[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4338983B2 - Constant velocity universal joint - Google Patents

Constant velocity universal joint Download PDF

Info

Publication number
JP4338983B2
JP4338983B2 JP2003020569A JP2003020569A JP4338983B2 JP 4338983 B2 JP4338983 B2 JP 4338983B2 JP 2003020569 A JP2003020569 A JP 2003020569A JP 2003020569 A JP2003020569 A JP 2003020569A JP 4338983 B2 JP4338983 B2 JP 4338983B2
Authority
JP
Japan
Prior art keywords
rotating shaft
joint member
shaft
heat treatment
velocity universal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003020569A
Other languages
Japanese (ja)
Other versions
JP2004232697A (en
Inventor
達朗 杉山
祐一 浅野
久昭 藏
純一 五十公野
実 石島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2003020569A priority Critical patent/JP4338983B2/en
Publication of JP2004232697A publication Critical patent/JP2004232697A/en
Application granted granted Critical
Publication of JP4338983B2 publication Critical patent/JP4338983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は等速自在継手に関し、特に、自動車、航空機、船舶や各種産業機械などの動力伝達部への使用に好適なトリポード型等速自在継手に関する。
【0002】
【従来の技術】
例えば、自動車のエンジンから車輪に回転力を等速で伝達する手段として使用される等速自在継手の一種にトリポード型等速自在継手がある。このトリポード型等速自在継手は、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達し、しかも、軸方向の相対変位をも許容することができる構造を備えている。
【0003】
一般的に、前記トリポード型等速自在継手は、図8に示すように内周部に軸方向の三本のトラック溝1が形成され、各トラック溝1の両側にそれぞれ軸方向のローラ案内面2を有する外側継手部材3と、半径方向に突出した三本の脚軸4を有するトリポード部材5と、そのトリポード部材5の脚軸4と前記外側継手部材3のローラ案内面2との間に回転自在に収容されたローラ6とを主要な部材として構成される。前記二軸の一方が外側継手部材3に連結され、他方がトリポード部材5に連結される。
【0004】
このようにトリポード部材5の脚軸4と外側継手部材3のローラ案内面2とがローラ6を介して二軸の回転方向に係合することにより、駆動側から従動側へ回転トルクが等速で伝達される。また、各ローラ6が脚軸4に対して回転しながらローラ案内面2上を転動することにより、外側継手部材3とトリポード部材5との間の相対的な軸方向変位や角度変位が吸収される。
【0005】
このトリポード型等速自在継手を構成するトリポード部材5は、図9および図10に示すように三本の脚軸4を有するボス部7の内径面にトルク伝達用のセレーション8を形成した構成を有し、そのセレーション8は、図8に示すようにトリポード部材5の内側に圧入される回転軸9の外周面に形成されたセレーション10と係合され、両セレーション8,10の係合部においてトルク伝達が行われる。このトリポード部材5は、強度が要求されることから、通常、焼入れなどの熱処理を施して硬度を高めるようにしている(例えば、特許文献1参照)。
【0006】
【特許文献1】
実開平5−1028号公報(段落番号[0002]〜[0004]、図3〜図5)
【0007】
【発明が解決しようとする課題】
ところで、前述したトリポード型等速自在継手におけるトリポード部材5は、脚軸4の形成部位mにおける径方向の肉厚が厚く、脚軸10間の円筒部位nにおける径方向の肉厚が薄い。そのため、トリポード部材5の熱処理において、焼入れ後の冷却過程で素材の収縮量がボス部7の周方向で均一にならず、収縮量の大きい円筒部位nの内径面が脚軸4の形成部位mの内径面より数十μm程度大きく内方に変形し、図9の鎖線pで示すようにボス部7の内径面がおむすび形に変形する。
【0008】
このため、トリポード部材5に回転軸9を圧入して両者を互いに結合した場合、締りばめの嵌め合いであると、円筒部位nの内径面におけるセレーション8の締め代が脚軸4の形成部位mにおけるセレーション8の締め代よりも大きく、また、隙間ばめの嵌め合いであると、円筒部位nにおけるセレーション8の隙間が脚軸4の形成部位mにおけるセレーション8の隙間よりも小さくなる。その結果、トルク伝達時に円筒部位nの内径面のセレーション8に大きな負荷がかかり、肉厚の薄い円筒部位nが強度的に弱いという問題があった。さらに、トリポード部材5に圧入された回転軸側でも、トリポード部材5のセレーション8に嵌合するセレーションに大きな負荷がかかることになり、回転軸9の強度も弱くなるという問題もあった。
【0009】
そこで、本発明は前記問題点に鑑みて提案されたもので、その目的とするところは、簡便な手段により、トリポード部材の円筒部位における耐久性の向上を図り得る等速自在継手を提供することにある。
【0014】
【課題を解決するための手段】
前記目的を達成するための技術的手段として、本発明は、内周面に複数のトラック溝を円周方向等間隔に軸方向に沿って形成し、第一の回転軸の端部に固定される外側継手部材と、外周面に前記外側継手部材のトラック溝と対をなすように径方向厚肉部と径方向薄肉部を円周方向等間隔に交互に形成し、第二の回転軸の端部にセレーション嵌合により固定される熱処理済みの内側継手部材と、前記外側継手部材と内側継手部材の間に介在して第一の回転軸と第二の回転軸間でトルクを伝達する複数の転動体とを備えた等速自在継手において、前記内側継手部材は、第二の回転軸の端部に固定されるボス部の外周面に径方向に突出した三本の脚軸を円周方向等間隔に形成し、その脚軸形成部位を径方向厚肉部としたトリポード部材であり、第二の回転軸の端部がセレーション嵌合する軸孔を有し、その軸孔は、熱処理により径方向薄肉部の内径寸法が径方向厚肉部の内径寸法よりも小さい形状をなし、その熱処理後のセレーションの形成により第二の回転軸の外径形状に合致した真円形をなすと共に熱処理による異常層が削除されていることを特徴とする。
【0015】
この発明では、内側継手部材の熱処理後に軸孔の内径にセレーションを形成したことにより、前述したように内側継手部材の硬度を高めるために熱処理を施したときに変形が生じても、その熱処理時の収縮による変形部分をセレーションの形成によって削除することができるので、軸孔に圧入される第二の回転軸の外径形状に合致した真円形とすることができる。
【0016】
その結果、トルク伝達時に軸孔の内径面のセレーションにかかる負荷が均一になり、内側継手部材の強度を確保することができ、さらに、熱処理により内径面に生じた異常層も削除することができるので、セレーション強度をより一層向上させることができる。
【0019】
【発明の実施の形態】
本発明をトリポード型等速自在継手に適用した実施形態を以下に詳述する。
【0020】
図2および図3に示す実施形態のトリポード型等速自在継手は、外側継手部材11と、内側継手部材であるトリポード部材12と、転動体であるローラ13とで主要部が構成され、駆動側と従動側で連結すべき二軸の一方である第一の回転軸が外側継手部材11に連結され、他方である第二の回転軸14がトリポード部材12に連結されて作動角をとっても等速で回転トルクを伝達し、しかも、軸方向の相対変位をも許容することができる構成を備えている。
【0021】
外側継手部材11は、一端が開口し、他端が閉塞した略円筒カップ状をなし、その他端に第一の回転軸(図示せず)が一体的に設けられ、内周部に軸方向の三本のトラック溝15が中心軸の周りに120°間隔で形成されている。各トラック溝15は、その円周方向で向かい合った側壁にそれぞれ凹曲面状のローラ案内面16が軸方向に形成されている。トリポード部材12は、半径方向に突出した三本の脚軸17を有し、第二の回転軸14にセレーション嵌合により保持されている。ローラ13は、複数の針状ころ18を介して脚軸17に回転自在に装着され、トリポート部材12の脚軸17と外側継手部材11のローラ案内面16との間に収容されている。
【0022】
なお、脚軸17の外周面は針状ころ18の内側軌道面とされ、ローラ13の内周面は針状ころ18の外側軌道面とされている。ローラ13の外周面は、ローラ案内面16に適合する凸球面とされている。針状ころ18は、総ころ状態で組み込まれ、脚軸17の先端付近に装着されたサークリップ19により抜け止めされている。
【0023】
このトリポード型等速自在継手では、トリポード部材12の脚軸17と外側継手部材11のローラ案内面16とがローラ13を介して二軸の回転方向に係合することにより、駆動側から従動側へ回転トルクが等速で伝達される。また、各ローラ13が脚軸17に対して回転しながらローラ案内面16上を転動することにより、外側継手部材11とトリポード部材12との間の相対的な軸方向変位や角度変位が吸収される。
【0024】
トリポード型等速自在継手の一部を構成するトリポード部材12は、円筒状のボス部20と、そのボス部20の中心軸の周りに120°間隔で一体的に突設された前述の脚軸17とからなり、前記ボス部20の軸心に貫設され、第二の回転軸14が圧入される軸孔21を有する。このトリポード部材12の軸孔21の内径面にセレーション22が形成されていると共に、第二の回転軸14の端部の外径面にセレーション23が形成され、その軸孔21への第二の回転軸14の圧入により両者のセレーション22,23を係合させることによりトルク伝達が可能となる。このトリポード部材12は、強度が要求されることから、通常、焼入れなどの熱処理を施して硬度を高めるようにしている。
【0025】
この第一の実施形態では、図1に示すように軸孔21の熱処理前形状を、脚軸17間に位置するボス部20の円筒部位X(径方向薄肉部)の内径寸法がボス部20の脚軸形成部位Y(径方向厚肉部)よりも大きくなるようなおむすび形としている。なお、ボス部20の円筒部位Xの内径寸法と脚軸形成部位Yの内径寸法との差は最大で10μmが望ましい。このトリポード部材12の軸孔21のセレーション22は、ブローチ加工により形成されるのが一般的であるが、前述のおむすび形の熱処理前形状をセレーション形成と同時にブローチ加工により得ることができる。
【0026】
このようにトリポード部材12の軸孔21の熱処理前形状を、ボス部20の円筒部位Xの内径寸法が脚軸形成部位Yの内径寸法よりも大きくなるようなおむすび形としたことにより、トリポード部材12の硬度を高めるために熱処理を施したときに変形が生じても、軸孔21の熱処理後形状は、第二の回転軸14の外径形状に合致した真円形となる(図1のa参照)。
【0027】
すなわち、トリポード部材12の熱処理における焼入れ後の冷却過程では、ボス部20の円筒部位Xの方が脚軸形成部位Yよりも収縮量が大きいため、その円筒部位Xの内径面が脚軸形成部位Yの内径面よりも内方へ変形する。ここで、前述したように円筒部位Xの内径寸法を脚軸形成部位Yの内径寸法よりも予め大きくしているので、熱処理時の収縮による変形後、軸孔21の熱処理後形状は、第二の回転軸14の外径形状に合致した真円形となる。
【0028】
その結果、トルク伝達時に軸孔21の内径面のセレーション22にかかる負荷が均一になり、トリポード部材12の強度を確保することができる。このようにトリポード部材12のセレーション22にかかる負荷が均一になれば、トリポード部材12に圧入された回転軸側でも、トリポード部材12のセレーション22に嵌合するセレーション23にかかる負荷が均一になるので、回転軸14の強度も確保することができる。
【0029】
以上で説明した第一の実施形態では、トリポード部材12の軸孔21の熱処理前形状を、その熱処理による変形量を予め考慮しておむすび形にすることにより、熱処理後の軸孔形状を真円形にする手段であるが、本発明はこれに限定されることなく、その他、第二の実施形態として、図4に示すように熱処理後にトリポード部材12の軸孔21の内径にセレーション22を形成するようにしてもよい。
【0030】
つまり、前述したようにトリポード部材12の硬度を高めるために熱処理を施したとき、図4の破線bで示すように軸孔21がおぬすび形に変形しても、その熱処理時の収縮による変形部分をその後のセレーション22の形成によって削除することができるので、軸孔21の形状を第二の回転軸14の外径形状に合致した真円形とすることができる。
【0031】
その結果、トルク伝達時に軸孔21の内径面のセレーション22にかかる負荷が均一になり、トリポード部材12の強度を確保することができ、さらに、熱処理により軸孔21の内径面に生じた異常層も削除することができるので、セレーション強度をより一層向上させることができる。
【0032】
なお、前述した実施形態では、第二の回転軸14の端部に固定されるボス部20の外周面に径方向に突出した三本の脚軸17を円周方向等間隔に形成したトリポード部材12を内側継手部材としたトリポード型等速自在継手に適用した場合について説明したが、他の実施形態として、図5に示すように外周面に外側継手部材11のトラック溝15と対をなすトラック溝24を円周方向等間隔に軸方向に沿って形成した内輪12’を内側継手部材とした等速自在継手にも適用可能である。この場合、トラック溝形成部位Xが径方向薄肉部となる。
【0033】
この図5に示す実施形態では、熱処理を施したとき、図5の破線cで示すように軸孔21が多角形に変形しても、その熱処理時の収縮による変形部分をその後のセレーション22の形成によって削除することができるので、軸孔21の形状を第二の回転軸14の外径形状に合致した真円形とすることができる。
【0034】
その結果、トルク伝達時に軸孔21の内径面のセレーション22にかかる負荷が均一になり、トリポード部材12の強度を確保することができ、さらに、熱処理により軸孔21の内径面に生じた異常層も削除することができるので、セレーション強度をより一層向上させることができる。
【0035】
【実施例】
図6は、第一の実施形態において、トリポード部材12の軸孔21の熱処理前形状(おむすび形)の歪み量と片振り疲労強度試験による繰り返し回数との関係を示す。ここで、片振り疲労強度試験とは、ある片振りトルク0〜+Tで捩じった時の破損までの繰り返し回数を求める試験であり、その試験結果である繰り返し回数が多いほど強度が高いことを意味する。なお、歪み量は、図7に示すように軸孔21のセレーション内径面の形状測定により、おむすび形状の外接円半径Aと内接円半径Bとの差とする。
【0036】
図6に示す片振り疲労強度試験の結果において、第二の回転軸側が破損し、トリポード部材12は未破損状態である。この試験結果から歪み量が多くなると、第二の回転軸14が破損するまでの繰り返し回数が少なくなって強度が低くなっていることが明らかである。従って、歪み量が最大で10μmの場合、繰り返し回数が多くなって強度が高くなっている。
【0038】
【発明の効果】
本発明によれば、内側継手部材の熱処理後に軸孔の内径にセレーションを形成したことにより、前述したように内側継手部材の硬度を高めるために熱処理を施したときに変形が生じても、その熱処理時の収縮による変形部分をセレーションの形成によって削除することができるので、軸孔形状を第二の回転軸の外径形状に合致した真円形とすることができ、トルク伝達時に軸孔内径面のセレーションにかかる負荷が均一になり、内側継手部材の強度を確保することができ、さらに、熱処理により内径面に生じた異常層も削除することができるので、セレーション強度をより一層向上させることができ、信頼性の高い長寿命の等速自在継手を提供できる。
【図面の簡単な説明】
【図1】本発明の実施形態で、トリポード型等速自在継手のトリポード部材を示す正面図である。
【図2】本発明の実施形態で、トリポード型等速自在継手を示す正断面図である。
【図3】本発明の実施形態で、トリポード型等速自在継手を示す側断面図である。
【図4】本発明の他の実施形態で、トリポード部材を示す正面図である。
【図5】本発明の他の実施形態で、内輪を示す正面図である。
【図6】トリポード部材の中心孔の熱処理前形状(おむすび形)の歪み量と片振り疲労強度試験による繰り返し回数との関係を示す特性図である。
【図7】おむすび形状の外接円半径と内接円半径との差を説明するための模式図である。
【図8】等速自在継手の従来例で、トリポード型等速自在継手を示す側断面図である。
【図9】等速自在継手の従来例で、トリポード部材を示す正面図である。
【図10】等速自在継手の従来例で、トリポード部材の中心孔に形成されたセレーションを示す拡大部分正面図である。
【符号の説明】
11 外側継手部材
12 内側継手部材(トリポード部材)
12’ 内側継手部材(内輪)
13 転動体(ローラ)
14 第二の回転軸
15 トラック溝
17 脚軸
20 ボス部
21 中心孔
22 セレーション
24 トラック溝
X 径方向薄肉部
Y 径方向厚肉部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a constant velocity universal joint, and more particularly to a tripod type constant velocity universal joint suitable for use in a power transmission unit of an automobile, an aircraft, a ship, various industrial machines, and the like.
[0002]
[Prior art]
For example, a tripod type constant velocity universal joint is one type of constant velocity universal joint used as a means for transmitting rotational force from an automobile engine to wheels at a constant speed. This tripod type constant velocity universal joint connects two shafts on the drive side and the driven side, transmits rotational torque at a constant speed even if the two shafts take an operating angle, and also allows relative displacement in the axial direction. It has a structure that can
[0003]
In general, the tripod type constant velocity universal joint has three track grooves 1 in the axial direction formed in the inner peripheral portion as shown in FIG. 8, and the axial roller guide surfaces on both sides of each track groove 1. 2, a tripod member 5 having three leg shafts 4 projecting in the radial direction, and between the leg shaft 4 of the tripod member 5 and the roller guide surface 2 of the outer joint member 3. The roller 6 accommodated rotatably is comprised as a main member. One of the two shafts is connected to the outer joint member 3 and the other is connected to the tripod member 5.
[0004]
In this way, the leg shaft 4 of the tripod member 5 and the roller guide surface 2 of the outer joint member 3 are engaged with each other in the biaxial rotational direction via the roller 6, so that the rotational torque is constant from the drive side to the driven side. Communicated in Further, as each roller 6 rolls on the roller guide surface 2 while rotating with respect to the leg shaft 4, relative axial displacement and angular displacement between the outer joint member 3 and the tripod member 5 are absorbed. Is done.
[0005]
The tripod member 5 constituting this tripod type constant velocity universal joint has a configuration in which serrations 8 for torque transmission are formed on the inner diameter surface of a boss portion 7 having three leg shafts 4 as shown in FIGS. The serrations 8 are engaged with serrations 10 formed on the outer peripheral surface of the rotary shaft 9 press-fitted inside the tripod member 5 as shown in FIG. Torque is transmitted. Since the tripod member 5 is required to have strength, the hardness is usually increased by performing a heat treatment such as quenching (see, for example, Patent Document 1).
[0006]
[Patent Document 1]
Japanese Utility Model Laid-Open No. 5-1028 (paragraph numbers [0002] to [0004], FIGS. 3 to 5)
[0007]
[Problems to be solved by the invention]
By the way, the tripod member 5 in the tripod type constant velocity universal joint described above has a large thickness in the radial direction at the formation portion m of the leg shaft 4 and a small thickness in the radial direction at the cylindrical portion n between the leg shafts 10. Therefore, in the heat treatment of the tripod member 5, the shrinkage amount of the material is not uniform in the circumferential direction of the boss portion 7 in the cooling process after quenching, and the inner diameter surface of the cylindrical portion n having a large shrinkage amount is the formation portion m of the leg shaft 4. The inner surface of the boss portion 7 is deformed inwardly as shown by a chain line p in FIG. 9.
[0008]
For this reason, when the rotary shaft 9 is press-fitted into the tripod member 5 and coupled to each other, the interference of the serration 8 on the inner diameter surface of the cylindrical portion n is the portion where the leg shaft 4 is formed. The clearance of serration 8 at m is larger than that of the serration 8, and if the clearance fit is fitted, the clearance of serration 8 at cylindrical portion n is smaller than the clearance of serration 8 at formation portion m of leg shaft 4. As a result, there is a problem that a large load is applied to the serration 8 on the inner diameter surface of the cylindrical portion n during torque transmission, and the thin cylindrical portion n is weak in strength. Further, even on the rotating shaft side press-fitted into the tripod member 5, a large load is applied to the serration that fits into the serration 8 of the tripod member 5, and the strength of the rotating shaft 9 is also reduced.
[0009]
Therefore, the present invention has been proposed in view of the above-described problems, and an object of the present invention is to provide a constant velocity universal joint capable of improving durability in a cylindrical portion of a tripod member by simple means. It is in.
[0014]
[Means for Solving the Problems]
As technical means for achieving the above-mentioned object , the present invention forms a plurality of track grooves on the inner peripheral surface along the axial direction at equal intervals in the circumferential direction, and is fixed to the end of the first rotating shaft. The outer joint member and the outer circumferential surface of the outer joint member are alternately formed with a radially thick portion and a radially thin portion at equal intervals in the circumferential direction so as to form a pair with the track groove of the outer joint member. A heat-treated inner joint member that is fixed to the end portion by serration fitting, and a plurality of members that are interposed between the outer joint member and the inner joint member and transmit torque between the first rotating shaft and the second rotating shaft. In the constant velocity universal joint provided with the rolling element, the inner joint member has three leg shafts that protrude radially on the outer peripheral surface of the boss portion fixed to the end of the second rotating shaft. formed in equidistant, a tripod member which has its trunnion forming site and the radially thick portion, the second The end of the rotating shaft has a shaft hole for serration fitting, and the shaft hole is shaped by heat treatment so that the inner diameter dimension of the radially thin part is smaller than the inner diameter dimension of the radially thick part. The formation of a serration forms a perfect circle that matches the outer diameter of the second rotating shaft, and an abnormal layer due to heat treatment is eliminated .
[0015]
In this invention, since the serration was formed in the inner diameter of the shaft hole after the heat treatment of the inner joint member, as described above, even when the heat treatment was performed to increase the hardness of the inner joint member, Since the deformed portion due to the contraction of the second portion can be eliminated by forming serrations, it can be a perfect circle that matches the outer diameter shape of the second rotating shaft that is press-fitted into the shaft hole.
[0016]
As a result, the load applied to the serration of the inner diameter surface of the shaft hole becomes uniform during torque transmission, the strength of the inner joint member can be ensured, and the abnormal layer generated on the inner diameter surface by heat treatment can be eliminated. Therefore, the serration strength can be further improved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment in which the present invention is applied to a tripod type constant velocity universal joint will be described in detail below.
[0020]
The tripod type constant velocity universal joint of the embodiment shown in FIG. 2 and FIG. 3 is composed mainly of an outer joint member 11, a tripod member 12 which is an inner joint member, and a roller 13 which is a rolling element. The first rotary shaft, which is one of the two shafts to be connected on the driven side, is connected to the outer joint member 11, and the second rotary shaft 14 which is the other is connected to the tripod member 12, so that the operating angle is constant. Is provided with a configuration capable of transmitting rotational torque and also allowing relative displacement in the axial direction.
[0021]
The outer joint member 11 has a substantially cylindrical cup shape with one end opened and the other end closed, and a first rotating shaft (not shown) is integrally provided at the other end, and an axial direction is provided at the inner peripheral portion. Three track grooves 15 are formed around the central axis at intervals of 120 °. Each track groove 15 is formed with a concave curved roller guide surface 16 in the axial direction on the side walls facing each other in the circumferential direction. The tripod member 12 has three leg shafts 17 protruding in the radial direction, and is held on the second rotating shaft 14 by serration fitting. The roller 13 is rotatably mounted on the leg shaft 17 via a plurality of needle rollers 18 and is accommodated between the leg shaft 17 of the tripart member 12 and the roller guide surface 16 of the outer joint member 11.
[0022]
The outer peripheral surface of the leg shaft 17 is an inner raceway surface of the needle roller 18, and the inner peripheral surface of the roller 13 is an outer raceway surface of the needle roller 18. The outer peripheral surface of the roller 13 is a convex spherical surface that fits the roller guide surface 16. The needle roller 18 is assembled in a full roller state, and is prevented from coming off by a circlip 19 attached near the tip of the leg shaft 17.
[0023]
In this tripod type constant velocity universal joint, the leg shaft 17 of the tripod member 12 and the roller guide surface 16 of the outer joint member 11 are engaged with each other in the biaxial rotation direction via the roller 13, so that the driven side is driven to the driven side. Rotational torque is transmitted at a constant speed. In addition, as each roller 13 rolls on the roller guide surface 16 while rotating with respect to the leg shaft 17, relative axial displacement and angular displacement between the outer joint member 11 and the tripod member 12 are absorbed. Is done.
[0024]
The tripod member 12 constituting a part of the tripod type constant velocity universal joint includes a cylindrical boss portion 20 and the above-described leg shaft integrally projecting around the central axis of the boss portion 20 at intervals of 120 °. 17 and has a shaft hole 21 penetrating the shaft center of the boss portion 20 and into which the second rotating shaft 14 is press-fitted. A serration 22 is formed on the inner diameter surface of the shaft hole 21 of the tripod member 12, and a serration 23 is formed on the outer diameter surface of the end portion of the second rotating shaft 14. Torque can be transmitted by engaging the serrations 22 and 23 of the rotary shaft 14 by press-fitting. Since the tripod member 12 is required to have strength, the hardness is usually increased by performing a heat treatment such as quenching.
[0025]
In the first embodiment, as shown in FIG. 1, the shape of the shaft hole 21 before heat treatment is such that the inner diameter dimension of the cylindrical portion X (radially thin portion) of the boss portion 20 located between the leg shafts 17 is the boss portion 20. This is a rice ball shape that is larger than the leg-shaft forming portion Y (the radially thick portion). The difference between the inner diameter dimension of the cylindrical part X of the boss portion 20 and the inner diameter dimension of the leg shaft forming part Y is desirably 10 μm at the maximum. The serration 22 of the shaft hole 21 of the tripod member 12 is generally formed by broaching, but the above-mentioned rice ball-shaped pre-heat treatment shape can be obtained by broaching simultaneously with serration formation.
[0026]
As described above, the shape before the heat treatment of the shaft hole 21 of the tripod member 12 is a rice bowl shape in which the inner diameter dimension of the cylindrical portion X of the boss portion 20 is larger than the inner diameter dimension of the leg shaft forming portion Y. Even if deformation occurs when heat treatment is performed to increase the hardness of 12, the post-heat treatment shape of the shaft hole 21 is a perfect circle that matches the outer diameter shape of the second rotating shaft 14 (a in FIG. 1). reference).
[0027]
That is, in the cooling process after quenching in the heat treatment of the tripod member 12, the cylindrical portion X of the boss portion 20 has a larger amount of contraction than the leg shaft forming portion Y, so that the inner diameter surface of the cylindrical portion X is the leg shaft forming portion. Deforms inward from the inner diameter surface of Y. Here, as described above, since the inner diameter dimension of the cylindrical portion X is made larger than the inner diameter dimension of the leg shaft forming portion Y, the shape after the heat treatment of the shaft hole 21 after the deformation due to the shrinkage during the heat treatment is second. It becomes a perfect circle that matches the outer diameter shape of the rotary shaft 14.
[0028]
As a result, the load applied to the serrations 22 on the inner diameter surface of the shaft hole 21 during torque transmission is uniform, and the strength of the tripod member 12 can be ensured. Thus, if the load applied to the serration 22 of the tripod member 12 becomes uniform, the load applied to the serration 23 fitted to the serration 22 of the tripod member 12 becomes uniform even on the rotary shaft side press-fitted into the tripod member 12. Also, the strength of the rotating shaft 14 can be ensured.
[0029]
In the first embodiment described above, the shape of the shaft hole 21 of the tripod member 12 before the heat treatment is formed into a round shape taking into account the amount of deformation caused by the heat treatment in advance, so that the shape of the shaft hole after the heat treatment is a perfect circle. However, the present invention is not limited to this, and as a second embodiment, serrations 22 are formed in the inner diameter of the shaft hole 21 of the tripod member 12 after heat treatment as shown in FIG. You may do it.
[0030]
That is, as described above, when heat treatment is performed to increase the hardness of the tripod member 12, even if the shaft hole 21 is deformed into a dog-like shape as shown by a broken line b in FIG. Therefore, the shape of the shaft hole 21 can be a perfect circle that matches the outer diameter shape of the second rotating shaft 14.
[0031]
As a result, the load applied to the serration 22 on the inner diameter surface of the shaft hole 21 becomes uniform during torque transmission, the strength of the tripod member 12 can be secured, and an abnormal layer generated on the inner diameter surface of the shaft hole 21 by heat treatment. Can also be eliminated, and the serration strength can be further improved.
[0032]
In the above-described embodiment, the tripod member in which the three leg shafts 17 protruding in the radial direction are formed at equal intervals in the circumferential direction on the outer peripheral surface of the boss portion 20 fixed to the end portion of the second rotating shaft 14. Although the case where it applied to the tripod type constant velocity universal joint which used 12 as the inner joint member was demonstrated, as another embodiment, the track which makes a pair with the track groove 15 of the outer joint member 11 as shown in FIG. The present invention is also applicable to a constant velocity universal joint in which an inner ring 12 ′ in which grooves 24 are formed at equal intervals in the circumferential direction along the axial direction is used as an inner joint member. In this case, the track groove forming portion X is a radially thin portion.
[0033]
In the embodiment shown in FIG. 5, when heat treatment is performed, even if the shaft hole 21 is deformed into a polygon as shown by a broken line c in FIG. Since it can be deleted by formation, the shape of the shaft hole 21 can be a perfect circle that matches the outer diameter shape of the second rotating shaft 14.
[0034]
As a result, the load applied to the serration 22 on the inner diameter surface of the shaft hole 21 becomes uniform during torque transmission, the strength of the tripod member 12 can be secured, and an abnormal layer generated on the inner diameter surface of the shaft hole 21 by heat treatment. Can also be eliminated, and the serration strength can be further improved.
[0035]
【Example】
FIG. 6 shows the relationship between the amount of distortion of the shape before heat treatment of the shaft hole 21 (triple shape) of the tripod member 12 and the number of repetitions by the swing fatigue strength test in the first embodiment. Here, the swing fatigue strength test is a test for determining the number of repetitions until breakage when twisted with a certain swing torque of 0 to + T, and the higher the number of repetitions, the higher the number of repetitions that is the test result, the higher the strength. Means. The amount of strain is the difference between the circumscribed circle radius A and the inscribed circle radius B of the rice ball shape by measuring the shape of the serrated inner diameter surface of the shaft hole 21 as shown in FIG.
[0036]
In the result of the one-sided fatigue strength test shown in FIG. 6, the second rotating shaft side is broken, and the tripod member 12 is in an unbroken state. From this test result, it is clear that as the amount of strain increases, the number of repetitions until the second rotating shaft 14 is damaged decreases and the strength decreases. Therefore, when the strain amount is 10 μm at the maximum, the number of repetitions increases and the strength increases.
[0038]
【The invention's effect】
According to the present invention, since the serration is formed on the inner diameter of the shaft hole after the heat treatment of the inner joint member, even if deformation occurs when the heat treatment is performed to increase the hardness of the inner joint member as described above, Since the deformed part due to shrinkage during heat treatment can be eliminated by forming serrations, the shape of the shaft hole can be a perfect circle that matches the outer diameter shape of the second rotating shaft, and the inner diameter surface of the shaft hole can be transmitted during torque transmission. The load applied to the serration becomes uniform, the strength of the inner joint member can be secured, and the abnormal layer generated on the inner diameter surface by the heat treatment can be deleted, so that the serration strength can be further improved. It is possible to provide a constant-velocity universal joint with high reliability and long life.
[Brief description of the drawings]
FIG. 1 is a front view showing a tripod member of a tripod constant velocity universal joint according to an embodiment of the present invention.
FIG. 2 is a front sectional view showing a tripod type constant velocity universal joint according to an embodiment of the present invention.
FIG. 3 is a side sectional view showing a tripod type constant velocity universal joint according to an embodiment of the present invention.
FIG. 4 is a front view showing a tripod member according to another embodiment of the present invention.
FIG. 5 is a front view showing an inner ring in another embodiment of the present invention.
FIG. 6 is a characteristic diagram showing the relationship between the amount of distortion of the shape before the heat treatment (rice ball shape) of the center hole of the tripod member and the number of repetitions by the swing fatigue strength test.
FIG. 7 is a schematic diagram for explaining the difference between the circumscribed circle radius and the inscribed circle radius of the rice ball shape.
FIG. 8 is a side sectional view showing a tripod type constant velocity universal joint in a conventional example of a constant velocity universal joint.
FIG. 9 is a front view showing a tripod member in a conventional example of a constant velocity universal joint.
FIG. 10 is an enlarged partial front view showing serrations formed in a center hole of a tripod member in a conventional example of a constant velocity universal joint.
[Explanation of symbols]
11 Outer joint member 12 Inner joint member (tripod member)
12 'Inner joint member (inner ring)
13 Rolling elements (rollers)
14 Second rotating shaft 15 Track groove 17 Leg shaft 20 Boss portion 21 Center hole 22 Serration 24 Track groove X Radial thin portion Y Radial thick portion

Claims (1)

内周面に複数のトラック溝を円周方向等間隔に軸方向に沿って形成し、第一の回転軸の端部に固定される外側継手部材と、外周面に前記外側継手部材のトラック溝と対をなすように径方向厚肉部と径方向薄肉部を円周方向等間隔に交互に形成し、第二の回転軸の端部にセレーション嵌合により固定される熱処理済みの内側継手部材と、前記外側継手部材と内側継手部材の間に介在して第一の回転軸と第二の回転軸間でトルクを伝達する複数の転動体とを備えた等速自在継手において、
前記内側継手部材は、第二の回転軸の端部に固定されるボス部の外周面に径方向に突出した三本の脚軸を円周方向等間隔に形成し、その脚軸形成部位を径方向厚肉部としたトリポード部材であり、第二の回転軸の端部がセレーション嵌合する軸孔を有し、その軸孔は、熱処理により径方向薄肉部の内径寸法が径方向厚肉部の内径寸法よりも小さい形状をなし、その熱処理後のセレーションの形成により第二の回転軸の外径形状に合致した真円形をなすと共に熱処理による異常層が削除されていることを特徴とする等速自在継手。
A plurality of track grooves are formed on the inner peripheral surface along the axial direction at equal intervals in the circumferential direction, and the outer joint member is fixed to the end of the first rotating shaft, and the track grooves of the outer joint member are formed on the outer peripheral surface. A heat-treated inner joint member that is alternately formed with a radially thick portion and a radially thin portion at equal intervals in the circumferential direction so as to be paired with each other and fixed to the end of the second rotating shaft by serration fitting And a constant velocity universal joint comprising a plurality of rolling elements that are interposed between the outer joint member and the inner joint member and transmit torque between the first rotating shaft and the second rotating shaft,
The inner joint member is formed with three leg shafts projecting radially on the outer peripheral surface of the boss portion fixed to the end of the second rotating shaft at equal intervals in the circumferential direction, and the leg shaft forming portion is formed. This is a tripod member having a radially thick portion, and the end of the second rotating shaft has a shaft hole for serration fitting, and the shaft hole has a radially thick inner diameter dimension due to heat treatment. The shape is smaller than the inner diameter of the part, and the formation of serrations after the heat treatment forms a perfect circle that matches the outer diameter shape of the second rotating shaft, and the abnormal layer due to the heat treatment is deleted. Constant velocity universal joint.
JP2003020569A 2003-01-29 2003-01-29 Constant velocity universal joint Expired - Fee Related JP4338983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020569A JP4338983B2 (en) 2003-01-29 2003-01-29 Constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020569A JP4338983B2 (en) 2003-01-29 2003-01-29 Constant velocity universal joint

Publications (2)

Publication Number Publication Date
JP2004232697A JP2004232697A (en) 2004-08-19
JP4338983B2 true JP4338983B2 (en) 2009-10-07

Family

ID=32950176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020569A Expired - Fee Related JP4338983B2 (en) 2003-01-29 2003-01-29 Constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP4338983B2 (en)

Also Published As

Publication number Publication date
JP2004232697A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP2002061661A (en) Driving unit for wheel
US8535167B2 (en) Constant velocity joint of tripod type
JP4245106B2 (en) Manufacturing method and fitting structure of spline shaft for constant velocity joint
JP4338983B2 (en) Constant velocity universal joint
JP5355876B2 (en) Constant velocity universal joint
CN101466958B (en) Constant-velocity universal joint
JPH1096430A (en) Tripod type constant velocity universal joint
JP2001323920A (en) Structure for fitting spline shaft for constant velocity joint
EP2136094B1 (en) Universal joint
JP3947342B2 (en) Tripod type constant velocity universal joint
US20050101391A1 (en) Constant velocity joint having friction reducing web locators
JP2001343023A (en) Fitting structure of spline shaft for constant velocity joint
JP2001349332A (en) Fixed constant velocity universal joint and assembly method therefor
KR101696907B1 (en) Wheel bearing and manufacturing method of the same
JP2008064158A (en) Tripod type constant velocity universal joint
JP2004257416A (en) Uniform velocity universal joint
JP5623243B2 (en) Constant velocity universal joint
JP2007024266A (en) Tripod type constant velocity universal joint
JP2583634Y2 (en) Automotive tripod type constant velocity joint
JP2001330050A (en) Tripod type constant velocity universal joint
JP4268572B2 (en) Constant velocity joint
JP7142593B2 (en) Outer joint member for constant velocity universal joint
JPH09151952A (en) Trunnion member for triboard type constant velocity universal joint
KR20090131437A (en) Spider assembly of constant velocity joint for automobile
JP4652267B2 (en) Tripod type constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Ref document number: 4338983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees