JP4442163B2 - Fuel cell system - Google Patents
Fuel cell system Download PDFInfo
- Publication number
- JP4442163B2 JP4442163B2 JP2003306621A JP2003306621A JP4442163B2 JP 4442163 B2 JP4442163 B2 JP 4442163B2 JP 2003306621 A JP2003306621 A JP 2003306621A JP 2003306621 A JP2003306621 A JP 2003306621A JP 4442163 B2 JP4442163 B2 JP 4442163B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- fuel
- raw material
- anode
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
本発明は、燃料電池を用いて発電を行う燃料電池システムに関する。 The present invention relates to a fuel cell system that generates power using a fuel cell.
以下に、従来の燃料電池システムについて説明する。 A conventional fuel cell system will be described below.
図3に示すように、従来の燃料電池システムは、アノードに供給される燃料ガスとカソードに供給される酸化剤を用いて発電を行う固体高分子形の燃料電池1と、原料としての天然ガスに水を添加して改質し水素に富んだ燃料ガスを生成する燃焼生成器2と、燃料生成器2に水を供給する水供給手段3と、燃料電池1からの排出燃料ガスを燃焼する燃焼器4と、酸化剤としての空気を燃料電池1に供給するブロア5と、パージ用空気供給手段6とを備える。
As shown in FIG. 3, a conventional fuel cell system includes a solid polymer fuel cell 1 that generates power using a fuel gas supplied to an anode and an oxidant supplied to a cathode, and natural gas as a raw material. A
燃料電池システムは、運転時以外は安全上、燃料ガス経路から水素に富んだ燃料ガスを追い出しておくことが必要なので、燃料電池システムを停止する際には燃焼生成器2の天然ガス供給経路より窒素を流入せしめ、燃焼生成器2、燃料電池1を経由して燃焼器4から排出することが一般的であるが、窒素の貯蔵装置を省略するための技術として、燃料電池システムの停止時に燃焼生成器2に水供給手段3を用いて水のみを供給して生成した水蒸気を用いて燃料ガス経路内の水素に富んだ燃料ガスを追い出した後、パージ用空気供給手段6より空気を流入せしめて燃料ガス経路を空気でパージする方法が知られている(例えば、特許文献1参照)。
しかしながら、上記従来例の燃料電池システムにおいて、水蒸気で装置内の燃料ガス経路の水素を追い出した後に空気を燃料電池へ供給するとアノードの電は酸化雰囲気にさらされる。固体高分子形燃料電池の場合、アノードの電には、白金とルテニウムの合金が触媒として一般的に用いられるが、この合金触媒は酸化雰囲気に晒されることにより触媒性能が徐々に劣化していくことが分かっている。そのため、燃料電池システムの起動停止に際して、アノードに空気を流通させる事は燃料電池システムの耐久性を低下させる原因となる。 However, in the fuel cell system of the above conventional example, when air is supplied to the fuel cell after expelling hydrogen in the fuel gas path in the apparatus with water vapor, the electricity of the anode is exposed to an oxidizing atmosphere. In the case of a polymer electrolyte fuel cell, an alloy of platinum and ruthenium is generally used as a catalyst for anode electricity, but the catalyst performance gradually deteriorates when this alloy catalyst is exposed to an oxidizing atmosphere. I know that. Therefore, when starting and stopping the fuel cell system, circulating air to the anode causes a decrease in the durability of the fuel cell system.
上記課題を解決するために、
第1の本発明の燃料電池システムは、水素を含む燃料ガスと酸化剤とから電力を発生させる燃料電池と、原料から前記燃料ガスを生成する燃料生成器と、前記燃料生成器に水を供給する水供給手段と、前記燃料生成器に空気を供給するパージ空気供給手段と、前記燃料電池のカソードに原料を供給する原料カソード供給手段と、前記燃料生成手段から前記燃料電池までの燃料ガス経路上に前記燃料電池をバイパスするバイパス手段と、前記燃料生成器から排出されるガスの経路を前記燃料ガス経路またはパイバス手段にいずれかに切替える切替手段と、前記燃料電池のアノードの入口及び出口を閉止するアノード閉止手段とを備え、前記燃料電池の発電を停止する際に前記原料カソード供給手段は前記燃料電池のカソードに原料を供給し、前記アノード閉止手段はアノードの入口及び出口を閉止し、かつ前記切替手段によりバイパス手段側に切替え、前記水供給手段により水を供給した後、前記パージ空気供給手段により空気を供給することを特徴とする。
To solve the above problem,
A fuel cell system according to a first aspect of the present invention is a fuel cell that generates electric power from a fuel gas containing hydrogen and an oxidant, a fuel generator that generates the fuel gas from a raw material , and water to the fuel generator Water supply means, purge air supply means for supplying air to the fuel generator, raw material cathode supply means for supplying raw material to the cathode of the fuel cell, and fuel gas path from the fuel generation means to the fuel cell A bypass means for bypassing the fuel cell, a switching means for switching the path of gas discharged from the fuel generator to either the fuel gas path or the bypass means, and an inlet and an outlet of the anode of the fuel cell. An anode closing means for closing, and when the power generation of the fuel cell is stopped, the raw material cathode supply means supplies the raw material to the cathode of the fuel cell, and The anode closing means closes the inlet and outlet of the anode, switches to the bypass means side by the switching means, supplies water by the water supply means, and then supplies air by the purge air supply means. .
第2の本発明は、水素を含む燃料ガスと酸化剤とから電力を発生させる燃料電池と、原料から前記燃料ガスを生成する燃料生成器と、前記燃料生成器に水を供給する水供給手段と、前記燃料生成器に空気を供給するパージ空気供給手段と、前記燃料電池のカソードに原料を供給する原料カソード供給手段と、前記燃料電池のアノードに原料を供給する原料アノード供給手段と、前記燃料生成手段から前記燃料電池までの燃料ガス経路上に前記燃料電池をバイパスするバイパス手段と、前記燃料生成器から排出されるガスの経路を前記燃料ガス経路またはパイバス手段にいずれかに切替える切替手段とを備え、前記燃料電池の発電を停止する際に、前記原料カソード供給手段は前記燃料電池のカソードに原料を供給し、前記原料アノード供給手段が前記燃料電池のアノードに原料を供給し、かつ前記切替手段によりバイパス手段側に切替え、前記水供給手段により水を供給した後、前記パージ空気供給手段により空気を供給することを特徴とする。 According to a second aspect of the present invention, there is provided a fuel cell for generating electric power from a fuel gas containing hydrogen and an oxidant, a fuel generator for generating the fuel gas from a raw material, and water supply means for supplying water to the fuel generator Purge air supply means for supplying air to the fuel generator, raw material cathode supply means for supplying raw material to the cathode of the fuel cell, raw material anode supply means for supplying raw material to the anode of the fuel cell, Bypass means for bypassing the fuel cell on a fuel gas path from the fuel generating means to the fuel cell, and switching means for switching the path of gas discharged from the fuel generator to either the fuel gas path or the Pibus means When the power generation of the fuel cell is stopped, the raw material cathode supply means supplies the raw material to the cathode of the fuel cell, and the raw material anode supply unit There supplying raw materials to the anode of the fuel cell, and switching to the bypass means side by said switching means, after supplying water by the water supply means, and supplying the air by the purge air supply means.
第3の本発明は、遅くとも前記燃料電池の電圧が開放電圧に到達する時以前に、前記燃料電池の発電を停止する時に行う動作を開始すること。 The third aspect of the present invention is to start an operation to be performed when power generation of the fuel cell is stopped before the time when the voltage of the fuel cell reaches the open circuit voltage at the latest.
第4の本発明は、前記原料アノード供給手段は、前記原料カソード供給手段が前記燃料電池のカソードに原料の供給を開始した後に、前記燃料電池のアノードに原料の供給を開始することを特徴とする。 According to a fourth aspect of the present invention, the raw material anode supply means starts supplying the raw material to the anode of the fuel cell after the raw material cathode supply means starts supplying the raw material to the cathode of the fuel cell. To do.
第5の本発明は、前記燃料電池のアノードの入口及び出口を閉止するアノード閉止手段を備え、前記アノード閉止手段は記原料アノード供給手段が前記燃料電池のアノードに原料を供給した後、前記燃料電池のアノードの入口及び出口を閉止することを特徴とする。 According to a fifth aspect of the present invention, there is provided anode closing means for closing an inlet and an outlet of the anode of the fuel cell, wherein the anode closing means is configured to supply the raw material after the raw material anode supply means supplies the raw material to the anode of the fuel cell. The inlet and outlet of the anode of the battery are closed.
第6の本発明は、前記燃料電池のカソードの入口及び出口を閉止するカソード閉止手段を備え、前記カソード閉止手段は記原料カソード供給手段が前記燃料電池のカソードに原料を供給した後、前記燃料電池のカソードの入口及び出口を閉止することを特徴とする。 According to a sixth aspect of the present invention, there is provided cathode closing means for closing an inlet and an outlet of the cathode of the fuel cell, wherein the cathode closing means is configured such that after the raw material cathode supply means supplies the raw material to the cathode of the fuel cell, the fuel The inlet and outlet of the cathode of the battery are closed.
第7の本発明は、原料と、前記燃料電池のアノードから排出される残余燃料と、前記燃料生成器から前記バイパス手段を経由して供給される燃料との少なくとも1つ、または、混合物を燃焼する燃焼器を備え、装置の起動時には、前記燃焼器にて燃焼が開始された後に、前記アノード閉止手段は前記燃料電池のアノードの入口及び出口を開放することを特徴とする。 The seventh aspect of the present invention burns at least one of a raw material, residual fuel discharged from the anode of the fuel cell, and fuel supplied from the fuel generator via the bypass means, or a mixture thereof. The anode closing means opens the inlet and the outlet of the anode of the fuel cell after the combustion is started in the combustor when the apparatus is started.
以上から明らかなように、本発明は、窒素の貯蔵装置を省略し窒素以外の代替流体でパージを行なう燃料電池システムにおいて、燃料電池のアノードが酸素の存在する酸化雰囲気に晒される状況が発生しないため、耐久性の低下を招く事のない燃料電池システムを提供することができる。 As is apparent from the above, the present invention eliminates the situation in which the anode of the fuel cell is exposed to an oxidizing atmosphere in which oxygen is present in the fuel cell system in which the nitrogen storage device is omitted and purge is performed with an alternative fluid other than nitrogen. Therefore, it is possible to provide a fuel cell system that does not cause a decrease in durability.
以下に、本発明の実施の形態を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
(実施の形態1)
図1は本発明の実施の形態1における燃料電池システムの構成図である。従来例と同じ構成要素には同じ番号を付与している。
(Embodiment 1)
FIG. 1 is a configuration diagram of a fuel cell system according to Embodiment 1 of the present invention. The same number is given to the same component as the conventional example.
本発明の第1の実施の形態における燃料電池システムは、燃料ガスと酸化剤を用いて発電を行う固体高分子形の燃料電池1と、原料としての天然ガスに水を添加して改質し水素に富んだ燃料ガスを生成する燃焼生成器2と、燃料生成器2に水を供給する水供給手段3と、燃料電池1からの排出燃料ガスを燃焼する燃焼器4と、酸化剤としての空気を燃料電池1のカソードに供給するブロア5と、パージ用空気供給手段6と、燃料生成器2から送出される流体を燃料電池1のアノードへ供給する燃料ガス供給流路と、燃料生成器2から送出される流体を燃料電池をバイパスして排出燃焼ガスを燃焼器へ供給するための経路へ導くためのバイパス管7への切り換えを行なう流路切換手段8と、燃料電池1から残余燃料ガスが排出される経路上の開閉弁9と、原料を燃料電池1のカソードへ供給する原料カソード供給手段10と、ブロア5から燃料電池1への空気の入口側と燃料電池1から排出される空気の出口側を開閉する開閉弁を有するカソード閉止手段11とを備える。なお、ここで上記原料は、天然ガスに限定されるものでなく、都市ガス、メタン、プロパン等の炭化水素、メタン、エタノール等のアルコールに例示される少なくとも炭素及び水素から構成される化合物を含むものであればいずれの材料でも構わない。ただし、アルコール等の液体原料は気化された原料ガスが好ましい。
The fuel cell system according to the first embodiment of the present invention includes a solid polymer fuel cell 1 that generates power using fuel gas and an oxidant, and reforms by adding water to natural gas as a raw material.
また、流路切換手段8がバイパス流路を形成し、燃料生成器2から送出される流体をバイパス管7へ供給するように設定された場合は燃料電池1への燃料ガスの入口側が閉止状態となるため、流路切換手段8と開閉弁9とからアノード閉止手段12が構成される。
Further, when the flow path switching means 8 forms a bypass flow path and is set so as to supply the fluid delivered from the
燃料電池システムの運転時は、燃料生成器2は約700℃程度の温度に維持されて天然ガスと水から水素に富んだ燃料ガスを生成し、燃料ガスは供給流路を形成した流路切換手段8を経由して燃料電池1へ送られる。燃料電池1では燃料ガス中の水素とブロア5から開放状態のカソード閉止手段を経由して供給される空気中の酸素とを用いて発電が行われ、発電で消費されなかった残余燃料ガスは開放状態の開閉弁9を経由して燃焼器4へ送られ燃焼され燃料生成器2の温度維持を行うための熱源に用いられる。
During the operation of the fuel cell system, the
燃料電池システムが発電を停止する際には、ブロア5を停止して燃料電池1のカソードへの空気供給を停止し、燃料電池1の電圧が開放電圧になる前に、原料カソード供給手段10は原料を燃料電池1のカソードへ供給を開始する。原料が燃料電池1のカソード内の空気をほぼ全量追い出したときにカソード閉止手段11を閉止状態にし、原料カソード供給手段10は原料を燃料電池1のカソードへ供給するのを停止する。
When the fuel cell system stops power generation, the
また、流路切換手段8はバイパス管7側へ切り替えられ、バイパス流路を形成するとともに開閉弁9を閉止状態にすることにより、燃料電池1のアノードに存在する燃料ガスを封入し、燃料生成器2への原料の供給を停止する。一方、水供給手段3による燃料生成器2への水の供給は継続させる。燃料生成器2へ供給された水は燃料生成器2の熱で水蒸気となり、燃料生成器2内に残っている水素に富んだ燃料ガスを押し出し流路切換手段8、バイパス管7を経由して燃焼器4で燃焼させる。その後、次第に水素に富んだ燃料ガスの量が減少してくため燃焼器4での燃焼は停止するが、燃料生成器2の余熱で水蒸気の生成は継続される。
Further, the flow path switching means 8 is switched to the
燃料生成器2で生成された水蒸気の量が燃料生成器2内の水素に富んだ燃料ガスを十分追い出す量に達し、かつ、燃料生成器2の温度が400℃程度まで低下した時、水供給手段3による水の供給を停止してパージ用空気供給手段6により空気を供給することにより燃料生成器2の中の水蒸気を押し出し流路切換手段8、バイパス管7を経由して燃焼器4から排出する。燃料生成器2や各部配管内部の水蒸気を追い出し切ったときパージ用空気供給手段6は空気の供給を停止し、燃料電池システムの停止処理を完了する。
When the amount of water vapor generated in the
前記の400℃という温度は燃料生成器2に用いられる触媒がルテニウムを主成分としている場合を想定しており、触媒が高温時に空気に触れて酸化することにより性能劣化を引き起こさないためにある程度の安全率を見込んで設定した温度である。そのため安全率の設定によっては温度は変化することは当然であり、また、触媒の種類が異なればおのずと違った温度に設定されるべきである。
The temperature of 400 ° C. assumes a case where the catalyst used in the
次に、燃料電池システムを起動する場合は、流路切換手段8はバイパス流路を形成したまま原料を燃料生成器2、流路切換手段8、バイパス管7を経由して燃焼器4へ供給し燃焼を行なう。と同時に、水供給手段3は燃料生成器2へ水の供給を行なう。そして、燃焼器4により燃料生成器2が約700℃に加熱され、原料から水素に富んだ燃料ガスに変換される。燃料生成器2に含まれる一酸化炭素除去部(図示せず)の温度が安定し、燃料ガス中に含まれる一酸化炭素の濃度が燃料電池1のアノード電を劣化させない程度(約20ppm)まで低下した時点で、開閉弁9を開き、流路切換手段8は燃料ガス供給流路側へ切替えられ、燃料ガスを流路切換手段8、燃料電池1、開閉弁9を経由して燃焼器4へ供給する。
Next, when starting the fuel cell system, the flow path switching means 8 supplies the raw material to the combustor 4 via the
同時にカソード閉止手段11を開放状態にし、ブロア5は燃料電池1のカソードへ空気の供給を開始し、燃料電池1での発電を開始する。
At the same time, the cathode closing means 11 is opened, and the
以上のように、燃料電池システムの停止時おいて、流路切換手段8はバイパス流路を形成し開閉弁9を閉止状態にして燃料電池1のアノードに燃料ガスを封入することにより、窒素を用いない場合でも燃料電池1のカソードへ空気を流入させる事無く安全に停止できるので、燃料電池1のアノードを酸素の存在する酸化雰囲気に晒す事はない。さらに、原料カソード供給手段10は原料を燃料電池1のカソードへ供給しカソードの空気を追い出してから停止するため、燃料電池1が固体高分子形であり固体高分子からなる電膜を介してカソードからアノードへのガス拡散が発生しても、アノードに空気が混入しないため、燃料電池システムの耐久性低下を招く事はない。かつ、上記の原料によるカソードの空気排出動作を燃料電池1が開放電圧に到達する以前に開始するため、燃料電池1のカソード、アノード間に高い電位差が発生し、微弱電流がながれることによる電の溶出も発生せず、燃料電池システムの耐久性低下を招かない。
As described above, when the fuel cell system is stopped, the flow path switching means 8 forms a bypass flow path, closes the on-off
また、カソード閉止手段11を閉止状態にすることにより、原料カソード供給手段10により燃料電池1のカソードへ供給した原料は封入されるため、停止期間が長くなっても外部から空気が燃料電池1へ到達する事は無く、長期停止時を含めて燃料電池システムの耐久性の低下を招く心配はない。 Further, by closing the cathode closing means 11, the raw material supplied to the cathode of the fuel cell 1 by the raw material cathode supply means 10 is sealed, so that air can be supplied from the outside to the fuel cell 1 even if the stop period becomes longer. There is no risk that the fuel cell system will be lowered in durability, including during long-term shutdown.
一方、燃料生成器2は最初に水蒸気で内部の燃料ガスを押し出し、温度が十分低下してから空気で水蒸気を追い出すため、高温状況下で可燃性ガスを内部に滞留させる危険性もなく、停止時に内部に水を滞留させないため、次回起動時に配管中に水がたまり燃料ガスの供給を不安定にすることもない。
On the other hand, the
そして起動時には、燃焼器4での燃焼を開始した後に流路切換手段8を燃料ガス供給流路側に切り替え、開閉弁9を開いて、燃料電池1に封入されていた燃料ガスを燃焼器4で燃焼させる事により、燃料電池1に封入されていた燃料ガスを外部へ放出する事がなく、燃料ガスが外部に排出される危険性は生じない。
At the start-up, after the combustion in the combustor 4 is started, the flow path switching means 8 is switched to the fuel gas supply flow path side, the on-off
(実施の形態2)
図2は本発明の実施の形態2における燃料電池システムの構成図である。従来例もしくは本発明の実施の形態1と同じ構成要素には同じ番号を付与している。
(Embodiment 2)
FIG. 2 is a configuration diagram of a fuel cell system according to
本発明の第2の実施の形態における燃料電池システムは、燃料ガスと酸化剤を用いて発電を行う固体高分子形の燃料電池1と、原料としての天然ガスに水を添加して改質し水素に富んだ燃料ガスを生成する燃焼生成器2と、燃料生成器2に水を供給する水供給手段3と、燃料電池1からの排出ガスを燃焼する燃焼器4と、酸化剤としての空気を燃料電池1のカソードに供給するブロア5と、パージ用空気供給手段6と、燃料生成器2から送出される流体を燃料電池1のアノードへ供給する燃料ガス供給流路と、燃料生成器2から送出される流体を燃料電池をバイパスして排出燃焼ガスを燃焼器へ供給するための経路へ導くためのバイパス管7への切り換えを行なう流路切換手段8と、燃料電池1から残余燃料ガスが排出される経路上の開閉弁9と、原料を燃料電池1のカソードへ供給する原料カソード供給手段10と、ブロア5から燃料電池1への空気の入口側と燃料電池から排出される空気の出口側を開閉する開閉弁かを有するカソード閉止手段11と、原料を燃料電池1のアノードへ供給する原料アノード供給手段13とを備える。
The fuel cell system according to the second embodiment of the present invention includes a solid polymer fuel cell 1 that generates power using fuel gas and an oxidant, and reforms by adding water to natural gas as a raw material.
また、流路切換手段8がバイパス流路を形成し、燃料生成器2から送出される流体をバイパス管7へ供給するように設定された場合は燃料電池1への燃料ガスの入口側が閉止状態となるため、流路切換手段8と開閉弁9とからアノード閉止手段12が構成される。
Further, when the flow path switching means 8 forms a bypass flow path and is set so as to supply the fluid delivered from the
燃料電池システムの運転時は、燃料生成器2は約700℃程度の温度に維持されて天然ガスと水から水素に富んだ燃料ガスを生成し、燃料ガスは供給流路を形成した流路切換手段8を経由して燃料電池1へ送られる。燃料電池1では燃料ガス中の水素とブロア5から開放状態のカソード閉止手段を経由して供給される空気中の酸素とを用いて発電が行われ、発電で消費されなかった残余燃料ガスは開放状態の開閉弁9を経由して燃焼器4へ送られ燃焼され燃料生成器2の温度維持を行うための熱源に用いられる。
During the operation of the fuel cell system, the
燃料電池システムが発電を停止する際には、まず、ブロア5を停止して燃料電池1のカソードへの空気供給を停止し、燃料電池1の電圧が開放電圧になる前に、原料カソード供給手段10は原料を燃料電池1のカソードへ供給を開始する。原料が燃料電池1のカソード内の空気をほぼ全量追い出したときにカソード閉止手段11を閉止状態にし、原料カソード供給手段10は原料を燃料電池1のカソードへ供給するのを停止する。
When the fuel cell system stops power generation, first, the
次に、流路切換手段8はバイパス管7側へ切替えられ、バイパス流路を形成するとともに開閉弁9を開放状態のまま維持し、アノード閉止手段12は原料を燃料電池1のアノードへ供給する。原料が燃料電池1のアノード内の燃料ガスをほぼ全量追い出したときに開閉弁9を閉止状態にし、原料アノード供給手段13は原料を燃料電池1のアノードへ供給するのを停止する。
Next, the flow path switching means 8 is switched to the
一方、燃料生成器2への原料の供給を停止し、水供給手段3による燃料生成器2への水の供給は継続させる。燃料生成器2へ供給された水は燃料生成器2の熱で水蒸気となり、燃料生成器2内に残っている水素に富んだ燃料ガスを押し出し流路切換手段8、バイパス管7を経由して燃焼器4で燃焼させる。その後次第に水素に富んだ燃料ガスの量が減少してくため燃焼器4での燃焼は停止するが、燃料生成器2の余熱で水蒸気の生成は継続される。
On the other hand, the supply of the raw material to the
燃料生成器2で生成された水蒸気の量が燃料生成器2内の水素に富んだ燃料ガスを十分追い出す量に達し、かつ、燃料生成器2の温度が400℃程度まで低下した時、水供給手段3による水の供給を停止してパージ用空気供給手段6により空気を供給することにより燃料生成器2の中の水蒸気を押し出し流路切換手段8、バイパス管7を経由して燃焼器4から排出する。燃料生成器2や各部配管内部の水蒸気を追い出し切ったときパージ用空気供給手段6は空気の供給を停止し、燃料電池システムの停止生成を完了する。
When the amount of water vapor generated in the
前記の400℃という温度は燃料生成器2に用いられる触媒がルテニウムを主成分としている場合を想定しており、触媒が高温時に空気に触れて酸化することにより性能劣化を引き起こさないためにある程度の安全率を見込んで設定した温度である。そのため安全率の設定によっては温度は変化することは当然であり、また、触媒の種類が異なればおのずと違った温度に設定されるべきである。
The temperature of 400 ° C. assumes a case where the catalyst used in the
次に燃料電池システムを起動する場合は、流路切換手段8はバイパス流路を形成したまま原料を燃料生成器2、流路切換手段8、バイパス管7を経由して燃焼器4へ供給し燃焼を行なう。と同時に、水供給手段3は燃料生成器2へ水の供給を行なう。そして、燃焼器4により燃料生成器2が約700℃に加熱され、原料から水素に富んだ燃料ガスに変換される。燃料生成器2に含まれる一酸化炭素除去部(図示せず)の温度が安定し、燃料ガス中に含まれる一酸化炭素の濃度が燃料電池1のアノード電を劣化させない程度(約20ppm)まで低下した時点で、開閉弁9を開き、流路切換手段8は燃料ガス供給流路側へ切替えられ、燃料ガスを流路切換手段8、燃料電池1、開閉弁9を経由して燃焼器4へ供給する。
Next, when starting the fuel cell system, the flow path switching means 8 supplies the raw material to the combustor 4 via the
同時にカソード閉止手段11を開放状態にし、ブロア5は燃料電池1のカソードへ空気の供給を開始し、燃料電池1での発電を開始する。
At the same time, the cathode closing means 11 is opened, and the
以上のように、燃料電池システムの停止時おいて、アノード閉止手段12は原料を燃料電池1のアノードへ供給し、原料が燃料電池1のアノード内の燃料ガスをほぼ全量追い出したときに開閉弁9を閉止状態にして原料を封入する事により、窒素を用いない場合でも燃料電池1のカソードへ空気を流入させる事無く安全に停止できるので、燃料電池1のアノードを酸素の存在する酸化雰囲気に晒す事はない。
As described above, when the fuel cell system is stopped, the anode closing means 12 supplies the raw material to the anode of the fuel cell 1, and when the raw material expels almost all the fuel gas in the anode of the fuel cell 1, the on-off
さらに、発電停止時の最初に原料カソード供給手段10は原料を燃料電池1のカソードへ供給しカソードの空気を追い出してから停止するため、燃料電池1が固体高分子形であり固体高分子からなる電膜を介してカソードからアノードへのガス拡散が発生しても、アノードに空気が混入しないため、燃料電池システムの耐久性低下を招く事はない。かつ、上記の原料によるカソードの空気排出動作を燃料電池1が開放電圧に到達する以前に開始するため、燃料電池1のカソード、アノード間に高い電位差が発生し、微弱電流がながれることによる電の溶出も発生せず、燃料電池システムの耐久性低下を招かない。 Further, at the beginning of power generation stop, the raw material cathode supply means 10 supplies the raw material to the cathode of the fuel cell 1 and stops after expelling the cathode air, so that the fuel cell 1 is in a solid polymer form and is made of a solid polymer. Even if gas diffusion from the cathode to the anode occurs through the electromembrane, air is not mixed into the anode, so that the durability of the fuel cell system is not lowered. In addition, since the cathode air discharge operation with the above-described raw material is started before the fuel cell 1 reaches the open circuit voltage, a high potential difference is generated between the cathode and the anode of the fuel cell 1, and the electric current generated by the weak current flowing. No elution occurs and the durability of the fuel cell system is not reduced.
また、カソード閉止手段11を閉止状態にすることにより、原料カソード供給手段10により燃料電池1のカソードへ供給した原料は封入されるため、停止期間が長くなっても外部から空気が燃料電池1へ到達する事は無く、長期停止時を含めて燃料電池システムの耐久性の低下を招く心配はない。 Further, by closing the cathode closing means 11, the raw material supplied to the cathode of the fuel cell 1 by the raw material cathode supply means 10 is sealed, so that air can be supplied from the outside to the fuel cell 1 even if the stop period becomes longer. There is no risk that the fuel cell system will be lowered in durability, including during long-term shutdown.
一方、燃料生成器2は最初に水蒸気で内部の燃料ガスを押し出し、温度が十分低下してから空気で水蒸気を追い出すため、高温状況下で可燃性ガスを内部に滞留させる危険性もなく、停止時に内部に水を滞留させないため、次回起動時に配管中に水がたまり燃料ガスの供給を不安定にすることもない。
On the other hand, the
そして起動時には、燃焼器4での燃焼を開始した後に流路切換手段8は燃料ガス供給流路を形成し開閉弁9を開いて、燃料電池1に封入されていた燃料ガスを燃焼器4で燃焼させる事により、燃料電池1に封入されていた燃料ガスを外部へ放出する事がなく、燃料ガスが外部に排出される危険性は生じない。
At the time of start-up, after starting combustion in the combustor 4, the flow path switching means 8 forms a fuel gas supply flow path and opens the on-off
本発明の燃料電池システムは、窒素の貯蔵装置を省略し窒素以外の代替流体でパージを行なう場合でも、耐久性の低下を招く事がないという効果を有し、燃料電池を用いた発電設備等として有用である。 The fuel cell system of the present invention has an effect that durability is not lowered even when purging with an alternative fluid other than nitrogen by omitting a nitrogen storage device, such as a power generation facility using a fuel cell, etc. Useful as.
1 燃料電池
2 燃焼生成器
3 水供給手段
4 燃焼器
5 ブロア
6 パージ用空気供給手段
7 バイパス管
8 流路切換手段
9 開閉弁
10 原料カソード供給手段
11 カソード閉止手段
12 アノード閉止手段
DESCRIPTION OF SYMBOLS 1
Claims (7)
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003306621A JP4442163B2 (en) | 2003-08-29 | 2003-08-29 | Fuel cell system |
EP04772414.1A EP1659653B1 (en) | 2003-08-25 | 2004-08-24 | Fuel cell system and method for starting operation of fuel cell system |
KR1020057020245A KR101114649B1 (en) | 2003-08-25 | 2004-08-24 | Fuel cell system and method for stopping operation of fuel cell system |
US10/556,466 US8765314B2 (en) | 2003-08-25 | 2004-08-24 | Fuel cell system and method for stopping operation of fuel cell system |
PCT/JP2004/012458 WO2005020360A1 (en) | 2003-08-25 | 2004-08-24 | Fuel cell system and method for starting operation of fuel cell system |
KR1020057020241A KR101121273B1 (en) | 2003-08-25 | 2004-08-24 | Fuel cell system and method for starting operation of fuel cell system |
CNB2004800111460A CN100446319C (en) | 2003-08-25 | 2004-08-24 | Fuel cell system and method for starting operation of fuel cell system |
PCT/JP2004/012444 WO2005020359A1 (en) | 2003-08-25 | 2004-08-24 | Fuel cell system and method for stopping operation of fuel cell system |
EP04772400A EP1659652B1 (en) | 2003-08-25 | 2004-08-24 | Fuel cell system and method for stopping operation of fuel cell system |
CA2518416A CA2518416C (en) | 2003-08-25 | 2004-08-24 | Fuel cell system and method for stopping operation of fuel cell system |
CNB2004800112355A CN100440598C (en) | 2003-08-25 | 2004-08-24 | Fuel cell system and method for starting operation of fuel cell system |
CA2518419A CA2518419C (en) | 2003-08-25 | 2004-08-24 | Fuel cell system, method of starting fuel cell system |
US10/561,386 US8039154B2 (en) | 2003-08-25 | 2004-08-24 | Fuel cell system, method of starting fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003306621A JP4442163B2 (en) | 2003-08-29 | 2003-08-29 | Fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005078900A JP2005078900A (en) | 2005-03-24 |
JP4442163B2 true JP4442163B2 (en) | 2010-03-31 |
Family
ID=34409653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003306621A Expired - Fee Related JP4442163B2 (en) | 2003-08-25 | 2003-08-29 | Fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4442163B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4734833B2 (en) * | 2004-03-08 | 2011-07-27 | パナソニック株式会社 | Fuel cell system |
JP5213703B2 (en) * | 2006-04-19 | 2013-06-19 | パナソニック株式会社 | Fuel cell system |
KR100814367B1 (en) | 2007-03-12 | 2008-03-18 | 고려대학교 산학협력단 | Method for purging the remaining gas of fuel cell during the shutdown process |
CN103647092B (en) * | 2013-10-30 | 2016-02-03 | 张勇 | Extend the method and apparatus of fuel battery service life |
FI125775B (en) | 2014-06-30 | 2016-02-15 | Teknologian Tutkimuskeskus Vtt Oy | Procedures and systems for eliminating decay by back current in fuel cells |
KR101913809B1 (en) * | 2016-03-24 | 2018-11-02 | 에스퓨얼셀(주) | Fuel cell system and driving method thereof |
-
2003
- 2003-08-29 JP JP2003306621A patent/JP4442163B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005078900A (en) | 2005-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4028787B2 (en) | Fuel cell power generation system and operation method thereof | |
JP2010177211A (en) | Fuel cell system | |
JP2007254251A (en) | Operation stopping method of reforming device | |
JP2003300704A (en) | Fuel reforming system and fuel cell system | |
KR100523148B1 (en) | System and method of fuel cell power generation | |
JP2010080192A (en) | Operation shutdown method for fuel battery, and fuel battery system | |
JP2000277137A (en) | Method for purging residual gas from fuel cell power generating system | |
JPH11191426A (en) | Fuel cell power generating system | |
JP4442163B2 (en) | Fuel cell system | |
JP2001189165A (en) | Fuel cell system, method of stopping and starting the same | |
JP2003002605A (en) | Method for operating and stopping steam reformer | |
JP5886483B1 (en) | Solid oxide fuel cell system and method for stopping the same | |
JP2002008701A (en) | Method for starting and stopping solid polymer fuel cell | |
JPWO2010109854A1 (en) | Hydrogen generator, fuel cell system including the same, method of operating hydrogen generator, and method of operating fuel cell system | |
JP2003217632A (en) | Fuel cell power generation system | |
JP2017147124A (en) | Control device for fuel battery power generation system, power generation system and control method for fuel battery power generation system | |
JP2004247122A (en) | Fuel cell power generation system | |
JP4713547B2 (en) | Fuel cell power generation system and operation method thereof | |
JP5395168B2 (en) | Hydrogen generator and fuel cell system | |
JP2007157407A (en) | Fuel reforming system | |
JP2005209642A (en) | Starting and stopping method of fuel cell generator | |
JP2006342003A (en) | Hydrogen production apparatus and method for stopping the same | |
JP2006066106A (en) | Fuel cell system and starting method of the fuel cell system | |
JPH03129674A (en) | Method of starting reformer for fuel cell | |
JP2010108770A (en) | Fuel cell power generation system, and control method of fuel cell power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060615 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091027 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091222 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100104 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4442163 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |