[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4334749B2 - Liquid detergent builder and liquid detergent composition - Google Patents

Liquid detergent builder and liquid detergent composition Download PDF

Info

Publication number
JP4334749B2
JP4334749B2 JP2000250963A JP2000250963A JP4334749B2 JP 4334749 B2 JP4334749 B2 JP 4334749B2 JP 2000250963 A JP2000250963 A JP 2000250963A JP 2000250963 A JP2000250963 A JP 2000250963A JP 4334749 B2 JP4334749 B2 JP 4334749B2
Authority
JP
Japan
Prior art keywords
liquid detergent
builder
water
acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000250963A
Other languages
Japanese (ja)
Other versions
JP2002060785A (en
Inventor
潤一 中村
卓哉 佐伯
義一 藤井
繁 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2000250963A priority Critical patent/JP4334749B2/en
Priority to US09/930,274 priority patent/US6756460B2/en
Priority to DE60131121T priority patent/DE60131121T2/en
Priority to EP01120081A priority patent/EP1182217B1/en
Priority to ES01120081T priority patent/ES2293951T3/en
Publication of JP2002060785A publication Critical patent/JP2002060785A/en
Application granted granted Critical
Publication of JP4334749B2 publication Critical patent/JP4334749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な液体洗剤用ビルダー、および、液体洗剤組成物に関する。
【0002】
【従来の技術】
水溶性の重合体は、洗剤用ビルダー用途に好ましく用いられ、例えば、アクリル酸、メタクリル酸、α−ヒドロキシアクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、シトラコン酸などの不飽和カルボン酸系(共)重合体が従来からよく知られている。
さらに、洗剤用ビルダー用途に対する性能を向上させるべく、上記(共)重合体の改良研究が近年盛んに行われている。
【0003】
【発明が解決しようとする課題】
上記従来の不飽和カルボン酸系(共)重合体およびその改良物ベースの洗剤用ビルダーは、粉末洗剤として用いる場合には比較的高いレベルの性能が発揮できていた。
しかしながら、上記従来の不飽和カルボン酸系(共)重合体からなる洗剤用ビルダーは、界面活性剤との相溶性が極めて悪く、従って、液体洗剤用途には不向きであるという欠点があった。
したがって、本発明が解決しようとする課題は、界面活性剤との相溶性に極めて優れ、液体洗剤組成物としたときの透明性が高く、しかも、洗剤性能に非常に優れた、新規な液体洗剤用ビルダーと、その液体洗剤用ビルダーを含んでなる新規な液体洗剤組成物とを提供することにある。
【0004】
【課題を解決するための手段】
本発明者は上記課題を解決するべく鋭意検討を行った。その結果、特定の不飽和カルボン酸系単量体および特定の不飽和アルコール系単量体とを含む単量体成分を共重合して得られる水溶性共重合体に着目した。そして、従来の不飽和カルボン酸系(共)重合体からなるビルダーでは解決できなかった上記課題が、前記特定の水溶性共重合体を液体洗剤用ビルダーに用いることにより、見事に解決できることを見い出した。本発明はこのようにして完成された。
すなわち、本発明に係る液体洗剤用ビルダーは、
界面活性剤を10〜60重量%の割合で含む液体洗剤組成物に用いられる洗剤用ビルダーであって、
下記一般式(1a)〜(1c)で表される不飽和カルボン酸系単量体(1)のうちの一般式(1a)で表されるもの、および、下記一般式(2)で表される不飽和アルコール系単量体
【0005】
【化5】

Figure 0004334749
【0006】
【化6】
Figure 0004334749
【0007】
【化7】
Figure 0004334749
【0008】
【化3】
Figure 0004334749
【0009】
を必須に含む単量体成分を共重合して得られる水溶性共重合体を必須成分とし、クレイ分散性(炭酸カルシウム50ppm)が0.3以上である、ことを特徴とする。
また、本発明に係る液体洗剤組成物は、界面活性剤を10〜60重量%の割合で含む液体洗剤組成物であって、洗剤ビルダーとして、上記本発明の液体洗剤用ビルダーを含んでなる、ことを特徴とする。
【0010】
【発明の実施の形態】
[水溶性共重合体]
本発明における不飽和カルボン酸系単量体(1)としては、前記一般式(1a)〜(1c)で表される不飽和カルボン酸系単量体のうちの一般式(1a)で表すことができる単量体であれば、特に限定されない。
前記一般式(1a)で表すことができる単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸、あるいはそれらの酸の1価金属や、アンモニアや有機アミンによる部分中和物もしくは完全中和物等の不飽和モノカルボン酸系単量体が挙げられるが、特にこれらに限定されない。
【0011】
前記一般式(1b)で表すことができる単量体としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、あるいはそれらの酸の1価金属や、アンモニアや有機アミンによる部分中和物もしくは完全中和物等の不飽和ジカルボン酸系単量体が挙げられるが、特にこれらに限定されない。
前記一般式(1c)で表すことができる単量体としては、例えば、無水マレイン酸、シトラコン酸無水物等の不飽和カルボン酸無水物系単量体が挙げられるが、特にこれらに限定されない。
本発明で用いることができる不飽和アルコール系単量体(2)としては、前記一般式(2)で表すことができる単量体であれば、特に限定されないが、例えば、3−メチル−3−ブテン−1−オール、3−メチル−2−ブテン−1−オール、2−メチル−3−ブテン−2−オール等の不飽和アルコール1モルに対して、炭素数2〜18のアルキレンオキサイドを1〜300モル、好ましくは1〜100モル、さらに好ましくは5〜50モル付加した化合物を挙げることができる。炭素数2〜18のアルキレンオキサイドとしては、スチレンオキサイド、エチレンオキサイド、プロピレンオキサイド等を挙げることができるが、エチレンオキサイドおよび/またはプロピレンオキサイドを用いるのが好ましい。エチレンオキサイドとプロピレンオキサイドを併用する場合、その結合順序に制限はない。
【0012】
エチレンオキサイドおよび/またはプロピレンオキサイドの付加モル数が0モルの場合、本発明の効果が十分に発揮できず、また、300モルを越えた場合、本発明の効果の向上は見られず、単に多量の添加量が必要となるだけとなり、好ましくない。
本発明における水溶性共重合体は、不飽和カルボン酸系単量体(1)、および、不飽和アルコール系単量体(2)を必須に含む単量体成分を共重合して得られるものであるが、当該単量体成分中には単量体(1)と(2)以外に、必要に応じて、単量体(1)および(2)と共重合可能な他の単量体を含んでいてもよい。
【0013】
上記他の単量体としては、特に限定されないが、例えば、スチレン;スチレンスルホン酸;酢酸ビニル;(メタ)アクリロニトリル;(メタ)アクリルアミド;メチル(メタ)アクリレート;エチル(メタ)アクリレート;ブチル(メタ)アクリレート;2−エチルヘキシル(メタ)アクリレート;ジメチルアミノエチル(メタ)アクリレート;ジエチルアミノエチル(メタ)アクリレート;アリルアルコール;3−メチル−3−ブテン−1−オール;3−メチル−2−ブテン−1−オール;2−メチル−3−ブテン−2−オール;3−(メタ)アクリロキシ−1,2−ジヒドロキシプロパン;3−(メタ)アクリロキシ−1,2−ジ(ポリ)オキシエチレンエーテルプロパン;3−(メタ)アクリロキシ−1,2−ジ(ポリ)オキシプロピレンエーテルプロパン;3−(メタ)アクリロキシ−1,2−ジヒドロキシプロパンホスフェートおよびその1価金属塩、2価金属塩、アンモニウム塩、有機アミン塩、または、炭素数1〜4のアルキル基のモノもしくはジエステル;3−(メタ)アクリロキシ−1,2−ジヒドロキシプロパンサルフェートおよびその1価金属塩、2価金属塩、アンモニウム塩、有機アミン塩、または、炭素数1〜4のアルキル基のエステル;3−(メタ)アクリロキシ−2−ヒドロキシプロパンスルホン酸およびその1価金属塩、2価金属塩、アンモニウム塩、有機アミン塩、または、炭素数1〜4のアルキル基のエステル;3−(メタ)アクリロキシ−2−(ポリ)オキシエチレンエーテルプロパンスルホン酸およびその1価金属塩、2価金属塩、アンモニウム塩、有機アミン塩、または、炭素数1〜4のアルキル基のエステル;3−(メタ)アクリロキシ−2−(ポリ)オキシプロピレンエーテルプロパンスルホン酸およびその1価金属塩、2価金属塩、アンモニウム塩、有機アミン塩、または、炭素数1〜4のアルキル基のエステル;3−アリロキシプロパン−1,2−ジオール;3−アリロキシプロパン−1,2−ジオールホスフェート;3−アリロキシプロパン−1,2−ジオールスルホネート;3−アリロキシプロパン−1,2−ジオールサルフェート;3−アリロキシ−1,2−ジ(ポリ)オキシエチレンエーテルプロパン;3−アリロキシ−1,2−ジ(ポリ)オキシエチレンエーテルプロパンホスフェート;3−アリロキシ−1,2−ジ(ポリ)オキシエチレンエーテルプロパンスルホネート;3−アリロキシ−1,2−ジ(ポリ)オキシプロピレンエーテルプロパン;3−アリロキシ−1,2−ジ(ポリ)オキシプロピレンエーテルプロパンホスフェート;3−アリロキシ−1,2−ジ(ポリ)オキシプロピレンエーテルプロパンスルホネート;6−アリロキシヘキサン−1,2,3,4,5−ペンタオール;6−アリロキシヘキサン−1,2,3,4,5−ペンタオールホスフェート;6−アリロキシヘキサン−1,2,3,4,5−ペンタオールスルホネート;6−アリロキシヘキサン−1,2,3,4,5−ペンタ(ポリ)オキシエチレンエーテルヘキサン;6−アリロキシヘキサン−1,2,3,4,5−ペンタ(ポリ)オキシプロピレンエーテルヘキサン;3−アリロキシ−2−ヒドロキシプロパンスルホン酸およびその1価金属塩、2価金属塩、アンモニウム塩、もしくは、有機アミン塩、または、これらの化合物のリン酸エステルもしくは硫酸エステルおよびそれらの1価金属塩、2価金属塩、アンモニウム塩、または、有機アミン塩;3−アリロキシ−2−(ポリ)オキシエチレンプロパンスルホン酸およびその1価金属塩、2価金属塩、アンモニウム塩、もしくは、有機アミン塩、または、これらの化合物のリン酸エステルもしくは硫酸エステルおよびそれらの1価金属塩、2価金属塩、アンモニウム塩、または、有機アミン塩;3−アリロキシ−2−(ポリ)オキシプロピレンプロパンスルホン酸およびその1価金属塩、2価金属塩、アンモニウム塩、もしくは、有機アミン塩、または、これらの化合物のリン酸エステルもしくは硫酸エステルおよびそれらの1価金属塩、2価金属塩、アンモニウム塩、または、有機アミン塩;などを挙げることができる。
【0014】
本発明における水溶性共重合体は、不飽和カルボン酸系単量体(1)、および、不飽和アルコール系単量体(2)を必須に含む単量体成分を共重合して得られる。共重合の方法としては、特に限定されず、例えば、従来公知の方法によることができる。具体的には、例えば、水、有機溶剤、あるいは、水可溶性有機溶剤と水との混合溶剤等の溶剤中での重合を挙げることができる。これら重合に用いることができる触媒系としては、特に限定されないが、例えば、過硫酸塩や過酸化水素などが挙げられ、促進剤(亜硫酸水素塩やアスコルビン酸等)を併用することもできる。その他、アゾ系開始剤や有機過酸化物等も用いることができ、アミン化合物等の促進剤も併用できる。反応を有利に進める点で、過硫酸塩や、過酸化水素とアスコルビン酸を併用した触媒系が好ましい。また、分子量の調整剤として、メルカプトエタノール、メルカプトプロピオン酸、次亜リン酸ナトリウムなどの連鎖移動剤を併用してもよい。
【0015】
本発明における水溶性共重合体を得るに際し、不飽和カルボン酸系単量体(1)、および、不飽和アルコール系単量体(2)を必須に含む単量体成分を共重合する場合の、当該単量体成分中の各単量体(1)、(2)の割合は、(1):(2)=5:95〜95:5(重量比)、好ましくは、10:90〜70:30、さらに好ましくは、20:80〜60:40である。前記(1)の割合が5以下であると、キレート力が不足する。一方、前記(2)の割合が5以下であると、ポリエチレングリコール鎖導入の効果である耐スケール性等が低下する。
本発明における水溶性共重合体は、そのままでも後述の各種用途に用いることができるが、必要により、さらにアルカリ性物質で中和して用いることができる。このようなアルカリ性物質としては、1価金属および2価金属の水酸化物、塩化物、炭酸塩および重炭酸塩;アンモニア;有機アミン等をあげることができる。
【0016】
[液体洗剤用ビルダー]
本発明に係る液体洗剤用ビルダーは、上述の水溶性共重合体を必須成分とすることを特徴とする。
具体的には、本発明に係る液体洗剤用ビルダーは、上述の水溶性共重合体のみからなっていてもよいし、他の公知の洗剤用ビルダーと混合して用いてもよい。また、本発明に係る液体洗剤用ビルダーに用いる水溶性共重合体は、前述のように、必要に応じ、さらにアルカリ性物質で中和したものであってもよい。
上記他の洗剤用ビルダーとしては、特に限定されないが、例えば、トリポリリン酸ナトリウム、ピロリン酸ナトリウム、ケイ酸ナトリウム、ポウ硝、炭酸ナトリウム、ニトリロトリ酢酸ナトリウム、エチレンジアミンテトラ酢酸ナトリウムやカリウム、ゼオライト、多糖類のカルボキシル誘導体、(メタ)アクリル酸(共)重合体塩、フマール酸(共)重合体塩などの水溶性重合体等が挙げられる。
【0017】
本発明に係る液体洗剤用ビルダーは、後述する液体洗剤組成物に用いられると、界面活性剤との相溶性に優れ、高濃縮の液体洗剤組成物となる点で、液体洗剤用として非常にすぐれたものである。界面活性剤との相溶性に優れることにより、液体洗剤組成物としたときの透明性が良好となり、濁りが原因として起こる液体洗剤の分離の問題を防ぐことができる。そして、相溶性が優れることによって、高濃縮の液体洗剤組成物とすることができ、液体洗剤の洗剤能力の向上にもつながる。
本発明に係る液体洗剤用ビルダーは、上述の特定の水溶性共重合体を含んでなることにより、クレイ分散性に優れた共重合体である。好ましくは、クレイ分散性(炭酸カルシウム50ppm)が0.3以上であり、より好ましくは0.5以上、さらに好ましくは0.7以上、特に好ましくは0.9以上である。クレイ分散性(炭酸カルシウム50ppm)が0.3未満の場合は、液体洗剤用ビルダーとして用いた場合、特に、泥汚れに対する洗浄力アップの効果が小さくなるため好ましくない。
【0018】
[液体洗剤組成物]
本発明に係る液体洗剤組成物は、本発明に係る液体洗剤用ビルダーを含有してなることを特徴とする。
本発明に係る液体洗剤組成物は、含有する本発明の液体洗剤用ビルダーが界面活性剤との相溶性に優れるので、液体洗剤組成物としたときの透明性が良好となり、濁りが原因として起こる液体洗剤の分離の問題を防ぐことができる。そして、相溶性が優れることによって、高濃縮の液体洗剤組成物とすることができ、液体洗剤の洗剤能力の向上にもつながる。
【0019】
相溶性が優れていることを示す尺度の一つとして、濁度計を用いて測定した濁度(Turbidity、カオリン濁度)が有用であり、本発明に係る液体洗剤組成物の25℃における濁度値は、好ましくは200mg/l以下、より好ましくは100mg/l以下、さらに好ましくは50mg/l以下である。
本発明に係る液体洗剤組成物は、優れた洗剤能力を付与できる本発明に係る液体洗剤用ビルダーを含んでいるので、従来の液体洗剤組成物と比較して優れた洗浄能力も発揮することができる。
本発明に係る液体洗剤組成物中には、本発明に係る液体洗剤用ビルダー以外に、洗剤用界面活性剤を通常含有する。
【0020】
界面活性剤は、アニオン系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、および、両性界面活性剤から選ばれる少なくとも1種であり、これらの界面活性剤は1種または2種以上を使用することができる。
アニオン系界面活性剤の具体例としては、アルキルベンゼンスルホン酸塩、アルキルまたはアルケニルエーテル硫酸塩、アルキルまたはアルケニル硫酸塩、α−オレフィンスルホン酸塩、α−スルホ脂肪酸またはエステル塩、アルカンスルホン酸塩、飽和または不飽和脂肪酸塩、アルキルまたはアルケニルエーテルカルボン酸塩、アミノ酸型界面活性剤、N−アシルアミノ酸型界面活性剤、アルキルまたはアルケニルリン酸エステルまたはその塩等を挙げることができる。
【0021】
ノニオン系界面活性剤の具体例としては、ポリオキシアルキレンアルキルまたはアルケニルエーテル、ポリオキシエチレンアルキルフェニルエーテル、高級脂肪酸アルカノールアミドまたはそのアルキレンオキサイド付加物、ショ糖脂肪酸エステル、アルキルグリコキシド、脂肪酸グリセリンモノエステル、アルキルアミンオキサイド等を挙げることができる。
カチオン系界面活性剤の具体例としては、第4アンモニウム塩等を挙げることができる。
両性界面活性剤の具体例としては、カルボキシル型またはスルホベタイン型両性界面活性剤等を挙げることができる。
【0022】
本発明に係る液体洗剤組成物に含まれる界面活性剤の配合割合は、通常、液体洗剤組成物中、10〜60重量%であり、好ましくは15〜50重量%である。界面活性剤の配合割合が10重量%未満であると、十分な洗剤性能を発揮できなくなる。他方、60重量%を超えると、経済性が低下する。
液体洗剤組成物に含まれる本発明の液体洗剤用ビルダーの配合割合は、通常、洗剤組成物中、0.1〜60重量%であり、好ましくは3〜30重量%である。液体洗剤用ビルダーの配合割合が0.1重量%未満であると、十分な洗剤性能を発揮できなくなる。他方、60重量%を超えると、経済性が低下する。
【0023】
本発明に係る液体洗剤組成物には、洗剤に慣用されている種々の添加剤を加えることが出来る。例えば、汚染物質の再沈着を防止するためのカルボキシメチルセルロースナトリウム、ベンゾトリアゾールやエチレン−チオ尿素等のよごれ抑制剤、pH調節のためのアルカリ性物質、香料、蛍光剤、着色剤、起泡剤、泡安定剤、つや出し剤、殺菌剤、漂白剤、酵素、染料、溶媒等である。
【0024】
【実施例】
以下、実施例等により本発明について更に詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。
なお、以下の合成例、参考合成例において得られた水溶性共重合体の重量平均分子量は以下のようにして測定した。
〈重量平均分子量測定(GPC分析)〉
装置:日立社製L−7000シリーズ
検出器:RI
カラム:SHODEX社製 SB−G、SB−804、SB−803、SB−8
02.5
カラム温度:40℃
検量線:創和科学株式会社製 POLYACRYLIC ACID STANDARD
GPCソフト:日本分光社製BORWIN
溶離液:0.1Mリン酸バッファー(pH8.0)/アセトニトリル=9/1(重量比)
参考合成例1]
撹拌機、冷却管、温度計、窒素導入管、滴下ロートを備えた、300mlセパラブルフラスコに、3−メチル−2−ブテン−1−オールにエチレンオキサイドを10モル付加した不飽和アルコール(以下IPN−10と称す)150gと純水100gを仕込み、窒素置換後、撹拌しながら95℃まで昇温した。95℃になった時点で、マレイン酸33.1gと過硫酸アンモニウム6.5gを70gの純水に溶解させたものを120分かけて滴下した。該溶液の滴下後、同温度(95±5℃)で1時間熟成し、重合を完結させ、水溶性共重合体(1)を得た。得られた重合体の物性等を表1に示した。
【0025】
参考合成例2]
撹拌機、冷却管、温度計、窒素導入管、滴下ロートを備えた、200mlセパラブルフラスコに、3−メチル−2−ブテン−1−オールにエチレンオキサイドを25モル付加した不飽和アルコール(以下IPN−25と称す)50gと純水60gを仕込み、窒素置換後、撹拌しながら95℃まで昇温した。95℃になった時点で、無水マレイン酸4.13gと過硫酸アンモニウム0.96gを10gの純水に溶解させたものを65分かけて滴下した。該溶液の滴下後、同温度(95±5℃)で1時間熟成し重合を完結させ、水溶性共重合体(2)を得た。得られた重合体の物性等を表1に示した。
【0026】
参考合成例3]
撹拌機、冷却管、温度計、窒素導入管、滴下ロートを備えた、200mlセパラブルフラスコに、3−メチル−2−ブテン−1−オールにエチレンオキサイドを50モル付加した不飽和アルコール(以下IPN−50と称す)80gと純水100gと仕込み、窒素置換後、撹拌しながら95℃まで昇温した。95℃になった時点で、無水マレイン酸3.4gと過硫酸アンモニウム0.8gを10gの純水に溶解させたものを60分かけて滴下した。該溶液の滴下後、同温度(95±5℃)で1時間熟成し重合を完結させ、水溶性共重合体(3)を得た。得られた重合体の物性等を表1に示した。
【0027】
参考合成例4]
撹拌機、冷却管、温度計、窒素導入管、滴下ロートを備えた 300mlセパラブルフラスコに、純水40.0g、モール塩0.0042gを仕込み、窒素置換後、撹拌しながら還流する温度まで昇温した(約103℃)。所定の温度になった時点で、70gのIPN−10に純水28gを加えた溶液と、80%メタクリル酸(MAA)水溶液27.6g、35%過酸化水素水8.55gに純水を20.4g加えた溶液、それぞれを120分かけて滴下した。該溶液の滴下後、還流温度下で1時間熟成し、重合を完結させ、水溶性共重合体(4)を得た。得られた重合体の物性等を表1に示した。
【0028】
[合成例
撹拌機、冷却管、温度計、窒素導入管、滴下ロートを備えた、1000mlセパラブルフラスコに、純水451.0gを仕込み窒素置換後、撹拌しながら75℃まで昇温した。所定の温度になった時点で3重量%の過硫酸アンモニウム水溶液130.0g、50重量%のIPN−10水溶液191.0g、80%アクリル酸水溶液33.0gと40%アクリル酸アンモニウム195.0g混合した水溶液をそれぞれ滴下した。但しIPN−10とアクリル酸モノマーは120分かけての滴下で、過硫酸アンモニウム水溶液は150分かけて滴下した。IPN−10とアクリル酸モノマーの滴下終了後、100℃まで昇温した。過硫酸アンモニウム水溶液の滴下終了後、同温度で30分間熟成し重合を完結させ、重合後、28%アンモニウム水22.4g加えることで、水溶性共重合体(5)を得た。得られた重合体の物性等を表1に示した。
【0029】
[合成例
撹拌機、冷却管、温度計、窒素導入管、滴下ロートを備えた 500mlセパラブルフラスコに、純水113.0gを仕込み窒素置換後、撹拌しながら還流温度まで昇温した。所定の温度になった時点で3重量%の過硫酸アンモニウム水溶液32.5g、50重量%のIPN−10水溶液47.6g、80%アクリル酸水溶液8.25gと40%アクリル酸アンモニウム48.75gを混合した水溶液をそれぞれ滴下した。但しIPN−10とアクリル酸モノマーは120分かけての滴下で、過硫酸アンモニウム水溶液は150分かけて滴下した。過硫酸アンモニウム水溶液の滴下終了後、同温度で30分間熟成し重合を完結させ、重合後、28%アンモニウム水5.46g加えることで、水溶性共重合体(6)を得た。得られた重合体の物性等を表1に示した。
【0030】
参考合成例
撹拌機、冷却管、温度計、窒素導入管、滴下ロートを備えた、1000mlセパラブルフラスコに、純水500.0gを仕込み窒素置換後、撹拌しながら75℃まで昇温した。所定の温度になった時点で3重量%の過硫酸アンモニウム水溶液130.0g、100重量%のIPN−10水溶液26.7g、水164.3g、80%アクリル酸水溶液33.0gと40%アクリル酸アンモニウム195.0gを混合した水溶液をそれぞれ滴下した。但しIPN−10とアクリル酸モノマーは120分かけての滴下で、過硫酸アンモニウム水溶液は150分かけて滴下した。IPN−10と水とアクリル酸モノマーの滴下終了後、100℃まで昇温した。過硫酸アンモニウム水溶液の滴下終了後、同温度で30分間熟成し重合を完結させ、重合後、28%アンモニウム水22.4g加えることで、水溶性共重合体(7)を得た。得られた重合体の物性等を表1に示した。
【0031】
[合成例
撹拌機、冷却管、温度計、窒素導入管、滴下ロートを備えた、500mlセパラブルフラスコに、60重量%のIPN−10水溶液100gを仕込み窒素置換後、撹拌しながら65℃まで昇温した。所定の温度になった時点で、0.6重量%過酸化水素水51.7gを一括で投入した。その後、100重量%のアクリル酸24.5g、0.5重量%のL−アスコルビン酸水溶液80.0g、1重量%メルカプトプロピオン酸水溶液63.0gをそれぞれ滴下した。但しアクリル酸モノマーとメルカプトプロピオン酸は60分かけての滴下で、L−アスコルビン酸は90分かけて滴下した。L−アスコルビン酸水溶液の滴下終了後、同温度で120分間熟成し重合を完結させ、水溶性共重合体(8)を得た。得られた重合体の物性等を表1に示した。
【0032】
参考合成例
撹拌機、冷却管、温度計、窒素導入管、滴下ロートを備えた、500mlセパラブルフラスコに、60重量%のIPN−10水溶液100gを仕込み窒素置換後、撹拌しながら65℃まで昇温した。所定の温度になった時点で、0.6重量%過酸化水素水25.8gを一括で投入した。その後、100重量%のアクリル酸8.2g、0.5重量%のL−アスコルビン酸水溶液40.0g、1重量%メルカプトプロピオン酸水溶液18.0gをそれぞれ滴下した。但しアクリル酸モノマーとメルカプトプロピオン酸は60分かけての滴下で、L−アスコルビン酸は90分かけて滴下した。L−アスコルビン酸水溶液の滴下終了後、同温度で120分間熟成し重合を完結させ、水溶性共重合体(9)を得た。得られた重合体の物性等を表1に示した。
【0033】
[合成例
撹拌機、冷却管、温度計、窒素導入管、滴下ロートを備えた 500mlセパラブルフラスコに、純水167.0gを仕込み窒素置換後、撹拌しながら還流温度まで昇温した。所定の温度になった時点で3重量%の過硫酸アンモニウム水溶液32.5g、50重量%のIPN−10水溶液82.67g、80%アクリル酸水溶液8.25gと40%アクリル酸アンモニウム48.75gを混合した水溶液をそれぞれ滴下した。但しIPN−10とアクリル酸モノマーは120分かけての滴下で、過硫酸アンモニウム水溶液は150分かけて滴下した。過硫酸アンモニウム水溶液の滴下終了後、同温度で30分間熟成し重合を完結させ、重合後、28%アンモニウム水5.5g加えることで、水溶性共重合体(10)を得た。得られた重合体の物性等を表1に示した。
【0034】
[合成例
撹拌機、冷却管、温度計、窒素導入管、滴下ロートを備えた、500mlセパラブルフラスコに、純水167.24gを仕込み窒素置換後、撹拌しながら還流温度まで昇温した。所定の温度になった時点で3重量%の過硫酸アンモニウム水溶液28.9g、50重量%のIPN−25水溶液82.67g、80%アクリル酸水溶液8.25gと40%アクリル酸アンモニウム48.75gを混合した水溶液をそれぞれ滴下した。但しIPN−25とアクリル酸モノマーは120分かけての滴下で、過硫酸アンモニウム水溶液は150分かけて滴下した。過硫酸アンモニウム水溶液の滴下終了後、同温度で30分間熟成し重合を完結させ、重合後、28%アンモニウム水5.5g加えることで、水溶性共重合体(11)を得た。得られた重合体の物性等を表1に示した。
【0035】
[合成例
撹拌機、冷却管、温度計、窒素導入管、滴下ロートを備えた、500mlセパラブルフラスコに、純水167.24gを仕込み窒素置換後、撹拌しながら還流温度まで昇温した。所定の温度になった時点で3重量%の過硫酸アンモニウム水溶液27.4g、50重量%のIPN−50水溶液82.67g、80%アクリル酸水溶液8.25gと40%アクリル酸アンモニウム48.75gを混合した水溶液をそれぞれ滴下した。但しIPN−50とアクリル酸モノマーは120分かけての滴下で、過硫酸アンモニウム水溶液は150分かけて滴下した。過硫酸アンモニウム水溶液の滴下終了後、同温度で30分間熟成し重合を完結させ、重合後、28%アンモニウム水5.5g加えることで、水溶性共重合体(12)を得た。得られた重合体の物性等を表1に示した。
【0036】
参考合成例
撹拌機、冷却管、温度計、窒素導入管、滴下ロートを備えた、500mlセパラブルフラスコに、60重量%のIPN−10水溶液100gを仕込み窒素置換後、撹拌しながら65℃まで昇温した。所定の温度になった時点で、0.6重量%過酸化水素水28.3gを一括で投入した。その後、100重量%のアクリル酸9.8g、0.5重量%のL−アスコルビン酸水溶液44.0g、1重量%メルカプトプロピオン酸水溶液34.5gをそれぞれ滴下した。但しアクリル酸モノマーとメルカプトプロピオン酸は60分かけての滴下で、L−アスコルビン酸は90分かけて滴下した。L−アスコルビン酸水溶液の滴下終了後、同温度で120分間熟成し重合を完結させ、重合後、20%NaOH水溶液45g加えることで、水溶性共重合体(13)を得た。得られた重合体の物性等を表1に示した。
【0037】
【表1】
Figure 0004334749
【0038】
[実施例1]
上記合成例、参考合成例で得られた水溶性共重合体を液体洗剤用ビルダーとして用い、以下のように、カルシウムイオン捕捉能、クレイ分散性を評価した。結果を表2に示した。
〈カルシウムイオン捕捉能〉
検量線用カルシウムイオン標準液として、塩化カルシウム2水和物を用いて、0.01mol/l、0.001mol/l、0.0001mol/lの水溶液を50g調製し、4.8%NaOH水溶液でpH9〜11の範囲に調製し、更に4mol/lの塩化カリウム水溶液(以下4M−KCl水溶液と略す)を1ml添加し、更にマグネチックスターラーを用いて十分に攪拌して検量線用サンプル液を作製した。また、試験用カルシウムイオン標準液として、同じく塩化カルシウム2水和物を用いて、0.001mol/lの水溶液を必要量(1サンプルにつき50g)調製した。
【0039】
次いで、100ccビーカーに試験サンプル(重合体)を固形分換算で10mg秤量し、上記の試験用カルシウムイオン標準液50gを添加し、マグネチックスターラーを用いて十分に攪拌した。更に、検量線用サンプルと同様に、4.8%NaOH水溶液でpH9〜11の範囲に調製し、4M―KCl水溶液を1ml添加して、試験用サンプル液を作製した。
この様にして、作製した検量線用サンプル液、試験用サンプル液を平沼産業株式会社製滴定装置COMTITE−550を用いて、オリオン社製カルシウムイオン電極93−20,比較電極90−01により測定を行なった。
【0040】
検量線及び試験用のサンプル液の測定値より、サンプル(重合体)が捕捉したカルシウムイオン量を計算により求め、その値を重合体固形分1gあたりの捕捉量を炭酸カルシウム換算のmg数で表し、この値をカルシウムイオン捕捉能値とした。
〈クレイ分散性(炭酸カルシウム50ppm)〉
グリシン67.56g、塩化ナトリウム52.6g、NaOH2.4gに純水を加え、600gとした(これをバッファー▲1▼とする)。バッファー▲1▼60gに塩化カルシウム二水和物0.0817gを加え、更に純水を加え、1000gとした(これをバッファー▲2▼とする)。測定対象の共重合体の0.1重量%水溶液(固形分重量換算)4gに、バッファー▲2▼を36g加え、攪拌し分散液とした。試験管(IWAKI GLASS製:直径18mm、高さ180mm)にクレー(社団法人日本粉体工業技術協会製、試験用ダスト11種)0.3gを入れた後、上記の分散液を30g加え、密封する。
【0041】
試験管を振り、クレーを均一に分散させた。その後、試験管を直射日光の当たらないところに20時間静置した。20時間後、分散液の上澄みを5cc取り、UV分光器(島津製作所、UV−1200;1cmセル、波長380nm)で吸光度を測定した。
〈クレイ分散性(炭酸カルシウム200ppm)〉
グリシン67.56g、塩化ナトリウム52.6g、NaOH2.4gに純水を加え、600gとした(これをバッファー▲1▼とする)。バッファー▲1▼60gに塩化カルシウム二水和物0.3268gを加え、更に純水を加え、1000gとした(これをバッファー▲3▼とする)。測定対象の共重合体の0.1重量%水溶液(固形分重量換算)4gに、バッファー▲3▼を36g加え、攪拌し分散液とした。試験管(IWAKI GLASS製:直径18mm、高さ180mm)にクレー(社団法人日本粉体工業技術協会製、試験用ダスト11種)0.3gを入れた後、上記の分散液を30g加え、密封する。
【0042】
試験管を振り、クレーを均一に分散させた。その後、試験管を暗所に20時間静置した。20時間後、分散液の上澄みを5cc取り、UV分光器(島津製作所、UV−1200;1cmセル、波長380nm)で吸光度を測定した。
【0043】
【表2】
Figure 0004334749
【0044】
[実施例2,3、参考例1〜3、比較例1]
上記合成例、参考合成例で得られた水溶性共重合体を液体洗剤用ビルダーとして用い、再汚染防止性能を評価した。すなわち、綿布(JIS−L0803綿布(金巾3号))を5cm×5cmに裁断し、8枚1組とし、測定対象の共重合体を含む評価用洗剤水溶液1Lにクレイと白布8枚を加え、ターゴトメーターにて次の条件で試験を行なった。比較例としてビルダー無添加の場合も評価した。結果を表3に示した。
〈試験条件〉
洗剤濃度:下記洗剤配合を使用し、界面活性剤(SFT−70H)濃度が350ppmになるように添加した。
【0045】
Figure 0004334749
【0046】
使用布 :綿布(JIS−L0803綿布(金巾3号))、5cm×5cm、8枚
クレイ :試験用ダスト11種(関東ローム、超微粒)(日本粉体工業技術協会)
洗浄時間:10分(ターゴトメータ100rpm)
濯ぎ時間:2分(ターゴトメータ100rpm)
試験方法:洗濯・濯ぎを3回繰り返し、洗浄前の原布(白布)及び試験後の汚染布の反射率(ハンター白色度)を色差計(日本電色工業株式会社製:SE2000)にて測定し、次式によって再汚染防止率を求めた。
【0047】
再汚染防止率(%)=(試験後の反射率/原布の反射率)×100
【0048】
【表3】
Figure 0004334749
【0049】
[実施例4,5、参考例4〜6、比較例2]
上記合成例、参考合成例で得られた水溶性共重合体を液体洗剤用ビルダーとして用い、洗浄力試験を行い、上記ビルダーを含む液体洗剤組成物の性能を評価した。すなわち、湿式人工汚染布((財)洗濯科学協会製)を5枚1組で使用し、重合体を含む評価用洗剤水溶液500mLに汚染布5枚を加え、ターゴトメーターにて次の条件で試験を行なった。結果を表4に示した。なお、表中の添加量の数値は、固形分あるいは有効成分換算を表し、洗剤配合およびビルダー量の数値は重量%を表す。
【0050】
〈試験条件〉
洗剤濃度:下記洗剤配合を使用し、界面活性剤(SFT−70H、ネオペレックスF−65)濃度が350ppmになるように添加した。
Figure 0004334749
【0051】
汚染布 :(財)洗濯科学協会製、湿式人工汚染布
洗浄時間:10分(ターゴトメータ100rpm)
濯ぎ時間:2分(ターゴトメータ100rpm)
試験方法:洗濯・濯ぎを行なった後、洗浄前の原布(汚染布)及び試験後の汚染布の反射率(ハンター白色度)を色差計(日本電色工業株式会社製、SE2000)にて測定し、次式によって洗浄率を求めた。
洗浄率(%)=((洗浄後の汚染布の反射率−洗浄前の汚染布の反射率)/(白布の反射率−洗浄前の汚染布の反射率))×100
【0052】
【表4】
Figure 0004334749
【0053】
[実施例6〜23、参考例7〜31、比較例3〜8]
上記合成例、参考合成例で得られた水溶性共重合体を含む液体洗剤組成物について、液体洗剤に対する相溶性の評価を行った。
すなわち、合成例、参考合成例で得られた水溶性共重合体及び下表5〜10に記載の成分を用いて各種洗剤組成物を調整した。各成分が均一になる様に充分に攪拌し、気泡を除いた後、25℃での濁度値を測定した。濁度値は、日本電色株式会社製NDH2000(濁度計)を用いてTurbidity(カオリン濁度:mg/l)を測定した。
【0054】
評価結果は次の3段階を基準とした。
○:濁度値(0〜50)、目視で分離、沈殿又は白濁していない。
△:濁度値(50〜200)、目視で僅かに白濁している。
×:濁度値(200以上)、目視で白濁している。
上記の結果を表5〜10に示した。なお、表中の添加量の数値は、固形分あるいは有効成分換算を表し、洗剤配合およびビルダー量の数値は重量%を表す。また、表中のコータミン86Wは、花王(株)製のステアリルトリメチルアンモニウムクロライドを表す。
【0055】
なお、比較サンプルとして、ポリアクリル酸Na(重量平均分子量Mw7000、日本触媒製)を使用した。
【0056】
【表5】
Figure 0004334749
【0057】
【表6】
Figure 0004334749
【0058】
【表7】
Figure 0004334749
【0059】
【表8】
Figure 0004334749
【0060】
【表9】
Figure 0004334749
【0061】
【表10】
Figure 0004334749
【0062】
【発明の効果】
本発明によれば、界面活性剤との相溶性に極めて優れ、液体洗剤組成物としたときの透明性が高く、しかも、洗剤性能に非常に優れた、新規な液体洗剤用ビルダーと、その液体洗剤用ビルダーを含んでなる新規な液体洗剤組成物とを提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel liquid detergent builder and liquid detergent composition.
[0002]
[Prior art]
Water-soluble polymers are preferably used for detergent builder applications, for example, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, α-hydroxyacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and citraconic acid. System (co) polymers are well known.
Furthermore, in order to improve the performance for builder use for detergents, research on improving the (co) polymer has been actively conducted in recent years.
[0003]
[Problems to be solved by the invention]
The above conventional unsaturated carboxylic acid (co) polymer and its improved product-based detergent builder have been able to exhibit a relatively high level of performance when used as a powder detergent.
However, the above-mentioned conventional detergent builder comprising an unsaturated carboxylic acid (co) polymer has extremely poor compatibility with a surfactant, and therefore has a drawback that it is not suitable for liquid detergent applications.
Therefore, the problem to be solved by the present invention is a novel liquid detergent that is extremely excellent in compatibility with a surfactant, has high transparency when made into a liquid detergent composition, and has excellent detergent performance. And a novel liquid detergent composition comprising the liquid detergent builder.
[0004]
[Means for Solving the Problems]
The present inventor has intensively studied to solve the above problems. As a result, attention was focused on a water-soluble copolymer obtained by copolymerizing a monomer component containing a specific unsaturated carboxylic acid monomer and a specific unsaturated alcohol monomer. And it has been found that the above-mentioned problems that cannot be solved by a builder composed of a conventional unsaturated carboxylic acid (co) polymer can be solved brilliantly by using the specific water-soluble copolymer in a builder for a liquid detergent. It was. The present invention was thus completed.
That is, the builder for liquid detergents according to the present invention is
A detergent builder used in a liquid detergent composition containing 10 to 60% by weight of a surfactant,
Of the unsaturated carboxylic acid monomers (1 ) represented by the following general formulas (1a) to (1c ), those represented by the general formula (1a) and those represented by the following general formula (2) Unsaturated alcohol monomer
[Chemical formula 5]
Figure 0004334749
[0006]
[Chemical 6]
Figure 0004334749
[0007]
[Chemical 7]
Figure 0004334749
[0008]
[Chemical 3]
Figure 0004334749
[0009]
A water-soluble copolymer obtained by copolymerizing a monomer component that essentially contains water is an essential component, and clay dispersibility (calcium carbonate 50 ppm) is 0.3 or more .
Further, the liquid detergent composition according to the present invention is a liquid detergent composition containing a surfactant in a proportion of 10 to 60% by weight, and comprises the liquid detergent builder of the present invention as a detergent builder. It is characterized by that.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
[Water-soluble copolymer]
The unsaturated carboxylic acid monomer (1) in the present invention is represented by the general formula (1a) among the unsaturated carboxylic acid monomers represented by the general formulas (1a) to (1c). If it is a monomer which can be, it will not specifically limit.
Examples of the monomer that can be represented by the general formula (1a) include acrylic acid, methacrylic acid, crotonic acid, monovalent metals of these acids, partially neutralized products of ammonia and organic amines, Although unsaturated monocarboxylic-acid type monomers, such as a hydrate, are mentioned, It is not limited to these in particular.
[0011]
Examples of the monomer that can be represented by the general formula (1b) include, for example, maleic acid, fumaric acid, itaconic acid, citraconic acid, monovalent metals of these acids, and partially neutralized products of ammonia and organic amines. Alternatively, unsaturated dicarboxylic acid monomers such as completely neutralized products can be mentioned, but the invention is not particularly limited thereto.
Examples of the monomer that can be represented by the general formula (1c) include, but are not limited to, unsaturated carboxylic acid anhydride monomers such as maleic anhydride and citraconic anhydride.
The unsaturated alcohol monomer (2) that can be used in the present invention is not particularly limited as long as it is a monomer that can be represented by the general formula (2). For example, 3-methyl-3 -C2-C18 alkylene oxide with respect to 1 mol of unsaturated alcohols, such as -buten-1-ol, 3-methyl-2-buten-1-ol, and 2-methyl-3-buten-2-ol. The compound which added 1-300 mol, Preferably 1-100 mol, More preferably, 5-50 mol can be mentioned. Examples of the alkylene oxide having 2 to 18 carbon atoms include styrene oxide, ethylene oxide, propylene oxide and the like, but it is preferable to use ethylene oxide and / or propylene oxide. When ethylene oxide and propylene oxide are used in combination, the bonding order is not limited.
[0012]
When the added mole number of ethylene oxide and / or propylene oxide is 0 mole, the effect of the present invention cannot be sufficiently exerted, and when it exceeds 300 moles, the improvement of the effect of the present invention is not seen, and a large amount is simply added. This is not preferable because the amount of addition of is necessary.
The water-soluble copolymer in the present invention is obtained by copolymerizing a monomer component essentially containing an unsaturated carboxylic acid monomer (1) and an unsaturated alcohol monomer (2). In the monomer component, in addition to the monomers (1) and (2), if necessary, other monomers copolymerizable with the monomers (1) and (2) May be included.
[0013]
Although it does not specifically limit as said other monomer, For example, styrene; styrenesulfonic acid; vinyl acetate; (meth) acrylonitrile; (meth) acrylamide; methyl (meth) acrylate; ethyl (meth) acrylate; 2-methylhexyl (meth) acrylate; dimethylaminoethyl (meth) acrylate; diethylaminoethyl (meth) acrylate; allyl alcohol; 3-methyl-3-buten-1-ol; 3-methyl-2-butene-1 2-ol-3-methyl-3-buten-2-ol; 3- (meth) acryloxy-1,2-dihydroxypropane; 3- (meth) acryloxy-1,2-di (poly) oxyethylene ether propane; 3 -(Meth) acryloxy-1,2-di (poly) oxypropi Ether propane; 3- (meth) acryloxy-1,2-dihydroxypropane phosphate and its monovalent metal salt, divalent metal salt, ammonium salt, organic amine salt, mono- or Diester; 3- (meth) acryloxy-1,2-dihydroxypropane sulfate and its monovalent metal salt, divalent metal salt, ammonium salt, organic amine salt, or ester of an alkyl group having 1 to 4 carbon atoms; (Meth) acryloxy-2-hydroxypropanesulfonic acid and its monovalent metal salt, divalent metal salt, ammonium salt, organic amine salt, or ester of an alkyl group having 1 to 4 carbon atoms; 3- (meth) acryloxy- 2- (poly) oxyethylene ether propanesulfonic acid and its monovalent metal salt, divalent metal salt, anne A nium salt, an organic amine salt, or an ester of an alkyl group having 1 to 4 carbon atoms; 3- (meth) acryloxy-2- (poly) oxypropylene ether propanesulfonic acid and its monovalent metal salt, divalent metal salt, Ammonium salt, organic amine salt, or ester of an alkyl group having 1 to 4 carbon atoms; 3-allyloxypropane-1,2-diol; 3-allyloxypropane-1,2-diol phosphate; 3-allyloxypropane -1,2-diol sulfonate; 3-allyloxypropane-1,2-diol sulfate; 3-allyloxy-1,2-di (poly) oxyethylene ether propane; 3-allyloxy-1,2-di (poly) Oxyethylene ether propane phosphate; 3-allyloxy-1,2-di (poly) oxyethylene ether propylene 3-allyloxy-1,2-di (poly) oxypropylene ether propane; 3-allyloxy-1,2-di (poly) oxypropylene ether propane phosphate; 3-allyloxy-1,2-di (poly) 6-allyloxyhexane-1,2,3,4,5-pentaol; 6-allyloxyhexane-1,2,3,4,5-pentaol phosphate; 6-allyloxyhexane -1,2,3,4,5-pentaolsulfonate; 6-allyloxyhexane-1,2,3,4,5-penta (poly) oxyethylene ether hexane; 6-allyloxyhexane-1,2, 3,4,5-penta (poly) oxypropylene ether hexane; 3-allyloxy-2-hydroxypropanesulfur Acid and its monovalent metal salt, divalent metal salt, ammonium salt, or organic amine salt, or phosphoric acid ester or sulfuric acid ester of these compounds and their monovalent metal salt, divalent metal salt, ammonium salt Or an organic amine salt; 3-allyloxy-2- (poly) oxyethylenepropanesulfonic acid and its monovalent metal salt, divalent metal salt, ammonium salt, or organic amine salt, or phosphoric acid of these compounds Esters or sulfates and their monovalent metal salts, divalent metal salts, ammonium salts, or organic amine salts; 3-allyloxy-2- (poly) oxypropylenepropanesulfonic acid and its monovalent metal salts, divalent metals Salt, ammonium salt, organic amine salt, or phosphate ester or sulfur of these compounds Esters and monovalent metal salts thereof, divalent metal salts, ammonium salts, or organic amine salt; and the like.
[0014]
The water-soluble copolymer in the present invention is obtained by copolymerizing a monomer component essentially containing an unsaturated carboxylic acid monomer (1) and an unsaturated alcohol monomer (2). The copolymerization method is not particularly limited, and for example, a conventionally known method can be used. Specific examples include polymerization in a solvent such as water, an organic solvent, or a mixed solvent of a water-soluble organic solvent and water. The catalyst system that can be used for these polymerizations is not particularly limited, and examples thereof include persulfates and hydrogen peroxide, and accelerators (such as bisulfite and ascorbic acid) can be used in combination. In addition, azo initiators, organic peroxides, and the like can be used, and accelerators such as amine compounds can be used in combination. From the viewpoint of proceeding the reaction advantageously, a persulfate or a catalyst system using hydrogen peroxide and ascorbic acid in combination is preferable. Further, chain transfer agents such as mercaptoethanol, mercaptopropionic acid and sodium hypophosphite may be used in combination as a molecular weight adjuster.
[0015]
In the case of obtaining the water-soluble copolymer in the present invention, the monomer component containing the unsaturated carboxylic acid monomer (1) and the unsaturated alcohol monomer (2) as an essential component is copolymerized. The ratio of the monomers (1) and (2) in the monomer component is (1) :( 2) = 5: 95 to 95: 5 (weight ratio), preferably 10:90 to 70:30, More preferably, it is 20: 80-60: 40. When the ratio (1) is 5 or less, the chelating power is insufficient. On the other hand, when the ratio of (2) is 5 or less, the scale resistance, which is the effect of introducing a polyethylene glycol chain, decreases.
The water-soluble copolymer in the present invention can be used as it is for various uses as described below, but can be further neutralized with an alkaline substance if necessary. Examples of such an alkaline substance include monovalent and divalent metal hydroxides, chlorides, carbonates and bicarbonates; ammonia; organic amines and the like.
[0016]
[Builder for liquid detergents]
The builder for liquid detergents according to the present invention is characterized by using the above-mentioned water-soluble copolymer as an essential component.
Specifically, the builder for liquid detergent according to the present invention may be composed of only the above-mentioned water-soluble copolymer, or may be used by mixing with other known detergent builder. Moreover, the water-soluble copolymer used for the builder for liquid detergents based on this invention may be what was further neutralized with the alkaline substance as needed as mentioned above.
Examples of other detergent builders include, but are not limited to, for example, sodium tripolyphosphate, sodium pyrophosphate, sodium silicate, pour glass, sodium carbonate, sodium nitrilotriacetate, sodium ethylenediaminetetraacetate and potassium, zeolite, and polysaccharides. Examples thereof include water-soluble polymers such as carboxyl derivatives, (meth) acrylic acid (co) polymer salts, and fumaric acid (co) polymer salts.
[0017]
The builder for liquid detergents according to the present invention is very excellent as a liquid detergent because it is highly compatible with a surfactant and used as a highly concentrated liquid detergent composition when used in a liquid detergent composition described later. It is a thing. By being excellent in compatibility with the surfactant, the transparency of the liquid detergent composition is improved, and the problem of separation of the liquid detergent caused by turbidity can be prevented. And by being compatible, it can be set as a highly concentrated liquid detergent composition, and it leads also to the improvement of the detergent capability of liquid detergent.
The builder for liquid detergent according to the present invention is a copolymer excellent in clay dispersibility by comprising the above-mentioned specific water-soluble copolymer. Preferably, the clay dispersibility (calcium carbonate 50 ppm) is 0.3 or more, more preferably 0.5 or more, still more preferably 0.7 or more, and particularly preferably 0.9 or more. When the clay dispersibility (calcium carbonate 50 ppm) is less than 0.3, when used as a builder for a liquid detergent, the effect of increasing the detergency against mud stains is reduced, which is not preferable.
[0018]
[Liquid detergent composition]
The liquid detergent composition according to the present invention comprises the builder for liquid detergent according to the present invention.
Since the liquid detergent builder according to the present invention contains the liquid detergent builder according to the present invention having excellent compatibility with the surfactant, the liquid detergent composition has excellent transparency and is caused by turbidity. The problem of separation of liquid detergent can be prevented. And by being compatible, it can be set as a highly concentrated liquid detergent composition, and it leads also to the improvement of the detergent capability of liquid detergent.
[0019]
As one of the measures showing excellent compatibility, turbidity (turbidity, kaolin turbidity) measured using a turbidimeter is useful, and the turbidity of the liquid detergent composition according to the present invention at 25 ° C. The degree value is preferably 200 mg / l or less, more preferably 100 mg / l or less, and still more preferably 50 mg / l or less.
Since the liquid detergent composition according to the present invention includes the builder for liquid detergent according to the present invention that can impart excellent detergent ability, it can also exhibit superior cleaning ability as compared with conventional liquid detergent compositions. it can.
The liquid detergent composition according to the present invention usually contains a detergent surfactant in addition to the liquid detergent builder according to the present invention.
[0020]
The surfactant is at least one selected from an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant, and these surfactants are used alone or in combination of two or more. Can be used.
Specific examples of anionic surfactants include alkylbenzene sulfonate, alkyl or alkenyl ether sulfate, alkyl or alkenyl sulfate, α-olefin sulfonate, α-sulfo fatty acid or ester salt, alkane sulfonate, saturated Examples thereof include unsaturated fatty acid salts, alkyl or alkenyl ether carboxylates, amino acid type surfactants, N-acyl amino acid type surfactants, alkyl or alkenyl phosphate esters or salts thereof.
[0021]
Specific examples of nonionic surfactants include polyoxyalkylene alkyl or alkenyl ether, polyoxyethylene alkyl phenyl ether, higher fatty acid alkanolamide or its alkylene oxide adduct, sucrose fatty acid ester, alkyl glycoxide, fatty acid glycerin monoester And alkylamine oxide.
Specific examples of the cationic surfactant include quaternary ammonium salts.
Specific examples of the amphoteric surfactant include a carboxyl type or sulfobetaine type amphoteric surfactant.
[0022]
The compounding ratio of the surfactant contained in the liquid detergent composition according to the present invention is usually 10 to 60% by weight, preferably 15 to 50% by weight in the liquid detergent composition. When the blending ratio of the surfactant is less than 10% by weight, sufficient detergent performance cannot be exhibited. On the other hand, if it exceeds 60% by weight, the economic efficiency is lowered.
The blending ratio of the builder for liquid detergent of the present invention contained in the liquid detergent composition is usually 0.1 to 60% by weight, preferably 3 to 30% by weight in the detergent composition. When the blending ratio of the builder for liquid detergent is less than 0.1% by weight, sufficient detergent performance cannot be exhibited. On the other hand, if it exceeds 60% by weight, the economic efficiency is lowered.
[0023]
Various additives conventionally used in detergents can be added to the liquid detergent composition according to the present invention. For example, sodium carboxymethylcellulose to prevent re-deposition of contaminants, contamination inhibitors such as benzotriazole and ethylene-thiourea, alkaline substances for pH adjustment, fragrances, fluorescent agents, colorants, foaming agents, foams Stabilizers, polishes, bactericides, bleaches, enzymes, dyes, solvents, etc.
[0024]
【Example】
EXAMPLES Hereinafter, although an Example etc. demonstrate this invention further in detail, this invention is not limited to these Examples at all.
In addition, the weight average molecular weight of the water-soluble copolymer obtained in the following synthesis examples and reference synthesis examples was measured as follows.
<Weight average molecular weight measurement (GPC analysis)>
Device: Hitachi L-7000 Series Detector: RI
Column: SB-G, SB-804, SB-803, SB-8 manufactured by SHODEX
02.5
Column temperature: 40 ° C
Calibration curve: POLYACRYLIC ACID STANDARD made by Soka Science Co., Ltd.
GPC software: JASCO BORWIN
Eluent: 0.1 M phosphate buffer (pH 8.0) / acetonitrile = 9/1 (weight ratio)
[ Reference Synthesis Example 1]
A 300 ml separable flask equipped with a stirrer, a cooling tube, a thermometer, a nitrogen introduction tube, and a dropping funnel, and an unsaturated alcohol (hereinafter referred to as IPN) obtained by adding 10 mol of ethylene oxide to 3-methyl-2-buten-1-ol. 150 g) and 100 g of pure water were charged, and after replacing with nitrogen, the temperature was raised to 95 ° C. with stirring. When the temperature reached 95 ° C., a solution prepared by dissolving 33.1 g of maleic acid and 6.5 g of ammonium persulfate in 70 g of pure water was added dropwise over 120 minutes. After dropwise addition of the solution, the mixture was aged at the same temperature (95 ± 5 ° C.) for 1 hour to complete the polymerization to obtain a water-soluble copolymer (1). The physical properties of the obtained polymer are shown in Table 1.
[0025]
[ Reference Synthesis Example 2]
An unsaturated alcohol (hereinafter referred to as IPN) obtained by adding 25 moles of ethylene oxide to 3-methyl-2-buten-1-ol to a 200 ml separable flask equipped with a stirrer, a cooling tube, a thermometer, a nitrogen introduction tube and a dropping funnel. (Referred to as -25) 50 g and 60 g of pure water were charged, and after replacing with nitrogen, the temperature was raised to 95 ° C. with stirring. When the temperature reached 95 ° C., a solution prepared by dissolving 4.13 g of maleic anhydride and 0.96 g of ammonium persulfate in 10 g of pure water was added dropwise over 65 minutes. After the dropwise addition of the solution, the mixture was aged at the same temperature (95 ± 5 ° C.) for 1 hour to complete the polymerization to obtain a water-soluble copolymer (2). The physical properties of the obtained polymer are shown in Table 1.
[0026]
[ Reference Synthesis Example 3]
An unsaturated alcohol (hereinafter referred to as IPN) obtained by adding 50 mol of ethylene oxide to 3-methyl-2-buten-1-ol to a 200 ml separable flask equipped with a stirrer, a cooling tube, a thermometer, a nitrogen introduction tube, and a dropping funnel. 80 g) and 100 g of pure water were charged. After purging with nitrogen, the temperature was raised to 95 ° C. with stirring. When the temperature reached 95 ° C., 3.4 g of maleic anhydride and 0.8 g of ammonium persulfate dissolved in 10 g of pure water were added dropwise over 60 minutes. After the dropwise addition of the solution, the mixture was aged at the same temperature (95 ± 5 ° C.) for 1 hour to complete the polymerization to obtain a water-soluble copolymer (3). The physical properties of the obtained polymer are shown in Table 1.
[0027]
[ Reference Synthesis Example 4]
A 300 ml separable flask equipped with a stirrer, cooling tube, thermometer, nitrogen introduction tube, and dropping funnel was charged with 40.0 g of pure water and 0.0042 g of Mole salt. After purging with nitrogen, the temperature was raised to the reflux temperature with stirring. Warm (about 103 ° C.). When the temperature reaches a predetermined temperature, 20 g of pure water is added to a solution obtained by adding 28 g of pure water to 70 g of IPN-10, 27.6 g of 80% methacrylic acid (MAA) aqueous solution, and 8.55 g of 35% hydrogen peroxide water. .4 g of the added solution was added dropwise over 120 minutes. After dropwise addition of the solution, the mixture was aged at reflux temperature for 1 hour to complete the polymerization and obtain a water-soluble copolymer (4). The physical properties of the obtained polymer are shown in Table 1.
[0028]
[Synthesis Example 1 ]
A 1000 ml separable flask equipped with a stirrer, a cooling tube, a thermometer, a nitrogen introduction tube, and a dropping funnel was charged with 451.0 g of pure water, and the temperature was raised to 75 ° C. while stirring, after stirring. When the temperature reached a predetermined temperature, 130.0 g of 3% by weight aqueous ammonium persulfate solution, 191.0 g of 50% by weight IPN-10 aqueous solution, 33.0 g of 80% aqueous acrylic acid solution and 195.0 g of 40% ammonium acrylate were mixed. Each aqueous solution was added dropwise. However, IPN-10 and the acrylic acid monomer were dropped over 120 minutes, and the aqueous ammonium persulfate solution was dropped over 150 minutes. After completion of dropping of IPN-10 and acrylic acid monomer, the temperature was raised to 100 ° C. After completion of the dropwise addition of the ammonium persulfate aqueous solution, the mixture was aged at the same temperature for 30 minutes to complete the polymerization. After the polymerization, 22.4 g of 28% ammonium water was added to obtain a water-soluble copolymer (5). The physical properties of the obtained polymer are shown in Table 1.
[0029]
[Synthesis Example 2 ]
A 500 ml separable flask equipped with a stirrer, a cooling tube, a thermometer, a nitrogen introducing tube, and a dropping funnel was charged with 113.0 g of pure water, and the temperature was raised to the reflux temperature while stirring, after stirring. When the temperature reaches a predetermined temperature, 32.5 g of 3% by weight ammonium persulfate aqueous solution, 47.6 g of 50% by weight IPN-10 aqueous solution, 8.25 g of 80% aqueous acrylic acid solution and 48.75 g of 40% ammonium acrylate are mixed. Each aqueous solution was added dropwise. However, IPN-10 and the acrylic acid monomer were dropped over 120 minutes, and the aqueous ammonium persulfate solution was dropped over 150 minutes. After completion of the dropwise addition of the ammonium persulfate aqueous solution, the mixture was aged at the same temperature for 30 minutes to complete the polymerization. After the polymerization, 5.46 g of 28% ammonium water was added to obtain a water-soluble copolymer (6). The physical properties of the obtained polymer are shown in Table 1.
[0030]
[ Reference Synthesis Example 5 ]
A 1000 ml separable flask equipped with a stirrer, a cooling tube, a thermometer, a nitrogen introduction tube, and a dropping funnel was charged with 500.0 g of pure water, and the temperature was raised to 75 ° C. while stirring, after stirring. When the temperature reaches a predetermined temperature, 130.0 g of 3% by weight aqueous ammonium persulfate solution, 26.7 g of 100% by weight IPN-10 aqueous solution, 164.3 g of water, 33.0 g of 80% aqueous acrylic acid solution and 40% ammonium acrylate An aqueous solution in which 195.0 g was mixed was dropped. However, IPN-10 and the acrylic acid monomer were dropped over 120 minutes, and the aqueous ammonium persulfate solution was dropped over 150 minutes. After completion of dropping of IPN-10, water and acrylic acid monomer, the temperature was raised to 100 ° C. After completion of the dropwise addition of the ammonium persulfate aqueous solution, the mixture was aged at the same temperature for 30 minutes to complete the polymerization. After the polymerization, 22.4 g of 28% ammonium water was added to obtain a water-soluble copolymer (7). The physical properties of the obtained polymer are shown in Table 1.
[0031]
[Synthesis Example 3 ]
A 500 ml separable flask equipped with a stirrer, a cooling tube, a thermometer, a nitrogen introduction tube, and a dropping funnel was charged with 100 g of a 60 wt% IPN-10 aqueous solution, and the temperature was raised to 65 ° C. while stirring, after stirring. When the temperature reached a predetermined temperature, 51.7 g of 0.6% by weight hydrogen peroxide solution was added all at once. Thereafter, 24.5 g of 100 wt% acrylic acid, 80.0 g of 0.5 wt% aqueous L-ascorbic acid solution, and 63.0 g of 1 wt% mercaptopropionic acid aqueous solution were added dropwise. However, acrylic acid monomer and mercaptopropionic acid were added dropwise over 60 minutes, and L-ascorbic acid was added dropwise over 90 minutes. After completion of the dropwise addition of the L-ascorbic acid aqueous solution, the mixture was aged at the same temperature for 120 minutes to complete the polymerization, thereby obtaining a water-soluble copolymer (8). The physical properties of the obtained polymer are shown in Table 1.
[0032]
[ Reference Synthesis Example 6 ]
A 500 ml separable flask equipped with a stirrer, a cooling tube, a thermometer, a nitrogen introduction tube, and a dropping funnel was charged with 100 g of a 60 wt% IPN-10 aqueous solution, and the temperature was raised to 65 ° C. while stirring, after stirring. When the temperature reached a predetermined temperature, 25.8 g of 0.6 wt% hydrogen peroxide solution was added all at once. Thereafter, 8.2 g of 100 wt% acrylic acid, 40.0 g of 0.5 wt% aqueous L-ascorbic acid solution, and 18.0 g of 1 wt% mercaptopropionic acid aqueous solution were added dropwise. However, acrylic acid monomer and mercaptopropionic acid were added dropwise over 60 minutes, and L-ascorbic acid was added dropwise over 90 minutes. After completion of the dropwise addition of the L-ascorbic acid aqueous solution, the mixture was aged at the same temperature for 120 minutes to complete the polymerization, thereby obtaining a water-soluble copolymer (9). The physical properties of the obtained polymer are shown in Table 1.
[0033]
[Synthesis Example 4 ]
A 500 ml separable flask equipped with a stirrer, a cooling tube, a thermometer, a nitrogen introduction tube, and a dropping funnel was charged with 167.0 g of pure water, and the temperature was raised to the reflux temperature with stirring. When the temperature reaches a predetermined temperature, 32.5 g of 3% by weight ammonium persulfate aqueous solution, 82.67 g of 50% by weight IPN-10 aqueous solution, 8.25 g of 80% aqueous acrylic acid solution and 48.75 g of 40% ammonium acrylate are mixed. Each aqueous solution was added dropwise. However, IPN-10 and the acrylic acid monomer were dropped over 120 minutes, and the aqueous ammonium persulfate solution was dropped over 150 minutes. After completion of the dropwise addition of the ammonium persulfate aqueous solution, the mixture was aged at the same temperature for 30 minutes to complete the polymerization. After the polymerization, 5.5 g of 28% ammonium water was added to obtain a water-soluble copolymer (10). The physical properties of the obtained polymer are shown in Table 1.
[0034]
[Synthesis Example 5 ]
A 500 ml separable flask equipped with a stirrer, a cooling tube, a thermometer, a nitrogen introduction tube, and a dropping funnel was charged with 167.24 g of pure water, and the temperature was raised to the reflux temperature while stirring, after stirring. When the temperature reaches a predetermined temperature, 28.9 g of 3 wt% ammonium persulfate aqueous solution, 82.67 g of 50 wt% IPN-25 aqueous solution, 8.25 g of 80% acrylic acid aqueous solution and 48.75 g of 40% ammonium acrylate are mixed. Each aqueous solution was added dropwise. However, IPN-25 and acrylic acid monomer were added dropwise over 120 minutes, and the aqueous ammonium persulfate solution was added dropwise over 150 minutes. After completion of the dropwise addition of the ammonium persulfate aqueous solution, the mixture was aged at the same temperature for 30 minutes to complete the polymerization. After the polymerization, 5.5 g of 28% ammonium water was added to obtain a water-soluble copolymer (11). The physical properties of the obtained polymer are shown in Table 1.
[0035]
[Synthesis Example 6 ]
A 500 ml separable flask equipped with a stirrer, a cooling tube, a thermometer, a nitrogen introduction tube, and a dropping funnel was charged with 167.24 g of pure water, and the temperature was raised to the reflux temperature while stirring, after stirring. When the temperature reaches a predetermined temperature, 27.4 g of 3% by weight ammonium persulfate aqueous solution, 82.67 g of 50% by weight IPN-50 aqueous solution, 8.25 g of 80% aqueous acrylic acid solution and 48.75 g of 40% ammonium acrylate are mixed. Each aqueous solution was added dropwise. However, IPN-50 and acrylic acid monomer were dropped over 120 minutes, and the aqueous ammonium persulfate solution was dropped over 150 minutes. After completion of the dropwise addition of the ammonium persulfate aqueous solution, the mixture was aged at the same temperature for 30 minutes to complete the polymerization. After the polymerization, 5.5 g of 28% ammonium water was added to obtain a water-soluble copolymer (12). The physical properties of the obtained polymer are shown in Table 1.
[0036]
[ Reference Synthesis Example 7 ]
A 500 ml separable flask equipped with a stirrer, a cooling tube, a thermometer, a nitrogen introduction tube, and a dropping funnel was charged with 100 g of a 60 wt% IPN-10 aqueous solution, and the temperature was raised to 65 ° C. while stirring, after stirring. When the temperature reached a predetermined temperature, 28.3 g of 0.6 wt% hydrogen peroxide water was added all at once. Thereafter, 9.8 g of 100 wt% acrylic acid, 44.0 g of 0.5 wt% aqueous L-ascorbic acid solution, and 34.5 g of 1 wt% mercaptopropionic acid aqueous solution were dropped. However, acrylic acid monomer and mercaptopropionic acid were added dropwise over 60 minutes, and L-ascorbic acid was added dropwise over 90 minutes. After completion of the dropwise addition of the L-ascorbic acid aqueous solution, the mixture was aged at the same temperature for 120 minutes to complete the polymerization. After the polymerization, 45 g of a 20% NaOH aqueous solution was added to obtain a water-soluble copolymer (13). The physical properties of the obtained polymer are shown in Table 1.
[0037]
[Table 1]
Figure 0004334749
[0038]
[Example 1]
The water-soluble copolymers obtained in the above synthesis examples and reference synthesis examples were used as builders for liquid detergents, and calcium ion scavenging ability and clay dispersibility were evaluated as follows. The results are shown in Table 2.
<Calcium ion scavenging ability>
As a calcium ion standard solution for a calibration curve, 50 g of 0.01 mol / l, 0.001 mol / l, 0.0001 mol / l aqueous solutions were prepared using calcium chloride dihydrate, and 4.8% NaOH aqueous solution was used. Adjust to pH 9 to 11, add 1 ml of 4 mol / l potassium chloride aqueous solution (hereinafter abbreviated as 4M-KCl aqueous solution), and further stir well using a magnetic stirrer to prepare a sample solution for calibration curve did. In addition, as a test calcium ion standard solution, a necessary amount (50 g per sample) of a 0.001 mol / l aqueous solution was similarly prepared using calcium chloride dihydrate.
[0039]
Next, 10 mg of the test sample (polymer) in a 100 cc beaker was weighed in terms of solid content, 50 g of the above-mentioned calcium ion standard solution for test was added, and the mixture was sufficiently stirred using a magnetic stirrer. Further, as with the calibration curve sample, a pH of 9 to 11 was adjusted with a 4.8% NaOH aqueous solution, and 1 ml of 4M-KCl aqueous solution was added to prepare a test sample solution.
The calibration curve sample solution and the test sample solution thus prepared were measured with a calcium ion electrode 93-20 and a reference electrode 90-01 manufactured by Orion Co., Ltd. using a titration device COMITE-550 manufactured by Hiranuma Sangyo Co., Ltd. I did it.
[0040]
From the calibration curve and the measured value of the sample solution for the test, the amount of calcium ions captured by the sample (polymer) is obtained by calculation, and the value is expressed in mg of calcium carbonate equivalent of the amount captured per 1 g of polymer solids. This value was defined as the calcium ion scavenging ability value.
<Clay dispersibility (50 ppm calcium carbonate)>
Pure water was added to 67.56 g of glycine, 52.6 g of sodium chloride, and 2.4 g of NaOH to make 600 g (this is referred to as buffer (1)). 0.0817 g of calcium chloride dihydrate was added to 60 g of buffer (1), and pure water was further added to make 1000 g (this is referred to as buffer (2)). 36 g of buffer (2) was added to 4 g of a 0.1 wt% aqueous solution (in terms of solid content) of the copolymer to be measured, and stirred to obtain a dispersion. After putting 0.3 g of clay (made by Japan Powder Industrial Technology Association, 11 types of test dust) into a test tube (IWAKI GLASS: diameter 18 mm, height 180 mm), add 30 g of the above dispersion and seal To do.
[0041]
The test tube was shaken to uniformly disperse the clay. Thereafter, the test tube was left in a place not exposed to direct sunlight for 20 hours. After 20 hours, 5 cc of the supernatant of the dispersion was taken and the absorbance was measured with a UV spectrometer (Shimadzu Corporation, UV-1200; 1 cm cell, wavelength 380 nm).
<Clay dispersibility (calcium carbonate 200ppm)>
Pure water was added to 67.56 g of glycine, 52.6 g of sodium chloride, and 2.4 g of NaOH to make 600 g (this is referred to as buffer (1)). To 60 g of buffer (1), 0.3268 g of calcium chloride dihydrate was added, and pure water was added to make 1000 g (this is referred to as buffer (3)). 36 g of buffer (3) was added to 4 g of a 0.1 wt% aqueous solution (in terms of solid content) of the copolymer to be measured, and stirred to obtain a dispersion. After putting 0.3 g of clay (made by Japan Powder Industrial Technology Association, 11 types of test dust) into a test tube (IWAKI GLASS: diameter 18 mm, height 180 mm), add 30 g of the above dispersion and seal To do.
[0042]
The test tube was shaken to uniformly disperse the clay. Thereafter, the test tube was left in the dark for 20 hours. After 20 hours, 5 cc of the supernatant of the dispersion was taken and the absorbance was measured with a UV spectrometer (Shimadzu Corporation, UV-1200; 1 cm cell, wavelength 380 nm).
[0043]
[Table 2]
Figure 0004334749
[0044]
[Examples 2 and 3, Reference Examples 1 to 3 , Comparative Example 1]
The water-soluble copolymer obtained in the above synthesis examples and reference synthesis examples was used as a builder for liquid detergents, and the recontamination prevention performance was evaluated. That is, a cotton cloth (JIS-L0803 cotton cloth (gold width 3)) is cut into 5 cm × 5 cm to form a set of 8 sheets, and clay and 8 white cloths are added to 1 L of the detergent aqueous solution for evaluation containing the copolymer to be measured, The test was conducted with a targotometer under the following conditions. As a comparative example, the case where no builder was added was also evaluated. The results are shown in Table 3.
<Test conditions>
Detergent concentration: The following detergent formulation was used, and the surfactant (SFT-70H) concentration was added to 350 ppm.
[0045]
Figure 0004334749
[0046]
Cloth used: Cotton cloth (JIS-L0803 cotton cloth (Gold width 3)), 5cm x 5cm, 8 sheets Clay: 11 kinds of test dust (Kanto loam, ultrafine) (Japan Powder Industrial Technology Association)
Washing time: 10 minutes (tergotometer 100 rpm)
Rinse time: 2 minutes (tartometer 100 rpm)
Test method: Washing and rinsing were repeated three times, and the reflectance (hunter whiteness) of the untreated cloth (white cloth) and the contaminated cloth after the test was measured with a color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd .: SE2000). Then, the recontamination prevention rate was obtained by the following equation.
[0047]
Recontamination prevention rate (%) = (reflectance after test / reflectance of base fabric) × 100
[0048]
[Table 3]
Figure 0004334749
[0049]
[Examples 4 and 5, Reference Examples 4 to 6 , Comparative Example 2]
The water-soluble copolymer obtained in the above synthesis examples and reference synthesis examples was used as a builder for liquid detergents, and a detergency test was performed to evaluate the performance of the liquid detergent composition containing the builder. In other words, wet artificially contaminated cloth (made by the Laundry Science Association) is used in a set of 5 sheets, 5 sheets of contaminated cloth are added to 500 mL of an evaluation detergent aqueous solution containing a polymer, and a targotometer is used under the following conditions. A test was conducted. The results are shown in Table 4. In addition, the numerical value of the addition amount in a table | surface represents solid content or active ingredient conversion, and the numerical value of a detergent mixing | blending and a builder amount represents weight%.
[0050]
<Test conditions>
Detergent concentration: The following detergent formulation was used, and the surfactant (SFT-70H, Neoperex F-65) concentration was added to 350 ppm.
Figure 0004334749
[0051]
Contaminated cloth: manufactured by the Laundry Science Association, wet artificially contaminated cloth Washing time: 10 minutes (tartometer 100 rpm)
Rinse time: 2 minutes (tartometer 100 rpm)
Test method: After washing and rinsing, the reflectance (hunter whiteness) of the raw cloth (contaminated cloth) before washing and the contaminated cloth after the test is measured with a color difference meter (Nippon Denshoku Industries Co., Ltd., SE2000). The washing rate was determined by the following formula.
Washing rate (%) = ((reflectance of contaminated cloth after washing−reflectance of contaminated cloth before washing) / (reflectance of white cloth−reflectance of contaminated cloth before washing)) × 100
[0052]
[Table 4]
Figure 0004334749
[0053]
[Examples 6 to 23, Reference Examples 7 to 31 and Comparative Examples 3 to 8]
About the liquid detergent composition containing the water-soluble copolymer obtained by the said synthesis example and the reference synthesis example , the compatibility evaluation with respect to a liquid detergent was performed.
That is, various detergent compositions were prepared using the water-soluble copolymers obtained in Synthesis Examples and Reference Synthesis Examples and the components described in Tables 5 to 10 below. The mixture was sufficiently stirred so that each component was uniform, and after removing bubbles, the turbidity value at 25 ° C. was measured. Turbidity value measured Turbidity (kaolin turbidity: mg / l) using NDH2000 (turbidimeter) manufactured by Nippon Denshoku Co., Ltd.
[0054]
The evaluation results were based on the following three stages.
○: Turbidity value (0 to 50), not visually separated, precipitated or clouded.
Δ: Turbidity value (50 to 200), slightly clouded visually.
X: Turbidity value (200 or more), visually turbid.
The above results are shown in Tables 5-10. In addition, the numerical value of the addition amount in a table | surface represents solid content or active ingredient conversion, and the numerical value of a detergent mixing | blending and a builder amount represents weight%. Further, Cotamine 86W in the table represents stearyltrimethylammonium chloride manufactured by Kao Corporation.
[0055]
As a comparative sample, polyacrylic acid Na (weight average molecular weight Mw 7000, manufactured by Nippon Shokubai Co., Ltd.) was used.
[0056]
[Table 5]
Figure 0004334749
[0057]
[Table 6]
Figure 0004334749
[0058]
[Table 7]
Figure 0004334749
[0059]
[Table 8]
Figure 0004334749
[0060]
[Table 9]
Figure 0004334749
[0061]
[Table 10]
Figure 0004334749
[0062]
【The invention's effect】
According to the present invention, a novel liquid detergent builder having excellent compatibility with a surfactant, high transparency when made into a liquid detergent composition, and very excellent detergent performance, and its liquid Novel liquid detergent compositions comprising detergent builders can be provided.

Claims (2)

界面活性剤を10〜60重量%の割合で含む液体洗剤組成物に用いられる洗剤用ビルダーであって、
下記一般式(1a)で表される不飽和カルボン酸系単量体(1)、および、下記一般式(2)で表される不飽和アルコール系単量体
Figure 0004334749
Figure 0004334749
を必須に含む単量体成分を共重合して得られる水溶性共重合体を必須成分とし、
クレイ分散性(炭酸カルシウム50ppm)が0.3以上である、
ことを特徴とする、液体洗剤用ビルダー。
A detergent builder used in a liquid detergent composition containing 10 to 60% by weight of a surfactant,
The unsaturated carboxylic acid monomer (1 ) represented by the following general formula (1a ) and the unsaturated alcohol monomer represented by the following general formula (2)
Figure 0004334749
Figure 0004334749
The water-soluble copolymer obtained by copolymerizing a monomer component required to contain as essential components,
Clay dispersibility (calcium carbonate 50 ppm) is 0.3 or more,
A builder for liquid detergents.
界面活性剤を10〜60重量%の割合で含む液体洗剤組成物であって、
洗剤ビルダーとして、請求項1に記載の液体洗剤用ビルダーを含んでなる、
ことを特徴とする、液体洗剤組成物。
A liquid detergent composition containing 10 to 60% by weight of a surfactant,
A detergent builder comprising the liquid detergent builder according to claim 1 ,
A liquid detergent composition characterized by the above.
JP2000250963A 2000-08-22 2000-08-22 Liquid detergent builder and liquid detergent composition Expired - Fee Related JP4334749B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000250963A JP4334749B2 (en) 2000-08-22 2000-08-22 Liquid detergent builder and liquid detergent composition
US09/930,274 US6756460B2 (en) 2000-08-22 2001-08-16 Water-soluble copolymer and its production process and use
DE60131121T DE60131121T2 (en) 2000-08-22 2001-08-21 New water-soluble copolymer and its method of preparation and use
EP01120081A EP1182217B1 (en) 2000-08-22 2001-08-21 Novel water-soluble copolymer and its production process and use
ES01120081T ES2293951T3 (en) 2000-08-22 2001-08-21 NEW WATER SOLUBLE COPOLYMER AND ITS PRODUCTION AND USE PROCEDURE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000250963A JP4334749B2 (en) 2000-08-22 2000-08-22 Liquid detergent builder and liquid detergent composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009087793A Division JP2009185294A (en) 2009-03-31 2009-03-31 Builder for liquid detergent and liquid detergent composition

Publications (2)

Publication Number Publication Date
JP2002060785A JP2002060785A (en) 2002-02-26
JP4334749B2 true JP4334749B2 (en) 2009-09-30

Family

ID=18740450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000250963A Expired - Fee Related JP4334749B2 (en) 2000-08-22 2000-08-22 Liquid detergent builder and liquid detergent composition

Country Status (1)

Country Link
JP (1) JP4334749B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998453B2 (en) 2001-10-03 2006-02-14 Nippon Shokubai Co., Ltd. (Meth)acrylic acid type polymer and unsaturated polyalkylene glycol type copolymer, and methods for production thereof
AU2008261634B2 (en) * 2007-06-12 2014-04-24 Rhodia Inc. Detergent composition with hydrophilizing soil-release agent and methods for using same
US8586687B2 (en) 2010-12-17 2013-11-19 Nippon Shokubai Co., Ltd. Polyalkylene glycol-based polymer and process for producing the same
WO2020203694A1 (en) * 2019-03-29 2020-10-08 株式会社日本触媒 Detergent builder or detergent additive, and detergent composition
WO2020203693A1 (en) * 2019-03-29 2020-10-08 株式会社日本触媒 Detergent builder/detergent additive and detergent composition

Also Published As

Publication number Publication date
JP2002060785A (en) 2002-02-26

Similar Documents

Publication Publication Date Title
JP4846821B2 (en) Liquid detergent builder and liquid detergent
JP5178008B2 (en) Amino group-containing water-soluble copolymer
WO2010024469A1 (en) Hydrophobic group-containing copolymer and process for the production thereof
ES2293951T3 (en) NEW WATER SOLUBLE COPOLYMER AND ITS PRODUCTION AND USE PROCEDURE.
JP4408158B2 (en) A sulfonic acid group-containing maleic acid-based water-soluble copolymer having a specific function, its production method and its use
JP4323700B2 (en) Novel water-soluble copolymer, its production method and use
JP3398837B2 (en) Acrylic acid (salt) -maleic acid (salt) copolymer, method for producing the same, and detergent composition
JPS5915359B2 (en) Detergent builder and detergent composition using the detergent builder
JP4334749B2 (en) Liquid detergent builder and liquid detergent composition
JP2008138014A (en) Polyalkylene glycol-type polymerizable unsaturated monomer, method for producing the same, copolymer produced by using the polymerizable unsaturated monomer and method for producing the same
JP4634022B2 (en) Liquid detergent builder and liquid detergent
JPS6286098A (en) Detergent builder and detergent composition containing the same
JP2005068401A (en) Water-soluble copolymer
JP5570144B2 (en) Polymer builder for laundry detergent
JP2010001495A (en) Polyalkyleneimine derivative, method of manufacturing the same, and use thereof
JP3917857B2 (en) Amino group-containing polymer, production method thereof, and use
JP2009035574A (en) Water-soluble polymer and its manufacturing method, and its use
JP4005855B2 (en) Detergent composition
JP2005314548A (en) Water-soluble copolymer, method for producing the same and use thereof
JP4010921B2 (en) (Meth) acrylic acid-based polymer and unsaturated polyalkylene glycol-based copolymer, production method thereof, and detergent using the same
JP4473647B2 (en) Water-soluble copolymer and production method and use thereof
JP4942284B2 (en) Polyalkyleneimine derivatives and uses thereof
JP3961845B2 (en) Detergent builder and detergent composition
JP2009185294A (en) Builder for liquid detergent and liquid detergent composition
JP4822639B2 (en) Composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4334749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees