィルム(図示せず)を下面にし、所定の位置に前記発電要素10を搭載させる。その際、発電要素10に接続された正極端子12及び負極端子11が絞り済みラミネートフィルムの周縁部13の一部に突出する態様で発電要素10の搭載を行う。その後、絞りを施していない所定寸法に切断された絞りなしラミネートフィルムを上部より重ね合わせる。
【0027】
次に、封止工程19にて、重ね合わされたラミネートフィルム(図示せず)の雰囲気を減圧する。
その際、減圧度を高くすればするほどに電池特性は向上される。電池特性は減圧に伴い向上する。係る観点からは減圧の程度はより高くすることが好ましい。
しかし、減圧度を高くするとそれに伴い、多大な時間や大規模な設備を要する。
そこで、所定気圧を0.5気圧以下にすることで、減圧に必要とされる大規模な設備を要さず、減圧に要する時間も短縮することができ、製造ラインのサイクルタイムを短縮することを実現できる利点がある。即ち、作業性及び生産性を向上させることができ、更にコストを低減させて工業的適用を容易にすることができる。
減圧後、重ね合わされたラミネートフィルムの全ての周縁部13を略同時に融着封口し、パッケージにする。
尚、ここに言う略同時とは、実質的に一工程で重ね合わされたラミネートフィルムの全ての周縁部13を融着封止することを意味する。
また、重ね合わされたラミネートフィルムの周縁部13とパッケージの周縁部13とは同じ位置を指す。
【0028】
この様に、封止工程19にて、全ての周縁部13を略同時に融着封口する。係る工程とすることで、従来の部分的に順次に圧着する際に生じていたシワ等のムラの発生を防止し、電池の気密性を向上させることができる。
ここで、融着封口を実施する方法を説明する。融着封口を実施する方法としては、高周波方式又は熱ブロック方式を利用する。前記高周波方式は、高周波を金属に当てることで金属体自身から発熱させる方式である。前記熱ブロック方式はパッケージの周縁部13に係る周縁部13を圧接する工具端面(図示せず)から発熱させ、工具端面の圧着時に重ねられたラミネートフィルムの融着性樹脂フィルム3を加熱させ、融解封口させる方式である。本実施の形態では、ラミネートフィルム1が3重構造であり、上述の構造を有することからラミネートフィルム1上面の樹脂フィルム2を劣化させない意味でも高周波方式を採用することが望ましい。
また、融着封口に際し、パッケージ5の周縁部13に圧接する工具端面にパターン(図示せず)を設けることで、パッケージ5の周縁部13に圧痕パターン14を形成させることができる。圧痕パターン14をパッケージ5の周縁部13に形成させることで、更にパッケージ5の密閉性及び気密性を向上させることができる。
この場合に、正極端子12及び負極端子11が位置する周縁部13は圧痕パターン14を形成させる際に工具端面に設けたパターンが正極端子12又は負極端子11を貫通してしまうとショートを起こす。しかし、工具端面に設けたパターンが圧接する正極端子12及び負極端子11が位置する周縁部13にプラスチックや樹脂等の材料でなるフィルム(図示せず)を搭載させて、工具端面から印加される圧力を制御することでこの様な問題は解消できる。また、本実施の形態の非水電解質二次電池の製造方法によって形成される圧痕パターン14は、フィルムによって形成されるものではなく、工具端面のパターンが転写されることで形成されるパターンがここに言う圧痕パターン14である。
また、高周波方式による金属からの発熱量(温度)は、高周波発生装置とその対象となる金属体の距離、対象となる金属体の種類及び高周波の強さによって決定される。高周波の強さが一定であり、対象となる金属体の種類が同一である場合、特にその発熱量は距離に反比例する。従って、フィルムを正極端子12及び負極端子11が位置する周縁部13に搭載させることで、フィルムを搭載させた周縁部13は他の周縁部13と比較して工具端面からの距離が大となり、温度が制御され、他の周縁部13と比較して低温となる。その結果として、融着樹脂フィルム3の融解率が制御され、正極端子12及び負極端子11に与える負荷が軽減し、安全・確実に融着封口することができる。
また、熱ブロック方式を採用する場合は、ラミネートフィルム1、正極端子12及び負極端子11を劣化させない意味でも、前記フィルムを低熱伝導性とすることが望ましい。
また、フィルムを2以上の電極端子(図示せず)に被覆する態様で用いる場合、特に正極及び負極の2極間の通電によるショートを防止するために絶縁性のフィルムを採用するのが好ましい。
【0029】
次に、切断工程20にて減圧解除し、前記パッケージの周縁部を所定の位置で切断する。
また、正極端子12及び負極端子11が位置する周縁部以外を切断することで、圧着により周縁部13の外部に突出した融着性樹脂フィルム3が正極端子12及び負極端子11の根本を被覆する態様となる。結果として、正極端子12及び負極端子11の根本に位置する周縁部13の応力集中を回避させ、パッケージ5の強度を向上させる。
また、本実施の形態の非水電解質二次電池は、切断工程20を経た後に充電される。
【0030】
本発明の実施の形態の非水電解質二次電池及びその製造方法では、絞り加工を施したラミネートフィルムと絞り加工を施していないラミネートフィルムを重ね合わせて工程を順次進行させている。しかし、絞り加工を施したラミネートフィルム同士を重ねあわせても本発明の非水電解質二次電池の製造方法を行うことができる。
また、ラミネートフィルムを所定寸法に切断する切断工程15とラミネートフィルムの絞り加工工程16との工程順序を逆にし、切断する前のラミネートフィルムに絞り加工を施した後、ラミネートフィルムを所定寸法に切断して順次工程を進めてもよい。
また、長尺な一方のラミネートフィルムに絞り加工を施した後、係る一方のラミネートフィルムの所定の位置に接続工程17で得られた発電要素10を搭載させ、他方の長尺のラミネートフィルム(絞り加工あり又は絞り加工なし)を重ねる。その後、封止工程19を経て、パッケージとなったラミネートフィルムを所定寸法に切断することも可能である。
【0031】
また、上述の本発明の実施の形態の非水電解質二次電池の一構成要素である発電要素の他の構成例を図5を参照して説明する。
図5は上述の図1に示した本発明の実施の形態の非水電解質二次電池のA―A’断面図である。
極群9にて構成される発電要素10のうち、正極板6はアルミ等の正極集電体21と正極活物質22とから構成され、負極板7は銅等の負極集電体23と負極活物質24とから構成される。
また、正極活物質22としては、以下の電池電極材料が挙げられる。
即ち、CuO、CuO、AgO、CuS、CuSOなどのI族金属化合物、TiS、SiO、SnOなどのIV族金属化合物、V、V12、VO、Nb、Bi、SbなどのV族金属化合物、CrO、Cr、MoO、MoS、WO、SeOなどのVI族金属化合物、MnO、MnなどのVII族金属化合物、Fe、FeO、Fe、Ni、NiO、CoO、CoOなどのVIII族金属化合物、又は、一般式LixMX、LixMNyX2(M、NはIからVIII族の金属、Xは酸素、硫黄などのカルコゲン化合物を示す。)などで表される。例えば、リチウム−コバルト系複合酸化物、或いはリチウム−マンガン系複合酸化物などの金属化合物、更に、ジスルフィド、ポリピロール、ポリアニリン、ポリパラフェニレン、ポリアセチレン、ポリアセン系材料などの導電性高分子化合物、擬グラファイト構造炭素材料などであるが、これらに限定されるものではない。
更に、負極活物質24としては、以下の電池電極材料が挙げられる。
即ち、カーボンなどの炭素質材料、特に黒鉛質材料、
[例えば、上記炭素質材料が、X線回析等による分析結果;
格子面間隔(d002) 3.33から3.05Å
a軸方向の結晶子の大きさ La 200Å以上
c軸方向の結晶子の大きさ Lc 200Å以上
真密度 2.00から2.25g/cm
また、異方性のピッチを2000℃以上の温度で焼成した黒鉛質粉末、望ましくは上記黒鉛質材料がLc<100nmの短繊維状炭素繊維、或いはメソカーボンマイクロビーズであるが、もちろんこれらの範囲に限定されるものではない。]スズ酸化物や珪素酸化物といった金属酸化物、更に上記の電気化学的活性物質に負極特性を向上される目的でリンやホウ素を添加し改質を行った材料等が挙げられる。また、負極活物質24にはリチウム金属、リチウム−アルミニウム、リチウム−鉛、リチウム−スズ、リチウム−アルミニウム−スズ、リチウム−ガリウム及びウッド合金などのリチウム金属含有合金なども用いられるが、これらに限定されるものではない。また、リチウム金属やリチウム合金、リチウムを含有する有機化合物を併用することや、予め電気化学的に還元することによって、前記炭素質材料に予めリチウムを挿入することも可能である。
発電要素10を以上の構成としても本実施の形態の非水電解質二次電池と同様の効果を得ることができる。
また、図5に示した発電要素を内包する非水電解質二次電池も、前述した本発明の本実施の形態の非水電解質二次電池の製造方法により製造することができる。
【0032】
【発明の効果】
以上で説明した本発明の非水電解質二次電池は気密性が高く、振動、衝撃、曲げなどによる短絡や漏液を防止することができる。また、製造が容易であり、安全性、作業性、生産性が高く、工程が少ないためコストが低減される利点がある。また、全周縁部が略同時に融着封口されることから、歩留まりを向上することができる。
【図面の簡単な説明】
【図1】 実施の形態のラミネートフィルムの断面図
【図2】 実施の形態の非水電解質二次電池の断面図
【図3】 実施の形態の非水電解質二次電池のA―A’断面図
【図4】 実施の形態の非水電解質二次電池の製造方法
【図5】 実施の形態の非水電解質二次電池のA―A’断面図
【符号の説明】
1. ラミネートフィルム
2. 樹脂フィルム
3. 融着性樹脂フィルム
4. 金属箔
5. パッケージ
6. 正極板
7. 負極板
8. セパレータ
9. 極群
10.発電要素
11.負極端子
12.正極端子
13.周縁部
14.圧痕パターン
15.切断工程
16.絞り加工工程
17.接続工程
18.重ね工程
19.封止工程
20.切断工程
21.正極集電体
22.正極活物質
23.負極集電体
24.負極活物質
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flat and sealed non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery in which a power generation element is sealed and encapsulated in a film-like package by fusion of resin at the peripheral edge, and a method for manufacturing the same. It is.
[0002]
[Prior art]
In recent years, portable devices for general users have been reduced in size and weight due to great advances in electronic technology.
Regarding the progress of miniaturization and weight reduction in terms of battery packaging, the material used in non-aqueous electrolyte sealed batteries has been changed from heavy materials such as iron or stainless steel to light materials such as aluminum. Yes. For example, as for the laminate film, the one in which an aluminum foil is used as a core material and a synthetic resin layer is disposed on both surfaces thereof is the mainstream.
[0003]
Next, a conventional method for producing a nonaqueous electrolyte secondary battery using the laminate film will be described.
In the conventional manufacturing method, first, the laminate film is formed into a bag shape by fusing and sealing the other laminate film periphery except for a part of the laminate film periphery for each battery.
Next, the periphery of the laminated film that is not fused and sealed is used as an opening, and a pole group consisting of a positive electrode plate, a negative electrode plate, and a separator, which are power generation elements, is inserted into the bag through the opening and a non-aqueous electrolyte is added inject.
Finally, the opening is sealed with the tip of the electrode terminal protruding from the opening.
The non-aqueous electrolyte secondary battery has been manufactured through the above steps.
[Problems to be solved by the invention]
[0004]
However, in the above conventional method for producing a nonaqueous electrolyte secondary battery, the peripheral edge of the laminate film other than the opening is fused and then the opening is fused after pressure reduction or liquid injection. For this reason, it has been necessary to perform fusion sealing at the periphery of the laminate film twice or more. By performing the fusion sealing twice or more in this way, unevenness such as wrinkles occurs at the peripheral edge of the laminate film, particularly the peripheral edge of the laminate film from which the lead tip protrudes, and the sealing performance of the nonaqueous electrolyte secondary battery is improved. There are problems such as a decrease in yield and a significant decrease in yield.
[0005]
The present invention has been made in view of the above problems in the prior art, and improves the yield, improves the sealing performance, and reduces the number of processes, thereby reducing the number of steps and increasing the productivity of an inexpensive nonaqueous electrolyte secondary battery. And its manufacturing method.
[0006]
[Means for Solving the Problems]
The first invention of the present application that solves the above-mentioned problems has a power generation element comprising a pole group composed of a positive electrode, a negative electrode, and a separator in a laminate film package in which a fusible resin film is arranged on the inner surface of a metal foil. A nonaqueous electrolyte secondary battery in which a peripheral portion of such a package is fused and sealed, and electrode terminals connected to each of a positive electrode and a negative electrode penetrate from the power generation element to the outside of the peripheral portion, In the non-aqueous electrolyte secondary battery, a part of the element is made of a gel electrolyte having a high electrolytic solution retention property, and the entire peripheral edge of the package is fused and sealed almost simultaneously.
[0007]
Therefore, according to the nonaqueous electrolyte secondary battery of the first invention of the present application, since the entire peripheral edge portion of the package is fused and sealed at the same time, there is an advantage that the sealing performance is improved and the yield is improved. is there.
[0008]
Further, the second invention of the present application provides a power generation element composed of a non-aqueous electrolyte and a pole group composed of a positive electrode, a negative electrode, and a separator in a laminate film package in which a fusible resin film is disposed on the inner surface of a metal foil. A nonaqueous electrolyte secondary battery in which the peripheral portion of the package is fused and sealed, and the electrode terminals connected to each of the positive electrode and the negative electrode penetrate from the power generation element to the outside of the peripheral portion, A non-aqueous electrolyte secondary battery in which a part of the power generation element is made of a gel electrolyte having a high electrolyte retention property, and an indentation pattern is distributed substantially uniformly on the entire periphery of the package. .
[0009]
Therefore, according to the nonaqueous electrolyte secondary battery of the second invention of the present application, since the indentation pattern is distributed substantially uniformly on the entire periphery of the package, the strength of the entire package is improved, and the sealing property is improved. Can be improved. In addition, a defective product can be reliably found by using a pattern related to product inspection as an inspection index.
Moreover, the outflow of resin at the time of fusion sealing can be prevented. Furthermore, stress such as thermal expansion of the laminate film can be dispersed, and the sealing performance can be improved.
[0010]
The third invention of the present application is characterized in that a part of the fusible resin film protrudes from the peripheral edge where the electrode terminal is located.
[0011]
Therefore, according to the nonaqueous electrolyte secondary battery of the third invention of the present application, since the part of the fusible resin film protrudes from the peripheral portion where the electrode terminal is located, A portion located on the peripheral edge side is covered with the fusible resin film, and it is possible to prevent the electrode terminal from touching the package by bending or the like and leaking current.
Further, stress concentration on the entire peripheral edge of the package is avoided, and the strength of the entire package is improved.
Furthermore, there is an advantage that stress concentration at the peripheral portion of the package where the electrode terminal is located is avoided, the sealing property is improved, and the strength is improved.
Moreover, since the peripheral part of the package in which an electrode terminal is located has a uniform crimping | compression-bonding surface with the said meltable resin film, airtightness is improved.
[0012]
The fourth invention of the present application is a drawing process for drawing a laminate film,
A step of laminating or winding the separator, the positive electrode plate and the negative electrode plate via a highly liquid-retaining gel electrolyte to form a pole group which is a power generation element, and connecting the positive electrode terminal and the negative electrode terminal to the pole group; ,
In an aspect in which the power generation element is included and the electrode terminals are exposed to the outside of the peripheral portion of the laminate film, the laminating step of superimposing the laminate film and the laminate film subjected to drawing processing,
A sealing process in which all the peripheral edges of the laminated laminate film are simultaneously pressed and fused and sealed;
It is a manufacturing method of the nonaqueous electrolyte secondary battery characterized by comprising.
[0013]
Therefore, according to the method for manufacturing a nonaqueous electrolyte secondary battery of the fourth invention of the present application, a drawing process for drawing the laminate film,
A connecting step of laminating or winding a separator, a positive electrode plate, and a negative electrode plate via a gel electrolyte having high electrolyte retention, forming a pole group that is a power generation element, and connecting the positive electrode terminal and the negative electrode terminal to the pole group When,
In an aspect that includes the power generation element and is exposed to the outside of the peripheral portion of the electrode terminal laminate film, an overlapping step of superimposing the laminate film and the laminate film subjected to drawing processing,
A sealing step of simultaneously pressing all the peripheral edges of the laminated laminate film, and fusing and sealing;
Therefore, there is an advantage that productivity and workability are improved without requiring a complicated process.
Further, since the gel electrolyte having a high liquid retaining property is employed, the laminate film can be safely sealed by fusion without leaking.
In addition, since all the peripheral edge portions of the laminated laminate film are simultaneously fused and sealed in the sealing step, it is possible to prevent defects at the time of fusion sealing and improve the yield.
[0014]
The fifth invention of the present application is characterized in that the sealing step is performed after reducing the atmosphere to a predetermined pressure.
[0015]
Therefore, according to the nonaqueous electrolyte secondary battery manufacturing method of the sixth invention of the present application, since the sealing step is performed after reducing the atmosphere to a predetermined atmospheric pressure, the adhesion between the electrode groups is improved, As a result, battery characteristics are improved.
[0016]
The sixth invention of the present application is characterized in that the predetermined atmospheric pressure is 0.5 atmospheric pressure or less.
[0017]
Battery characteristics improve with reduced pressure. From such a viewpoint, it is preferable that the degree of decompression is higher.
However, when the degree of decompression is increased, much time and large-scale equipment are required.
Therefore, by setting the specified atmospheric pressure to about 0.5 atm or less, it is possible to reduce the time required for decompression without requiring large-scale equipment required for decompression, and shorten the cycle time of the production line. it can. That is, workability and productivity can be improved, and the cost can be further reduced to facilitate industrial application.
[0018]
In addition, the seventh application of the present application is characterized in that the sealing step is a step of pressing with a sheet member interposed in a polymerization region with the entire peripheral edge of the laminated film overlapped with the electrode terminal. .
[0019]
Therefore, according to the method for manufacturing a non-aqueous electrolyte secondary battery of the seventh invention of the present application, the sealing step includes a sheet member in a polymerization region with the entire peripheral edge of the laminate film overlapped with the electrode terminal. Since it is characterized by the step of performing the intervening pressing, there is an advantage that the sealing can be performed safely and reliably without applying heat or mechanical load to the electrode terminal.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a nonaqueous electrolyte secondary battery and a method for manufacturing the same according to an embodiment of the present invention will be described with reference to the drawings.
[0021]
Embodiment
1 is a cross-sectional view of a laminate film according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention as viewed from the bottom, and FIG. 3 is an embodiment of the present invention. It is AA 'sectional drawing of a nonaqueous electrolyte secondary battery.
First, the structure of the laminate film of the nonaqueous electrolyte secondary battery according to the embodiment of the present invention will be described with reference to FIG.
The laminate film 1 has a triple structure, a resin film 2 such as high-strength polyethylene terephthalate or nylon is arranged on the outer surface as a protective layer, a fusible resin film 3 such as modified polypropylene is arranged on the inner surface, and a core material It is comprised by arrange | positioning metal foil 4, such as aluminum foil.
Also, the fusible resin film 3 is an acid-modified polyolefin, ionomer, ethylene-vinyl acetate copolymer, ethylene-acrylic having good adhesion to the base material of the laminate film 1, that is, aluminum or aluminum alloy as a core material. It is preferable to use a metal adhesive resin such as an acid copolymer and an ethylene-methacrylic acid copolymer.
However, it is possible to use polypropylene or polyethylene as long as a metal adhesive layer is provided at the connection portion with the terminal.
[0022]
Next, with reference to FIG.2 and FIG.3, the structure of the nonaqueous electrolyte secondary battery of embodiment of this invention is demonstrated.
As shown in FIGS. 2 and 3, the configuration of the nonaqueous electrolyte secondary battery according to the embodiment of the present invention is such that a positive electrode plate 6, a negative electrode plate 7, a separator 8 and an electrolysis are provided in a laminate film package (hereinafter, package 5). It has the electric power generation element 10 which consists of the pole group 9 comprised with a gel electrolyte (not shown) with high liquid retainability.
Further, the power generation element 10 is configured by stacking two pole groups 9 inside the package 5. Further, the negative electrode plate 7 of the power generation element 10 is connected to the negative electrode terminal 11, and the positive electrode plate 6 is connected to the positive electrode terminal 12. In addition, the electric power generation element 10 has a gel electrolyte having a high electrolytic solution retention property, and has an effect of preventing leakage. Further, the gel electrolyte is impregnated in the porous substrate of the separator 8, but it is not limited to this because it may be applied or impregnated in one or more elements of the power generation element 10.
Furthermore, the gel electrolyte used in the non-aqueous electrolyte secondary battery of the present embodiment has, for example, a heavy polymer formed by polymerizing from a monomer having an alkyl skeleton containing fluorine and having a polymerizable functional group in the molecular structure as a functional group. Assume that the coalescence is formed in a solid form as a gel skeleton matrix. In addition, the polymerizable functional group is a vinyl ketone type or a vinyl type, for example, an acryloyl group, a methacryloyl group, or an allyl group. A polymerization product obtained by polymerizing a monomer containing fluorine has an alkane containing fluorine in the skeleton, and therefore has little interaction with solvent molecules and solute molecules. In addition, it is chemically and electrochemically stable. Further, although the acid ester structure remains in the main skeleton, it is preferable to employ the above gel electrolyte because the syneresis of the solvent can be prevented by the presence of an appropriate polar group.
Further, the above gel electrolyte will be described in more detail. Polyethylene oxide, polyethylene oxide copolymer, polyacrylonitrile, polyvinylidene fluoride, polyvinylidene fluoride copolymer, propylene hexafluoride copolymer, polymethyl methacrylate, polyacrylamide, It is preferable to use a polycarbonate or a crosslinked product having a straight-chain or equihetero atom in the polymer molecule having an equihetero atom in the polymer molecule.
[0023]
In addition, a substantially uniform indentation pattern 14 is arranged on the peripheral portion 13 of the package 5 in order to improve the sealing performance.
The indentation pattern 14 is formed on the peripheral edge 13 when the package is sealed by a tool end face (not shown) that presses and seals the peripheral edge 13. That is, the indentation pattern 14 is formed by transferring a pattern (not shown) provided on the tool end face.
Here, the indentation pattern 14 being substantially uniform means that the same indentation pattern 14 as the pattern existing on the tool end face is formed on the peripheral edge portion 13 by a single sealing step. Therefore, the indentation pattern 14 is not substantially uniform when a composite pattern is formed by pressing with a tool a plurality of times.
On the other hand, when the spacing between patterns (for example, dot spacing) formed in advance on the tool end surface is non-uniform, the pattern on the tool end surface is non-uniform and discontinuous. The indentation pattern 14 on the peripheral edge 13 may be non-uniform and discontinuous.
In this case, as long as only the same indentation pattern 14 as the pattern on the tool end face exists in the peripheral edge portion 13, this corresponds to the case where the indentation pattern 14 according to the present invention is substantially uniform.
As described above, the peripheral edge portion 13 of the package 5 is obtained by melting and sealing all the peripheral edge portions 13 substantially at the same time, so that the generation of wrinkles is not observed, the hermeticity and airtightness are improved, and the yield is improved. There is an improved effect.
[0024]
Next, a method for manufacturing a nonaqueous electrolyte secondary battery according to an embodiment of the present invention will be described with reference to FIGS. 1, 2, 3, and 4.
FIG. 4 is a manufacturing process diagram of the nonaqueous electrolyte secondary battery according to the embodiment of the present invention.
As shown in FIG. 4, in the method for manufacturing a nonaqueous electrolyte secondary battery according to the embodiment of the present invention, first, in the cutting step 15, the laminate film 1 is cut into a predetermined size, for example, a shape close to the final product.
Next, in a drawing process 16, drawing is performed on a laminate film (not shown) cut to a predetermined size.
[0025]
In addition, after applying or impregnating a gel electrolyte (not shown) having a high electrolyte solution retention property to one surface of the separator 8 that contacts the positive electrode plate 6 and one surface of the separator 8 that contacts the negative electrode plate 11 in the connecting step 17, After the separator 8, the positive electrode plate 6, and the negative electrode plate 7 are stacked or wound to form the electrode group 9 that is the power generation element 10, the electrode group 9 is connected to the positive electrode terminal 12 and the negative electrode terminal 11 (electrode terminal).
In the present embodiment, the separator 8 is applied or impregnated with the gel electrolyte, but all or one or more of the separator 8, the positive electrode plate 12, and the negative electrode plate 11 may be applied or impregnated.
[0026]
Next, in the stacking step 18, the drawn laminate film (not shown) that has undergone the drawing step 16 is placed on the lower surface, and the power generating element 10 is mounted at a predetermined position. At that time, the power generation element 10 is mounted in such a manner that the positive electrode terminal 12 and the negative electrode terminal 11 connected to the power generation element 10 protrude to a part of the peripheral edge portion 13 of the squeezed laminated film. Thereafter, a non-drawing laminate film cut to a predetermined size that has not been drawn is overlaid from above.
[0027]
Next, in the sealing step 19, the atmosphere of the laminated film (not shown) that is superimposed is reduced in pressure.
At that time, the higher the degree of vacuum, the better the battery characteristics. Battery characteristics improve with reduced pressure. From such a viewpoint, it is preferable that the degree of decompression is higher.
However, when the degree of decompression is increased, much time and large-scale equipment are required.
Therefore, by setting the predetermined atmospheric pressure to 0.5 atmospheric pressure or less, large-scale equipment required for decompression is not required, the time required for decompression can be shortened, and the cycle time of the production line can be shortened. There is an advantage that can be realized. That is, workability and productivity can be improved, and the cost can be further reduced to facilitate industrial application.
After decompression, all the peripheral edge portions 13 of the laminated laminate film are fused and sealed almost simultaneously to form a package.
The term “substantially simultaneous” as used herein means that all the peripheral edge portions 13 of the laminated film substantially overlapped in one step are fusion-sealed.
In addition, the peripheral edge portion 13 of the laminated film and the peripheral edge portion 13 of the package indicate the same position.
[0028]
In this way, in the sealing step 19, all the peripheral edge portions 13 are fused and sealed almost simultaneously. By setting it as such a process, generation | occurrence | production of the nonuniformity of the wrinkles etc. which had arisen at the time of the conventional partial pressure bonding sequentially can be prevented, and the airtightness of the battery can be improved.
Here, a method for performing the fusion sealing will be described. As a method for performing the fusion sealing, a high frequency method or a heat block method is used. The high-frequency method is a method in which heat is generated from the metal body itself by applying a high frequency to the metal. The heat block method generates heat from a tool end surface (not shown) that presses the peripheral edge portion 13 of the peripheral edge portion 13 of the package, heats the fusible resin film 3 of the laminated film that is stacked when the tool end surface is pressed, This is a method of melting and sealing. In the present embodiment, since the laminate film 1 has a triple structure and has the above-described structure, it is desirable to adopt a high frequency method also in the sense that the resin film 2 on the top surface of the laminate film 1 is not deteriorated.
Further, by providing a pattern (not shown) on the tool end surface pressed against the peripheral edge portion 13 of the package 5 at the time of fusion sealing, the indentation pattern 14 can be formed on the peripheral edge portion 13 of the package 5. By forming the indentation pattern 14 on the peripheral edge portion 13 of the package 5, the hermeticity and airtightness of the package 5 can be further improved.
In this case, the peripheral portion 13 where the positive electrode terminal 12 and the negative electrode terminal 11 are located causes a short circuit if the pattern provided on the tool end surface penetrates the positive electrode terminal 12 or the negative electrode terminal 11 when forming the indentation pattern 14. However, a film (not shown) made of a material such as plastic or resin is mounted on the peripheral edge portion 13 where the positive electrode terminal 12 and the negative electrode terminal 11 on which the pattern provided on the tool end surface is pressed, and is applied from the tool end surface. Such problems can be solved by controlling the pressure. Further, the indentation pattern 14 formed by the nonaqueous electrolyte secondary battery manufacturing method of the present embodiment is not formed by a film, but a pattern formed by transferring the pattern of the tool end surface is here. Is an indentation pattern 14.
The amount of heat generated from the metal (temperature) by the high frequency method is determined by the distance between the high frequency generator and the target metal body, the type of the target metal body, and the strength of the high frequency. When the strength of the high frequency is constant and the types of the target metal bodies are the same, the calorific value is in inverse proportion to the distance. Therefore, by mounting the film on the peripheral portion 13 where the positive electrode terminal 12 and the negative electrode terminal 11 are located, the peripheral portion 13 on which the film is mounted has a larger distance from the tool end surface than the other peripheral portions 13. The temperature is controlled and the temperature is lower than that of the other peripheral edge portion 13. As a result, the melting rate of the fusion resin film 3 is controlled, the load applied to the positive electrode terminal 12 and the negative electrode terminal 11 is reduced, and the fusion sealing can be performed safely and reliably.
Moreover, when employ | adopting a heat block system, it is desirable to make the said film low thermal conductivity also in the meaning which does not degrade the laminate film 1, the positive electrode terminal 12, and the negative electrode terminal 11. FIG.
Moreover, when using in the aspect which coat | covers a film to two or more electrode terminals (not shown), it is preferable to employ | adopt an insulating film especially in order to prevent the short circuit by the electricity supply between 2 poles of a positive electrode and a negative electrode.
[0029]
Next, the decompression is released in the cutting step 20, and the peripheral edge of the package is cut at a predetermined position.
In addition, by cutting the portion other than the peripheral portion where the positive electrode terminal 12 and the negative electrode terminal 11 are located, the fusible resin film 3 protruding to the outside of the peripheral portion 13 by pressure bonding covers the base of the positive electrode terminal 12 and the negative electrode terminal 11. It becomes an aspect. As a result, stress concentration at the peripheral portion 13 located at the base of the positive electrode terminal 12 and the negative electrode terminal 11 is avoided, and the strength of the package 5 is improved.
Further, the nonaqueous electrolyte secondary battery of the present embodiment is charged after passing through the cutting step 20.
[0030]
In the non-aqueous electrolyte secondary battery and the manufacturing method thereof according to the embodiment of the present invention, the laminated film that has been subjected to drawing processing and the laminated film that has not been subjected to drawing processing are overlapped and the steps are sequentially performed. However, the method for producing a nonaqueous electrolyte secondary battery of the present invention can also be performed by laminating laminated films that have been drawn.
Also, the process sequence of the cutting process 15 for cutting the laminate film to a predetermined dimension and the drawing process 16 for the laminate film are reversed, the drawing process is performed on the laminate film before cutting, and then the laminate film is cut to a predetermined dimension. Then, the process may proceed sequentially.
Further, after drawing one long laminate film, the power generation element 10 obtained in the connecting step 17 is mounted at a predetermined position of the one laminate film, and the other long laminate film (drawing With processing or without drawing). Then, it is also possible to cut | disconnect the laminated film used as the package to the predetermined dimension through the sealing process 19. FIG.
[0031]
Further, another configuration example of the power generation element which is one component of the nonaqueous electrolyte secondary battery according to the embodiment of the present invention described above will be described with reference to FIG.
FIG. 5 is a cross-sectional view of the nonaqueous electrolyte secondary battery according to the embodiment of the present invention shown in FIG.
Among the power generation elements 10 constituted by the pole group 9, the positive electrode plate 6 is composed of a positive electrode current collector 21 such as aluminum and a positive electrode active material 22, and the negative electrode plate 7 is composed of a negative electrode current collector 23 such as copper and a negative electrode. And an active material 24.
Examples of the positive electrode active material 22 include the following battery electrode materials.
That is, CuO, Cu2O, Ag2O, CuS, CuSO4Group I metal compounds such as TiS2, SiO2, Group IV metal compounds such as SnO, V2O5, V6O12, VOx, Nb2O5, Bi2O3, Sb2O3Group V metal compounds such as CrO3, Cr2O3, MoO3, MoS2, WO3, SeO2Group VI metal compounds such as MnO2, Mn2O3Group VII metal compounds such as Fe2O3, FeO, Fe3O4, Ni2O3, NiO, CoO3, Group VIII metal compounds such as CoO, or the general formula LixMX2LixMNyX2 (M and N are metals of Group I to VIII, X is a chalcogen compound such as oxygen and sulfur). For example, metal compounds such as lithium-cobalt composite oxide or lithium-manganese composite oxide, and conductive polymer compounds such as disulfide, polypyrrole, polyaniline, polyparaphenylene, polyacetylene, and polyacene materials, pseudo graphite Although it is a structural carbon material etc., it is not limited to these.
Further, examples of the negative electrode active material 24 include the following battery electrode materials.
That is, carbonaceous materials such as carbon, especially graphite materials,
[For example, the carbonaceous material is analyzed by X-ray diffraction or the like;
Lattice spacing (d002) 3.33 to 3.05 mm
a-axis direction crystallite size La 200 or more
c-axis direction crystallite size Lc 200c or more
True density 2.00 to 2.25 g / cm3
Further, a graphite powder obtained by firing an anisotropic pitch at a temperature of 2000 ° C. or higher, desirably, the graphite material is a short fibrous carbon fiber or mesocarbon microbead having Lc <100 nm. It is not limited to. ] Metal oxides such as tin oxide and silicon oxide, and materials modified by adding phosphorus or boron to the above electrochemically active substance for the purpose of improving the negative electrode characteristics. The negative electrode active material 24 may be lithium metal-containing alloys such as lithium metal, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy, but is not limited thereto. Is not to be done. It is also possible to insert lithium into the carbonaceous material in advance by using lithium metal, a lithium alloy, or an organic compound containing lithium in advance, or by electrochemical reduction in advance.
Even when the power generation element 10 is configured as described above, the same effects as those of the nonaqueous electrolyte secondary battery of the present embodiment can be obtained.
Further, the non-aqueous electrolyte secondary battery including the power generation element shown in FIG. 5 can also be manufactured by the method for manufacturing the non-aqueous electrolyte secondary battery of the present embodiment described above.
[0032]
【The invention's effect】
The non-aqueous electrolyte secondary battery of the present invention described above has high airtightness, and can prevent a short circuit or leakage due to vibration, impact, bending, or the like. In addition, manufacturing is easy, safety, workability, and productivity are high, and there are advantages in that costs are reduced because there are fewer steps. In addition, since the entire peripheral edge is fused and sealed almost simultaneously, the yield can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a laminate film of an embodiment
FIG. 2 is a sectional view of the nonaqueous electrolyte secondary battery according to the embodiment.
FIG. 3 is a cross-sectional view taken along the line A-A ′ of the nonaqueous electrolyte secondary battery according to the embodiment.
FIG. 4 shows a method for manufacturing a nonaqueous electrolyte secondary battery according to an embodiment.
FIG. 5 is a cross-sectional view taken along the line A-A ′ of the nonaqueous electrolyte secondary battery according to the embodiment.
[Explanation of symbols]
1. Laminate film
2. Resin film
3. Fusible resin film
4). Metal foil
5. package
6). Positive plate
7). Negative electrode plate
8). Separator
9. Polar group
10. Power generation element
11. Negative terminal
12 Positive terminal
13. Peripheral part
14 Indentation pattern
15. Cutting process
16. Drawing process
17. Connection process
18. Overlapping process
19. Sealing process
20. Cutting process
21. Positive electrode current collector
22. Cathode active material
23. Negative electrode current collector
24. Negative electrode active material

Claims (5)

金属箔の内面に融着性樹脂フィルムを配したラミネートフィルム製パッケージ内に正極、負極及びセパレータから構成される極群からなる発電要素を有し、係るパッケージの周縁部が融着封口され、正極及び負極それぞれに接続された電極端子が前記発電要素から前記周縁部の外部に貫通する態様でなる非水電解質二次電池であって、前記発電要素内の、その一部分が電解液保持性の高いゲル電解質から成り、前記パッケージの全周縁部が略同時に融着封口され、前記パッケージの全周縁部に圧痕パターンが略均一に分散されてなることを特徴とする非水電解質二次電池。A laminate film package in which a fusible resin film is disposed on the inner surface of a metal foil has a power generation element composed of an electrode group composed of a positive electrode, a negative electrode, and a separator, and the peripheral portion of the package is fused and sealed. And an electrode terminal connected to each of the negative electrodes is a non-aqueous electrolyte secondary battery having a form that penetrates from the power generation element to the outside of the peripheral portion, and a part of the power generation element has high electrolyte retention A non-aqueous electrolyte secondary battery comprising a gel electrolyte, wherein all peripheral edges of the package are fused and sealed substantially simultaneously, and an indentation pattern is distributed substantially uniformly on the entire peripheral edge of the package. 前記電極端子が位置する前記周縁部に前記融着性樹脂フィルムの一部が突出する態様でなることを特徴とする請求項記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein a part is characterized by comprising in a manner that projection of the fusible resin film in the periphery of the electrode terminal is located. ラミネートフィルムに絞り加工を施す絞り加工工程と、セパレータ、正極板及び負極板を電解液保持性の高いゲル電解質を介して積層又は巻回させ、発電要素である極群を形成し、正極端子及び負極端子と前記極群とを接続させる接続工程と、前記発電要素を内包させ、電極端子をラミネートフィルム周縁部の外部に露出させる態様で、絞り加工が施されたラミネートフィルムとラミネートフィルムとを重ね合わせる重ね工程と、重ね合わされたラミネートフィルムの全周縁部を同時に押圧し、融着封口する封止工程と、からなり、前記封止工程は、前記電極端子と重ね合わされたラミネートフィルムの全周縁部との重合領域において、シート部材を介在させた押圧を行う工程としたことを特徴とする非水電解質二次電池の製造方法。A drawing process for drawing a laminate film, and a separator, a positive electrode plate, and a negative electrode plate are laminated or wound through a gel electrolyte having a high electrolyte holding property to form a pole group as a power generation element, and a positive electrode terminal and A connecting step of connecting a negative electrode terminal and the electrode group, and laminating the laminated film and the laminated film that have been subjected to drawing processing in such a manner that the power generation element is included and the electrode terminal is exposed outside the peripheral edge of the laminated film. and superimposing step of combining, the sealing step of simultaneously pressing the entire periphery of the superposed laminated film, fused sealed mouth, Tona is, the sealing step, the entire periphery of the laminate film superimposed to the electrode terminal A method for producing a non-aqueous electrolyte secondary battery, characterized in that the step of pressing with a sheet member interposed is performed in a polymerization region with the portion . 所定気圧に雰囲気を減圧した上で前記封止工程を行うことを特徴とする請求項に記載の非水電解質二次電池の製造方法。The method for producing a nonaqueous electrolyte secondary battery according to claim 3 , wherein the sealing step is performed after reducing the atmosphere to a predetermined pressure. 前記所定気圧を0.5気圧以下とすることを特徴とする請求項に記載の非水電解質二次電池の製造方法。The method for producing a non-aqueous electrolyte secondary battery according to claim 4 , wherein the predetermined atmospheric pressure is 0.5 atmospheric pressure or less.
JP22884299A 1999-08-12 1999-08-12 Non-aqueous electrolyte secondary battery and manufacturing method thereof Expired - Fee Related JP4449109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22884299A JP4449109B2 (en) 1999-08-12 1999-08-12 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22884299A JP4449109B2 (en) 1999-08-12 1999-08-12 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001052748A JP2001052748A (en) 2001-02-23
JP4449109B2 true JP4449109B2 (en) 2010-04-14

Family

ID=16882728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22884299A Expired - Fee Related JP4449109B2 (en) 1999-08-12 1999-08-12 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4449109B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969527A (en) * 2011-08-29 2013-03-13 三洋电机株式会社 Non-aqueous electrolyte secondary-cell battery and manufacturing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720065B2 (en) * 2001-09-04 2011-07-13 日本電気株式会社 Film outer battery and battery pack
US7736801B2 (en) 2004-03-23 2010-06-15 Nec Corporation Film covered electric device and method of manufacturing the same
JP4660112B2 (en) * 2004-04-23 2011-03-30 株式会社東芝 Sealed battery
JP5004451B2 (en) * 2005-09-28 2012-08-22 三洋電機株式会社 Batteries provided with a film-like exterior body and a method for producing the same
KR20160082490A (en) * 2013-10-31 2016-07-08 세키스이가가쿠 고교가부시키가이샤 Lithium ion secondary cell and method for producing lithium ion secondary cell
JP7273772B2 (en) * 2020-10-21 2023-05-15 プライムプラネットエナジー&ソリューションズ株式会社 LAMINATED ELECTRICITY STORAGE DEVICE MANUFACTURING METHOD AND LAMINATED ELECTRICITY STORAGE DEVICE INSPECTION METHOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969527A (en) * 2011-08-29 2013-03-13 三洋电机株式会社 Non-aqueous electrolyte secondary-cell battery and manufacturing method
CN102969527B (en) * 2011-08-29 2016-05-11 三洋电机株式会社 Rechargeable nonaqueous electrolytic battery and manufacture method thereof

Also Published As

Publication number Publication date
JP2001052748A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
EP1041658B1 (en) Method for producing nonaqueous gel electrolyte battery
US7060117B2 (en) Rechargeable lithium battery
US7651820B2 (en) Gel electrolyte and gel electrolyte battery
KR100742109B1 (en) Nonaqueous-electrolyte secondary battery and method of manufacturing the same
JP4370902B2 (en) Bipolar battery and manufacturing method thereof.
JP5124961B2 (en) Bipolar battery
KR100767196B1 (en) Solid electrolyte cell
US20030180605A1 (en) Non-aqueous electrolytic battery and its manufacturing method
EP2461391B1 (en) Battery
JP2012234823A (en) Method for manufacturing bipolar battery
JP2002008723A (en) Gel-like electrolyte and nonaqueous electrolyte battery
JP2011065841A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
CN110998951A (en) Electrode sheet manufacturing method, all-solid-state battery, and all-solid-state battery manufacturing method
JP2003017014A (en) Battery
JP4171855B2 (en) battery
JP3260310B2 (en) Manufacturing method of sheet type electrode / electrolyte structure
JP4449109B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2000133216A (en) Nonaqueous electrolyte battery and manufacture of same
JP4507345B2 (en) Method for producing lithium polymer secondary battery
JP2004185813A (en) Bipolar battery and bipolar battery manufacturing method, battery pack, and vehicle
JP2000156242A (en) Lithium secondary battery
KR20120006730A (en) Process for preparing lithium polymer secondary batteries employing gel polymerelectrolyte
JP4782266B2 (en) Non-aqueous electrolyte battery
JP4815845B2 (en) Polymer battery
JP2004327374A (en) Bipolar battery, method of manufacturing bipolar battery, battery pack, and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R150 Certificate of patent or registration of utility model

Ref document number: 4449109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees