JP4328124B2 - Steel sheet for ultra-thin containers with extremely good can characteristics and manufacturing method thereof - Google Patents
Steel sheet for ultra-thin containers with extremely good can characteristics and manufacturing method thereof Download PDFInfo
- Publication number
- JP4328124B2 JP4328124B2 JP2003119381A JP2003119381A JP4328124B2 JP 4328124 B2 JP4328124 B2 JP 4328124B2 JP 2003119381 A JP2003119381 A JP 2003119381A JP 2003119381 A JP2003119381 A JP 2003119381A JP 4328124 B2 JP4328124 B2 JP 4328124B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- thickness
- nitriding
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Metal Rolling (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、飲料缶などの金属容器に利用される鋼板およびその製造方法に関する。
【0002】
【従来の技術】
飲料缶、食品缶などに代表される容器用鋼板は、容器の低コスト化のため鋼板の薄手化が進行し、0.2mm以下の素材も適用されるに至っている。このような極薄材料で容器を製造した場合に顕在化している問題の一つに容器の変形がある。
これは、容器の製造過程や内容物を充填した後の一般市場における容器のハンドリング時に起きる外力の作用のみならず、容器の内部圧力の増減、すなわち、内容物の加熱処理時の増圧や内容物保持のための減圧処理、または、炭酸飲料など内容物によっては必須となる増圧、さらには流通や保持中の温度変化による容器の変形である。
耐変形性を向上させるには容器のデザインのみならず、素材としては、より硬質なものを使用する必要がある。しかし、一般的に硬質な材料は延性が低く、缶成形時の材料破断などの問題を引き起こす。
【0003】
また、極薄材料では厚い材料よりも比較的低い歪みで破断が起きるため、極薄材料では厚手材以上に良好な延性を有する材料が求められる。さらに、缶成形では鋼板の溶接後に溶接部を更に成形する場合があり、このような場合には、特定部位への変形の集中が起き易く、この点からも良好な延性が必要とされる。
焼鈍以降の工程で延性をそれほど阻害せずに高強度化する方法として焼鈍時の窒化による技術が特開平08−170122号公報、特開平08−176788号公報、特開2001−107148号公報などに開示されている。
しかし、これらの技術は、特に表内層の硬度を鋼板成分や窒化条件も考慮して極薄素材にとって最適に制御するという視点を欠いており、上記技術によって極薄素材を基に缶を製造する場合に素材の缶成形性や缶の耐変形性は必ずしも満足できるものではなかった。
【0004】
【特許文献1】
特開平08−170122号公報
【特許文献2】
特開平08−176788号公報
【特許文献3】
特開2001−107148号公報
【特許文献4】
特開2002−012948号公報
【0005】
【発明が解決しようとする課題】
本発明は、前述のような従来技術の問題点を解決し、極薄素材を使用して製造された容器で問題となる変形について、素材の表層および内層の材質を、窒化を適用することで制御し大幅に変化させるとともに、硬質な場合にも良好な延性を持つ鋼板およびその製造方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者らは、前述の課題を解決するために、特に窒化過程を経て製造される板厚0.4mm以下の鋼板の成分および窒化条件と材質との関係を検討するうち、成分、特にN量を特定範囲に限定し、さらに窒化条件を最適に調整することで材料の表層部および内層部の窒化物形態を好ましく制御することが可能であり、これにより極薄鋼板を素材とした容器で問題となっている変形を大幅に抑制できることを見出した。
すなわち、本発明は、冷間圧延後に窒化処理を行い、鋼中の窒素量を増加させることにより単に表面硬度を造り分けただけでは缶の耐変形性はそれほど向上するものではなく、極薄素材で缶の耐変形性を向上させるために必要な窒化条件が存在すること、および、その制御方法を見出したものであり、その要旨は、特許請求の範囲に記載した通りの下記内容である。
【0007】
(1)質量%で、C:0.0800%以下、N:0.600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部がFeおよび不可避的不純物からなり、
直径1μm以下0.02μm以上の窒化物に関し、鋼板の表層1/8厚さ内に数密度0.2個/μm3以上で存在する領域を有し、かつ、下記(A)式を満足することを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板。
(鋼板の板厚1/8位置での数密度)>(鋼板の板厚1/4位置での数密度)・・・(A)
(2)質量%で、C:0.0800%以下、N:0.600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部がFeおよび不可避的不純物からなり、
直径1μm以下0.02μm以上の窒化物に関し、下記(B)式を満足することを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板。
(鋼板の板厚1/20位置での数密度)/(鋼板の板厚1/4位置での数密度)>1.5 ・・・(B)
(3)鋼板の板厚1/4位置での、直径1μm以下0.02μm以上の窒化物の数密度が10個/μm3以下であることを特徴とする(1)または(2)に記載の缶特性が著しく良好な極薄容器用鋼板。
(4)鋼成分として、更に質量%で、Ti:0.08%以下、Nb:0.08%以下、B:0.015%以下、Cr:2.0%以下の1種または2種以上を含有することを特徴とする(1)乃至(3)のいずれか一項に記載の缶特性が著しく良好な極薄容器用鋼板。
(5)鋼成分として、更に質量%で、Sn、Sb、Mo、Ta、V、Wの合計で0.1%以下を含有することを特徴とする(1)乃至(4)のいずれか一項に記載の缶特性が著しく良好な極薄容器用鋼板。
【0008】
(6)(1)乃(5)のいずれか一項に記載の鋼板を製造するに際し、質量%で、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を、冷延後、再結晶焼鈍と同時、または、再結晶焼鈍後に行う窒化処理を、板温度が550〜800℃の状態で、アンモニアガスを0.02%以上含有する雰囲気中に0.1秒以上、360秒以下保持し、窒化処理の後、550℃以上の温度域で温度と時間の積を48000(℃・秒)以下とするか、または、550℃から300℃までの平均冷却速度を10℃/秒以上とし、鋼板の表層1/8厚さ内に、直径1μm以下0.02μm以上の窒化物が数密度0.2個/μm3以上で存在する領域を形成し、かつ、鋼板中のNを質量%で0.600%以下とすることを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板の製造方法。
(7)(1)乃至(5)のいずれか一項に記載の鋼板を製造するに際し、質量%で、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10% 以下、S:0.05%以下、Al:2.0%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を、冷延後、再結晶焼鈍と同時に、または、再結晶焼鈍後に行う窒化処理を、板温度が550〜800℃の状態で、アンモニアガスを0.02%以上含有する雰囲気中に0.1秒以上、360秒以下保持し、窒化処理の後、550℃以上の温度域で温度と時間の積を48000(℃・秒)以下とするか、または、550℃から300℃までの平均冷却速度を10℃/秒以上とし、鋼板の表層1/8厚さ内に、直径1μm以下0.02μm以上の窒化物について、下記(B)式を満足し、かつ、鋼板中のNを質量%で0.600% 以下とすることを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板の製造方法。
(鋼板の板厚1/20位置での数密度)/(鋼板の板厚1/4位置での数密度)>1.5 ・・・(B)
(8)(1)乃至(5)のいずれか一項に記載の鋼板を製造するに際し、質量%で、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を、冷延後、再結晶焼鈍と同時、または、再結晶焼鈍後に行う窒化処理を、板温度が550〜800℃の状態で、アンモニアガスを0.02%以上含有する雰囲気中に0.1秒以上、360秒以下保持し、窒化処理の後、550℃以上の温度域で温度と時間の積を48000(℃・秒)以下とするか、または、550℃から300℃までの平均冷却速度を10℃/秒以上とし、直径1μm以下0.02μm以上の窒化物について、下記(C)式を満足し、かつ、鋼板中のNを質量%で0.600%以下とすることを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板の製造方法。
(窒化処理後の鋼板の板厚1/20位置での数密度)/( 窒化処理前の鋼板の板厚1/20位置での数密度)>1.5 ・・・(C)
(9)質量%で、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feおよび不可避的不純物からなる鋼を、冷延後、再結晶焼鈍と同時に、または、再結晶焼鈍後に行う窒化処理を、板温度が550〜800℃の状態で、アンモニアガスを0.02%以上含有する雰囲気中に0.1秒以上、360秒以下保持し、窒化処理の後、550℃以上の温度域で温度と時間の積を48000(℃・秒)以下とするか、または、550℃から300℃までの平均冷却速度を10℃/秒以上とし、鋼板の板厚1/4位置での、直径1μm以下0.02μm以上の窒化物の数密度が10個/μm3以下であり、かつ、鋼板のNを質量%で0.600%以下とすることを特徴とする(6)乃至(8)のいずれか一項に記載の缶特性が著しく良好な極薄容器用鋼板の製造方法。
(10)再結晶焼鈍の後、窒化処理前または窒化処理後に、圧下率が20%以下の再冷延を行うことを特徴とする(6)乃至請求項(9)のいずれか一項に記載の缶特性が著しく良好な極薄容器用鋼板の製造方法。
【0009】
【発明の実施の形態】
以下に本発明を詳細に説明する。
まず、本発明における鋼材成分について説明する。成分は全て質量%である。
C量の上限は、加工性の劣化を回避するために必要であり、C:0.0800%以下とする。好ましくは0.0600%以下、さらに好ましくは0.040%以下である。
窒化によりCと同様の性質を有するNを増量させる本発明鋼では強度確保などの観点で必要となるC含有量は低くても構わない。C:0.0050%以下でも必要な強度確保が可能であり、0.0020%以下でも構わないし、0.0015%以下とすれば窒化量との兼ね合いもあるが極軟質材の製造も可能で、r値を向上させ絞り成形性を高く保つ意味ではCは低い方が好ましい。
窒化前のN量の上限も、加工性の劣化を回避するために必要であり、N:0.0300%以下とする。好ましくは、N:0.0200%以下、さらに好ましくはN:0.0150%以下、さらに好ましくはN:0.0100%以下、さらに好ましくはN:0.0100%以下、さらに好ましくはN:0.0050%以下さらに好ましくはN:0.0030%以下である。r値を向上させ絞り成形性を高く保つ意味では窒化前のN量は低い方が好ましい。注意を要するのは、後述のように窒化によって含有させたNは、缶の耐変形性効果等を付与するために鋼板の板厚位置により異なった量で存在するものであり、窒化前に存在するNとは効果が多少異なることである。
【0010】
窒化後のN量の上限は、加工性の劣化を回避するために加え、めっき等の表面処理性の劣化を回避するためにも必要であり、N:0.600%以下とする。好ましくはN:0.300%以下、さらに好ましくはN:0.150%以下、さらに好ましくはN:0.100%以下、さらに好ましくはN:0.050%以下、さらに好ましくはN:0.030%以下である。ただし、窒化による硬化部をより硬質化させる意味ではN量は高い方が好ましいことは言うまでもない。
Siは、強度調整のために添加されるが多すぎると加工性が劣化するため2.0%以下とする。本発明鋼においては結晶粒界において窒化により鋼中に浸入したNと窒化物を形成し、脆性的な割れを起こすばかりでなく、本発明の効果を損ねる場合もあるので、1.5%以下、さらに1.0%以下にする必要が生ずる場合もある。特に成形性を高く保つ意味ではSi量は低い方が好ましく、0.5%以下、さらには、0.1%以下とすることで成形性は向上する。
【0011】
Mnは、強度調整のために添加されるが多すぎると加工性が劣化するため2.0%以下とする。成形性を高く保つ意味ではMn量は低い方が好ましく、0.6%以下、さらには0.2%以下とすることで成形性は向上する。
Pは、強度調整のために添加されるが多すぎると加工性が劣化するため0.10%以下とする。成形性を高く保つ意味ではP量は低い方が好ましく、0.05%以下、さらには0.01%以下とすることで成形性は向上する。
Sは、熱間延性を劣化させ、鋳造や熱間圧延の阻害要因となるので0.05%以下とする。成形性を保つ意味ではS量は低い方が好ましく、0.02%以下、さらには0.01%以下とすることで成形性は向上する。
【0012】
Alは、脱酸のために添加される元素であるが、高いと鋳造が困難となる。表面の疵が増加するなどの害があるため2.0%以下とする。またAl量が0.2%以上と高い場合には窒化により鋼板に浸入したNと結合し鋼中に多量のAlNを形成し窒化部を硬質化させる効果もある。窒化の程度が低い鋼板板厚中心部の成形性を高く保つ意味ではAl量は低い方が好ましく、0.2%以下、さらには0.1%以下とすることで窒化程度の低い部位の成形性は向上する。
以上の基本元素以外に通常の容器用鋼板で考慮される元素の効果およびその制御について以下に述べる。
Tiは、鋼板の再結晶温度を上げ、本発明が対象とする極薄鋼板の焼鈍通板性を著しく劣化させる。このため0.080%以下とする。特に高いr値が必要でない通常の用途ではTiを添加する必要はなく、0.04%以下、さらに好ましくは0.01%以下とする。また窒化前に鋼中に固溶しているTiは窒化により鋼板に浸入したNと結合し鋼中に微細なTiNを形成し窒化部を硬質化させる効果が強い。このため窒化の程度が低い鋼板板厚中心層でも材質の硬質化が必要以上に現れてしまう場合もあるため軟質な鋼板を得る必要がある場合は、Ti量は低い方が好ましく、0.005%以下、さらには0.003%以下とすることで鋼板の不用意な硬質化を抑制することができる。
【0013】
NbもTiと同様の影響を有し、再結晶温度を上げ、本発明が対象とする極薄鋼板の通板性を著しく劣化させる。このため0.08%以下とする。特に高いr値が必要でない通常の用途では特に高いr値が必要でない通常の用途では,Nbを添加する必要はなく、0.04%以下、さらに好ましくは0.01%以下とする。また窒化前に鋼中に固溶しているNbは窒化により鋼板に浸入したNと結合し鋼中に微細なNbNを形成し窒化部を硬質化させる効果が強い。このため窒化の程度が低い鋼板板厚中心層でも材質の硬質化が必要以上に現れてしまう場合もあるため軟質な鋼板を得る必要がある場合は、Nb量は低い方が好ましく、0.005%以下、さらには0.003%以下とすることで鋼板の不用意な硬質化を抑制することができる。
BはTi、Nbを0.01%程度以上含有する鋼板に添加した場合、鋼板の再結晶温度を上げ、本発明が対象とする極薄鋼板の焼鈍通板性を著しく劣化させるが、Ti,Nbの含有量が少ない場合にはこの点での悪影響は小さくむしろ再結晶温度を下げるため低温での再結晶焼鈍が可能となり焼鈍通板性を向上させる効果も有するため積極的に添加することも可能である。しかし過剰な添加は鋳造時の鋳片の割れが顕著になるため上限を0.015%とする。再結晶温度を低下させ焼鈍通板性を向上させる目的では窒化前の含有N量との関係でB/N=0.6〜1.5とすれば十分である。また窒化前に鋼中に固溶しているBは窒化により鋼板に浸入したNと結合し鋼中に微細なBNを形成し窒化部を硬質化させる効果が強い。このBNによる表層硬質化を活用する場合は窒化前の含有Bと含有N量との比をB/N>0.8としておくことが好ましい。この比を1.5以上、さらには2.5以上とすることでBN形成による硬化が顕著になる。一方、BNの形成が原因となり材質の硬質化が必要以上に現れ成形性を劣化させてしまう場合もあるので注意を要する。本発明鋼で特にBN形成による硬質化を活用しないのであれば、窒化前の含有Bと含有N量との比をB/N<0.8、さらに厳格にはB/N<0.1とすればよい。
【0014】
窒化前に鋼中に固溶しているCrは窒化により鋼板に浸入したNと結合し鋼中に微細なCr窒化物を形成し窒化部を硬質化させる効果を有する。このため材質の硬質化が必要以上に現れてしまう場合もあるが、逆にこの窒化物を活用して窒化部の硬度を効果的に高めることも可能である。この目的でCrを0.01%以上添加することが好ましい。しかし一方でCrは鋼板の再結晶温度を上げ、過剰に添加すると本発明が対象とする極薄鋼板の焼鈍通板性を著しく劣化させる場合がある。この再結晶温度の上昇による焼鈍通板性の低下を回避するには2.0%以下とすることが好ましく、0.6%以下であれば再結晶温度の上昇は実用的に問題ない程度に抑制できる。
また、耐食性を高めるなど本発明で規定していない特性を付与するためにCr,Ni,Cu等を添加することは可能であるが、過剰な添加は本発明鋼に必須となる窒化能を低下させる場合があるのでCr:30%以下、Ni:15%以下、Cu:5%以下とすることが好ましく、さらに好ましくはCr:15%以下、Ni:5%以下、Cu:2%以下にとどめるべきである。
【0015】
さらに、本発明で規定していない特性を付与するためにSn, Sb,Mo,Ta,V,Wを合計で0.1%以下含有することは可能であるが、過剰な添加は本発明鋼に必須となる窒化能を低下させる場合があるので注意が必要である.特にSn,Sbの含有は窒化効率が低くなる場合があるので窒化を適用して窒化物の制御を行なう場合には注意を要する。Sn、Sbについて窒化効率を顕著に妨げないためにはそれぞれを0.06%以下、好ましくは0.02%以下とする。
ここで本明細書中にて用いる、鋼板板厚方向の部位の区分について図1を用いて説明する。
「表層1/8厚さ」とは図1中の対応領域を表す。なお、「表層1/8厚さ」に対応する領域は鋼板の両表面について存在するが本発明ではそのどちらか一面についてでも本発明の限定範囲に該当するものを対象とする。窒化の方法や窒化前の表面処理、さらには窒化後の何らかの処理当により表と裏の窒化物分布を変化させることは比較的容易であるが本発明ではそのような表裏異表層の鋼板についても対象とする。これは片面のみでも本発明が目的とする耐変形性を得ることが可能だからである。
【0016】
また、「板厚1/8位置」とは図1中の対応位置を表す。また、「板厚1/4位置」とは図1中の対応位置を表す。なお、これらに対応する位置は鋼板の両表面について存在するが本発明ではそのどちらか一面についてでも本発明の限定範囲に該当するものを対象とする。
窒化の方法や窒化前の表面処理、さらには窒化後の何らかの処理当により表と裏の窒化物分布を変化させることは比較的容易であるが本発明ではそのような表裏異表層の鋼板についても対象とする。これは片面のみでも本発明が目的とする耐変形性を得ることが可能だからである。
なお図には示さないが「板厚1/20位置」は「板厚1/8位置」と同様に鋼板表面から板厚の20分の1の深さの位置を指すものとする。
【0017】
本発明では鋼板の板厚方向の特定位置または特定層内に存在する窒化物のサイズおよび数密度が規定される。存在する析出物については電子顕微鏡などの回折パターンや付設されたX線分析機器などで同定が可能である。もちろん化学分析などこれ以外の方法によっても同定が可能なものである。本発明で対象とする窒化物の平均直径は1.0μm以下とする。
これ以上では高強度化の効率が著しく低下するばかりでなく、加工時の割れの起点となり延性を劣化させるとともに、粗大な窒化物が鋼板表面に露出した場合はめっき等の表面処理に悪影響を及ぼす。これらの特性の観点から、この平均直径は0.40μm以下とすることが好ましく、さらに好ましくは0.20μm以下、さらには0.10μm以下が好ましい。これらの直径および後述の数密度は例えば電子顕微鏡観察で定量が可能である。
【0018】
この窒化物サイズと数密度の制御は、高強度化と加工性保持を両立する観点から非常に重要である。というのは、これらが強度および加工性にそれぞれ影響するというのみならず、これらを変化させたときの強度または加工性が変化する挙動が異なるためである。すなわち、強度上昇効果が高く、加工性劣化効率の低い領域に制御する必要がある。このためには前述の450〜700℃の温度範囲で温度と時間およびこの温度域に入る直前の冷却速度などを適当に制御することが有効であり、この影響は通常の条件であれば一般の析出物形成と同様である。
すなわち、高冷速、低温であるほど窒化物サイズは微細かつ高密度となり、長時間化によりサイズは粗大化する。
なお、窒化物単独の析出物でなく酸化物や炭化物、硫化物などと複合析出した場合も対象とする。複合析出物を形成した場合には、一つの析出物の種類および各化合物についてのサイズを特定することは困難であるが、明らかに一つの析出物が窒化物である部分とその他に分けられる場合を除いて一つの窒化物として判定するものとする。
【0019】
窒化物は、基本的には本発明ではSPEED法によって得られた抽出レプリカをEDX付電子顕微鏡にて観察するが、窒化物が非常に微細で抽出が良好でないと思われる場合には薄膜を透過電子顕微鏡で観察してもよい。組成の判定はEDXにより分析を行い主として観察される非金属元素がNの場合を硫化物とする.また、大きさが小さいためNの特性スペクトルは明瞭ではなくともFe,Ti、Nb、B、Cr等が検出されかつ、O、S等の明瞭なスペクトルが観察されず、かつ窒化物と特定できる他の析出物との形態比較から窒化物とほぼ断定できる析出物も窒化物として本発明で考慮に入れる。また析出物の定性に電子線回折パターン等を用いても良い。窒化物の同定はEDXや電子線回折パターンといった手法によるものではなく、現在性能向上が著しいどのような分析機器を使用しても構わない。要は析出物の種類とサイズおよび数密度が、妥当と認められる方法により決定できればよい。析出物によっては炭化物か窒化物かの判別が困難な場合もあると考えられるが、通常の分析機器でその種類が妥当に決定できないものは本発明からは除外する。大きさが非常に微小でありEDXスペクトルや通常の分析機器で定性不可能なものは本発明で考慮すべき窒化物からは除外する。本発明出願時に発明者が通常使用する分析機器ではこの最小サイズは大体0.02μmであるので、本発明では0.02μmを下限とした。より高度な分析機器を使用しより微細な窒化物まで考慮すれば数密度は増加することは当然である。
【0020】
また本発明者が使用した経験のない機器により個々の原子配置までが明示された場合に、Nと金属原子の超微細な原子合体をどこまで窒化物と判定するかの問題も含むことからも対象とする窒化物サイズの下限を明示しておくことは重要と考えられる。
窒化物の直径および数は偏りがない程度の視野について計測する。本発明においては、対象となる径の窒化物の数が1視野内に約500個となるような倍率に設定して、無作為に10視野を選択し、数密度については対象窒化物数をその時の視野面積とSPEED法による電解厚さで除し、また平均直径は個々の窒化物径の合計を個数で除した。ここで、視野内の対象となる硫化物は全て計測する必要があることは言うまでもない。なお、画像解析等を用いて窒化物数と直径を求めることもできる。
【0021】
また、形状が延伸したものが見られる場合があるが、形状が等方的でないものについては長径と短径の平均をその析出物の直径とする。
析出物の数密度はレプリカ作成過程における電解工程において試料表面を通電した全電荷が、Feの2価イオン(Fe2+)として鋼板が電解されるのに消費され、電解時に残滓として残る析出物がすべてレプリカ上に補足されるとして計算した。例えばレプリカ作成においては試料表面積において50C(クーロン)/cm2の電気量で電解を行なえば、試料表面から18μmの厚さ内にある析出物がレプリカ上で観察されることになる。ただし、測定対象の鋼板が非常に薄い場合、例えば18μmの厚さ内にある析出物をまとめて観測してしまうと観測位置が板厚のどの位置に相当するのかが不明瞭になり、本発明で規定する「1/8厚さ」」または「1/4位置」、「1/8位置」、「1/20位置」等の規定の意味が曖昧になることから、SPEED法における電解厚さは18μmに限定されるものではない。理想的には厚さ0の面上に存在する析出物を観測するべきであろうが、これでは測定誤差が大きくなる危惧を生ずる。板厚にもよるが電解厚さは5〜20μm程度とすべきで、対象板厚位置が電解部の厚さ中心となるように研磨を行なうものとする。
また電解を板表面から板厚方向へではなく板厚断面から板面内の方向に行い、板厚方向の情報を含むようなレプリカを作成し、このレプリカ上の窒化物の数密度の板厚方向への分布を測定し、この分布から特定の板厚位置での窒化物の数密度を決定することも可能である。
【0022】
以下、本発明の重要な要件である窒化の状態について記述する。
本発明が対象とする技術は基本的には本発明者が特願2002−337647号において出願した表層と中心層の成分・材質を適当に制御した缶特性が優れた容器用極薄鋼板に適用されることで極めて優れた効果を示すが、これに限定されるものではない。しかし本発明の記述においては「表層1/8厚さ」の領域内および「板厚1/20位置」、「板厚1/8位置」、「板厚1/4位置」での窒化物の状態を主として用い、これらにより板厚位置での窒化物の状態が異なるように制御することが本発明の主要な効果で、このように窒化物の状態を制御することで特願2002−337647号における効果をより好ましく得ることが可能となる。これは容器用極薄材では表層部の状態が缶としての利用特性上重要であるとの知見にも沿うものであり板厚方向に特性変動を有する鋼板の析出物の分布状態を表現する上で板厚位置での窒化物のサイズと数密度を用いるものである。本発明は主に表層部の窒化物を中心部に比較してより多量に、微細に分散させるものであり、本発明が製造法の一つとして想定している一般的な窒化の方法から考えて基本的に鋼板表面が優先的に窒化され窒化に伴ない生成する窒化物の量が中心層に比較して増加するはずであるとの想定によっている。またその際に形成される窒化物は本発明の目的からして粗大なものはどちらかといえば好ましいものではなく、窒化後の熱履歴、特に冷却条件等により微細に分散させることが好ましいものとなるので、本発明では微細な窒化物についての制御を行なうものとしている。
【0023】
このように本発明の特徴の一つは鋼板板厚位置での窒化物の状態に差を有せしめることである。この差は本発明が対象とする窒化物について、鋼板の(表層1/8厚さ)内に数密度0.2個/μm3以上で存在する領域を有し、かつ(鋼板の(板厚1/8位置)での数密度)>(鋼板の(板厚1/4位置)での数密度)により限定される。窒化物の数密度はN含有量と窒化物のサイズとの関係で取りうる範囲に制限はあるが、0.2個/μm3以上とすることが好ましく、さらに好ましくは2個/μm3以上であり、20個/μm3以上、さらには200個/μm3以上、さらには1000個/μm3以上とすれば硬質化の点で非常に有効となる。
また(鋼板の(板厚1/20位置)での数密度)/(鋼板の(板厚1/4位置)での数密度)でも規定でき、この比を1.5超、好ましくは3以上、さらに好ましくは6以上、さらに好ましくは10以上、さらに好ましくは30以上、さらに好ましくは100以上とする。この比が小さいと本発明の効果が小さくなり目的とする鋼板が得られない。またこのように表層部の窒化物の数密度を増大させる方法として窒化を適用する場合は(窒化処理後の鋼板の(板厚1/20位置)での数密度)/(窒化処理前の鋼板の(板厚1/20位置)での数密度)で規定することもでき、この場合も上と同様にこの比を1.5超、好ましくは3以上、さらに好ましくは6以上、さらに好ましくは10以上、さらに好ましくは30以上、さらに好ましくは100以上とする。この比が大きいほど基本的には本発明の効果が大きくなることは言うまでもない。
また本発明の主たる制御目的が鋼板中心層に比べ鋼板表層に微細窒化物を多量に分散することであることから明らかなように鋼板中心層に微細な窒化物を多量に分散することは本発明の効果をより好ましく享受する観点からは好ましくない。本発明の効果を顕著にするためには、鋼板の(板厚1/4位置)での直径1μm以下0.02μm以上の窒化物数密度を10個/μm3以下とすることが好ましい。
【0024】
次に窒化条件に関して述べる。本発明の窒化処理は冷延後の再結晶焼鈍と同時またはその後に、再結晶焼鈍と連続して行なうことが生産性の観点からは好都合であるが、特に限定するものではない。焼鈍の方法はバッチ式または連続焼鈍を問わずに適用が可能である。
ただし窒化処理の生産性および窒化材のコイル内材質の均一性の観点からは連続焼鈍法がはるかに有利である。また本発明が規定するように表内層の材質を制御し大きな効果を得るには窒化時間およびその後の熱履歴が長時間化するのは不利となることからも、少なくとも窒化処理は連続焼鈍設備で行なわれることが好ましい。特別な理由がない場合は連続焼鈍を適用するものとする。特に連続焼鈍工程において炉中の雰囲気を部分的に制御し、前半で再結晶、後半で窒化する工程は生産性や材質の均一性、窒化状態の制御のし易さなど多くのメリットがある。
【0025】
また再結晶が終了する前に窒化処理を行なうと、再結晶が著しく抑制されて未再結晶組織が残り、加工性の顕著な劣化が起こる場合があり注意が必要である。この限界は鋼成分や窒化条件、再結晶焼鈍条件などで複雑に決定されるものであるが、当業者であれば未再結晶組織が残存しない条件を適度な試行の後に見出すことは容易である。窒化処理は窒化による鋼板のN増加量のみならず、鋼成分や再結晶焼鈍条件、さらには窒化後の熱履歴等も考慮し、Nの鋼板表面から内部への拡散や板厚断面での窒化物変化を考えて決定する必要がある。単にロックウェル硬度や引張試験等で決定される材質だけを指標にしたのでは本発明が目的とする好ましい耐変形性を得ることはできない。この条件は実操業では適当な回数の試行を参考とし決定する必要があるが、基本的な考え方は以下のようであり、それに基づき本発明を規定する。すなわち、窒化は板温度が550〜800℃の状態で行なわれる必要がある。これは通常の焼鈍のように窒化雰囲気をこの温度にしておきその雰囲気中に鋼板を通過させることで板温度をこの範囲にし同時に窒化を行なうことも可能であるし、窒化雰囲気はより低い温度としておき、この範囲の温度に加熱した鋼板をその中に侵入させることで窒化を進行させてもよい。窒化雰囲気をこの温度に昇温する場合には鋼板の窒化とは無関係な雰囲気の変質および分解により鋼板の窒化効率が低下する場合があるので550〜750℃とする。好ましくは600〜700℃、さらに好ましくは630〜680℃である。窒化雰囲気は体積比で窒素ガスを10%以上、さらに好ましくは20%以上、さらに好ましくは40%以上、さらに好ましくは60%以上含み、必要に応じて水素ガスを90%以下、さらに好ましくは80%以下、さらに好ましくは60%以下、さらに好ましくは20%以下含み、さらに必要に応じてアンモニアガスを0.02%以上含んだものとし、残部は酸素ガス、水素ガス、二酸化炭素ガス、炭化水素ガスまたは各種の不活性ガスなどとする。
【0026】
特にアンモニアガスは窒化効率を上げるために効果が高く、所定の窒化量を短時間で得ることが可能となるため鋼板中心へのNの拡散を抑制し、本発明にとって好ましい効果を得ることができる。この効果は0.02%以下でも十分であるが、好ましくは0.1%以上、さらに好ましくは0.2%以上、さらに好ましくは1.0%以上、さらに好ましくは5%以上、10%以上とすれば5秒以下での窒化処理でも十分な効果を得ることが可能となり、20%以上さらには40%以上とすれば窒化温度や板厚にもよるが1秒またはそれ以下の短時間でも明確な効果を得ることが可能となる。また、アンモニアガス以外の比率、特に窒素ガスと水素ガスが主要なガス成分となる場合については体積で(窒素ガス)/(水素ガス)を1以上にすることが窒化効率の点から好ましく、この比を2以上にすることでさらに効率的な窒化が可能となる。また、通常の焼鈍においては窒素ガスと水素ガスを主体とした雰囲気中で窒化しないような条件で焼鈍が行なわれるが、当業者であれば上に述べたアンモニアガスの混入に限らず、露点の変更やわずかな微量ガスの混入、ガス比率の変更などにより窒化が起きる条件に変更することも適当な試行の後に可能である。少なくとも焼鈍を含む熱処理により窒化したことが現在の分析能力によって検知できるものを本発明の対象とする。
【0027】
窒化雰囲気での保持時間は特に限定されるものではないが、550℃以上という本発明の温度条件に絡んで、最大0.400mmという鋼板厚さを考えると保持中の鋼中Nの拡散により窒化により鋼板表面から浸入したNが鋼板中心層へ到達し、本発明が目的とするN分布または窒化物分布が得られなくなること考え360秒を上限とするのが望ましい。また、窒化効率を向上させても本発明が必要とする窒化量および鋼板板厚方向の窒素および硬度分布を得るには0.1秒は必要である。好ましくは1〜60秒、さらに好ましくは2〜20秒、さらに好ましくは3〜10秒である。
【0028】
鋼板板厚方向の窒化物分布を制御するには窒化後の鋼板の熱履歴も重要となる。対象となる鋼板の板厚および鋼中での窒素の拡散および窒化物形成・成長を考慮すると高温での長時間保持は好ましくない。しかし、この熱処理により窒素分布を適当になだらかにすることで本発明の効果をより顕著にすることも可能となる。このためには550℃以上の温度域での履歴が重要で、この温度域での温度と時間の積を48000以下とすることが好ましい。これは600℃で80秒、800℃で60秒に相当するが、温度が連続的に変化するときはその効果が適当に評価されるように5秒程度ごとの時間領域に分割し温度変化を記録し、各領域についての温度と時間の積の和を求めることでも評価が可能である。
もちろんこれはある温度幅をもった温度領域に分割して評価してもよい。好ましくは24000以下、さらに好ましくは12000以下、さらに好ましくは6000以下で、通常は窒化終了時点で鋼中窒素の分布がほぼ決定するように窒化条件を設定しておき、その後の冷却過程において窒化物の生成を制御することが好ましい。本発明が対象とする窒化は主として多量のNが固溶した状態で行われ、多量の窒化物がその後の温度低下に伴い起こるため窒化後の冷却工程の制御は重要である。
【0029】
この冷却工程での熱履歴に絡んで、窒化後の冷却速度が発明の効果に大きく影響する。すなわち、窒素分布がほとんど変化しない低温短時間でも冷却過程での窒化物の形成状態が大きく変化する場合がある。550℃から300℃までの平均冷却速度を10℃/s以上とすることで、特に中心層に比し相対的にN濃度が高く冷却速度が高い表層部で微細な窒化物を数多く生成させることが可能となる。好ましくは20℃/s以上、さらに好ましくは50℃/s以上である。ただし、冷却速度が速すぎると固溶窒素が過度に残存し用途によっては時効性が問題となる場合があるので注意が必要である。
【0030】
薄手の容器用鋼板の製造においては、硬度調整や板厚調整のために再結晶焼鈍の後に再冷延を行なう場合がある。この圧下率は形状調整のために行なわれるスキンパスに近い数%程度から、冷延と同様の50%以上までが実用化されている。本発明に再冷延法を適用する場合、この圧下率は20%以下に限定する。圧下率がこれ以上になると本発明が特徴とする表層と内層の材質差が小さくなり発明の効果が消失するのみでなく、鋼板自体が硬質になり本発明によって耐変形性を付与する必要性がなくなる。また、再冷延圧下率の上昇は鋼板の加工性を劣化させるので缶強度を付与する目的に限定すれば本来好ましい方法ではない。また溶接を考えると加工硬化部は容易に軟化し溶接部強度の低下を起こしやすいことからも圧下率を低くすることが好ましい。好ましくは15%以下、さらに好ましくは10%以下、好ましくは5%以下、好ましくは3%以下とする。再冷延の時期は生産性の観点から好ましい再結晶焼鈍と窒化処理を連続的に行う工程においては窒化処理の後になるが、再結晶焼鈍と窒化処理を別の工程で行う場合には窒化処理の前に行うことも可能である。
【0031】
本発明は板厚0.400mm以下の鋼板に適用されるものとする。これは板厚がこれより厚い鋼板では成形部材の変形は問題となりにくいからである。また、板厚が厚い場合には窒化による表層硬化層の厚さが相対的に小さくなり発明の効果が現れにくくなるためもある。好ましくは0.300mm以下、さらに好ましくは0.240mm以下の鋼板を対象とし、0.190mm以下、さらには0.160mm以下の鋼板では非常に顕著な効果を得ることが可能となる。
このように主として窒化後の窒化物の状態を表層と中心層を区別し板厚方向への分布を考慮し制御することで、ただ単にNを含有した鋼や表面硬度の造り分けのみを目的として窒化した鋼に無い本発明鋼特有の材質を持つようになるメカニズムは明確ではないが、缶の変形に伴う鋼板表層部の曲げ変形に対する抵抗性が窒化物により効果的に高まるためと考えられる。そして、この効果は対象材の板厚や変形が起きる際の外力、内庄や容器の形状などの条件が絡んだ応力状態、本発明で規定する窒化条件と相まった表層と中心層の差を意識した窒化物のサイズと数密度により、非常に効果的に耐変形性が発現するためではないかと推定される。
【0032】
本発明の効果は成分調整以降、焼鈍前の熱履歴、製造履歴によらない。熱延を行なう場合のスラブはインゴット法、連続鋳造法などの製造法には限定されず、また熱延に至るまでの熱履歴にもよらないため、スラブ再加熱法、鋳造したスラブを再加熱することなく直接熱延するCC−DR法、さらには粗圧延などを省略した薄スラブ鋳造によっても本発明の効果を得ることができる。また熱延条件にもよらず、仕上げ温度をα+γの二相域とする二相域圧延や、粗バーを接合して圧延する連続熱延によっても本発明の効果を得られる。
また、本発明鋼を溶接部を有する容器用素材として用いる場合には、熱影響部の軟化を抑制、特に窒化物量が多い表層部が急加熱、急冷されることで窒化物が溶解、そしてさらなる微細窒化物として再析出、一部は固溶Nとして残存し硬化するため溶接部の強度を向上させる効果も有する。これはB,Nbなど通常でも熱影響部の軟化を抑制する元素が添加された場合にはさらに顕著となる。一方、絞り成形やしごき成形等を経て製造されるいわゆる2ピース缶においては板表面が硬質化するため成形金型との摩擦係数が低下し成形性が向上する硬化も有する。さらには表層を硬質化し曲げ変形に対する抵抗性を高めているため成形中の鋼板の曲げ座屈がおき難くなる、すなわちしわの発生を抑制する効果も現れる。
通常、本発明鋼板は表面処理鋼板用の原板として使用されるが、表面処理により本発明の効果はなんら損われるものではない。缶用表面処理としては通常、ニッケル、錫、クロム(ティンフリー)などが施される。また、近年使用されるようになっている有機皮膜を被覆したラミネート鋼板用の原板としても、本発明の効果を損うことなく使用できる。
【0033】
<実施例1>
缶胴部を溶接により形成する3ピース缶において、窒化条件を変化させ窒化物の制御を行った鋼板で3ピース缶胴を製造した。この缶の胴部を10mmφ、長さ40mmの円柱金型で押し込んだ際の変形抵抗を測定するとともに缶端部を通常の蓋を巻き締めるのと同様にフランジ成形した。
変形試験においては金型の押し込み量と押し込み荷重の相関を示すと図2のようになり、ある荷重で変極点を生ずる。この変極点となる荷重を耐変形性の指標とした。この値が高いほど外力による変形が小さくなり耐変形性が良好ということになる。またフランジ成形においてはフランジ部に割れが生じるまでのフランジ長さを測定した。この長さが長いほどフランジ成形性が良好で蓋の巻き締め時の欠陥が発生し難いこととなる。
【0034】
表1に示す各成分の鋼について、熱間圧延、冷間圧延、窒化を伴う焼鈍後、スキンパスまたは再冷延を施して鋼板を製造し、耐変形性およびフランジ成形性を評価した。熱延、冷延、焼鈍、窒化条件等を表1に示す。窒化は全て焼鈍の中盤以降で行なわれており、窒化が起きる前に再結晶は完了していたものと考えられる条件となっている。表1でのN量は窒化前の板厚平均のN量である。鋼板は通常の方法で製造されているため窒化前は板厚方向の元素の変化および窒化物の状態の変化はごくわずかで本発明の効果にとって無視できる程度のものである。すなわち、窒化前の鋼板の成分および窒化物サイズと数密度については表層1/20厚さ、表層1/8厚さおよび中心層1/4厚さの数値は同じものとなる。
これらの鋼についての材質を表2に示す。本発明の製造法によるものは良好な耐変形性とフランジ成形性が両立できていることが確認できる。
【0035】
<実施例2>
質量%で、C:0.02%、Si:0.02%、Mn:0.2%、P:0.01%、S:0.01%、Al:0.04%、N:0.002%を含む250mm厚さの鋼片を連続鋳造で製造し、スラブ加熱温度:1100℃、仕上げ温度:880℃、巻き取り温度:600℃で2.0mmの熱延板にした。酸洗し、0.17mmに冷延し、連続焼鈍ラインにて650℃×30秒で再結晶焼鈍した。一部の材料は連続焼鈍ラインの焼鈍炉に連続したアンモニア含有雰囲気で満たした窒化処理炉内を通板し窒化処理を行った。窒化処理炉内には加熱設備は設置されておらず、再結晶焼鈍炉で加熱されたままの板を650℃で窒化処理炉内に侵入させることで窒化を行った。窒化処理炉内の雰囲気は鋼板による熱の持ち込みにより加熱されるため窒化処理中の板温度の降下はそれほど大きくなく、窒化処理炉から出てくる板の温度は窒化処理時間にもよるが600℃程度であった。
【0036】
このように製造した鋼板を1.5%のスキンパスの後、通常の電気Snめっきを施しぶりき鋼板を製造した。これらを用い、通常の製缶メーカーで行われるのと同様の方法で3ピース缶を製造し缶強度を実施例1と同様の方法で評価した。なお、製缶した全ての材料で溶接、蓋のまき締め等の問題は発生しなかった。得られた缶強度を窒化処理雰囲気中のアンモニア濃度、窒化処理後の冷却速度および窒化処理時間で整理したものが図3である。
図3においてAはアンモニア濃度4%、窒化後の冷却速度20℃/秒、Bはアンモニア濃度4%、窒化後の冷速120℃/秒、Cはアンモニア濃度10%、窒化後の冷速20℃/秒、Dはアンモニア濃度20%、窒化後の冷速20℃/秒とした場合を示し、窒化後の冷速は550℃から300℃の平均冷却速度である。
また、缶強度を(窒化処理後の鋼板の(表層1/20厚さ)での数密度)/(窒化処理前の鋼板の(表層1/20厚さ)での数密度)で整理したものが図4である。本発明により缶強度を著しく上昇させることができる。図中には同成分の鋼により再結晶焼鈍まえの冷延率のみを変えて製造した板厚が異なる材料の缶強度も示す。本発明により目的とする缶強度を維持したまま材料の薄手化が可能となることがわかる。
【表1】
【表2】
【0037】
【発明の効果】
以上述べたごとく本発明によれば、容器の耐変形性、缶成形性の一方を犠牲にすることなく両立して著しく向上できる極薄容器用鋼板を高生産性にて得ることが可能となる。
【図面の簡単な説明】
【図1】 鋼板の厚み方向の位置を示す図である。
【図2】 変形試験における金型押し込み量と押し込み荷重の関係を示す図である。
【図3】 窒化時間と缶強度の関係を示す図である。
【図4】 窒化前後の窒化物数の比と缶強度の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel plate used for a metal container such as a beverage can and a manufacturing method thereof.
[0002]
[Prior art]
Steel plates for containers represented by beverage cans, food cans and the like have been made thinner in order to reduce the cost of the containers, and materials of 0.2 mm or less have also been applied. One of the problems that has become apparent when a container is manufactured from such an ultrathin material is deformation of the container.
This is not only due to the external force that occurs during container handling in the general market after the container manufacturing process and contents are filled, but also the increase and decrease in the internal pressure of the container, that is, the pressure increase and contents during the heat treatment of the contents. Depressurization treatment for holding an object, or a pressure increase which is essential depending on contents such as carbonated beverages, and further a deformation of a container due to a temperature change during distribution or holding.
In order to improve the deformation resistance, it is necessary to use not only the container design but also a harder material. However, generally hard materials have low ductility and cause problems such as material breakage during can molding.
[0003]
Further, since an ultrathin material breaks at a relatively lower strain than a thick material, a material having better ductility than a thick material is required for an ultrathin material. Further, in the can forming, the welded portion may be further formed after the steel plate is welded. In such a case, the deformation tends to concentrate on a specific portion, and in this respect, good ductility is required.
As a method for increasing the strength without significantly impairing the ductility in the steps after annealing, techniques by nitriding during annealing are disclosed in Japanese Patent Laid-Open Nos. 08-170122, 08-176788, 2001-107148, and the like. It is disclosed.
However, these technologies lack the viewpoint of optimally controlling the hardness of the inner layer in consideration of the steel plate components and nitriding conditions, and can manufacture cans based on the ultrathin materials. In some cases, the can moldability of the material and the deformation resistance of the can were not always satisfactory.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 08-170122
[Patent Document 2]
Japanese Patent Laid-Open No. 08-176788
[Patent Document 3]
JP 2001-107148 A
[Patent Document 4]
JP 2002-012948 A
[0005]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art as described above, and applies nitridation to the material of the surface layer and the inner layer of the material for the deformation that is a problem in a container manufactured using an ultrathin material. An object of the present invention is to provide a steel plate having a good ductility even when it is hard, and a method for manufacturing the same, while controlling and greatly changing.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors of the present invention have studied the components, particularly N, of the components of the steel sheet having a thickness of 0.4 mm or less manufactured through the nitriding process and the relationship between the nitriding conditions and the material. By limiting the amount to a specific range and further adjusting the nitriding conditions optimally, it is possible to preferably control the nitride form of the surface layer portion and the inner layer portion of the material. It was found that the deformation in question can be greatly suppressed.
That is, according to the present invention, the deformation resistance of the can is not improved so much by simply forming the surface hardness by performing nitriding after cold rolling and increasing the amount of nitrogen in the steel. Thus, the inventors have found that there are nitriding conditions necessary for improving the deformation resistance of the can and the control method thereof, and the gist thereof is the following contents as described in the claims.
[0007]
(1) By mass%, C: 0.0800% or less, N: 0.600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0 0.05% or less, Al: 2.0% or less,The balance consists of Fe and inevitable impurities,
For nitrides with a diameter of 1 μm or less and 0.02 μm or more, the number density is 0.2 / μm within the thickness of 1/8 of the surface layer of the steel sheet.3A steel sheet for an ultra-thin container having a region existing as described above, and satisfying the following formula (A), and having a can thickness of 0.400 mm or less, which is extremely good.
(Number density at 1/8 position of steel sheet thickness)> (Number density at 1/4 position of steel sheet thickness) (A)
(2) By mass%, C: 0.0800% or less, N: 0.600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0 0.05% or less, Al: 2.0% or less,The balance consists of Fe and inevitable impurities,
A steel sheet for an ultrathin container having a can thickness of 0.400 mm or less, characterized by satisfying the following formula (B) regarding a nitride having a diameter of 1 μm or less and 0.02 μm or more.
(Number density at 1/20 position of steel sheet thickness) / (Number density at 1/4 position of steel sheet thickness)> 1.5 (B)
(3) The number density of nitrides having a diameter of 1 μm or less and 0.02 μm or more at a position where the thickness of the steel sheet is 1/4 is 10 / μm.3The steel sheet for an ultra-thin container having extremely good can characteristics according to (1) or (2), characterized in that:
(4) As a steel component, in addition to 1% by mass, Ti: 0.08% or less, Nb: 0.08% or less, B: 0.015% or less, Cr: 2.0% or less (1) to (3) characterized by containingAny one ofA steel sheet for ultrathin containers with extremely good can characteristics as described in 1.
(5) The steel component further contains 0.1% or less in total by mass, and Sn, Sb, Mo, Ta, V, W (1) to (4)Any one ofA steel sheet for ultrathin containers with extremely good can characteristics as described in 1.
[0008]
(6) (1) No (Any one of 5)When manufacturing the steel sheet described in 1), in mass%, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10 % Or less, S: 0.05% or less, Al: 2.0% or lessAnd the balance consists of Fe and inevitable impuritiesAfter cold rolling, simultaneously with recrystallization annealing or after recrystallization annealingDoNitriding treatmentIn a state where the plate temperature is 550 to 800 ° C., it is kept in an atmosphere containing ammonia gas 0.02% or more for 0.1 seconds or more and 360 seconds or less, and after nitriding treatment, the temperature is increased in a temperature range of 550 ° C. or more. The product of time is 48000 (° C · sec) or less, or the average cooling rate from 550 ° C to 300 ° C is 10 ° C / sec or more,A region in which a nitride having a diameter of 1 μm or less and 0.02 μm or more is present at a number density of 0.2 pieces / μm 3 or more is formed in the thickness of the
(7) (1) to (Any one of 5)When manufacturing the steel sheet described in 1), in mass%, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10 % Or less, S: 0.05% or less, Al: 2.0% or lessAnd the balance consists of Fe and inevitable impuritiesAfter cold rolling, simultaneously with recrystallization annealing or after recrystallization annealingDoNitriding treatmentIn a state where the plate temperature is 550 to 800 ° C., it is kept in an atmosphere containing ammonia gas 0.02% or more for 0.1 seconds or more and 360 seconds or less, and after nitriding treatment, the temperature is increased in a temperature range of 550 ° C. or more. The product of time is 48000 (° C · sec) or less, or the average cooling rate from 550 ° C to 300 ° C is 10 ° C / sec or more,For nitrides having a diameter of 1 μm or less and 0.02 μm or more within the
(Number density at 1/20 position of steel sheet thickness) / (Number density at 1/4 position of steel sheet thickness)> 1.5 (B)
(8) (1) to (Any one of 5)When manufacturing the steel sheet described in 1), in mass%, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10 % Or less, S: 0.05% or less, Al: 2.0% or lessAnd the balance consists of Fe and inevitable impuritiesAfter cold rolling, simultaneously with recrystallization annealing or after recrystallization annealingDoNitriding treatmentIn a state where the plate temperature is 550 to 800 ° C., it is kept in an atmosphere containing ammonia gas 0.02% or more for 0.1 seconds or more and 360 seconds or less, and after nitriding treatment, the temperature is increased in a temperature range of 550 ° C. or more. The product of time is 48000 (° C · sec) or less, or the average cooling rate from 550 ° C to 300 ° C is 10 ° C / sec or more,For nitrides having a diameter of 1 μm or less and 0.02 μm or more, the following formula (C) is satisfied, and N in the steel sheet is 0.600% or less by mass%, and the sheet thickness is 0.400 mm or less A method for producing a steel sheet for ultra-thin containers with extremely good can characteristics.
(Number density at 1/20 position of steel sheet thickness after nitriding treatment) / (Number density at 1/20 position of steel sheet thickness before nitriding treatment)> 1.5 (C)
(9)% By mass, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0.05 % Or less, Al: 2.0% or less, and steel comprising the balance Fe and inevitable impurities, after cold rolling, simultaneously with recrystallization annealing, or after recrystallization annealingDoNitriding treatmentIn a state where the plate temperature is 550 to 800 ° C., it is kept in an atmosphere containing ammonia gas 0.02% or more for 0.1 seconds or more and 360 seconds or less, and after nitriding treatment, the temperature is increased in a temperature range of 550 ° C. or more. The product of time is 48000 (° C · sec) or less, or the average cooling rate from 550 ° C to 300 ° C is 10 ° C / sec or more,The number density of nitrides having a diameter of 1 μm or less and 0.02 μm or more at the position of 1/4 of the thickness of the steel sheet is 10 / μm3And N of the steel sheet is 0.600% or less in mass% (6)To (Any one of 8)The manufacturing method of the steel plate for ultra-thin containers with the remarkably favorable can characteristics described in 1.
(10) After the recrystallization annealing, before the nitriding treatment or after the nitriding treatment, re-rolling with a rolling reduction of 20% or less is performed (6)To claims (Any one of 9)The manufacturing method of the steel plate for ultra-thin containers with the remarkably favorable can characteristics described in 1.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
First, the steel material component in this invention is demonstrated. All components are in weight percent.
The upper limit of the C amount is necessary to avoid deterioration of workability, and C: 0.0800% or less. Preferably it is 0.0600% or less, More preferably, it is 0.040% or less.
In the steel of the present invention in which the amount of N having the same properties as C is increased by nitriding, the C content required from the viewpoint of securing the strength may be low. C: Necessary strength can be ensured even at 0.0050% or less, and 0.0020% or less is acceptable. If it is 0.0015% or less, there is a balance with the amount of nitriding, but an extremely soft material can be produced. In order to improve the r value and keep the drawability high, C is preferably low.
The upper limit of the amount of N before nitriding is also necessary to avoid deterioration of workability, and N: 0.0300% or less. Preferably, N: 0.0200% or less, more preferably N: 0.0150% or less, more preferably N: 0.0100% or less, more preferably N: 0.0100% or less, more preferably N: 0. .0050% or less, more preferably N: 0.0030% or less. In order to improve the r value and keep the drawability high, it is preferable that the amount of N before nitriding is low. It should be noted that N added by nitriding as described later is present in a different amount depending on the plate thickness position of the steel sheet in order to impart the deformation resistance effect of the can, and is present before nitriding. N is a slightly different effect.
[0010]
The upper limit of the N amount after nitriding is necessary not only for avoiding deterioration of workability but also for avoiding deterioration of surface treatment properties such as plating, and is set to N: 0.600% or less. Preferably N: 0.300% or less, more preferably N: 0.150% or less, more preferably N: 0.100% or less, more preferably N: 0.050% or less, and still more preferably N: 0. 030% or less. However, it goes without saying that a higher N content is preferable in terms of making the hardened portion by nitriding harder.
Si is added for strength adjustment, but if it is too much, workability deteriorates, so 2.0% or less. In the steel of the present invention, N and nitride that have penetrated into the steel by nitriding at the grain boundaries are formed, and not only brittle cracks are caused, but the effects of the present invention may be impaired. Further, it may be necessary to further reduce the content to 1.0% or less. In particular, in order to keep the moldability high, the Si content is preferably low, and the moldability is improved by setting it to 0.5% or less, and further 0.1% or less.
[0011]
Mn is added to adjust the strength, but if it is too much, the workability deteriorates, so the content is made 2.0% or less. In order to keep the moldability high, the amount of Mn is preferably low, and the moldability is improved by setting it to 0.6% or less, further 0.2% or less.
P is added for adjusting the strength, but if it is too much, the workability deteriorates, so the content is made 0.10% or less. In order to keep the moldability high, the P content is preferably low, and the moldability is improved by setting it to 0.05% or less, and further 0.01% or less.
S deteriorates hot ductility and becomes an impediment to casting and hot rolling, so 0.05% or less. In order to maintain the moldability, it is preferable that the amount of S is low, and the moldability is improved by setting it to 0.02% or less, and further 0.01% or less.
[0012]
Al is an element added for deoxidation, but if it is high, casting becomes difficult. Since there is a harm such as an increase in surface wrinkles, the content is made 2.0% or less. In addition, when the Al content is as high as 0.2% or more, there is an effect of combining with N that has entered the steel sheet by nitriding to form a large amount of AlN in the steel and hardening the nitrided portion. In order to keep the formability of the steel sheet thickness center portion with a low degree of nitriding high, it is preferable that the Al content is low, and forming at a portion with a low degree of nitriding by making it 0.2% or less, further 0.1% or less Improves.
In addition to the basic elements described above, the effects of elements considered in ordinary steel plates for containers and the control thereof will be described below.
Ti raises the recrystallization temperature of a steel plate and significantly deteriorates the annealing passability of the ultrathin steel plate targeted by the present invention. For this reason, it is 0.080% or less. In normal applications where a particularly high r value is not required, it is not necessary to add Ti, and it is 0.04% or less, more preferably 0.01% or less. Further, Ti that is dissolved in steel before nitriding has a strong effect of combining with N that has entered the steel sheet by nitriding to form fine TiN in the steel and harden the nitrided portion. For this reason, even if the steel sheet thickness center layer with a low degree of nitriding may appear harder than necessary, if it is necessary to obtain a soft steel sheet, the Ti content is preferably as low as 0.005. % Or less, and further 0.003% or less can suppress inadvertent hardening of the steel sheet.
[0013]
Nb also has the same effect as Ti, raises the recrystallization temperature, and significantly deteriorates the sheet passability of the ultrathin steel plate targeted by the present invention. For this reason, it is 0.08% or less. In a normal application that does not require a particularly high r value, it is not necessary to add Nb in a normal application that does not require a particularly high r value, and it is 0.04% or less, more preferably 0.01% or less. Further, Nb solid-dissolved in the steel before nitriding has a strong effect of combining with N that has entered the steel sheet by nitriding to form fine NbN in the steel and hardening the nitrided portion. For this reason, even if the steel sheet thickness center layer with a low degree of nitriding may appear to be harder than necessary, if it is necessary to obtain a soft steel sheet, the Nb content is preferably as low as 0.005. % Or less, and further 0.003% or less can suppress inadvertent hardening of the steel sheet.
When B is added to a steel sheet containing about 0.01% or more of Ti and Nb, the recrystallization temperature of the steel sheet is raised, and the annealing passability of the ultrathin steel sheet targeted by the present invention is remarkably deteriorated. When the Nb content is low, the adverse effect on this point is small. Rather, the recrystallization temperature is lowered, so that recrystallization annealing can be performed at a low temperature, and it has the effect of improving the annealing passability. Is possible. However, excessive addition causes remarkable cracking of the slab during casting, so the upper limit is made 0.015%. For the purpose of lowering the recrystallization temperature and improving the annealability, it is sufficient to set B / N = 0.6 to 1.5 in relation to the content of N before nitriding. In addition, B, which is dissolved in the steel before nitriding, is combined with N that has entered the steel sheet by nitriding, forming fine BN in the steel, and has a strong effect of hardening the nitriding part. When utilizing the hardening of the surface layer by BN, it is preferable to set the ratio of the content B and the content N before nitriding to B / N> 0.8. When this ratio is 1.5 or more, and further 2.5 or more, hardening due to BN formation becomes remarkable. On the other hand, care should be taken because the formation of BN may cause the material to become harder than necessary and deteriorate the moldability. If the steel according to the present invention is not particularly used for hardening due to BN formation, the ratio of the content B to the content N before nitriding is B / N <0.8, and more strictly, B / N <0.1. do it.
[0014]
Cr that has been dissolved in the steel before nitriding has the effect of combining with N that has entered the steel sheet by nitriding to form fine Cr nitride in the steel and hardening the nitrided portion. For this reason, hardening of the material may appear more than necessary, but conversely, the nitride can be utilized to effectively increase the hardness of the nitrided portion. For this purpose, Cr is preferably added in an amount of 0.01% or more. On the other hand, however, Cr raises the recrystallization temperature of the steel sheet, and if added excessively, the annealing passability of the ultra-thin steel sheet targeted by the present invention may be remarkably deteriorated. In order to avoid this decrease in annealing passability due to an increase in the recrystallization temperature, it is preferable to be 2.0% or less, and if it is 0.6% or less, the increase in the recrystallization temperature is practically no problem. Can be suppressed.
In addition, it is possible to add Cr, Ni, Cu, etc. in order to give properties not specified in the present invention such as enhancing corrosion resistance, but excessive addition reduces the nitriding ability that is essential for the steel of the present invention. Cr: 30% or less, Ni: 15% or less, Cu: 5% or less, more preferably Cr: 15% or less, Ni: 5% or less, Cu: 2% or less Should.
[0015]
Furthermore, it is possible to contain Sn, Sb, Mo, Ta, V, and W in total in an amount of 0.1% or less in order to impart characteristics not specified in the present invention. Care must be taken because the nitriding ability, which is essential for, may be reduced. In particular, the inclusion of Sn and Sb may lower the nitriding efficiency, so care must be taken when controlling the nitride by applying nitriding. In order not to disturb the nitriding efficiency remarkably with respect to Sn and Sb, the respective contents are set to 0.06% or less, preferably 0.02% or less.
Here, the division of the site | part of the steel plate thickness direction used in this specification is demonstrated using FIG.
“
[0016]
Further, “
It is relatively easy to change the nitride distribution on the front and back by nitriding method, surface treatment before nitriding, and some treatment after nitriding. set to target. This is because the deformation resistance intended by the present invention can be obtained even on only one side.
Although not shown in the figure, “
[0017]
In the present invention, the size and number density of nitrides existing in a specific position or a specific layer in the thickness direction of the steel sheet are defined. The existing precipitates can be identified by a diffraction pattern such as an electron microscope or an attached X-ray analyzer. Of course, identification is possible by other methods such as chemical analysis. The average diameter of the target nitride in the present invention is 1.0 μm or less.
If it exceeds this, not only will the efficiency of strengthening significantly decrease, but it will become the starting point of cracking during processing and deteriorate ductility, and if coarse nitrides are exposed on the steel sheet surface, it will adversely affect the surface treatment such as plating. . From the viewpoint of these characteristics, the average diameter is preferably 0.40 μm or less, more preferably 0.20 μm or less, and further preferably 0.10 μm or less. These diameters and the number density described later can be quantified by, for example, observation with an electron microscope.
[0018]
Control of the nitride size and number density is very important from the viewpoint of achieving both high strength and workability retention. This is because they not only affect the strength and workability, but also change the behavior when the strength or workability changes. That is, it is necessary to control to a region where the effect of increasing the strength is high and the workability deterioration efficiency is low. For this purpose, it is effective to appropriately control the temperature and time in the temperature range of 450 to 700 ° C. and the cooling rate immediately before entering this temperature range. This is the same as the precipitate formation.
That is, the higher the cooling speed and the lower the temperature, the finer and higher the nitride size becomes, and the longer the time, the larger the size.
It should be noted that not only a single precipitate of nitride but also a composite precipitate with oxide, carbide, sulfide, etc. When composite precipitates are formed, it is difficult to specify the type of one precipitate and the size of each compound, but when one precipitate is clearly divided into a nitride part and the other It is determined as one nitride except for.
[0019]
In the present invention, in the present invention, the extracted replica obtained by the SPEED method is basically observed with an electron microscope with an EDX in the present invention. If the nitride is very fine and the extraction is not good, it is transmitted through the thin film. You may observe with an electron microscope. Determination of the composition is conducted by EDX, and when the non-metallic element mainly observed is N, the sulfide is determined. In addition, because of its small size, Fe, Ti, Nb, B, Cr, etc. are detected even if the characteristic spectrum of N is not clear, and clear spectra such as O, S, etc. are not observed, and can be identified as nitride Precipitates that can be almost determined to be nitrides from a form comparison with other precipitates are also taken into consideration in the present invention as nitrides. Moreover, you may use an electron beam diffraction pattern etc. for the qualification of a precipitate. Nitride identification is not based on techniques such as EDX or electron diffraction patterns, and any analytical instrument that is currently significantly improving in performance may be used. In short, it is only necessary that the type, size, and number density of the precipitates can be determined by an appropriate method. Depending on the precipitate, it may be difficult to discriminate between carbide and nitride, but those that cannot be properly determined by ordinary analytical equipment are excluded from the present invention. Those that are very small in size and cannot be qualitatively analyzed by EDX spectra or ordinary analytical instruments are excluded from nitrides to be considered in the present invention. In the analytical instrument normally used by the inventors at the time of filing of the present invention, this minimum size is about 0.02 μm, so in the present invention, 0.02 μm is set as the lower limit. Of course, the number density increases if more sophisticated analytical instruments are used and even finer nitrides are considered.
[0020]
In addition, it includes the problem of determining the ultrafine atomic coalescence of N and metal atoms as nitrides when it is clearly shown up to the individual atomic arrangement by equipment that the inventor has not used. It is considered important to clearly specify the lower limit of the nitride size.
The diameter and number of nitrides are measured in a visual field where there is no bias. In the present invention, the magnification is set so that the number of nitrides of the target diameter is about 500 in one field of view, 10 fields are selected at random, and the number of target nitrides for the number density at that time Divided by the visual field area and electrolytic thickness by the SPEED method, the average diameter was divided by the total number of individual nitride diameters. Here, it goes without saying that it is necessary to measure all the target sulfides in the field of view. Note that the number of nitrides and the diameter can also be obtained using image analysis or the like.
[0021]
Moreover, although what extended the shape may be seen, about the thing where a shape is not isotropic, let the average of a major axis and a minor axis be the diameter of the precipitate.
The number density of precipitates is determined by the fact that the total electric charge applied to the sample surface during the electrolysis process in the replica preparation process is a divalent ion of Fe (Fe2+) And the steel plate was consumed while being electrolyzed, and the precipitate remaining as a residue during electrolysis was calculated to be captured on the replica. For example, in replica production, the sample surface area is 50C (Coulomb) / cm2When electrolysis is performed with the amount of electricity, precipitates within a thickness of 18 μm from the sample surface are observed on the replica. However, when the steel plate to be measured is very thin, for example, if the precipitates within a thickness of 18 μm are observed together, it becomes unclear which position of the plate thickness the observation position corresponds to. "1/8 thickness" or "1/4 position", "1/8 position", "1/20 position", etc. Is not limited to 18 μm. Ideally, precipitates present on a zero-thickness surface should be observed, but this raises the risk of increased measurement error. Although depending on the plate thickness, the electrolytic thickness should be about 5 to 20 μm, and polishing should be performed so that the target plate thickness position is at the center of the thickness of the electrolytic section.
In addition, electrolysis is performed not from the plate surface to the plate thickness direction but from the plate thickness section to the plate surface direction to create a replica including information on the plate thickness direction, and to the plate thickness direction of the number density of nitride on this replica. It is also possible to determine the number density of nitride at a specific plate thickness position from this distribution.
[0022]
Hereinafter, the nitriding state, which is an important requirement of the present invention, will be described.
The technology targeted by the present invention is basically applied to the ultra-thin steel sheet for containers excellent in can characteristics, in which the components and materials of the surface layer and the center layer are appropriately controlled as filed in Japanese Patent Application No. 2002-337647. However, the present invention is not limited to this. However, in the description of the present invention, nitrides in the region of “
[0023]
Thus, one of the features of the present invention is to make a difference in the state of nitride at the steel plate thickness position. This difference is the number density of 0.2 pieces / μm in the (
It can also be defined as (number density at (
Further, as is apparent from the fact that the main control object of the present invention is to disperse a large amount of fine nitride in the steel sheet surface layer as compared with the steel sheet center layer, it is clear that a large amount of fine nitride is dispersed in the steel sheet center layer. It is not preferable from the viewpoint of enjoying the above effect more preferably. In order to make the effect of the present invention remarkable, the number density of nitrides having a diameter of 1 μm or less and 0.02 μm or more at the (
[0024]
Next, nitriding conditions will be described. Although it is convenient from the viewpoint of productivity that the nitriding treatment of the present invention is carried out simultaneously with the recrystallization annealing after the cold rolling or subsequently to the recrystallization annealing, it is not particularly limited. The annealing method can be applied regardless of batch type or continuous annealing.
However, the continuous annealing method is much more advantageous from the viewpoint of the productivity of nitriding treatment and the uniformity of the material in the coil of the nitriding material. In addition, since the nitriding time and the subsequent thermal history are disadvantageous for a long time in order to obtain a large effect by controlling the material of the inner layer as specified by the present invention, at least the nitriding treatment is performed by continuous annealing equipment. Preferably, it is done. If there is no special reason, continuous annealing shall be applied. In particular, in the continuous annealing process, the atmosphere in the furnace is partially controlled, the process of recrystallization in the first half, and the process of nitriding in the second half have many merits such as productivity, material uniformity, and easy control of the nitriding state.
[0025]
In addition, if nitriding is performed before recrystallization is completed, recrystallization is remarkably suppressed, an unrecrystallized structure remains, and workability may be remarkably deteriorated. This limit is complicatedly determined by steel components, nitriding conditions, recrystallization annealing conditions, etc., but it is easy for those skilled in the art to find a condition in which no unrecrystallized structure remains after a reasonable trial. . Nitriding treatment takes into account not only the amount of N increase in the steel sheet due to nitriding, but also steel components and recrystallization annealing conditions, as well as thermal history after nitriding, etc. It is necessary to decide in consideration of physical changes. If only the material determined by Rockwell hardness, tensile test, or the like is used as an index, the preferred deformation resistance intended by the present invention cannot be obtained. This condition needs to be determined with reference to an appropriate number of trials in actual operation, but the basic idea is as follows, and the present invention is defined based on this. That is, nitriding needs to be performed at a plate temperature of 550 to 800 ° C. It is possible to perform nitriding at the same time by setting the plate temperature within this range by setting the nitriding atmosphere to this temperature and passing the steel plate through the atmosphere as in normal annealing, and the nitriding atmosphere is set at a lower temperature. Alternatively, nitriding may be advanced by allowing a steel sheet heated to a temperature in this range to enter the steel sheet. When the temperature of the nitriding atmosphere is raised to this temperature, the nitriding efficiency of the steel sheet may be lowered due to the alteration and decomposition of the atmosphere unrelated to the nitriding of the steel sheet, so the temperature is set to 550 to 750 ° C. Preferably it is 600-700 degreeC, More preferably, it is 630-680 degreeC. The nitriding atmosphere contains nitrogen gas in a volume ratio of 10% or more, more preferably 20% or more, more preferably 40% or more, more preferably 60% or more, and if necessary, hydrogen gas is 90% or less, more preferably 80%. %, More preferably 60% or less, more preferably 20% or less, and further contains 0.02% or more of ammonia gas as necessary, with the remainder being oxygen gas, hydrogen gas, carbon dioxide gas, hydrocarbon Gas or various inert gases.
[0026]
In particular, ammonia gas is highly effective for increasing the nitriding efficiency, and since a predetermined amount of nitriding can be obtained in a short time, N diffusion to the center of the steel sheet can be suppressed, and a favorable effect can be obtained for the present invention. . Although this effect is sufficient even if it is 0.02% or less, it is preferably 0.1% or more, more preferably 0.2% or more, more preferably 1.0% or more, more preferably 5% or more, 10% or more. Therefore, it is possible to obtain a sufficient effect even in nitriding treatment in 5 seconds or less, and if it is 20% or more and further 40% or more, it depends on the nitriding temperature and the plate thickness, but even in a short time of 1 second or less A clear effect can be obtained. Further, in the case of a ratio other than ammonia gas, particularly when nitrogen gas and hydrogen gas are the main gas components, it is preferable from the viewpoint of nitriding efficiency that the volume (nitrogen gas) / (hydrogen gas) is 1 or more. By setting the ratio to 2 or more, more efficient nitriding becomes possible. Further, in normal annealing, annealing is performed under conditions that do not nitride in an atmosphere mainly composed of nitrogen gas and hydrogen gas. However, those skilled in the art are not limited to mixing ammonia gas as described above, It is also possible to change the conditions to cause nitriding by changing, mixing a slight amount of gas, changing the gas ratio, etc. after an appropriate trial. The object of the present invention is that at least nitriding by heat treatment including annealing can be detected by the current analytical ability.
[0027]
Although the holding time in the nitriding atmosphere is not particularly limited, it is related to the temperature condition of the present invention of 550 ° C. or higher, and considering the steel sheet thickness of 0.400 mm at maximum, nitriding is caused by diffusion of N in the holding steel. It is desirable that the upper limit is 360 seconds, considering that N entering from the steel sheet surface reaches the central layer of the steel sheet and the N distribution or nitride distribution intended by the present invention cannot be obtained. Further, even if the nitriding efficiency is improved, 0.1 second is necessary to obtain the nitriding amount and the nitrogen and hardness distribution in the thickness direction of the steel sheet required by the present invention. Preferably it is 1-60 seconds, More preferably, it is 2-20 seconds, More preferably, it is 3-10 seconds.
[0028]
In order to control the nitride distribution in the thickness direction of the steel sheet, the thermal history of the steel sheet after nitriding is also important. Considering the thickness of the target steel sheet, the diffusion of nitrogen in the steel, and the formation / growth of nitrides, holding at high temperatures for a long time is not preferable. However, the effect of the present invention can be made more remarkable by appropriately smoothing the nitrogen distribution by this heat treatment. For this purpose, history in a temperature range of 550 ° C. or higher is important, and the product of temperature and time in this temperature range is preferably 48000 or less. This corresponds to 80 seconds at 600 ° C and 60 seconds at 800 ° C, but when the temperature changes continuously, the temperature change is divided into time regions of about 5 seconds so that the effect is properly evaluated. Evaluation can also be made by recording and calculating the sum of products of temperature and time for each region.
Of course, this may be evaluated by dividing into temperature regions having a certain temperature range. Preferably it is 24000 or less, more preferably 12000 or less, more preferably 6000 or less, and usually the nitriding conditions are set so that the distribution of nitrogen in the steel is almost determined at the end of nitriding, and the nitride in the subsequent cooling process It is preferable to control the production of. The nitridation targeted by the present invention is mainly performed in a state where a large amount of N is dissolved, and a large amount of nitride occurs with a subsequent temperature drop, so that the control of the cooling process after nitriding is important.
[0029]
The cooling rate after nitriding greatly affects the effect of the invention in connection with the thermal history in this cooling step. In other words, the nitride formation state during the cooling process may change greatly even at low temperatures and short times when the nitrogen distribution hardly changes. By setting the average cooling rate from 550 ° C to 300 ° C to 10 ° C / s or more, many fine nitrides are generated especially in the surface layer where the N concentration is relatively high and the cooling rate is high compared to the central layer. Is possible. Preferably it is 20 ° C./s or more, more preferably 50 ° C./s or more. However, if the cooling rate is too fast, solute nitrogen remains excessively, and aging may be a problem depending on the application, so care must be taken.
[0030]
In the manufacture of a thin steel plate for containers, re-rolling may be performed after recrystallization annealing in order to adjust hardness or plate thickness. This rolling reduction has been put to practical use from a few percent, which is close to the skin pass performed for shape adjustment, to 50% or more, which is the same as cold rolling. When the re-cold rolling method is applied to the present invention, the rolling reduction is limited to 20% or less. When the rolling reduction is higher than this, the material difference between the surface layer and the inner layer, which is a feature of the present invention, becomes smaller and the effect of the invention is lost.In addition, the steel sheet itself becomes hard and the necessity of imparting deformation resistance by the present invention is required. Disappear. In addition, an increase in the re-cooling rolling reduction ratio deteriorates the workability of the steel sheet, and therefore is not a method that is inherently preferable if limited to the purpose of imparting can strength. In consideration of welding, it is preferable to reduce the rolling reduction because the work-hardened portion is easily softened and the strength of the welded portion is easily lowered. It is preferably 15% or less, more preferably 10% or less, preferably 5% or less, preferably 3% or less. The re-rolling period is after the nitriding process in the process of continuously performing recrystallization annealing and nitriding treatment from the viewpoint of productivity, but when recrystallization annealing and nitriding process are performed in separate steps, the nitriding process It is also possible to do this before.
[0031]
The present invention is applied to a steel plate having a thickness of 0.400 mm or less. This is because deformation of the formed member is less likely to be a problem with a steel plate having a thickness greater than this. Further, when the plate thickness is thick, the thickness of the surface hardened layer by nitriding becomes relatively small, and the effect of the invention is hardly exhibited. A steel sheet of preferably not more than 0.300 mm, more preferably not more than 0.240 mm is targeted, and a steel sheet having a thickness of not more than 0.190 mm, more preferably not more than 0.160 mm can obtain a very remarkable effect.
In this way, the state of nitride after nitriding is mainly controlled by distinguishing the surface layer from the center layer and taking into account the distribution in the thickness direction, only for the purpose of creating steel containing N or surface hardness. Although the mechanism of having a material unique to the steel of the present invention that is not present in the nitrided steel is not clear, it is considered that the resistance to bending deformation of the steel sheet surface layer accompanying deformation of the can is effectively enhanced by the nitride. This effect is conscious of the difference between the surface layer and the center layer combined with the nitriding conditions specified by the present invention, the external force when the thickness of the target material or deformation occurs, the stress state involving conditions such as the inner shape and container shape, etc. It is estimated that the deformation resistance is very effectively expressed by the size and number density of the nitrides.
[0032]
The effect of the present invention does not depend on the heat history and manufacturing history before annealing after component adjustment. The slab for hot rolling is not limited to manufacturing methods such as the ingot method and continuous casting method, and it does not depend on the heat history up to hot rolling, so the slab reheating method and reheat the cast slab. The effects of the present invention can also be obtained by the CC-DR method in which hot rolling is directly performed without thinning, and also by thin slab casting in which rough rolling or the like is omitted. The effect of the present invention can also be obtained by two-phase rolling with a finishing temperature of α + γ and continuous hot rolling in which a rough bar is joined and rolled regardless of hot rolling conditions.
Further, when using the steel of the present invention as a container material having a welded portion, the softening of the heat-affected zone is suppressed, and particularly the surface layer portion having a large amount of nitride is rapidly heated and rapidly cooled, so that the nitride is dissolved. Reprecipitation as fine nitride, part of which remains as solute N and hardens, so that it has the effect of improving the strength of the weld. This becomes even more pronounced when elements such as B and Nb that normally suppress the softening of the heat-affected zone are added. On the other hand, so-called two-piece cans manufactured through drawing, ironing, and the like have hardening that improves the formability by reducing the coefficient of friction with the molding die because the plate surface is hardened. Furthermore, since the surface layer is hardened and resistance to bending deformation is increased, bending buckling of the steel sheet during forming becomes difficult to occur, that is, an effect of suppressing generation of wrinkles also appears.
Usually, the steel sheet of the present invention is used as a raw sheet for a surface-treated steel sheet, but the effect of the present invention is not impaired by the surface treatment. As the surface treatment for cans, nickel, tin, chromium (tin-free) or the like is usually applied. Moreover, it can be used without impairing the effect of this invention also as a negative | original plate for laminated steel plates which coat | covered the organic membrane which has come to be used in recent years.
[0033]
<Example 1>
In a three-piece can in which the can body was formed by welding, a three-piece can body was manufactured from a steel plate in which the nitriding conditions were changed and nitride was controlled. The deformation resistance when the body of the can was pushed by a cylindrical mold having a diameter of 10 mm and a length of 40 mm was measured, and the end of the can was flange-molded in the same manner as when a normal lid was tightened.
In the deformation test, the correlation between the indentation amount of the mold and the indentation load is shown in Fig. 2, and an inflection point is generated at a certain load. The load serving as the inflection point was used as an index of deformation resistance. The higher this value, the smaller the deformation due to external force and the better the deformation resistance. In flange molding, the length of the flange until cracking occurred in the flange was measured. The longer this length, the better the flange formability and the less likely that defects will occur when the lid is tightened.
[0034]
Steels having the respective components shown in Table 1 were subjected to hot rolling, cold rolling, annealing with nitriding, and then subjected to skin pass or re-cold rolling to produce steel sheets, and the deformation resistance and flange formability were evaluated. Table 1 shows hot rolling, cold rolling, annealing, nitriding conditions, and the like. All nitriding is performed after the middle stage of annealing, and it is considered that recrystallization is completed before nitriding occurs. The amount of N in Table 1 is the average amount of N before nitriding. Since the steel plate is manufactured by a normal method, the element change in the plate thickness direction and the change in the nitride state are negligible before nitriding, and are negligible for the effect of the present invention. That is, as for the components and nitride size and number density of the steel sheet before nitriding, the numerical values of the
The materials for these steels are shown in Table 2. It can be confirmed that the method according to the present invention can achieve both good deformation resistance and flange formability.
[0035]
<Example 2>
By mass%, C: 0.02%, Si: 0.02%, Mn: 0.2%, P: 0.01%, S: 0.01%, Al: 0.04%, N: 0.0. A 250 mm-thick steel slab containing 002% was manufactured by continuous casting, and was formed into a 2.0 mm hot-rolled sheet at a slab heating temperature of 1100 ° C, a finishing temperature of 880 ° C, and a winding temperature of 600 ° C. Pickling, cold rolling to 0.17 mm, and recrystallization annealing at 650 ° C. × 30 seconds in a continuous annealing line. Some materials were passed through an nitriding furnace filled with an ammonia-containing atmosphere in a continuous annealing line and subjected to nitriding treatment. No heating equipment was installed in the nitriding furnace, and nitriding was performed by allowing the plate that had been heated in the recrystallization annealing furnace to enter the nitriding furnace at 650 ° C. Since the atmosphere in the nitriding furnace is heated by the heat brought in by the steel sheet, the temperature drop during the nitriding process is not so large, and the temperature of the plate coming out of the nitriding furnace is 600 ° C, although it depends on the nitriding time. It was about.
[0036]
The steel plate thus produced was subjected to a normal electric Sn plating after a skin pass of 1.5% to produce a tinplate steel plate. Using these, a three-piece can was produced in the same manner as that performed by an ordinary can manufacturer, and the strength of the can was evaluated in the same manner as in Example 1. In addition, problems such as welding and tightening of the lid did not occur in all the canned materials. FIG. 3 shows the can strength obtained by arranging the ammonia concentration in the nitriding atmosphere, the cooling rate after nitriding, and the nitriding time.
In FIG. 3, A is 4% ammonia concentration, cooling rate after nitriding is 20 ° C./s, B is 4% ammonia concentration, cooling rate after nitriding is 120 ° C./s, C is 10% ammonia concentration, cooling rate after nitriding is 20 ° C./s. ° C / second, D shows the case where the ammonia concentration is 20% and the cooling rate after nitriding is 20 ° C / second, and the cooling rate after nitriding is an average cooling rate from 550 ° C to 300 ° C.
In addition, the strength of the can is arranged by (number density of (
[Table 1]
[Table 2]
[0037]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an extremely thin steel plate for a container with high productivity that can be remarkably improved without sacrificing one of the deformation resistance and can moldability of the container. .
[Brief description of the drawings]
FIG. 1 is a diagram showing a position in a thickness direction of a steel plate.
FIG. 2 is a diagram showing a relationship between a die pushing amount and a pushing load in a deformation test.
FIG. 3 is a diagram showing the relationship between nitriding time and can strength.
FIG. 4 is a diagram showing the relationship between the ratio of the number of nitrides before and after nitriding and the can strength.
Claims (10)
直径1μm以下0.02μm以上の窒化物に関し、鋼板の表層1/8厚さ内に数密度0.2個/μm3以上で存在する領域を有し、かつ、下記(A)式を満足することを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板。
(鋼板の板厚1/8位置での数密度)>(鋼板の板厚1/4位置での数密度)・・・(A)In mass%, C: 0.0800% or less, N: 0.600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0.05% Hereinafter, Al: 2.0% or less, the balance consists of Fe and inevitable impurities,
A nitride having a diameter of 1 μm or less and 0.02 μm or more has a region in which the number density is 0.2 pieces / μm 3 or more in the surface layer 1/8 thickness of the steel sheet, and satisfies the following formula (A): An extremely thin steel plate for cans having a thickness of 0.400 mm or less, which is extremely good.
(Number density at 1/8 position of steel sheet thickness)> (Number density at 1/4 position of steel sheet thickness) (A)
直径1μm以下0.02μm以上の窒化物に関し、下記(B)式を満足することを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板。
(鋼板の板厚1/20位置での数密度)/(鋼板の板厚1/4位置での数密度)>1.5 ・・・(B)In mass%, C: 0.0800% or less, N: 0.600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0.05% Hereinafter, Al: 2.0% or less, the balance consists of Fe and inevitable impurities,
A steel sheet for an ultrathin container having a can thickness of 0.400 mm or less, characterized by satisfying the following formula (B) regarding a nitride having a diameter of 1 μm or less and 0.02 μm or more.
(Number density at 1/20 position of steel sheet thickness) / (Number density at 1/4 position of steel sheet thickness)> 1.5 (B)
(鋼板の板厚1/20位置での数密度)/(鋼板の板厚1/4位置での数密度)>1.5 ・・・(B)In producing the steel sheet according to any one of claims 1 to 5 , in mass%, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn : 2.0% or less, P: 0.10% or less, S: 0.05% or less, Al: it contains 2.0%, the steel balance ing of Fe and unavoidable impurities, after cold rolling The nitriding treatment performed simultaneously with the recrystallization annealing or after the recrystallization annealing is performed at a plate temperature of 550 to 800 ° C. in an atmosphere containing ammonia gas of 0.02% or more for 0.1 seconds or more and 360 seconds. Hold below and after nitriding treatment, make the product of temperature and time not more than 48000 (° C · sec) in the temperature range of 550 ° C or higher, or set the average cooling rate from 550 ° C to 300 ° C to 10 ° C / second and above, in the surface layer 1/8 the thickness of the steel plate, the diameter 1μm below 0.02μm or more About nitride, the following formula (B) is satisfied, and N in the steel sheet is 0.600% or less by mass%, and the can characteristics having a plate thickness of 0.400 mm or less are extremely thin Manufacturing method of steel plate for containers.
(Number density at 1/20 position of steel sheet thickness) / (Number density at 1/4 position of steel sheet thickness)> 1.5 (B)
(窒化処理後の鋼板の板厚1/20位置での数密度)/( 窒化処理前の鋼板の板厚1/20位置での数密度)>1.5 ・・・(C)In producing the steel sheet according to any one of claims 1 to 5 , in mass%, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn : 2.0% or less, P: 0.10% or less, S: 0.05% or less, Al: it contains 2.0%, the steel balance ing of Fe and unavoidable impurities, after cold rolling The nitriding treatment that is performed simultaneously with the recrystallization annealing or after the recrystallization annealing is performed for 0.1 second or more and 360 seconds in an atmosphere containing 0.02% or more of ammonia gas at a plate temperature of 550 to 800 ° C. Hold below and after nitriding treatment, make the product of temperature and time not more than 48000 (° C · sec) in the temperature range of 550 ° C or higher, or set the average cooling rate from 550 ° C to 300 ° C to 10 ° C / second For nitrides having a diameter of 1 μm or less and 0.02 μm or more, the following formula (C) And N in the steel sheet is 0.600% or less by mass%, and a method for producing a steel sheet for an ultra-thin container with a can thickness of 0.400 mm or less is remarkably good.
(Number density at 1/20 position of steel sheet thickness after nitriding treatment) / (Number density at 1/20 position of steel sheet thickness before nitriding treatment)> 1.5 (C)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003119381A JP4328124B2 (en) | 2003-04-24 | 2003-04-24 | Steel sheet for ultra-thin containers with extremely good can characteristics and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003119381A JP4328124B2 (en) | 2003-04-24 | 2003-04-24 | Steel sheet for ultra-thin containers with extremely good can characteristics and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004323905A JP2004323905A (en) | 2004-11-18 |
JP4328124B2 true JP4328124B2 (en) | 2009-09-09 |
Family
ID=33498616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003119381A Expired - Fee Related JP4328124B2 (en) | 2003-04-24 | 2003-04-24 | Steel sheet for ultra-thin containers with extremely good can characteristics and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4328124B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006027854A1 (en) * | 2004-09-09 | 2006-03-16 | Nippon Steel Corporation | Steel sheet for extremely thin container and method for production thereof |
JP2006219717A (en) * | 2005-02-09 | 2006-08-24 | Nippon Steel Corp | Steel sheet for vessel having superior deformation resistance, surface characteristic and weldability, and manufacturing method therefor |
JP4516924B2 (en) * | 2006-03-23 | 2010-08-04 | 新日本製鐵株式会社 | Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method |
JP4646858B2 (en) * | 2006-06-14 | 2011-03-09 | 株式会社神戸製鋼所 | Steel sheet for nitriding treatment |
US9689052B2 (en) * | 2009-05-18 | 2017-06-27 | Nippon Steel & Sumitomo Metal Corporation | Very thin steel sheet and production method thereof |
CN102639740B (en) * | 2009-12-02 | 2013-12-25 | 杰富意钢铁株式会社 | Steel sheet for cans and method for producing same |
KR101570755B1 (en) | 2010-12-01 | 2015-11-27 | 제이에프이 스틸 가부시키가이샤 | Steel sheet for can having high strength and high formability, and method for manufacturing the same |
JP5794004B2 (en) * | 2011-07-12 | 2015-10-14 | Jfeスチール株式会社 | Steel sheet for high strength can excellent in flange workability and manufacturing method thereof |
DE102013102273A1 (en) | 2013-03-07 | 2014-09-25 | Thyssenkrupp Rasselstein Gmbh | A method of producing a cold rolled flat steel product for deep drawing and ironing applications, flat steel product and use of such a flat steel product |
DE102014112286A1 (en) * | 2014-08-27 | 2016-03-03 | Thyssenkrupp Ag | Method for producing an embroidered packaging steel |
US11326224B2 (en) * | 2017-09-19 | 2022-05-10 | Nippon Steel Stainless Steel Corporation | Stainless steel sheet and method of manufacturing the same, separator for solid polymer fuel cell, solid polymer fuel cell, and solid polymer fuel cell battery |
-
2003
- 2003-04-24 JP JP2003119381A patent/JP4328124B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004323905A (en) | 2004-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3282031B1 (en) | Heat-treated steel sheet member, and production method therefor | |
EP2138599B1 (en) | High-strength hot-dip galvanized steel sheet and method for producing the same | |
EP2823905B2 (en) | Warm press forming method and automobile frame component | |
JP5605503B2 (en) | Steel sheet for hot stamp member and manufacturing method thereof | |
KR100733016B1 (en) | FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF | |
WO2007116913A1 (en) | Very thin hard steel sheet and method for producing the same | |
JP5924459B1 (en) | Stainless steel for cold rolled steel | |
WO2020262651A1 (en) | Steel sheet | |
US20220118741A1 (en) | Hot-pressed member, cold-rolled steel sheet for hot-pressed member, and method for producing the same | |
JP4772926B2 (en) | Ultra-thin steel plate and manufacturing method thereof | |
EP2380999B1 (en) | Method for manufacturing steel plate for can-making | |
JP4328124B2 (en) | Steel sheet for ultra-thin containers with extremely good can characteristics and manufacturing method thereof | |
WO2021251275A1 (en) | Steel sheet and manufacturing method therefor | |
JP4299858B2 (en) | Steel plate for container and method for producing the same | |
WO2006027854A1 (en) | Steel sheet for extremely thin container and method for production thereof | |
JP5453748B2 (en) | Easy open end with very good openability and method for producing the same | |
JP4133520B2 (en) | Steel plate for containers with extremely good deformation resistance and method for producing the same | |
JP3928454B2 (en) | Thin steel sheet for nitriding | |
JP7303234B2 (en) | Sheet metal products for packaging | |
JP2007162138A (en) | Steel sheet for nitriding treatment and its production method | |
JP4677914B2 (en) | Steel plate for soft can and method for producing the same | |
WO2021125283A1 (en) | Steel sheet and method for manufacturing same | |
KR20090007783A (en) | Steel sheet for extremely thin container and method for production thereof | |
JP4291611B2 (en) | Manufacturing method of steel plate for partially dissimilar material container | |
JP6421772B2 (en) | Manufacturing method of steel sheet for cans |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090609 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090612 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4328124 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130619 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130619 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130619 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130619 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130619 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |