[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4330785B2 - Liquid crystal display device manufacturing method and liquid crystal display device manufacturing apparatus - Google Patents

Liquid crystal display device manufacturing method and liquid crystal display device manufacturing apparatus Download PDF

Info

Publication number
JP4330785B2
JP4330785B2 JP2000333642A JP2000333642A JP4330785B2 JP 4330785 B2 JP4330785 B2 JP 4330785B2 JP 2000333642 A JP2000333642 A JP 2000333642A JP 2000333642 A JP2000333642 A JP 2000333642A JP 4330785 B2 JP4330785 B2 JP 4330785B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
supply needle
liquid
syringe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000333642A
Other languages
Japanese (ja)
Other versions
JP2002139734A (en
Inventor
宏幸 杉村
泰二 湯原
聡 村田
徳道 中山
弘康 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000333642A priority Critical patent/JP4330785B2/en
Priority to US09/891,694 priority patent/US7177005B2/en
Priority to TW090116351A priority patent/TW567382B/en
Priority to KR1020010045065A priority patent/KR100679959B1/en
Publication of JP2002139734A publication Critical patent/JP2002139734A/en
Priority to US11/191,205 priority patent/US20060012065A1/en
Application granted granted Critical
Publication of JP4330785B2 publication Critical patent/JP4330785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置の製造方法及び液晶表示装置の製造装置に関し、より詳しくは、シリンジからの吐出によって液晶を基板に供給する工程を有する液晶表示装置の製造方法と、液晶表示装置の製造に使用される装置に関する。
【0002】
【従来の技術】
液晶表示装置は、画素電極、薄膜トランジスタ(TFT)等を有するTFT基板と、対向電極、カラーフィルタ等を有する対向基板を貼り合わせ、TFT基板と対向基板の間に液晶を封入した構造を有している。
TFT基板と対向基板の間に液晶を封入する方法としては、真空注入法や滴下法などが採用されている。
【0003】
真空注入法は、一部に液晶導入口を有する枠状のシール材を挟んで2枚の基板を貼り合わせて空のセルを形成し、液晶導入口を通して基板間を真空状態にした後に、空セルの内外の気圧の差を利用して液晶を基板間に導入する方法である。滴下法は、TFT基板のうち枠状にシール材が塗布された領域の内側に液晶を滴下した後に、真空雰囲気中でTFT基板と対向基板を貼り合わせてセルを形成する方法である。
【0004】
滴下法は、真空注入法に比べて、枠状のシール材の液晶導入口を封入する手間や液晶導入口周辺の洗浄の手間がかからないといった利点がある。滴下法に使用される液晶供給用のシリンジとして、例えばエア方式、チュービング方式、プランジャ方式などがあり、液晶のような低粘度液剤の吐出では、それらの方式のうちのいずれかが採用される。
【0005】
低粘度剤を微量且つ高精度で吐出させる場合には、一般にプランジャ方式が採用されている。プランジャ方式には容積計量型、モータ駆動型等がある。
プランジャ方式に使用されるシリンジは図1(a) に示すような構造を有し、液晶100 を入れたシリンジ101 内でプランジャ102 を移動することによりシリンジ101 下端の針103 から液晶を基板104 に向けて吐出させるといった操作がなされる。
【0006】
【発明が解決しようとする課題】
ところで、液晶表示装置では、適正な表示を得るために液晶量を高精度に封入するという要求がある。
しかし、針103 から吐出される液晶100 が微量な場合には、図1(b) に示すように液晶100 の吐出時又は吐出後に液晶100 が針103 の先端に付着することがある。
【0007】
針の先端に液晶が付着して残ると、セルへの液晶の供給量の精度が低下して表示に障害が発生する。
液晶が目標量よりも少なくなるとセル内に真空の気泡が混入し、また液晶が目標量よりも多くなるとセル厚に異常をきたす。液晶の液晶表示セルへの供給量が目標値よりも少なくなると液晶の無い部分が画像上で線として現れる。また、液晶の量が目標値よりも多くなると液晶表示セルが部分的に膨らんで画像表示の劣化を招く。液晶が目標量よりも多くなる場合として、例えば、n(n;自然数)枚目の基板への液晶の供給を終えた際に針に付着した液晶が、n+1枚目の基板に落下する場合がある。
【0008】
針の先端での液晶付着は、図1(a) に示した装置を使用する場合に、液晶の吐出速度を上げることによって無くすことができるが、そのような条件では吐出精度が低くなるといった不都合がある。
本発明の目的は、基板への液晶供給量を高精度にすることができる液晶表示装置の製造方法及び液晶表示装置の製造装置を提供することにある。
【0009】
【課題を解決するための手段】
上記した課題は、給液針から液晶を基板に供給した後に、給液針の表面に付着した液晶を外部からの力で落下させることにより解決する。外部からの力として、液晶針に気体を吹き付けている。給液針の表面に付着した液晶を吹き落とす手段として例えば気体を吹き付ける給気手段を給液針の周囲に配置する構造を採用する。
【0010】
これにより、給液針に付着した液晶を外部からの力によって落下させて基板に供給することにより、液晶は基板上で高精度の量で供給されることになり、液晶表示装置の表示が良好になる。
また、上記した課題を解決するための手段に関連する手段では、シリンジから吐出した液晶と同じ規定量の液晶を外部からシリンジ内に補給することにより、給液針への液晶の押圧力を一定にし、さらに液晶がシリンジの給液針の表面に残らないような速度で液晶を給液針から吐出するようにしている。
【0011】
これにより、液晶は給液針の表面に残らず、しかも、シリンジ内では同じ量の液晶の吐出が開始されることになって液晶の吐出条件のバラツキが抑制される。これにより、液晶表示装置内での液晶量の誤差が従来よりも小さくなり、液晶表示装置の表示不良が低減される。
【0012】
【発明の実施の形態】
以下に本発明の実施形態を図面に基づいて説明する。
(第1の実施の形態)
図2は、本発明の第1実施形態の液晶表示装置の製造に使用される液晶供給装置を示す構成図である。
【0013】
図2において、液晶供給用のシリンジ1の下端には、シリンジ1内の液晶Lを第1の基板10に滴下するための中空の給液針3が取り付けられている。そのシリンジ1の内部には、駆動源4に接続されたプランジャ5が挿入され、プランジャ5の下降によって液晶Lを給液針3の先端から押し出すようになっている。プランジャ5は、駆動源4によって機械的に上下動される。
【0014】
シリンジ1の下方には、第1の基板10を載置する載置台6が移動可能に配置されている。また、シリンジ1は、載置台6と給液針3の間隔が例えば10〜20mmとなるような高さにあって横方向に移動可能に配置されている。
また、シリンジ1の給液針3の周囲には、給液針3の外周表面や吐出端に向けて気体(例えば空気)を吹き付ける給気針8を有する給気手段7が配置されている。給気針8は、給液針4の周りにほぼ等間隔で少なくとも2本配置される。給液針8は、その表面がテフロンコーティングされたものを使用してもよい。
【0015】
給気手段7による給気針8からの気体の吹き出し速度と吹き出しのタイミング、およびシリンジ1からの液晶Lの吐出量と吐出速度は、それぞれ制御回路9によって制御される。
シリンジ1として、例えば武蔵エンジニアリング製の商品名SMPIII のデジタル制御プランジャ方式ディスペンサを使用し、また、給気手段7として例えば武蔵エンジニアリング製の商品名Σ8000のエアー方式ディスペンサを使用する。
【0016】
次に、上記した液晶供給装置を使用して液晶表示パネルに液晶を供給する方法を説明する。
まず、図3(a) に示すように、薄膜トランジスタ(TFT)、画素電極、配線、スペーサ等が形成された第1の基板(TFT基板)10を用意する。そして、第1の基板10のうちのTFTが形成された面の表示領域の周縁に沿って紫外線硬化型のシール材11を塗布する。第1の基板10としては、例えばガラス、石英等の透明基板が用いられる。1枚の基板が複数の表示パネル用の場合、1枚の基板には複数の表示領域が存在する。なお、シール材11には、光照射により硬化する光開始剤が含まれる。
【0017】
続いて、第1の基板10を載置台6の上に載せた状態で、シリンジ1内のプランジャ5を例えば速さ2mm/sec以下で連続して下降させると、給液針3の先端では図4(a) に示すように液晶Lが突出して滴状となる。その滴は徐々に大きくなり、ついには図4(b) に示すように自重によって第1の基板10上に落下する。液晶Lの落下の最中でも給液針3の先端にはシリンジ1から液晶Lが連続して送られてくるのでその先端には再び液晶Lの滴が形成されることになる。
【0018】
このように給液針3の先端では、滴の形成と滴の落下が繰り返されることになる。
液晶Lの滴下と滴下の間には、載置台6とシリンジ1の少なくとも一方を移動して第1の基板10上での吐出位置を変える。従って、複数箇所に液晶Lが供給された第1の基板10の上面は図3(b) に示すような状態になる。
【0019】
そして、第1の基板10の最終吐出位置での液晶Lの滴下が終えた時点でプランジャ5の移動は停止され、シリンジ1から給液針3には液晶が送られてこなくなる。そして、給液針3の先端近傍の表面には、図4(c) に示すように液晶Lが付着して残ることがある。
給液針3の表面に付着した液晶Lは、第1の基板10上での液晶Lの総量を目標量より少なくする原因となったり、或いは、別の第1の基板10上での液晶Lの総量を目標量より多くする原因となる。
【0020】
そこで、第1の基板10上での液晶供給量の誤差を無くし又は小さくするために、プランジャ5を停止した後に、図5(a) に示すように、給気針8から給液針3に空気又はその他の気体を吹き付けることにより、図5(b),(c) に示すように給液針3の表面に残された液晶Lを斜め上方から第1の基板10に向けて強制的に吹き飛ばす。給気針8から出す空気の風圧は、0.5〜2.0kgf/cm2 の範囲で、その空気を0.5秒程度吹き出すことが好ましい。また、給気針8は、給液針3に対して30度程度傾けるように配置する。
【0021】
これにより、シリンジ1から給液針3に送られた液晶Lの量と、実際に給液針3から第1の基板10に吐出された液晶Lの量との誤差が無くなるか、或いは従来よりも小さくなる。
第1の基板10への液晶Lの供給を終えた後に、図6(a) に示すように、対向電極、カラーフィルター等が形成された透明な第2の基板(対向基板)12を用意する。そして、第1及び第2の基板10,12を減圧雰囲気に置いて、図6(b) に示すように、第1の基板10と第2の基板12をシール材11を介して貼り合わせて液晶表示セルを作製する。第2の基板12は対向電極の形成面を第1の基板10に対向させる。これにより、第1の基板10と第2の基板12の間で液晶Lが挟まれる。
【0022】
さらに、紫外線照射によりシール材11を硬化させ、これにより第1の基板10と第2の基板12が固定される。
そして、減圧雰囲気から大気中に取り出された第1の基板10と第2の基板12の間の液晶Lは、大気による基板10,12間の押圧力によって均一に広がることになる。
【0023】
なお、給気針8から給液針3への気体の吹き出しのタイミングは、給液針3から液晶Lの吐出中に開始してよいし、プランジャ5の移動を停止する直前から開始してもよい。
給液針3の先端近傍に残った液晶を吹き飛ばした場合と吹き飛ばさなかった場合の第1の基板10への液晶の供給量を調べたところ、表1と表2のような結果が得られた。
【0024】
表1は、給液針3に付着した液晶を吹き飛ばさなかった従来方法による液晶の塗布量を示し、表2は、給液針3に付着した液晶を吹き飛ばした本発明の実施形態による液晶の塗布量を示している。
表1と表2の各サンプル(基板)においては、それぞれ0.100ccの液晶を供給するように駆動源4によるプランジャ3の移動量を決定している。また、表1、表2の実験では、液晶を1ショットでサンプルに供給している。なお、液晶の比重は、ほぼ1である。
【0025】
【表1】

Figure 0004330785
【0026】
【表2】
Figure 0004330785
【0027】
表1によれば、給液針3に付着した液晶を吹き飛ばさなかった結果、サンプル上の液晶供給量の最大値と最小値の差が2.2mg、平均値が99.35mg、標準偏差が0.620484mgとなった。
これに対して、表2によれば、給液針3に付着した液晶をサンプルに向けて吹き飛ばした結果、サンプル上の液晶供給量の最大値と最小値の差が0.5mg、平均値が99.85mg、標準偏差が0.206828mgとなり、各サンプルの液晶供給量の誤差は従来に比べて極めて小さくなった。
【0028】
ところで、上記した液晶は、給液針3の先端から液晶滴の自重、プランジャ5による押圧力、外部からの気体の吹き出しによって第1の基板10上に落下するようにしている。その他に、液晶の落下のために外部から作用させる力として、図2で符号13に示す帯電器により第1の基板10を帯電させることにより液晶滴との間に静電力を発生させてもよい。これにより、給液針3の表面の液晶Lを静電気によって基板10に引き寄せるようにする。
【0029】
なお、上記したプランジャ5の下降動作は、連続的でなく間欠的であってもよい。
(第2の実施の形態)
図2に示した液晶供給装置は、プランジャ方式のシリンジを用いているが、図7に示すようなエア方式のシリンジ15を用いてもよく、このエア方式の場合でも給液針の周囲に給気針8を配置してもよい。エア方式のシリンジ15では、シリンジ15に入れられた液晶Lを上から空気圧で加圧することによって、シリンジ15先端の給液針17から液晶が滴下される。
【0030】
エア方式のプランジャでは、同じ空気圧をシリンジ15内に加えても、基板10上に吐出された液晶の総量は表3に示すようにシリンジ15内の液の残量によってバラツキが生じる。表3では、1枚目のサンプルへの液晶供給開始時点でのシリンジ15内の液晶の量を15gとした場合と、7gとした場合と、2.5gとした場合を示している。なお、表3では、比重が液晶と同じ純水を使用し、1塗布回数(1サンプル)当たり30ショットとして液供給の目標量を100gとした。
【0031】
【表3】
Figure 0004330785
【0032】
従って、液晶の供給量の精度を高めるためには、図2に示したプランジャ式のシリンジ1を用いる方が好ましい。ただし、エア式のシリンジ15であっても、空気圧を調整して液晶の供給量を高精度で保つことは可能であり、給液針17に付着した液晶の吹き飛ばしは、液晶供給量の精度をさらに高くするためには有効である。
【0033】
エアー式のシリンジ15においては、基板10への液晶Lの供給量の誤差を少なくするためにできるだけシリンジ15内での液晶の位置を同じにして基板10に液晶を供給することが好ましい。次に、各基板への液晶の供給時点で、シリンジ15内の液晶量を一定にする装置について説明する。
図8(a) 〜(c) は、図7とは異なるエアー式のシリンジを示している。
【0034】
図8(a) 〜(c) に示したシリンジ21では、その側面に液晶導入口22が形成され、その液晶導入口22には液晶補給源23が液晶導入管24を介して接続されている。液晶補給源23として、例えばプランジャ式シリンジのような高精度吐出方式ディスペンサを使用する。また、シリンジ21の中には空気圧によって下方に押圧されるピストン25が挿入され、さらにシリンジ21の下端には給液針26が接続されている。
【0035】
図8(a) は、1枚の第1の基板10への液晶Lの供給を終えた状態を示している。この状態では、ピストン25が液晶導入口22よりも上の位置にある。
次に、図8(b) に示すように、シリンジ21内のピストン25を持ち上げるとともに、液晶供給源23から液晶導入管24、液晶導入口22を通して液晶Lをシリンジ21内に補充する。この場合、シリンジ21内の圧力が変化しないように液晶供給源23からの液晶Lの導入速度とピストン25の上昇速度を調整する。また、液晶供給源23からの液晶Lのシリンジ21への導入量は、1枚の基板当たりに供給する液晶の規定量と等しくする。
【0036】
次に、図8(c) に示すように、空気圧によってピストン25を規定量だけ一気に押し下げて給液針26から第1の基板10に向けて液晶を吐出し、給液針26の外表面に液晶が付着して残らないようにする。第1の基板10に液晶を供給した後は、図8(a) に示すような状態となる。
そのようなエアー式シリンジを使用する場合に、例えば15インチパネル上で48カ所、48ショットであり、液晶総量を250mgとし、また、23インチパネル上で128ショットで液晶総量を650mgとする。
【0037】
以上のように、図8(a) 、図8(b) 、図8(c) の動作を繰り返すことにより、第1の基板10に液晶Lを供給する毎にピストン25の下のシリンジ22内は常に同じ液量となるので、液晶Lの供給量の目標値に対する誤差はさらに小さくなり、高精度定量液晶突出が実現される。
その後、第1の基板10と第2の基板12を貼り合わせるが、その工程は第1実施形態と同じであるので省略する。なお、図8に示したシリンジとして、図2に示したプランジャ式を採用してもよい。
【0038】
なお、上記した2つの実施形態では、第1の基板10にシール材11を塗布しさらに液晶を供給するようにしているが、第2の基板12にシール材を塗布しさらにその上に液晶を供給してもよい。
(付記1)第1の基板の第1面上で表示領域の周縁に沿ってシール材を形成する工程と、
液晶が入れられたシリンジの下部に取り付けられた給液針の先端から、前記第1の基板の前記第1面に向けて液晶を吐出する工程と、
前記液晶の吐出最中又は吐出後に前記給液針の表面に付着している前記液晶を外部の力によって前記第1の基板に滴下させる工程と
を有することを特徴とする液晶表示装置の製造方法。
(付記2)前記外部の力は、前記給液針に気体を吹き付けることによって発生させることを特徴とする付記1に記載の液晶表示装置の製造方法。
(付記3)前記給液針の表面から液晶を吹き着ける方法は、前記給液針の周辺に配置された給気針の先端から前記給液針の前記表面に向けて気体を吹き出す方法であることを特徴とする付記2に記載の液晶表示装置の製造方法。
(付記4)前記外部の力は、前記基板を帯電させて前記基板との静電気により発生させることを特徴とする付記1に記載の液晶表示装置の製造方法。
(付記5)前記シリンジ内の前記液晶は、機械的に押圧されるプランジャによって前記給液針に押し出されるか、エアー圧力によって前記給液針に押し出されることを特徴とする付記1に記載の液晶表示装置の製造方法。
(付記6)第1の基板の第1面上で表示領域の周縁に沿ってシール材を形成する工程と、
液晶が入れられたシリンジの下部に取り付けられた給液針の先端から、該給液針の表面に最終的に液晶が残らない吐出速度で前記第1の基板の前記第1面に向けて前記液晶を規定量で一気に吐出する工程と、
前記シリンジの内部に前記規定量の液晶を供給する工程と
を有することを特徴とする液晶表示装置の製造方法。
(付記7)基板を載置する載置台と、
前記載置台の上方に配置され且つ液晶が入れられるシリンジと、
前記シリンジの下部に取り付けられて前記液晶を吐出する給液針と、
前記給液針の周囲に配置されて前記給液針へ気体を吹き出す給気手段と
を有することを特徴とする液晶表示装置の製造装置。
(付記8)前記給気手段は前記給液針に向けた吹き出し口を有する給気針を有し、該給気針は少なくとも2本有することを特徴とする付記7に記載の液晶表示装置の製造装置。
(付記9)前記シリンジは、機械的又はエアー圧力によって前記給液針の先端から前記液晶を吐出する構造を有することを特徴とする付記7に記載の液晶表示装置の製造装置。
(付記10)前記シリンジと前記載置台は、相対的に移動可能に配置されることを特徴とする付記7に記載の液晶表示装置の製造装置。
(付記11)基板を載置する載置台と、
前記載置台の上方に配置され且つ液晶が入れられるシリンジと、
前記シリンジの内部に移動可能に挿入されるピストンと、
前記シリンジの下部に取り付けられて前記液晶を吐出する給液針と、
前記シリンジの内部に規定量の液晶を供給する液晶定量供給手段と
を有することを特徴とする液晶表示装置の製造装置。
(付記12)前記ピストンは、空気圧によって押圧されることを特徴とする付記11に記載の液晶表示装置の製造装置。
(付記13)前記液晶定量供給手段は、プランジャ式シリンジであることを特徴とする付記11に記載の液晶表示装置の製造装置。
【0039】
【発明の効果】
以上述べたように本発明によれば、給液針から液晶を基板に供給した後に、給液針の表面に付着した液晶を外部からの力で落下させるようにしたので、液晶を基板上で高精度の量で供給することができる。
また、本発明に関連する発明によれば、シリンジから吐出した液晶と同じ量の液晶を外部からシリンジ内に補給することにより、給液針への液晶の押圧力を一定にし、さらに液晶がシリンジの給液針の表面に残らないような速度で液晶を給液針から一気に吐出するようにしたので、液晶は給液針の表面に残らず、しかも、シリンジ内では同じ条件で液晶の吐出が開始されることになって液晶の吐出条件のバラツキを抑制できる。
【0040】
以上により、液晶表示装置内での液晶量の誤差が従来よりも小さくし、液晶表示装置の表示不良を低減することができる。
【図面の簡単な説明】
【図1】図1(a) は、従来の液晶供給装置を示す側面図、図1(b) は、液晶供給装置から液晶を吐出した後の給液針を示す側面図である。
【図2】図2は、本発明の第1実施形態の液晶表示装置の製造に用いられる液晶供給装置を示す図である。
【図3】図3(a) は、本発明の第1実施形態において液晶が供給される対象となる第1の基板を示す平面図、図3(b) は、第1の基板に液晶が供給された状態を示す平面図である。
【図4】図4(a) 〜(c) は、図2に示した液晶供給装置による液晶の基板への供給工程を示す図(その1)である。
【図5】図5(a) 〜(c) は、図2に示した液晶供給装置による液晶の基板への供給工程を示す図(その2)である。
【図6】図6(a),(b) は、本発明の第1実施形態の液晶表示装置を構成する基板の貼り合わせ工程を示す斜視図である。
【図7】図7は、本発明の第2実施形態の液晶供給装置の製造に使用されるエア式シリンジを示す側面図である。
【図8】図8(a) 〜(c) は、本発明の第2実施形態の液晶供給装置の製造に使用されるシリンジによる液晶吐出工程を示す図である。
【符号の説明】
1…シリンジ、2…シリンジ、3…給液針、4…駆動源、5…プランジャ、6…載置台、7…給気手段、8…給気針、9…制御回路、10…第1の基板、11…シール材、12…第2の基板、15…シリンジ、17…給液針、21…シリンジ、22…液晶導入口、23…液晶補給源、24…液晶導入管、25…ピストン、26…給液針、L…液晶。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of a liquid crystal display device and a manufacturing apparatus of a liquid crystal display device, and more specifically, a manufacturing method of a liquid crystal display device including a step of supplying liquid crystal to a substrate by discharging from a syringe, and manufacturing of the liquid crystal display device The present invention relates to a device used for the above.
[0002]
[Prior art]
A liquid crystal display device has a structure in which a TFT substrate having pixel electrodes, thin film transistors (TFTs) and the like and a counter substrate having counter electrodes, color filters, etc. are bonded together, and liquid crystal is sealed between the TFT substrate and the counter substrate. Yes.
As a method for sealing liquid crystal between the TFT substrate and the counter substrate, a vacuum injection method, a dropping method, or the like is employed.
[0003]
In the vacuum injection method, two substrates are bonded to each other with a frame-shaped sealing material having a liquid crystal introduction port in part, and an empty cell is formed. In this method, liquid crystal is introduced between the substrates by utilizing the difference in pressure inside and outside the cell. The dropping method is a method of forming a cell by bonding a TFT substrate and a counter substrate in a vacuum atmosphere after dropping a liquid crystal inside a region of a TFT substrate where a sealing material is applied in a frame shape.
[0004]
Compared with the vacuum injection method, the dropping method has an advantage that it does not require the trouble of sealing the liquid crystal inlet of the frame-shaped sealing material and the trouble of cleaning around the liquid crystal inlet. Examples of liquid crystal supply syringes used in the dropping method include an air system, a tubing system, and a plunger system, and any of these systems is employed for discharging a low-viscosity liquid agent such as liquid crystal.
[0005]
In the case of discharging a low viscosity agent in a minute amount and with high accuracy, a plunger method is generally adopted. Plunger methods include volumetric type and motor drive type.
The syringe used in the plunger system has a structure as shown in FIG. 1A, and the liquid crystal is transferred from the needle 103 at the lower end of the syringe 101 to the substrate 104 by moving the plunger 102 in the syringe 101 containing the liquid crystal 100. The operation of discharging toward the user is performed.
[0006]
[Problems to be solved by the invention]
By the way, in a liquid crystal display device, in order to obtain an appropriate display, there exists a request | requirement of enclosing the amount of liquid crystals with high precision.
However, when the amount of liquid crystal 100 ejected from the needle 103 is very small, the liquid crystal 100 may adhere to the tip of the needle 103 during or after ejection of the liquid crystal 100 as shown in FIG.
[0007]
If liquid crystal adheres to the tip of the needle and remains, the accuracy of the amount of liquid crystal supplied to the cell will be reduced, resulting in a display failure.
When the liquid crystal is less than the target amount, vacuum bubbles are mixed in the cell, and when the liquid crystal is more than the target amount, the cell thickness is abnormal. When the supply amount of the liquid crystal to the liquid crystal display cell is less than the target value, a portion without the liquid crystal appears as a line on the image. In addition, when the amount of liquid crystal exceeds the target value, the liquid crystal display cell partially swells and causes image display deterioration. As a case where the liquid crystal is larger than the target amount, for example, there is a case where the liquid crystal attached to the needle when the supply of the liquid crystal to the n (n: natural number) substrate is dropped onto the (n + 1) th substrate. is there.
[0008]
Liquid crystal adhesion at the tip of the needle can be eliminated by increasing the liquid crystal discharge speed when the apparatus shown in FIG. 1 (a) is used. There is.
An object of the present invention is to provide a manufacturing method of a liquid crystal display device and a manufacturing apparatus of a liquid crystal display device that can make the amount of liquid crystal supplied to a substrate highly accurate.
[0009]
[Means for Solving the Problems]
The above-described problem is solved by dropping the liquid crystal adhering to the surface of the liquid supply needle with an external force after supplying the liquid crystal to the substrate from the liquid supply needle. As a force from the outside, and spraying a gas on the liquid crystal needle. As a means for blowing off the liquid crystal adhering to the surface of the liquid supply needle, for example , a structure is adopted in which an air supply means for blowing gas is arranged around the liquid supply needle.
[0010]
As a result, the liquid crystal attached to the liquid supply needle is dropped by an external force and supplied to the substrate, so that the liquid crystal is supplied on the substrate in a highly accurate amount, and the display of the liquid crystal display device is good become.
Further, in the means related to the means for solving the above-described problems, the liquid crystal is pressed against the liquid supply needle by replenishing the syringe with the same prescribed amount of liquid crystal as that discharged from the syringe from the outside. Further, the liquid crystal is discharged from the liquid supply needle at such a speed that the liquid crystal does not remain on the surface of the liquid supply needle of the syringe.
[0011]
As a result, the liquid crystal does not remain on the surface of the liquid supply needle, and the discharge of the same amount of liquid crystal is started in the syringe, thereby suppressing variations in the liquid crystal discharge conditions. As a result, the error in the amount of liquid crystal in the liquid crystal display device becomes smaller than before, and display defects of the liquid crystal display device are reduced.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 2 is a configuration diagram showing a liquid crystal supply device used for manufacturing the liquid crystal display device according to the first embodiment of the present invention.
[0013]
In FIG. 2, a hollow liquid supply needle 3 for dropping the liquid crystal L in the syringe 1 onto the first substrate 10 is attached to the lower end of the syringe 1 for supplying liquid crystal. A plunger 5 connected to the drive source 4 is inserted into the syringe 1, and the liquid crystal L is pushed out from the tip of the liquid supply needle 3 when the plunger 5 is lowered. The plunger 5 is mechanically moved up and down by the drive source 4.
[0014]
A mounting table 6 on which the first substrate 10 is mounted is movably disposed below the syringe 1. The syringe 1 is disposed so as to be movable in the lateral direction at a height such that the distance between the mounting table 6 and the liquid supply needle 3 is, for example, 10 to 20 mm.
Further, around the liquid supply needle 3 of the syringe 1, an air supply means 7 having an air supply needle 8 that blows gas (for example, air) toward the outer peripheral surface of the liquid supply needle 3 and the discharge end is disposed. At least two air supply needles 8 are arranged around the liquid supply needle 4 at approximately equal intervals. The liquid supply needle 8 may have a Teflon-coated surface.
[0015]
The control circuit 9 controls the gas blowing speed and the timing of the gas blowing from the air supply needle 8 by the air supply means 7 and the discharge amount and discharge speed of the liquid crystal L from the syringe 1.
As the syringe 1, for example, a digitally controlled plunger dispenser with a trade name of SMPIII manufactured by Musashi Engineering is used.
[0016]
Next, a method for supplying liquid crystal to the liquid crystal display panel using the liquid crystal supply device described above will be described.
First, as shown in FIG. 3A, a first substrate (TFT substrate) 10 on which a thin film transistor (TFT), a pixel electrode, wiring, a spacer and the like are formed is prepared. Then, an ultraviolet curable sealant 11 is applied along the periphery of the display area of the surface of the first substrate 10 on which the TFT is formed. As the first substrate 10, for example, a transparent substrate such as glass or quartz is used. In the case where one substrate is used for a plurality of display panels, one substrate has a plurality of display areas. The seal material 11 includes a photoinitiator that is cured by light irradiation.
[0017]
Subsequently, when the plunger 5 in the syringe 1 is continuously lowered, for example, at a speed of 2 mm / sec or less with the first substrate 10 placed on the mounting table 6, the tip of the liquid supply needle 3 is shown in FIG. As shown in FIG. 4 (a), the liquid crystal L protrudes to form droplets. The droplet gradually increases and finally drops onto the first substrate 10 by its own weight as shown in FIG. 4 (b). Even during the fall of the liquid crystal L, the liquid crystal L is continuously sent from the syringe 1 to the tip of the liquid supply needle 3, so that a droplet of the liquid crystal L is formed again at the tip.
[0018]
In this way, at the tip of the liquid supply needle 3, the formation of the drop and the drop of the drop are repeated.
Between the dropping of the liquid crystal L, at least one of the mounting table 6 and the syringe 1 is moved to change the discharge position on the first substrate 10. Accordingly, the upper surface of the first substrate 10 to which the liquid crystal L is supplied at a plurality of positions is in a state as shown in FIG.
[0019]
The movement of the plunger 5 is stopped when the liquid crystal L has been dropped from the final discharge position of the first substrate 10, and no liquid crystal is sent from the syringe 1 to the liquid supply needle 3. Then, the liquid crystal L may remain on the surface near the tip of the liquid supply needle 3 as shown in FIG. 4 (c).
The liquid crystal L adhering to the surface of the liquid supply needle 3 may cause the total amount of the liquid crystal L on the first substrate 10 to be less than the target amount, or the liquid crystal L on another first substrate 10. This causes the total amount to exceed the target amount.
[0020]
Therefore, in order to eliminate or reduce the error of the liquid crystal supply amount on the first substrate 10, after the plunger 5 is stopped, the air supply needle 8 is changed to the liquid supply needle 3 as shown in FIG. By blowing air or other gas, the liquid crystal L left on the surface of the liquid supply needle 3 is forced from the upper side toward the first substrate 10 as shown in FIGS. 5 (b) and 5 (c). Blow away. The air pressure from the air supply needle 8 is preferably in the range of 0.5 to 2.0 kgf / cm 2 , and the air is preferably blown out for about 0.5 seconds. The air supply needle 8 is disposed so as to be inclined about 30 degrees with respect to the liquid supply needle 3.
[0021]
Thereby, there is no error between the amount of the liquid crystal L sent from the syringe 1 to the liquid supply needle 3 and the amount of the liquid crystal L actually discharged from the liquid supply needle 3 to the first substrate 10, or conventionally. Becomes smaller.
After the supply of the liquid crystal L to the first substrate 10, as shown in FIG. 6A, a transparent second substrate (counter substrate) 12 on which a counter electrode, a color filter and the like are formed is prepared. . Then, the first and second substrates 10 and 12 are placed in a reduced-pressure atmosphere, and the first substrate 10 and the second substrate 12 are bonded to each other through the sealing material 11 as shown in FIG. A liquid crystal display cell is produced. The second substrate 12 has the formation surface of the counter electrode opposed to the first substrate 10. Thereby, the liquid crystal L is sandwiched between the first substrate 10 and the second substrate 12.
[0022]
Further, the sealing material 11 is cured by ultraviolet irradiation, and thereby the first substrate 10 and the second substrate 12 are fixed.
And the liquid crystal L between the 1st board | substrate 10 and the 2nd board | substrate 12 taken out in air | atmosphere from the pressure reduction atmosphere spreads uniformly by the pressing force between the board | substrates 10 and 12 by air | atmosphere.
[0023]
Note that the timing of the gas blowing from the air supply needle 8 to the liquid supply needle 3 may be started during the discharge of the liquid crystal L from the liquid supply needle 3 or may be started just before the movement of the plunger 5 is stopped. Good.
When the amount of liquid crystal supplied to the first substrate 10 when the liquid crystal remaining in the vicinity of the tip of the liquid supply needle 3 was blown off and when it was not blown off was examined, the results shown in Table 1 and Table 2 were obtained. .
[0024]
Table 1 shows the amount of liquid crystal applied by a conventional method in which the liquid crystal attached to the liquid supply needle 3 was not blown off, and Table 2 shows the liquid crystal application according to the embodiment of the present invention in which the liquid crystal attached to the liquid supply needle 3 was blown off. Indicates the amount.
In each sample (substrate) of Tables 1 and 2, the amount of movement of the plunger 3 by the drive source 4 is determined so that 0.100 cc of liquid crystal is supplied. In the experiments shown in Tables 1 and 2, the liquid crystal is supplied to the sample in one shot. The specific gravity of the liquid crystal is approximately 1.
[0025]
[Table 1]
Figure 0004330785
[0026]
[Table 2]
Figure 0004330785
[0027]
According to Table 1, as a result of not blowing off the liquid crystal adhered to the liquid supply needle 3, the difference between the maximum value and the minimum value of the liquid crystal supply amount on the sample was 2.2 mg, the average value was 99.35 mg, and the standard deviation was 0. 0.620484 mg.
On the other hand, according to Table 2, as a result of blowing the liquid crystal adhering to the liquid supply needle 3 toward the sample, the difference between the maximum value and the minimum value of the liquid crystal supply amount on the sample was 0.5 mg, and the average value was The error was 99.85 mg and the standard deviation was 0.206828 mg, and the error in the amount of liquid crystal supplied to each sample was extremely small compared to the conventional case.
[0028]
By the way, the liquid crystal described above falls on the first substrate 10 from the tip of the liquid supply needle 3 due to the weight of the liquid crystal droplet, the pressing force by the plunger 5, and the blowing of gas from the outside. In addition, an electrostatic force may be generated between the liquid crystal droplets by charging the first substrate 10 with a charger indicated by reference numeral 13 in FIG. . Thereby, the liquid crystal L on the surface of the liquid supply needle 3 is attracted to the substrate 10 by static electricity.
[0029]
The above-described lowering operation of the plunger 5 may be intermittent instead of continuous.
(Second Embodiment)
The liquid crystal supply device shown in FIG. 2 uses a plunger-type syringe, but an air-type syringe 15 as shown in FIG. 7 may be used. Even in this air-type, the liquid supply device is supplied around the liquid supply needle. An air needle 8 may be arranged. In the air type syringe 15, liquid crystal is dropped from the liquid supply needle 17 at the tip of the syringe 15 by pressurizing the liquid crystal L contained in the syringe 15 with air pressure from above.
[0030]
In the air type plunger, even if the same air pressure is applied to the syringe 15, the total amount of liquid crystal discharged onto the substrate 10 varies depending on the remaining amount of liquid in the syringe 15 as shown in Table 3. Table 3 shows the case where the amount of liquid crystal in the syringe 15 at the start of liquid crystal supply to the first sample is 15 g, 7 g, and 2.5 g. In Table 3, pure water having the same specific gravity as that of the liquid crystal was used, and the target amount of liquid supply was set to 100 g with 30 shots per one application (one sample).
[0031]
[Table 3]
Figure 0004330785
[0032]
Therefore, in order to increase the accuracy of the supply amount of liquid crystal, it is preferable to use the plunger-type syringe 1 shown in FIG. However, even with the air-type syringe 15, it is possible to adjust the air pressure to keep the supply amount of the liquid crystal with high accuracy. Blowing off the liquid crystal adhering to the liquid supply needle 17 increases the accuracy of the liquid crystal supply amount. It is effective to make it even higher.
[0033]
In the air syringe 15, it is preferable to supply the liquid crystal to the substrate 10 with the position of the liquid crystal within the syringe 15 as much as possible in order to reduce an error in the supply amount of the liquid crystal L to the substrate 10. Next, an apparatus for keeping the amount of liquid crystal in the syringe 15 constant when supplying liquid crystal to each substrate will be described.
FIGS. 8A to 8C show a pneumatic syringe different from that shown in FIG.
[0034]
In the syringe 21 shown in FIGS. 8A to 8C, a liquid crystal introduction port 22 is formed on the side surface thereof, and a liquid crystal replenishment source 23 is connected to the liquid crystal introduction port 22 via a liquid crystal introduction tube 24. . As the liquid crystal replenishment source 23, for example, a high-precision discharge type dispenser such as a plunger type syringe is used. A piston 25 that is pressed downward by air pressure is inserted into the syringe 21, and a liquid supply needle 26 is connected to the lower end of the syringe 21.
[0035]
FIG. 8A shows a state where the supply of the liquid crystal L to one first substrate 10 is finished. In this state, the piston 25 is located above the liquid crystal inlet 22.
Next, as shown in FIG. 8 (b), the piston 25 in the syringe 21 is lifted, and the liquid crystal L is replenished into the syringe 21 from the liquid crystal supply source 23 through the liquid crystal inlet tube 24 and the liquid crystal inlet 22. In this case, the introduction speed of the liquid crystal L from the liquid crystal supply source 23 and the rising speed of the piston 25 are adjusted so that the pressure in the syringe 21 does not change. Further, the amount of liquid crystal L introduced from the liquid crystal supply source 23 into the syringe 21 is set equal to the prescribed amount of liquid crystal supplied per substrate.
[0036]
Next, as shown in FIG. 8 (c), the piston 25 is pushed down by a specified amount at a stretch by air pressure to discharge liquid crystal from the liquid supply needle 26 toward the first substrate 10, and onto the outer surface of the liquid supply needle 26. Make sure that no liquid crystal remains attached. After the liquid crystal is supplied to the first substrate 10, the state shown in FIG.
When such an air syringe is used, for example, 48 places and 48 shots on a 15-inch panel, the total amount of liquid crystal is 250 mg, and the total amount of liquid crystal is 128 shots on a 23-inch panel and 650 mg.
[0037]
As described above, each time the liquid crystal L is supplied to the first substrate 10 by repeating the operations of FIGS. 8A, 8B, and 8C, the inside of the syringe 22 below the piston 25. Always have the same liquid amount, the error of the supply amount of the liquid crystal L with respect to the target value is further reduced, and high-precision quantitative liquid crystal protrusion is realized.
Thereafter, the first substrate 10 and the second substrate 12 are bonded together, but the process is the same as that of the first embodiment, and thus the description thereof is omitted. In addition, you may employ | adopt the plunger type shown in FIG. 2 as a syringe shown in FIG.
[0038]
In the two embodiments described above, the sealing material 11 is applied to the first substrate 10 and the liquid crystal is further supplied. However, the sealing material is applied to the second substrate 12 and the liquid crystal is applied thereon. You may supply.
(Appendix 1) Forming a sealing material along the periphery of the display area on the first surface of the first substrate;
Discharging liquid crystal from the tip of a liquid supply needle attached to the lower part of a syringe containing liquid crystal toward the first surface of the first substrate;
And a step of dripping the liquid crystal adhering to the surface of the liquid supply needle during or after the liquid crystal is discharged onto the first substrate by an external force. .
(Supplementary note 2) The method of manufacturing a liquid crystal display device according to supplementary note 1, wherein the external force is generated by blowing a gas onto the liquid supply needle.
(Additional remark 3) The method of spraying a liquid crystal from the surface of the said liquid supply needle is a method of blowing gas toward the said surface of the said liquid supply needle from the front-end | tip of the air supply needle arrange | positioned around the said liquid supply needle The method for manufacturing a liquid crystal display device according to Supplementary Note 2, wherein:
(Supplementary note 4) The method of manufacturing the liquid crystal display device according to supplementary note 1, wherein the external force is generated by charging the substrate and static electricity with the substrate.
(Supplementary note 5) The liquid crystal according to supplementary note 1, wherein the liquid crystal in the syringe is pushed out to the liquid supply needle by a plunger that is mechanically pressed, or pushed out to the liquid supply needle by air pressure. Manufacturing method of display device.
(Additional remark 6) The process of forming a sealing material along the periphery of a display area on the 1st surface of the 1st substrate,
From the tip of the liquid supply needle attached to the lower part of the syringe containing the liquid crystal, the liquid crystal is finally left on the surface of the liquid supply needle at a discharge speed toward the first surface of the first substrate. A step of discharging liquid crystal at a stroke in a specified amount;
And a step of supplying the prescribed amount of liquid crystal to the inside of the syringe.
(Appendix 7) A mounting table for mounting a substrate;
A syringe placed above the mounting table and into which liquid crystal is placed;
A liquid supply needle attached to the lower part of the syringe and discharging the liquid crystal;
An apparatus for manufacturing a liquid crystal display device, comprising: an air supply unit that is disposed around the liquid supply needle and blows out gas to the liquid supply needle.
(Supplementary note 8) The liquid crystal display device according to supplementary note 7, wherein the air supply means has an air supply needle having a blowout opening directed toward the liquid supply needle, and has at least two of the air supply needles. Manufacturing equipment.
(Additional remark 9) The said syringe has a structure which discharges the said liquid crystal from the front-end | tip of the said liquid supply needle | mechanical by mechanical or air pressure, The manufacturing apparatus of the liquid crystal display device of Additional remark 7 characterized by the above-mentioned.
(Additional remark 10) The said syringe and the said mounting base are arrange | positioned so that relative movement is possible, The manufacturing apparatus of the liquid crystal display device of Additional remark 7 characterized by the above-mentioned.
(Additional remark 11) The mounting base which mounts a board | substrate,
A syringe placed above the mounting table and into which liquid crystal is placed;
A piston movably inserted into the syringe;
A liquid supply needle attached to the lower part of the syringe and discharging the liquid crystal;
An apparatus for manufacturing a liquid crystal display device, comprising: liquid crystal constant supply means for supplying a predetermined amount of liquid crystal into the syringe.
(Additional remark 12) The said piston is pressed with air pressure, The manufacturing apparatus of the liquid crystal display device of Additional remark 11 characterized by the above-mentioned.
(Additional remark 13) The said liquid crystal fixed quantity supply means is a plunger type syringe, The manufacturing apparatus of the liquid crystal display device of Additional remark 11 characterized by the above-mentioned.
[0039]
【The invention's effect】
As described above, according to the present invention, after the liquid crystal is supplied from the liquid supply needle to the substrate, the liquid crystal adhered to the surface of the liquid supply needle is dropped by an external force. It can be supplied in high-accuracy quantities.
According to the invention related to the present invention, the same amount of liquid crystal as that discharged from the syringe is replenished into the syringe from the outside, so that the pressing force of the liquid crystal on the liquid supply needle is made constant, and the liquid crystal is Since the liquid crystal is discharged from the liquid supply needle at a speed that does not remain on the surface of the liquid supply needle, the liquid crystal does not remain on the surface of the liquid supply needle, and the liquid crystal is discharged under the same conditions in the syringe. As a result, variations in the discharge conditions of the liquid crystal can be suppressed.
[0040]
As described above, an error in the amount of liquid crystal in the liquid crystal display device can be made smaller than before, and display defects of the liquid crystal display device can be reduced.
[Brief description of the drawings]
FIG. 1 (a) is a side view showing a conventional liquid crystal supply device, and FIG. 1 (b) is a side view showing a liquid supply needle after liquid crystal is discharged from the liquid crystal supply device.
FIG. 2 is a diagram showing a liquid crystal supply device used for manufacturing the liquid crystal display device according to the first embodiment of the present invention.
FIG. 3 (a) is a plan view showing a first substrate to which liquid crystal is supplied in the first embodiment of the present invention, and FIG. 3 (b) is a plan view showing liquid crystal on the first substrate. It is a top view which shows the state supplied.
FIGS. 4A to 4C are views (No. 1) showing a process of supplying liquid crystal to a substrate by the liquid crystal supply apparatus shown in FIG.
FIGS. 5A to 5C are views (No. 2) illustrating a process of supplying liquid crystal to a substrate by the liquid crystal supply apparatus illustrated in FIG.
FIGS. 6A and 6B are perspective views showing a bonding process of substrates constituting the liquid crystal display device of the first embodiment of the present invention.
FIG. 7 is a side view showing an air syringe used for manufacturing a liquid crystal supply device according to a second embodiment of the present invention.
FIGS. 8A to 8C are diagrams showing a liquid crystal discharge process by a syringe used for manufacturing a liquid crystal supply device according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Syringe, 2 ... Syringe, 3 ... Liquid supply needle, 4 ... Drive source, 5 ... Plunger, 6 ... Mounting stand, 7 ... Air supply means, 8 ... Air supply needle, 9 ... Control circuit, 10 ... 1st Substrate, 11 ... Sealing material, 12 ... Second substrate, 15 ... Syringe, 17 ... Liquid supply needle, 21 ... Syringe, 22 ... Liquid crystal inlet, 23 ... Liquid crystal replenishment source, 24 ... Liquid crystal introduction tube, 25 ... Piston, 26: Liquid supply needle, L: Liquid crystal.

Claims (3)

基板の第1面上で表示領域の周縁に沿ってシール材を形成する工程と、
液晶が入れられたシリンジの下部に取り付けられた給液針の先端から、前記基板の前記第1面に向けて液晶を吐出する工程と、
前記液晶の吐出後に前記給液針の表面に付着している前記液晶を前記給液針に気体を吹き付けることによって前記基板に滴下させる工程と
を有することを特徴とする液晶表示装置の製造方法。
Forming a sealant along the periphery of the display area on the first surface of the substrate;
Discharging liquid crystal from the tip of a liquid supply needle attached to the lower part of a syringe containing liquid crystal toward the first surface of the substrate;
And a step of dripping the liquid crystal adhering to the surface of the liquid supply needle after the liquid crystal is discharged onto the substrate by blowing a gas onto the liquid supply needle. .
基板を載置する載置台と、
前記載置台の上方に配置され且つ液晶が入れられるシリンジと、
前記シリンジの下部に取り付けられ、前記載置台の表面に対して垂直な方向に向いた吐出口を有し、当該吐出口から前記液晶を吐出する給液針と、
前記給液針の周囲に配置されて前記給液針へ気体を供給する給気手段と
前記給気手段に取り付けられ、前記給液針の表面に対して斜め下方に向いた吹出口を有し、当該吹出口から前記給液針へ前記気体を吹き出す給気針と
を有することを特徴とする液晶表示装置の製造装置。
A mounting table for mounting the substrate;
A syringe placed above the mounting table and into which liquid crystal is placed;
A liquid supply needle attached to the lower part of the syringe, having a discharge port oriented in a direction perpendicular to the surface of the mounting table, and discharging the liquid crystal from the discharge port ;
An air supply means arranged around the liquid supply needle to supply gas to the liquid supply needle ;
An air supply needle which is attached to the air supply means and has an air outlet which is directed obliquely downward with respect to the surface of the liquid supply needle, and which blows out the gas from the air outlet to the liquid supply needle. An apparatus for manufacturing a liquid crystal display device, comprising:
前記給気針は、前記給液針の周囲に同じ間隔で少なくとも2本配置されていることを特徴とする請求項2に記載の液晶表示装置の製造装置。The apparatus for manufacturing a liquid crystal display device according to claim 2, wherein at least two of the air supply needles are arranged around the liquid supply needle at the same interval.
JP2000333642A 2000-10-31 2000-10-31 Liquid crystal display device manufacturing method and liquid crystal display device manufacturing apparatus Expired - Fee Related JP4330785B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000333642A JP4330785B2 (en) 2000-10-31 2000-10-31 Liquid crystal display device manufacturing method and liquid crystal display device manufacturing apparatus
US09/891,694 US7177005B2 (en) 2000-10-31 2001-06-26 Liquid crystal display device manufacturing method and liquid crystal display device manufacturing system
TW090116351A TW567382B (en) 2000-10-31 2001-07-04 Liquid crystal display device manufacturing method and liquid crystal display device manufacturing system
KR1020010045065A KR100679959B1 (en) 2000-10-31 2001-07-26 Liquid crystal display device manufacturing method and liquid crystal display device manufacturing system
US11/191,205 US20060012065A1 (en) 2000-10-31 2005-07-27 Liquid crystal display device manufacturing method and liquid crystal display device manufacturing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000333642A JP4330785B2 (en) 2000-10-31 2000-10-31 Liquid crystal display device manufacturing method and liquid crystal display device manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2002139734A JP2002139734A (en) 2002-05-17
JP4330785B2 true JP4330785B2 (en) 2009-09-16

Family

ID=18809682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000333642A Expired - Fee Related JP4330785B2 (en) 2000-10-31 2000-10-31 Liquid crystal display device manufacturing method and liquid crystal display device manufacturing apparatus

Country Status (4)

Country Link
US (2) US7177005B2 (en)
JP (1) JP4330785B2 (en)
KR (1) KR100679959B1 (en)
TW (1) TW567382B (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819391B2 (en) 2001-11-30 2004-11-16 Lg. Philips Lcd Co., Ltd. Liquid crystal display panel having dummy column spacer with opened portion
KR100652045B1 (en) 2001-12-21 2006-11-30 엘지.필립스 엘시디 주식회사 A Liquid Crystal Display Device And The Method For Manufacturing The Same
KR100685949B1 (en) 2001-12-22 2007-02-23 엘지.필립스 엘시디 주식회사 A Liquid Crystal Display Device And The Method For Manufacturing The Same
KR100469353B1 (en) 2002-02-06 2005-02-02 엘지.필립스 엘시디 주식회사 bonding device for liquid crystal display
KR100817129B1 (en) 2002-02-07 2008-03-27 엘지.필립스 엘시디 주식회사 Cutter of liquid crystal panel and cutting method thereof
KR100789454B1 (en) 2002-02-09 2007-12-31 엘지.필립스 엘시디 주식회사 Cutter of liquid crystal panel and cutting method thereof
KR100832292B1 (en) 2002-02-19 2008-05-26 엘지디스플레이 주식회사 Cutter of liquid crystal panel
KR100789455B1 (en) 2002-02-20 2007-12-31 엘지.필립스 엘시디 주식회사 Cutting method of liquid crystal display panel
US6824023B2 (en) 2002-02-20 2004-11-30 Lg. Philips Lcd Co., Ltd. Liquid crystal dispensing apparatus
KR100672641B1 (en) 2002-02-20 2007-01-23 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Device and Method of manufacturing the same
KR100469360B1 (en) 2002-02-22 2005-02-02 엘지.필립스 엘시디 주식회사 bonding device for liquid crystal display and operation method thereof
US6803984B2 (en) 2002-02-25 2004-10-12 Lg.Philips Lcd Co., Ltd. Method and apparatus for manufacturing liquid crystal display device using serial production processes
US6712883B2 (en) 2002-02-25 2004-03-30 Lg.Philips Lcd Co., Ltd. Apparatus and method for deaerating liquid crystal
KR100511352B1 (en) 2002-02-27 2005-08-31 엘지.필립스 엘시디 주식회사 An apparatus for dispensing liquid crystal and a method of controlling liquid crystal dropping amount
KR100662495B1 (en) 2002-03-07 2007-01-02 엘지.필립스 엘시디 주식회사 Method of manufacturing Liquid Crystal Display Device
KR100817130B1 (en) 2002-03-13 2008-03-27 엘지.필립스 엘시디 주식회사 Pattern for detecting grind amount of liquid crystal display panel and method for deciding grind defective using it
US7102726B2 (en) * 2002-03-15 2006-09-05 Lg. Philips Lcd Co., Ltd. System for fabricating liquid crystal display and method of fabricating liquid crystal display using the same
US6782928B2 (en) 2002-03-15 2004-08-31 Lg.Philips Lcd Co., Ltd. Liquid crystal dispensing apparatus having confirming function for remaining amount of liquid crystal and method for measuring the same
KR100841623B1 (en) 2002-03-21 2008-06-27 엘지디스플레이 주식회사 Grinder of liquid crystal display panel
US6827240B2 (en) 2002-03-21 2004-12-07 Lg.Philips Lcd Co., Ltd. Liquid crystal dispensing apparatus
US6793756B2 (en) 2002-03-22 2004-09-21 Lg. Phillips Lcd Co., Ltd. Substrate bonding apparatus for liquid crystal display device and method for driving the same
JP4210139B2 (en) 2002-03-23 2009-01-14 エルジー ディスプレイ カンパニー リミテッド Liquid crystal dropping device capable of adjusting the dropping amount of liquid crystal depending on the height of the spacer and dropping method thereof
KR100698040B1 (en) * 2002-06-14 2007-03-23 엘지.필립스 엘시디 주식회사 Portable jig
KR100847819B1 (en) * 2002-06-14 2008-07-23 엘지디스플레이 주식회사 An Apparatus for Dispensing Liquid Crystal
KR100853777B1 (en) * 2002-06-15 2008-08-25 엘지디스플레이 주식회사 Lc dispensing apparatus and method for manufacturing liquid crystal display device using it
US7295279B2 (en) * 2002-06-28 2007-11-13 Lg.Philips Lcd Co., Ltd. System and method for manufacturing liquid crystal display devices
KR100724477B1 (en) * 2002-11-19 2007-06-04 엘지.필립스 엘시디 주식회사 Dispenser of liquid crystal display panel and dispensing method using the same
KR100700176B1 (en) 2002-12-18 2007-03-27 엘지.필립스 엘시디 주식회사 Dispenser of liquid crystal display panel and method for controlling gap between substrate and nozzle using the same
KR100618578B1 (en) 2002-12-20 2006-08-31 엘지.필립스 엘시디 주식회사 Dispenser of liquid crystal display panel and dispensing method using the same
KR100771907B1 (en) * 2002-12-20 2007-11-01 엘지.필립스 엘시디 주식회사 Dispenser for liquid crystal display panel and method thereof
KR100477373B1 (en) * 2003-04-23 2005-03-17 코닉시스템 주식회사 Liquid crystal injector and method of injecting liquid crystal
KR100996576B1 (en) 2003-05-09 2010-11-24 주식회사 탑 엔지니어링 Liquid crystal dispensing system and method of dispensing liquid crystal material using thereof
KR100948611B1 (en) * 2003-09-16 2010-03-18 삼성전자주식회사 Apparatus and method for evacuating bubble
KR101026935B1 (en) 2003-12-10 2011-04-04 엘지디스플레이 주식회사 Apparatus for aligning dispenser and method thereof
KR100662785B1 (en) * 2004-06-26 2007-01-02 엘지.필립스 엘시디 주식회사 Apparatus for dispensing sealant of liquid crystal display panel
JP2006330601A (en) * 2005-05-30 2006-12-07 Sharp Corp Method for manufacturing liquid crystal display device
KR101192775B1 (en) * 2005-12-29 2012-10-18 엘지디스플레이 주식회사 Apparatus for filling sealant into syringe, and method of manufacturing liquid crystal display device using the same
CN102049365B (en) * 2010-11-01 2013-03-13 深圳市华星光电技术有限公司 Liquid crystal sprayer, spraying device and liquid crystal spraying method
KR101305773B1 (en) 2012-06-19 2013-09-06 하이디스 테크놀로지 주식회사 Apparatus and method for dropping liquid crystal
US10223984B2 (en) * 2015-05-28 2019-03-05 Sharp Kabushiki Kaisha Display panel production control system and method of controlling display panel production

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940009257B1 (en) * 1990-07-10 1994-10-06 무사시엔지니어링 가부시기가이샤 Constant liquid delivery device
JPH0651256A (en) 1992-07-30 1994-02-25 Matsushita Electric Ind Co Ltd Device for discharging liquid crystal
EP0668379A4 (en) * 1993-09-03 1997-05-02 Polymer Processing Res Inst Method of manufacturing filament and filament assembly of thermotropic liquid crystal polymer.
JPH07128674A (en) * 1993-11-05 1995-05-19 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
TW429213B (en) * 1996-09-03 2001-04-11 Asahi Chemical Ind Method for molding thermoplastic resin
JPH11337957A (en) 1998-05-26 1999-12-10 Seiko Epson Corp Liquid crystal injecting device and manufacture of liquid crystal device
US6231917B1 (en) * 1998-06-19 2001-05-15 Kabushiki Kaisha Toshiba Method of forming liquid film
US6575564B1 (en) * 1998-09-30 2003-06-10 Dai Nippon Printing Co., Ltd. Ink jet recording method using high viscous substance and apparatus for carrying out the same
US6715506B1 (en) * 1998-12-28 2004-04-06 Musashi Engineering, Inc. Method and device for injecting a fixed quantity of liquid

Also Published As

Publication number Publication date
US7177005B2 (en) 2007-02-13
US20060012065A1 (en) 2006-01-19
US20020080321A1 (en) 2002-06-27
TW567382B (en) 2003-12-21
KR100679959B1 (en) 2007-02-08
JP2002139734A (en) 2002-05-17
KR20020034850A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JP4330785B2 (en) Liquid crystal display device manufacturing method and liquid crystal display device manufacturing apparatus
CN100381882C (en) Distributor of liquid crystal display panel and method for controlling gap between baseboard and nozzle
JP2001133799A (en) Method of producing liquid crystal display device
JP2003307740A (en) Liquid crystal dispensing apparatus with nozzle cleaning device and nozzle cleaning method
JP4391211B2 (en) Manufacturing method of liquid crystal display device and liquid crystal dropping device used therefor
CN1737672B (en) Substrate joint method and joint device
JP3557472B2 (en) Liquid crystal substrate assembling method, assembling apparatus and liquid crystal supply apparatus
JP3916898B2 (en) Manufacturing method of liquid crystal panel, manufacturing apparatus and manufacturing system thereof
JP2002086044A (en) Coating method and coating tool, and manufacturing method and equipment for display member and plasma display
US20040089414A1 (en) Assembly method of substrates and assembly apparatus of substrates
JP2012192332A (en) Coating apparatus, coating method, and method for manufacturing display member
CN100374918C (en) LCD distribution system
JPH11239750A (en) Method and apparatus for applying coating liquid on uneven substrate, method and apparatus for producing plasma display
JP2011076083A (en) Filling device
JP2689199B2 (en) Liquid crystal encapsulation method and liquid dispenser
JPH03246514A (en) Method for supplying liquid crystal to substrate for liquid crystal display element
JP2003005194A (en) Sealing agent applying device, liquid crystal dropping and sticking device and manufacturing method for liquid crystal panel
JP2001293417A (en) Coating device
US20120105794A1 (en) Liquid crystal ejector, ejection device, and liquid crystal ejection method
JP2000140741A (en) Apparatus and method for coating, and method and apparatus for manufacture of member for display
KR20110069244A (en) Apparatus for measuring lc weight and lc dispenser including the same
JP2004272087A (en) Method for manufacturing electrooptical device, electrooptical device and electronic appliance
JP3469640B2 (en) Adhesive application method
KR101116136B1 (en) Method for dispensing liquid crystal
CN100397150C (en) Liquid crystal drop process

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050712

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4330785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees