[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4324589B2 - Magnetic levitation propulsion system and magnetic levitation railway - Google Patents

Magnetic levitation propulsion system and magnetic levitation railway Download PDF

Info

Publication number
JP4324589B2
JP4324589B2 JP2005360958A JP2005360958A JP4324589B2 JP 4324589 B2 JP4324589 B2 JP 4324589B2 JP 2005360958 A JP2005360958 A JP 2005360958A JP 2005360958 A JP2005360958 A JP 2005360958A JP 4324589 B2 JP4324589 B2 JP 4324589B2
Authority
JP
Japan
Prior art keywords
levitation
coil
magnetic
propulsion
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005360958A
Other languages
Japanese (ja)
Other versions
JP2007166812A (en
Inventor
敏昭 村井
泰明 坂本
博 吉岡
年樹 戸来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Original Assignee
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Co filed Critical Central Japan Railway Co
Priority to JP2005360958A priority Critical patent/JP4324589B2/en
Publication of JP2007166812A publication Critical patent/JP2007166812A/en
Application granted granted Critical
Publication of JP4324589B2 publication Critical patent/JP4324589B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Description

本発明は、磁気浮上推進システムおよび磁気浮上式鉄道に係り、特に、浮上コイルを120度ピッチで配設した場合においても浮上コイルと界磁との間に作用する脈動力が小さい磁気浮上推進システムおよび前記磁気浮上推進システムを用いた磁気浮上式鉄道に関する。   The present invention relates to a magnetic levitation propulsion system and a magnetic levitation railway, and in particular, a magnetic levitation propulsion system with a small pulsating force acting between the levitation coil and a field even when the levitation coils are arranged at a pitch of 120 degrees. And a magnetic levitation railway using the magnetic levitation propulsion system.

磁気浮上式鉄道において、近年、推進コイルの磁極ピッチを車上の超電導コイルの標準の磁極ピッチよりも小さくしてリニアモータの効率および力率を改善することが検討されている(特許文献1)。   Recently, in magnetic levitation railways, it has been studied to improve the efficiency and power factor of a linear motor by making the magnetic pole pitch of the propulsion coil smaller than the standard magnetic pole pitch of the superconducting coil on the vehicle (Patent Document 1). .

また、車上の超電導コイルの両端の磁極ピッチを中央部の磁極ピッチよりも小さく設定して客室内に侵入する漏洩磁界を減少させることも検討されている(非特許文献1)。
特許第3323452号公報 村井、笹川、漏れ磁界低減超電導磁石配置における起磁力増加時の特性、電気学会論文誌D、124巻、9号、pp962−967(2004年9月)
In addition, it has been studied to reduce the leakage magnetic field entering the cabin by setting the magnetic pole pitch at both ends of the superconducting coil on the vehicle to be smaller than the magnetic pole pitch at the center (Non-Patent Document 1).
Japanese Patent No. 3323452 Murai, Yodogawa, Characteristics at the time of increase of magnetomotive force in superconducting magnet arrangement with reduced leakage magnetic field, IEEJ Transactions D, Vol. 124, No. 9, pp 962-967 (September 2004)

近年、車上の超電導コイルの隣り合う1対の磁極に対して6個の浮上コイルおよび推進コイルが相対する60度ピッチに代え、車上の超電導コイルの隣り合う1対の磁極に対して3個の浮上コイルおよび推進コイルが相対する120度ピッチで浮上コイルおよび推進コイルを配設するにより、浮上コイルと推進コイルとの数を半減させてシステムの経済性を向上させることが検討された。   In recent years, six levitation coils and propulsion coils are replaced with a 60-degree pitch opposed to a pair of adjacent magnetic poles of a superconducting coil on a vehicle, and 3 for a pair of adjacent magnetic poles of a superconducting coil on a vehicle. It has been studied to improve the economic efficiency of the system by halving the number of levitation coils and propulsion coils by arranging the levitation coils and propulsion coils at a pitch of 120 degrees where the levitation coils and the propulsion coils face each other.

ここで、磁気浮上式鉄道において、リニアモータカーに搭載された車上の超電導コイルが浮上コイルの近傍を通過すると、車上の超電導コイルからの誘起起電力によって浮上コイルに誘導電流が生じ、前記誘導電流によって車上の超電導磁石に対して前記超電導磁石と同じ磁極ピッチである基本波磁界と、前記超電導磁石より短い磁極ピッチである高調波磁界とを生じる。基本波磁界は定常磁界であるが、変動磁界である高調波磁界によって前記車上の超電導コイルに上下方向の脈動力が発生する。これにより、リニアモータカーがピッチングする。   Here, in the magnetic levitation railway, when the superconducting coil on the vehicle mounted on the linear motor car passes near the levitation coil, an induced current is generated in the levitation coil by the induced electromotive force from the superconducting coil on the vehicle, and the induction The electric current generates a fundamental magnetic field having the same magnetic pole pitch as that of the superconducting magnet and a harmonic magnetic field having a magnetic pole pitch shorter than that of the superconducting magnet. Although the fundamental wave magnetic field is a stationary magnetic field, the pulsating power in the vertical direction is generated in the superconducting coil on the vehicle by the harmonic magnetic field which is a variable magnetic field. Thereby, the linear motor car pitches.

これまで採用された60度ピッチでは、高調波磁界の磁極ピッチが短く、その量が小さいため、問題になるほどの大きなピッチングが生じることはなかったが、新たに採用された120度ピッチにおいては、発生する高調波磁界の磁極ピッチが大きく(超電導磁石の磁極ピッチの約半分)、その量が大きいため、車上の超電導コイルの隣接する2つの磁極に夫々垂直方向に沿って逆向きの大きな脈動力が生じ、車上の超電導コイル全体に上下2次曲げモーメントが発生すると同時に、端部の磁極と中央部の磁極との間で上下方向のモーメントが生じる。したがってリニアモータカーに大きなピッチングが生じる。特に、前端部および後端部の磁極ピッチを中央部の磁極ピッチよりも小さくした車上の超電導コイルにおいては、両端の磁極と中央部の磁極とで前記高調波磁界に起因する脈動力の大きさが異なるから、前記ピッチングが顕著に生じる。   In the 60-degree pitch adopted so far, the magnetic pole pitch of the harmonic magnetic field is short and the amount thereof is small, so that a large pitching that causes a problem did not occur, but in the newly adopted 120-degree pitch, Because the magnetic pole pitch of the generated harmonic magnetic field is large (about half the magnetic pole pitch of the superconducting magnet) and the amount thereof is large, large pulsations in the opposite direction along the vertical direction of the two adjacent magnetic poles of the superconducting coil on the car. Force is generated, and a vertical bending moment is generated in the entire superconducting coil on the vehicle, and at the same time, a vertical moment is generated between the magnetic pole at the end and the magnetic pole at the center. Therefore, large pitching occurs in the linear motor car. In particular, in a superconducting coil on a vehicle in which the magnetic pole pitch at the front end and the rear end is smaller than the magnetic pole pitch at the center, the pulsating power caused by the harmonic magnetic field is increased between the magnetic poles at both ends and the magnetic pole at the center. Therefore, the pitching is remarkably generated.

本発明は、上記問題を解決すべく成されたものであり、浮上コイルおよび推進コイルを120度ピッチで配設した場合においてもピッチングを小さく抑えることのできる磁気浮上推進システムおよび前記磁気浮上推進システムを用いた磁気浮上式鉄道の提供を目的とする。   The present invention has been made to solve the above-described problem, and even when the levitation coil and the propulsion coil are arranged at a pitch of 120 degrees, the magnetic levitation propulsion system and the magnetic levitation propulsion system can suppress the pitching to a small extent. The purpose is to provide a magnetically levitated railway using

請求項1に記載の発明は、所定の移動経路に沿って配設された浮上コイルおよび推進コイルと、前記浮上コイルおよび推進コイルに相対するとともに、前記浮上コイルから浮上力を受け、前記推進コイルから推進力を受けて前記移動経路に沿って移動する界磁とを備え、前記界磁は、移動方向に沿って偶数個の磁極を有するとともに、前端および後端の磁極における起磁力が中央部の磁極における起磁力よりも小さいことを特徴とする磁気浮上推進システムに関する。   The invention according to claim 1 is a levitation coil and a propulsion coil disposed along a predetermined movement path, and is opposed to the levitation coil and the propulsion coil and receives a levitation force from the levitation coil, and the propulsion coil And a magnetic field that moves along the moving path by receiving a propulsive force from the magnetic field, and the field magnet has an even number of magnetic poles along the moving direction, and the magnetomotive force at the front end and rear end magnetic poles The present invention relates to a magnetic levitation propulsion system characterized in that the magnetomotive force is smaller than the magnetomotive force in the magnetic pole of the magnetic field.

浮上コイルによって生じる高調波磁界により、界磁を構成する各磁極においては上下方向の脈動力が生じる。そして、前端および後端に位置する磁極は、中央部に位置する磁極よりも界磁の中心点からも距離が大きいから、各磁極に作用する脈動力が同一であれば、前端および後端に位置する磁極においては、中央部に位置する磁極よりも、前記中心点周りに大きなモーメントが生じる。   Due to the harmonic magnetic field generated by the levitation coil, vertical pulsating power is generated in each magnetic pole constituting the field. And since the magnetic poles located at the front end and the rear end are larger in distance from the center point of the field than the magnetic pole located at the center, if the pulse power acting on each magnetic pole is the same, the magnetic poles at the front end and the rear end In the magnetic pole positioned, a larger moment is generated around the central point than in the magnetic pole positioned in the center.

しかしながら、前記磁気浮上推進システムにおいては、前端および後端の磁極における起磁力は、中央部の磁極における起磁力よりも小さいから、浮上コイルからの高調波磁界により生じる脈動力の大きさも、前端および後端の磁極は、中央部の磁極よりも小さい。   However, in the magnetic levitation propulsion system, the magnetomotive force at the front and rear magnetic poles is smaller than the magnetomotive force at the central magnetic pole, so the magnitude of the pulse power generated by the harmonic magnetic field from the levitation coil is The rear end magnetic pole is smaller than the central magnetic pole.

したがって、前端および後端の磁極において界磁の中心点周りに大きなモーメントが生じることが防止されるから、界磁のピッチングを抑制できる。   Accordingly, it is possible to prevent a large moment from being generated around the center point of the field at the magnetic poles at the front end and the rear end, so that field pitching can be suppressed.

ここで、界磁として超電導コイルや常電導コイルを用いる場合には、起磁力を小さくする方法としては前記超電導コイルや常電導コイルの巻き数を減らしてこれらのコイルの起磁力を減らす方法が挙げられる。   Here, in the case of using a superconducting coil or a normal conducting coil as a field, as a method for reducing the magnetomotive force, there is a method for reducing the number of turns of the superconducting coil or the normal conducting coil to reduce the magnetomotive force of these coils. It is done.

また、界磁として永久磁石を用いるのであれば、着磁を弱くすればよい。   Further, if a permanent magnet is used as the field, the magnetization may be weakened.

請求項2に記載の発明は、所定の移動経路に沿って垂直面内に配設された浮上コイルおよび推進コイルと、前記浮上コイルおよび推進コイルに相対する垂直面内に配設され、前記浮上コイルから浮上力を受け、前記推進コイルから推進力を受けて前記移動経路に沿って移動する界磁とを備え、前記界磁は、移動方向に沿って偶数個の磁極を有するとともに、前端部および後端部の磁極は中央部の磁極よりも高い位置に配設されてなることを特徴とする磁気浮上推進システムに関する。   According to a second aspect of the present invention, a levitating coil and a propulsion coil disposed in a vertical plane along a predetermined movement path, and a vertical plane opposed to the levitating coil and the propulsion coil, the levitating coil A magnetic field that receives a levitation force from the coil and moves along the movement path by receiving a propulsion force from the propulsion coil, and the field has an even number of magnetic poles along the movement direction, and a front end portion Further, the present invention relates to a magnetic levitation propulsion system characterized in that the rear end magnetic pole is disposed at a position higher than the central magnetic pole.

磁気浮上推進システムにおいては、界磁が浮上コイルに対して相対的に移動する場合においては、界磁と浮上コイルとの間に中心位置のズレかあると、前記ズレを解消する方向の電磁力が界磁に発生する。そして、中心位置のズレの大きさが大きければ大きいほど、界磁に生じる電磁力も大きくなる。   In the magnetic levitation propulsion system, when the field moves relative to the levitation coil, if there is a deviation of the center position between the field and the levitation coil, the electromagnetic force in a direction to eliminate the deviation. Is generated in the field. The larger the displacement of the center position, the greater the electromagnetic force generated in the field.

請求項2に係る磁気浮上推進システムにおいては、浮上コイル、推進コイル、および界磁は何れも垂直面内に設けられている。そして、前記界磁においては、前端部および後端部の磁極は中央部の磁極よりも高い位置に配設されている。   In the magnetic levitation propulsion system according to the second aspect, the levitation coil, the propulsion coil, and the field are all provided in the vertical plane. In the field, the magnetic poles at the front end and the rear end are arranged at a position higher than the magnetic pole at the center.

したがって、前端部および後端部の磁極は浮上コイルに相対し、中央部の磁極の中心点は、浮上コイルの上下方向の中心点よりも下方にずれている。   Therefore, the magnetic poles at the front end and the rear end are opposed to the levitation coil, and the central point of the magnetic pole at the center is shifted downward from the vertical center point of the levitation coil.

故に、前後端の磁極に生じる磁気力は中央部の磁極よりも小さい。そして、前後端の磁界における脈動力の大きさは中央分の磁極の脈動力よりも小さいから、界磁の中心点周りのモーメントも小さい。   Therefore, the magnetic force generated in the magnetic poles at the front and rear ends is smaller than that in the central part. Since the magnitude of the pulse power in the magnetic field at the front and rear ends is smaller than the pulse power of the magnetic pole for the center, the moment around the center point of the field is also small.

したがって、前記モーメントに起因する上下方向のピッチングを抑制できる。   Therefore, it is possible to suppress vertical pitching caused by the moment.

請求項3に記載の発明は、所定の移動経路に沿って配設された浮上コイルおよび推進コイルと、前記浮上コイルおよび推進コイルに相対するとともに、前記浮上コイルから浮上力を受け、前記推進コイルから推進力を受けて前記移動経路に沿って移動する界磁とを備え、前記界磁は、移動方向に沿って偶数個の磁極を有するとともに、前端部および後端部の磁極は、中央部の磁極よりも浮上コイルからの距離が大きくなるように配設されてなることを特徴とする磁気浮上推進システムに関する。   The invention according to claim 3 is a levitation coil and a propulsion coil disposed along a predetermined movement path, and is opposed to the levitation coil and the propulsion coil and receives a levitation force from the levitation coil. And a magnetic field that moves along the moving path by receiving a propulsive force from the magnetic field, and the field magnet has an even number of magnetic poles along the moving direction, and the magnetic poles of the front end portion and the rear end portion are in the center portion. The present invention relates to a magnetic levitation propulsion system characterized in that the magnetic levitation propulsion system is arranged such that the distance from the levitation coil is larger than that of the magnetic pole.

上記磁気浮上推進システムにおいては、前端部および後端部の磁極と浮上コイルとの磁極間距離を中央部の磁極と浮上コイルとの磁極間距離よりも大きく設定することにより、前端部および後端部の磁極に作用する磁気力が、中央部の磁極に作用する磁気力よりも弱くなるようにしている。これによってピッチングモーメントの発生を抑制している。   In the magnetic levitation propulsion system, the distance between the magnetic poles of the front and rear end magnetic poles and the levitation coil is set larger than the distance between the magnetic poles of the central magnetic pole and the levitation coil. The magnetic force acting on the magnetic pole of the portion is made weaker than the magnetic force acting on the magnetic pole of the central portion. This suppresses the generation of the pitching moment.

請求項4に記載の発明は、所定の移動経路に沿って配設された浮上コイルおよび推進コイルと、前記浮上コイルおよび推進コイルに相対するとともに、前記浮上コイルから浮上力を受け、前記推進コイルから推進力を受けて前記移動経路に沿って移動する界磁とを備え、前記界磁は、移動方向に沿って偶数個の磁極を有するとともに、前端部および後端部の磁極は、中央部の磁極よりも前記移動方向に直交する方向に沿った寸法が小さいことを特徴とする磁気浮上推進システムに関する。   According to a fourth aspect of the present invention, a levitation coil and a propulsion coil disposed along a predetermined movement path, and the levitation coil and the propulsion coil are opposed to the levitation coil and receive a levitation force from the levitation coil. And a magnetic field that moves along the moving path by receiving a propulsive force from the magnetic field, and the field magnet has an even number of magnetic poles along the moving direction, and the magnetic poles of the front end portion and the rear end portion are in the center portion. The present invention relates to a magnetic levitation propulsion system characterized in that a dimension along a direction orthogonal to the moving direction is smaller than that of the magnetic pole.

前記磁気浮上推進システムにおいては、前端部および後端部の磁極は、中央部の磁極よりも浮上コイルからの磁界を受ける面積が小さいから、発生する磁気力も小さい。したがって、ピッチングモーメントの発生が抑制される。   In the magnetic levitation propulsion system, the magnetic force generated by the magnetic poles at the front end portion and the rear end portion is smaller than that at the central portion because the magnetic field from the levitation coil is smaller than that at the central portion. Therefore, generation of a pitching moment is suppressed.

請求項5に記載の発明は、所定の移動経路に沿って配設された浮上コイルおよび推進コイルと、前記浮上コイルおよび推進コイルに相対するとともに、前記浮上コイルから浮上力を受け、前記推進コイルから推進力を受けて前記移動経路に沿って移動する界磁とを備え、前記界磁は、移動方向に沿って偶数個の磁極を有するとともに、前端の磁極と後端の磁極との磁極ピッチが、前記地上コイルに生じる高調波磁界の波長の整数倍に実質的に等しく設定されてなることを特徴とする磁気浮上推進システムに関する。   According to a fifth aspect of the present invention, the levitation coil and the propulsion coil disposed along a predetermined movement path, the levitation coil and the propulsion coil are opposed to the levitation coil, and the levitation force is received from the levitation coil. A magnetic field that moves along the moving path by receiving a propulsive force from the magnetic field, and the field has an even number of magnetic poles along the moving direction, and a magnetic pole pitch between the front end magnetic pole and the rear end magnetic pole Is set substantially equal to an integral multiple of the wavelength of the harmonic magnetic field generated in the ground coil.

前記磁気浮上システムにおいては、前端部と後端部の2つの磁極に生じる磁気力は、大きさがほぼ同一であるが方向が正反対であるから、互いに打ち消しあう。これにより、界磁に高調波磁界に起因する大きな上下方向あるいは左右方向の併進脈動力が生じることが防止される。一方、前述したようなピッチングモーメントの脈動力が発生する。そのため、上下方向および左右方向の脈動を余り大きくせずにピッチングモーメントの脈動力を少しでも低減するためには、上記磁極ピッチの整数倍にて寸法を若干ずらすと良い。   In the magnetic levitation system, the magnetic forces generated at the two magnetic poles at the front end and the rear end are substantially the same in magnitude but opposite in direction, so that they cancel each other. As a result, it is possible to prevent a large vertical or horizontal translational pulse power from being generated in the field due to the harmonic magnetic field. On the other hand, the pulse power of the pitching moment as described above is generated. Therefore, in order to reduce the pulsating power of the pitching moment as much as possible without increasing the vertical and horizontal pulsations, the dimensions may be slightly shifted by an integral multiple of the magnetic pole pitch.

ここで、前端の磁極と後端の磁極との磁極ピッチは、前記地上コイルに生じる高調波磁界の波長の整数倍の長さの±20%の範囲が好ましく、±10%の範囲が更に好ましく、±5%の範囲が特に好ましい。   Here, the magnetic pole pitch between the magnetic pole at the front end and the magnetic pole at the rear end is preferably in the range of ± 20% of the length of an integral multiple of the wavelength of the harmonic magnetic field generated in the ground coil, and more preferably in the range of ± 10%. A range of ± 5% is particularly preferable.

請求項6に記載の発明は、前端部および後端部の磁極における起磁力は、中央部の磁極における起磁力よりも小さい請求項5に記載の磁気浮上推進システムに関する。   The invention according to claim 6 relates to the magnetic levitation propulsion system according to claim 5, wherein the magnetomotive force in the magnetic poles at the front end portion and the rear end portion is smaller than the magnetomotive force in the magnetic pole at the center portion.

前記磁気浮上推進システムにおいては、請求項5のところで述べたように、前端部と後端部の2つの磁極に生じる磁気力は互いに打ち消しあうが、モーメントが残る。しかし、請求項1のところで述べたように、両端に位置する磁極で生じる磁気力は中央部の磁極で生じる磁気力よりも小さいから、ピッチングモーメントの発生も抑制される。   In the magnetic levitation propulsion system, as described in the fifth aspect, the magnetic forces generated in the two magnetic poles of the front end portion and the rear end portion cancel each other, but a moment remains. However, as described in the first aspect, since the magnetic force generated by the magnetic poles located at both ends is smaller than the magnetic force generated by the magnetic pole at the center, generation of a pitching moment is also suppressed.

請求項7に記載の発明は、前端部および後端部の磁極は中央部の磁極よりも高い位置に配設されてなる請求項6に記載の磁気浮上推進システムに関する。   The invention according to claim 7 relates to the magnetic levitation propulsion system according to claim 6, wherein the magnetic poles at the front end portion and the rear end portion are disposed at a position higher than the magnetic pole at the center portion.

前記磁気浮上推進システムにおいては、前端部および後端部に位置する磁極は、中央部の磁極よりも起磁力が小さいだけでなく、設置位置も高く、浮上コイルから受ける磁気力も弱い。   In the magnetic levitation propulsion system, the magnetic poles located at the front end and the rear end have not only a smaller magnetomotive force than the magnetic poles at the center, but also have a higher installation position and a lower magnetic force from the levitation coil.

したがって、ピッチング脈動の発生を特に効果的に抑制できる。   Therefore, the occurrence of pitching pulsation can be particularly effectively suppressed.

請求項8に記載の発明は、前記浮上コイルが120度ピッチで配設されてなる請求項1〜7の何れか1項に記載の磁気浮上推進システムに関する。   The invention according to claim 8 relates to the magnetic levitation propulsion system according to any one of claims 1 to 7, wherein the levitation coils are arranged at a pitch of 120 degrees.

前記磁気浮上推進システムにおいては、請求項1〜7のところで述べた理由により、浮上コイルが120度ピッチで配設されているにも係わらず、ピッチング脈動が殆ど発生することがない。   In the magnetic levitation propulsion system, for the reasons described in claims 1 to 7, pitching pulsation hardly occurs even though the levitation coils are arranged at a pitch of 120 degrees.

また、浮上コイルを60度ピッチで配設した従来の磁気浮上推進システムに比較して浮上コイルの数を半減させることができるから経済性が高い。   Further, since the number of levitation coils can be halved as compared with the conventional magnetic levitation propulsion system in which the levitation coils are arranged at a pitch of 60 degrees, the economy is high.

請求項9に記載の発明は、前記界磁が超電導磁石である請求項1〜8の何れか1項に記載の磁気浮上推進システムに関する。   The invention according to claim 9 relates to the magnetic levitation propulsion system according to any one of claims 1 to 8, wherein the field is a superconducting magnet.

前記磁気浮上推進システムにおいては、10cm程度と高い浮上高さが得られる。また、ギャップセンサなどによって浮上高さを検出して制御する必要はない。   In the magnetic levitation propulsion system, a high flying height of about 10 cm can be obtained. Further, it is not necessary to detect and control the flying height with a gap sensor or the like.

請求項10は、前記界磁が常電導磁石である請求項1〜8の何れか1項に記載の磁気浮上推進システムに関する。   A tenth aspect of the present invention relates to the magnetic levitation propulsion system according to any one of the first to eighth aspects, wherein the field is a normal conducting magnet.

前記磁気浮上システムは、超電導磁石を常電導磁石に置き換えたもので、高い浮上高さは得られないが、取り扱いが容易である。   The magnetic levitation system is a superconducting magnet replaced with a normal conducting magnet. A high flying height cannot be obtained, but it is easy to handle.

請求項11の発明は、前記界磁が永久磁石である請求項1〜8の何れか1項に記載の磁気浮上推進システムに関する。   The invention of claim 11 relates to the magnetic levitation propulsion system according to any one of claims 1 to 8, wherein the field is a permanent magnet.

前記磁気浮上推進システムは、超電導磁石を永久磁石に置き換えたもので、高い浮上高さは得られないが、取り扱いが容易である。   The magnetic levitation propulsion system is obtained by replacing a superconducting magnet with a permanent magnet, and a high flying height cannot be obtained, but it is easy to handle.

したがって、極めて構成の単純な磁気浮上推進システムが構成できる。   Therefore, a simple magnetic levitation propulsion system having a very configuration can be configured.

請求項12は、請求項1〜11の何れか1項に記載の磁気浮上推進システムを備え、前記磁気浮上推進システムにおける界磁が車上に設けられてなることを特徴とする磁気浮上式鉄道に関する。   A levitation propulsion system according to any one of claims 1 to 11, wherein a magnetic field in the levitation propulsion system is provided on a vehicle. About.

前記磁気浮上式鉄道においては、車両の台車部に設けられた界磁に脈動力が生じることが防止されるから、車両のピッチング脈動を効果的に抑制できる。   In the magnetically levitated railway, pulsating power is prevented from being generated in the field provided in the bogie part of the vehicle, so that the pitching pulsation of the vehicle can be effectively suppressed.

請求項13に記載の発明は、前記界磁の備える磁極が超電導コイルである請求項12に記載の磁気浮上式鉄道に関する。   A thirteenth aspect of the present invention relates to the magnetically levitated railway according to the twelfth aspect, wherein the magnetic poles of the field magnets are superconducting coils.

前記磁気浮上式鉄道においては、界磁は超電導コイルなので、走行中は浮上コイルから大きな磁気力を受け、軌道面から10cm程度の高さに浮上する。したがって、浮上コイルからの浮力を特に制御しなくても、安定した浮上を達成できる。   In the magnetic levitation railway, since the field is a superconducting coil, the magnetic levitation coil receives a large magnetic force from the levitation coil and travels to a height of about 10 cm from the track surface. Therefore, stable levitation can be achieved without particularly controlling the buoyancy from the levitation coil.

以上説明したように、本発明によれば、浮上コイルおよび推進コイルを120度ピッチで配設した場合においても前記ピッチングを小さく抑えることのできる磁気浮上推進システムおよび前記磁気浮上推進システムを用いた磁気浮上式鉄道が提供される。   As described above, according to the present invention, the magnetic levitation propulsion system and the magnetic levitation propulsion system that can keep the pitching small even when the levitation coil and the propulsion coil are arranged at a pitch of 120 degrees. A floating railway is provided.

1.実施形態1
以下、本発明に係る磁気浮上推進システムおよび前記磁気浮上推進システムを用いた磁気浮上式鉄道の例について説明する。
1. Embodiment 1
Hereinafter, an example of a magnetic levitation propulsion system according to the present invention and a magnetic levitation railway using the magnetic levitation propulsion system will be described.

実施形態1に係る磁気浮上式鉄道は、図1において(A)に示すように、U字型のガイドウェイ1002と、ガイドウェイ1002を走行するリニアモータカー1000とを備える。   The magnetic levitation railway according to the first embodiment includes a U-shaped guide way 1002 and a linear motor car 1000 that travels on the guide way 1002 as shown in FIG.

リニアモータカー1000は、同図において(B)に示すように、隣接する2つの車体102の間に台車100が1個づつ配設された連接構造を有する。   The linear motor car 1000 has a connecting structure in which one carriage 100 is disposed between two adjacent vehicle bodies 102 as shown in FIG.

車体102の内部には、図2に示すように客室104が設けられ、隣接する2つの客室104の間には貫通路106が設けられている。台車100は貫通路106の下方に設けられている。   A cabin 104 is provided inside the vehicle body 102 as shown in FIG. 2, and a through passage 106 is provided between two adjacent cabins 104. The carriage 100 is provided below the through passage 106.

図3〜図5に示すように、台車100の両側縁には、夫々、リニアモータカー1000の進行方向aに沿って前方から後方に向かって超電導コイル2、超電導コイル4、超電導コイル6、超電導コイル8が配設されている。超電導コイル2および超電導コイル6は夫々N極の磁極を形成し、超電導コイル4および超電導コイル8は夫々S極の磁極を形成する。そして、超電導コイル2と超電導コイル4とで1組の磁極を構成し、超電導コイル6と超電導コイル8とでもう1組の磁極を構成する。   As shown in FIGS. 3 to 5, the superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the superconducting coil are disposed on both side edges of the carriage 100 from the front to the rear along the traveling direction a of the linear motor car 1000. 8 is disposed. Superconducting coil 2 and superconducting coil 6 each form an N-pole magnetic pole, and superconducting coil 4 and superconducting coil 8 each form an S-pole magnetic pole. The superconducting coil 2 and the superconducting coil 4 constitute one set of magnetic poles, and the superconducting coil 6 and the superconducting coil 8 constitute another set of magnetic poles.

一方、図3、図4の(A)、および図5に示すように、ガイドウェイ1002の側壁の内側の面には一定の間隔で浮上コイル10が配置されている。なお、ガイドウェイ1002の側壁の内側の面と浮上コイル10との間には推進コイルも配置されているが、推進コイルは省略されている。浮上コイル10は、120ピッチで、言い換えれば超電導コイル2と超電導コイル4、または超電導コイル6と超電導コイル8で構成される1組の磁極に対して3個づつ配設されている。なお、図4の(B)は、浮上コイル10を60度ピッチ、言い換えれば1組の磁極に対して6個づつ配設した例を示す。浮上コイル10は、8の字型に形成されている。超電導コイル2、超電導コイル4、超電導コイル6、超電導コイル8、浮上コイル10、および推進コイルによって実施形態1に係る磁気浮上推進システムが構成される。そして、超電導コイル2、超電導コイル4、超電導コイル6、および超電導コイル8によって前記磁気浮上推進システムにおける界磁が構成される。   On the other hand, as shown in FIGS. 3, 4 (A), and FIG. 5, levitation coils 10 are arranged on the inner surface of the side wall of the guideway 1002 at regular intervals. A propulsion coil is also arranged between the inner surface of the side wall of the guideway 1002 and the levitation coil 10, but the propulsion coil is omitted. The levitation coils 10 are arranged at a pitch of 120, in other words, three each for one set of magnetic poles composed of the superconducting coil 2 and the superconducting coil 4 or the superconducting coil 6 and the superconducting coil 8. FIG. 4B shows an example in which six levitation coils 10 are arranged at a pitch of 60 degrees, in other words, six for each set of magnetic poles. The levitation coil 10 is formed in a figure 8 shape. The superconducting coil 2, superconducting coil 4, superconducting coil 6, superconducting coil 8, levitation coil 10, and propulsion coil constitute the magnetic levitation propulsion system according to the first embodiment. The superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the superconducting coil 8 constitute a magnetic field in the magnetic levitation propulsion system.

図3〜図5に示すように、進行方向aに沿って前端および後端に位置する超電導コイル2および超電導コイル8は、中央部に位置する超電導コイル4および超電導コイル6に比較して前後方向の寸法が縮小されている。具体的には、超電導コイル4および超電導コイル6においては、長さ×高さが1250mm×500mmであるのに対し、超電導コイル2および超電導コイル8においては、長さ×高さが950mm×500mmである。また、浮上コイルのピッチは900mmでその高調波磁界波長は1350mmである。   As shown in FIGS. 3 to 5, the superconducting coil 2 and the superconducting coil 8 positioned at the front end and the rear end along the traveling direction a are in the front-rear direction compared to the superconducting coil 4 and the superconducting coil 6 positioned at the center. The dimensions have been reduced. Specifically, in the superconducting coil 4 and the superconducting coil 6, the length × height is 1250 mm × 500 mm, whereas in the superconducting coil 2 and the superconducting coil 8, the length × height is 950 mm × 500 mm. is there. The pitch of the levitation coil is 900 mm and the harmonic magnetic field wavelength is 1350 mm.

また、図6に示すように、超電導コイル2と超電導コイル8との間の磁極ピッチLは、浮上コイル10に生じる高調波磁界の波長Wの整数倍に実質的に等しい。ここで、「実質的に等しい」とは、磁極ピッチLが、前記波長Wの整数倍±20%の範囲にあることをいう。 As shown in FIG. 6, the magnetic pole pitch L between the superconducting coil 2 and the superconducting coil 8 is substantially equal to an integral multiple of the wavelength W L of the harmonic magnetic field generated in the levitation coil 10. Here, "substantially equal" means that the pole pitch L is in integer multiples ± 20% of the range of the wavelength W L.

具体的には、磁極ピッチは、超電導コイル4と超電導コイル6との間においては1500mmであるのに対し、超電導コイル2と超電導コイル8との間においては4200mmに設定されている。ここで、高調波磁界の波長Wは1350mmであるから、超電導コイル2と超電導コイル8との間の磁極ピッチは、高調波磁界の波長Wの3倍±4%である。 Specifically, the magnetic pole pitch is set to 1500 mm between the superconducting coil 4 and the superconducting coil 6, whereas it is set to 4200 mm between the superconducting coil 2 and the superconducting coil 8. Here, since the wavelength W L of the harmonic magnetic field is 1350 mm, the magnetic pole pitch between the superconducting coil 2 and the superconducting coil 8 is three times ± 4% of the wavelength W L of the harmonic magnetic field.

更に、超電導コイル2および超電導コイル8は、超電導コイル4および超電導コイル6に比較して巻き線の巻き数が少なく、したがって起磁力が小さい。たとえば、超電導コイル4および超電導コイル6においては起磁力が850kAであるのに対し、超電導コイル2および超電導コイル8においては起磁力が650kAと少なくなっている。   Furthermore, the superconducting coil 2 and the superconducting coil 8 have a smaller number of windings than the superconducting coil 4 and the superconducting coil 6, and therefore have a small magnetomotive force. For example, the superconducting coil 4 and the superconducting coil 6 have a magnetomotive force of 850 kA, whereas the superconducting coil 2 and the superconducting coil 8 have a magnetomotive force as low as 650 kA.

実施形態1における磁気浮上式鉄道においては、超電導コイル2、超電導コイル4、超電導コイル6、および超電導コイル8が推進コイルからの磁界を受けて生じた電磁力により、リニアモータカー1000は矢印aの方向に進行する。これにより、超電導コイル2、超電導コイル4、超電導コイル6、および超電導コイル8からの磁界が浮上コイル10を横切り、電磁誘導によって浮上コイル10に電流が流れる。ここで、浮上コイル10は8の字型に形成されているから、超電導コイル2、超電導コイル4、超電導コイル6、および超電導コイル8には、浮上コイル10の上部と下部とで鎖交磁界が等しくなる方向の電磁力が作用する。これにより、リニアモータカー1000は浮上する。   In the magnetically levitated railway in the first embodiment, the linear motor car 1000 is in the direction of arrow a by the electromagnetic force generated by the superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the superconducting coil 8 receiving the magnetic field from the propulsion coil. Proceed to. Thereby, the magnetic fields from the superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the superconducting coil 8 cross the levitation coil 10, and a current flows through the levitation coil 10 by electromagnetic induction. Here, since the levitation coil 10 is formed in an 8-shape, the superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the superconducting coil 8 have a linkage magnetic field between the upper part and the lower part of the levitation coil 10. Electromagnetic force in the same direction acts. As a result, the linear motor car 1000 rises.

ここで、リニアモータカー1000が走行すると、超電導コイル2、超電導コイル4、超電導コイル6、および超電導コイル8が近傍を通過することによって浮上コイル10から高調波磁界が生じ、この高調波磁界によって図11において矢印で示すように超電導コイル2、超電導コイル4、超電導コイル6、および超電導コイル8に力が生じる。この力は、隣り合う2つの超電導コイルにおいては、向きが反対である。   Here, when the linear motor car 1000 travels, the superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the superconducting coil 8 pass through the vicinity, thereby generating a harmonic magnetic field from the levitation coil 10, and this harmonic magnetic field causes the FIG. As shown by the arrows in FIG. 2, force is generated in the superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the superconducting coil 8. This force is opposite in direction between two adjacent superconducting coils.

ここで、超電導コイル2と超電導コイル8との間の磁極ピッチLは、高調波磁界の波長Wの3倍に近い値であるから、前記力は、前端部と後端部の超電導コイルにおいては大きさが等しい。したがって、前端部と後端部の2つの超電導コイルの間で前記力は殆ど打ち消しあう。 Here, the magnetic pole pitch L between the superconducting coil 2 and the superconducting coil 8, because it is close to 3 times the wavelength W L harmonic magnetic field, the force in the superconducting coils of the front and rear ends Are equal in size. Therefore, the forces almost cancel each other between the two superconducting coils at the front end and the rear end.

しかしながら、図11に示すように、前記力によって台車100の中心点周りに互いに方向が反対の回転モーメントM1および回転モーメントM2が生じる。ここで、超電導コイル2および超電導コイル8から中心点までの距離は、超電導コイル4および超電導コイル6から中心点までの距離よりも大きいから、超電導コイル2、超電導コイル4、超電導コイル6、および超電導コイル8に作用する力が皆同一であれば、超電導コイル2と超電導コイル8とにおいて生じる回転モーメントM2は、超電導コイル4と超電導コイル6とによって生じる回転モーメントM1で完全に打ち消されることなく、残存する。これにより、ピッチングモーメントが生じ、台車100がピッチングする。   However, as shown in FIG. 11, a rotational moment M <b> 1 and a rotational moment M <b> 2 whose directions are opposite to each other are generated around the center point of the carriage 100 by the force. Here, since the distance from the superconducting coil 2 and the superconducting coil 8 to the central point is larger than the distance from the superconducting coil 4 and the superconducting coil 6 to the central point, the superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the superconducting If the forces acting on the coil 8 are all the same, the rotational moment M2 generated in the superconducting coil 2 and the superconducting coil 8 remains without being completely canceled out by the rotational moment M1 generated by the superconducting coil 4 and the superconducting coil 6. To do. As a result, a pitching moment is generated and the carriage 100 is pitched.

ここで、実施形態1の磁気浮上推進システムにおいては、前述のように前端および後端に位置する超電導コイル2および超電導コイル8は、中央部に位置する超電導コイル4および超電導コイル6に比較して起磁力が弱いから、浮上コイル10に流れる高調波磁界によって発生する力は、図12に示すように、超電導コイル2および超電導コイル8においては、超電導コイル4および超電導コイル6よりも弱い。したがって、超電導コイル2および超電導コイル8によって生じる回転モーメントM2も全ての超電導コイルに同一の力が生じる場合に比較して小さくなるから、超電導コイル4と超電導コイル6とによって生じる回転モーメントM1で打ち消されて残ったピッチングモーメントも小さくなる。   Here, in the magnetic levitation propulsion system of the first embodiment, the superconducting coil 2 and the superconducting coil 8 located at the front end and the rear end as described above are compared with the superconducting coil 4 and the superconducting coil 6 located at the center. Since the magnetomotive force is weak, the force generated by the harmonic magnetic field flowing in the levitation coil 10 is weaker in the superconducting coil 2 and the superconducting coil 8 than in the superconducting coil 4 and the superconducting coil 6, as shown in FIG. Accordingly, the rotational moment M2 generated by the superconducting coil 2 and the superconducting coil 8 is also smaller than when the same force is generated in all the superconducting coils, so that the rotational moment M1 generated by the superconducting coil 4 and the superconducting coil 6 is canceled out. The remaining pitching moment is also reduced.

これにより、台車100のピッチング運動が小さくなるから、リニアモータカー1000のピッチング脈動も小さくなる。   Thereby, since the pitching motion of the carriage 100 is reduced, the pitching pulsation of the linear motor car 1000 is also reduced.

実施形態1に係る磁気浮上推進システムおよび磁気浮上式鉄道においては、前述のように浮上コイル10と、超電導コイル2、超電導コイル4、超電導コイル6、および超電導コイル8とによって台車100に生じるピッチングモーメントが小さく、場合によっては殆ど零になるから、浮上コイル10を120度ピッチで配設しているにもかかわらず、リニアモータカー1000に生じるピッチング脈動が小さい。   In the magnetic levitation propulsion system and the magnetic levitation railway according to the first embodiment, the pitching moment generated in the carriage 100 by the levitation coil 10, the superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the superconducting coil 8 as described above. Is small and, in some cases, almost zero, the pitching pulsation generated in the linear motor car 1000 is small even though the levitation coils 10 are arranged at a pitch of 120 degrees.

また、浮上コイル10を60度ピッチで配設した従来の磁気浮上式鉄道に比較して浮上コイル10の数を半減できるから経済性が高い。
2.実施形態2
実施形態1の磁気浮上推進システムにおいて、超電導コイル2および超電導コイル8の起磁力を超電導コイル4および超電導コイル6に比較して小さくする代わりに、超電導コイル4および超電導コイル6を、超電導コイル2および超電導コイル8よりも低い位置に配置した例を図7に示す。
Moreover, since the number of the levitation coils 10 can be halved as compared with a conventional magnetic levitation railway in which the levitation coils 10 are arranged at a pitch of 60 degrees, the economy is high.
2. Embodiment 2
In the magnetic levitation propulsion system of the first embodiment, instead of making the magnetomotive force of the superconducting coil 2 and the superconducting coil 8 smaller than that of the superconducting coil 4 and the superconducting coil 6, the superconducting coil 4 and the superconducting coil 6 An example of arrangement at a position lower than the superconducting coil 8 is shown in FIG.

前述のように、浮上コイル10は8の字型に形成されているから、超電導コイル2、超電導コイル4、超電導コイル6、および超電導コイル8には、浮上コイル10の上部と下部とで鎖交磁界が等しくなる方向の電磁力、言い換えれば、超電導コイル2、超電導コイル4、超電導コイル6、および超電導コイル8の中心と浮上コイル10の中心とを一致させる方向の力が作用する。そして、図8において(A)に示すように、超電導コイル2、超電導コイル4、超電導コイル6、および超電導コイル8の中心と浮上コイル10の中心とのズレdが大きい場合のほうが、同図において(B)に示すように、超電導コイル2、超電導コイル4、超電導コイル6、および超電導コイル8の中心と浮上コイル10の中心とのズレdが小さい場合に比較してより大きな力が作用する。   As described above, since the levitation coil 10 is formed in a figure eight shape, the superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the superconducting coil 8 are linked at the upper and lower portions of the levitation coil 10. An electromagnetic force in the direction in which the magnetic fields are equal, in other words, a force in a direction in which the center of the superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the superconducting coil 8 coincides with the center of the levitation coil 10 acts. 8A, the superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the case where the deviation d between the center of the superconducting coil 8 and the center of the levitation coil 10 is larger in FIG. As shown in (B), a larger force acts than when the deviation d between the center of the superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the superconducting coil 8 and the center of the levitation coil 10 is small.

したがって、浮上コイル10に高調波磁界が生じると、図11に示すように、超電導コイル4および超電導コイル6には超電導コイル2および超電導コイル8よりも大きな力が生じる。   Therefore, when a harmonic magnetic field is generated in the levitation coil 10, a greater force is generated in the superconducting coil 4 and the superconducting coil 6 than in the superconducting coil 2 and the superconducting coil 8, as shown in FIG. 11.

故に、超電導コイル2、超電導コイル4、超電導コイル6、および超電導コイル8に大きさの等しい力が生じる場合に比較して回転モーメントM2が小さくなるから、回転モーメントM2が回転モーメントM1で打ち消されて残ったピッチングモーメントも小さくなる。
3.実施形態3
実施形態1の磁気浮上推進システムにおいて、超電導コイル2および超電導コイル8の起磁力を超電導コイル4および超電導コイル6に比較して小さくする代わりに、上下方向の寸法を小さくした例を図9に示す。
Therefore, the rotational moment M2 is reduced by the rotational moment M1 because the rotational moment M2 is smaller than that in the case where forces of equal magnitude are generated in the superconducting coil 2, the superconducting coil 4, the superconducting coil 6, and the superconducting coil 8. The remaining pitching moment is also reduced.
3. Embodiment 3
In the magnetic levitation propulsion system of the first embodiment, FIG. 9 shows an example in which the magnetomotive force of the superconducting coil 2 and the superconducting coil 8 is made smaller than that of the superconducting coil 4 and the superconducting coil 6 in the vertical direction. .

超電導コイルは、上下方向の寸法が小さいと、浮上コイル10で生じた磁界が通過する面積も小さくなるから、浮上コイル10に流れる高調波磁界によって生じる力も小さくなる。   If the superconducting coil has a small vertical dimension, the area through which the magnetic field generated by the levitation coil 10 passes also decreases, so that the force generated by the harmonic magnetic field flowing through the levitation coil 10 also decreases.

したがって、前記高調波磁界によって生じる力は、超電導コイル2および超電導コイル8においては、超電導コイル4および超電導コイル6よりも小さいから、実施形態1および実施形態2のところで説明したのと同様の理由により、台車に生じるピッチングモーメントを小さくできる。
4.実施形態4
実施形態1の磁気浮上推進システムにおいて、超電導コイル2および超電導コイル8の起磁力を超電導コイル4および超電導コイル6に比較して小さくする代わりに、超電導コイル2および超電導コイル8を超電導コイル4および超電導コイル6よりも台車100の側に配設した例を図10に示す。
Therefore, the force generated by the harmonic magnetic field is smaller in the superconducting coil 2 and the superconducting coil 8 than in the superconducting coil 4 and the superconducting coil 6, and for the same reason as described in the first and second embodiments. The pitching moment generated in the cart can be reduced.
4). Embodiment 4
In the magnetic levitation propulsion system of the first embodiment, instead of making the magnetomotive force of the superconducting coil 2 and the superconducting coil 8 smaller than that of the superconducting coil 4 and the superconducting coil 6, the superconducting coil 2 and the superconducting coil 8 are replaced with the superconducting coil 4 and the superconducting coil. An example in which the coil 6 is disposed on the side of the carriage 100 from the coil 6 is shown in FIG.

超電導コイル2および超電導コイル8においては、超電導コイル4および超電導コイル6よりも超電導コイルと浮上コイル10との距離Dが大きいから、浮上コイル10に流れる高調波磁界によって生じる力も小さくなる。   In the superconducting coil 2 and the superconducting coil 8, the distance D between the superconducting coil and the levitation coil 10 is larger than that in the superconducting coil 4 and the superconducting coil 6, so that the force generated by the harmonic magnetic field flowing through the levitation coil 10 is also reduced.

したがって、前記高調波磁界によって生じる力は、超電導コイル2および超電導コイル8においては、超電導コイル4および超電導コイル6よりも小さいから、実施形態1および実施形態2のところで説明したのと同様の理由により、台車に生じるピッチングモーメントを小さくできる。   Therefore, the force generated by the harmonic magnetic field is smaller in the superconducting coil 2 and the superconducting coil 8 than in the superconducting coil 4 and the superconducting coil 6, and for the same reason as described in the first and second embodiments. The pitching moment generated in the cart can be reduced.

本発明の磁気浮上推進システムは、磁気浮上式鉄道のほか、各種搬送装置、工作機械用送り装置、リニアモータエレベータなどに使用される。   The magnetic levitation propulsion system of the present invention is used for various conveying devices, machine tool feeding devices, linear motor elevators and the like in addition to magnetic levitation railways.

図1は、実施形態1に係る磁気浮上式鉄道の構成を示す概略図である。FIG. 1 is a schematic diagram illustrating a configuration of a magnetically levitated railway according to the first embodiment. 図2は、実施形態1に係る磁気浮上式鉄道を構成するリニアモータカーの内部の構成を示す概略図である。FIG. 2 is a schematic diagram illustrating an internal configuration of the linear motor car that constitutes the magnetically levitated railway according to the first embodiment. 図3は、実施形態1に係る磁気浮上式鉄道が備える磁気浮上推進システムにおける超電導コイルと浮上コイルとの相対的な配置を示す斜視図である。FIG. 3 is a perspective view showing a relative arrangement of the superconducting coil and the levitation coil in the magnetic levitation propulsion system provided in the magnetic levitation railway according to the first embodiment. 図4は、前記超電導コイルと前記浮上コイルとの相対的な配置を示す平面図である。FIG. 4 is a plan view showing a relative arrangement of the superconducting coil and the levitation coil. 図5は、前記超電導コイルと前記浮上コイルとの相対的な配置を示す側面図である。FIG. 5 is a side view showing a relative arrangement of the superconducting coil and the levitation coil. 図6は、図2に示すリニアモータカーが備える台車と前記台車に組み込まれた超電導コイルの相対的な位置関係を示す斜視図である。FIG. 6 is a perspective view showing a relative positional relationship between a carriage provided in the linear motor car shown in FIG. 2 and a superconducting coil incorporated in the carriage. 図7は、実施形態2に係る磁気浮上推進システムにおける超電導コイルと浮上コイルとの相対的な配置を示す側面図である。FIG. 7 is a side view showing a relative arrangement of the superconducting coil and the levitation coil in the magnetic levitation propulsion system according to the second embodiment. 図8は、超電導コイルと浮上コイルとの中心のズレの大きさdと、前記超電導コイルに作用する力との関係を示す説明図である。FIG. 8 is an explanatory diagram showing the relationship between the magnitude d of the center deviation between the superconducting coil and the levitation coil and the force acting on the superconducting coil. 図9は、実施形態3に係る磁気浮上推進システムにおける超電導コイルと浮上コイルとの相対的な配置を示す側面図である。FIG. 9 is a side view showing a relative arrangement of the superconducting coil and the levitation coil in the magnetic levitation propulsion system according to the third embodiment. 図10は、実施形態4に係る磁気浮上推進システムにおける超電導コイルと浮上コイルとの相対的な配置を示す側面図である。FIG. 10 is a side view showing a relative arrangement of the superconducting coil and the levitation coil in the magnetic levitation propulsion system according to the fourth embodiment. 図11は、従来の磁気浮上推進システムにおいて、浮上コイルが発生する高調波磁界によって超電導コイルに作用する力および回転モーメントについての説明図である。FIG. 11 is an explanatory diagram of the force and rotational moment acting on the superconducting coil by the harmonic magnetic field generated by the levitation coil in the conventional magnetic levitation propulsion system. 図12は、実施形態1〜4の磁気浮上推進システムにおいて、浮上コイルが発生する高調波磁界によって超電導コイルに作用する力および回転モーメントについての説明図である。FIG. 12 is an explanatory diagram of forces and rotational moments acting on the superconducting coil by the harmonic magnetic field generated by the levitation coil in the magnetic levitation propulsion system of the first to fourth embodiments.

符号の説明Explanation of symbols

2 超電導コイル
4 超電導コイル
6 超電導コイル
8 超電導コイル
10 浮上コイル
100 台車
102 車体
104 客室
106 貫通路
1000 リニアモータカー
1002 ガイドウェイ
2 Superconducting Coil 4 Superconducting Coil 6 Superconducting Coil 8 Superconducting Coil 10 Levitation Coil 100 Car 102 Car Body 104 Guest Room 106 Passage 1000 Linear Motor Car 1002 Guide Way

Claims (13)

所定の移動経路に沿って配設された浮上コイルおよび推進コイルと、前記浮上コイルおよび推進コイルに相対するとともに、前記浮上コイルから浮上力を受け、前記推進コイルから推進力を受けて前記移動経路に沿って移動する界磁とを備え、
前記界磁は、移動方向に沿って偶数個の磁極を有するとともに、前端および後端の磁極における起磁力は、中央部の磁極における起磁力よりも小さいことを特徴とする磁気浮上推進システム。
A levitation coil and a propulsion coil disposed along a predetermined movement path, the levitation coil and the propulsion coil, the levitation force received from the levitation coil, and the propulsion force received from the propulsion coil. And a field moving along
The magnetic field levitation propulsion system, wherein the field has an even number of magnetic poles along the moving direction, and the magnetomotive force at the front and rear magnetic poles is smaller than the magnetomotive force at the central magnetic pole.
所定の移動経路に沿って垂直面内に配設された浮上コイルおよび推進コイルと、前記浮上コイルおよび推進コイルに相対する垂直面内に配設され、前記浮上コイルから浮上力を受け、前記推進コイルから推進力を受けて前記移動経路に沿って移動する界磁とを備え、
前記界磁は、移動方向に沿って偶数個の磁極を有するとともに、前端部および後端部の磁極は中央部の磁極よりも高い位置に配設されてなることを特徴とする磁気浮上推進システム。
A levitation coil and a propulsion coil disposed in a vertical plane along a predetermined movement path, a levitation coil disposed in a vertical plane opposite to the levitation coil and the propulsion coil, receiving a levitating force from the levitation coil, and the propulsion A magnetic field that receives a driving force from the coil and moves along the moving path,
The field magnet has an even number of magnetic poles along the moving direction, and the magnetic levitation propulsion system in which the magnetic poles at the front end and the rear end are arranged at a position higher than the magnetic pole at the center. .
所定の移動経路に沿って配設された浮上コイルおよび推進コイルと、前記浮上コイルおよび推進コイルに相対するとともに、前記浮上コイルから浮上力を受け、前記推進コイルから推進力を受けて前記移動経路に沿って移動する界磁とを備え、
前記界磁は、移動方向に沿って偶数個の磁極を有するとともに、前端部および後端部の磁極は、中央部の磁極よりも浮上コイルからの距離が大きくなるように配設されてなることを特徴とする磁気浮上推進システム。
A levitation coil and a propulsion coil disposed along a predetermined movement path, the levitation coil and the propulsion coil, the levitation force received from the levitation coil, and the propulsion force received from the propulsion coil. And a field moving along
The field has an even number of magnetic poles along the moving direction, and the magnetic poles at the front end and the rear end are arranged such that the distance from the levitation coil is greater than the magnetic pole at the center. Magnetic levitation propulsion system characterized by
所定の移動経路に沿って配設された浮上コイルおよび推進コイルと、前記浮上コイルおよび推進コイルに相対するとともに、前記浮上コイルから浮上力を受け、前記推進コイルから推進力を受けて前記移動経路に沿って移動する界磁とを備え、
前記界磁は、移動方向に沿って偶数個の磁極を有するとともに、前端部および後端部の磁極は、中央部の磁極よりも前記移動方向に直交する方向に沿った寸法が小さいことを特徴とする磁気浮上推進システム。
A levitation coil and a propulsion coil disposed along a predetermined movement path, the levitation coil and the propulsion coil, the levitation force received from the levitation coil, and the propulsion force received from the propulsion coil. And a field moving along
The field has an even number of magnetic poles along the moving direction, and the front end and rear end magnetic poles are smaller in dimension along the direction perpendicular to the moving direction than the central magnetic pole. Magnetic levitation propulsion system.
所定の移動経路に沿って配設された浮上コイルおよび推進コイルと、前記浮上コイルおよび推進コイルに相対するとともに、前記浮上コイルから浮上力を受け、前記推進コイルから推進力を受けて前記移動経路に沿って移動する界磁とを備え、
前記界磁は、移動方向に沿って偶数個の磁極を有するとともに、前端の磁極と後端の磁極との磁極ピッチが、前記地上コイルに生じる高調波磁界の波長の整数倍に実質的に等しく設定されてなることを特徴とする磁気浮上推進システム。
A levitation coil and a propulsion coil disposed along a predetermined movement path, the levitation coil and the propulsion coil, the levitation force received from the levitation coil, and the propulsion force received from the propulsion coil. And a field moving along
The field has an even number of magnetic poles along the moving direction, and the magnetic pole pitch between the front end magnetic pole and the rear end magnetic pole is substantially equal to an integral multiple of the wavelength of the harmonic magnetic field generated in the ground coil. A magnetic levitation propulsion system characterized by being set.
前端部および後端部の磁極における起磁力は、中央部の磁極における起磁力よりも小さい請求項5に記載の磁気浮上推進システム。   6. The magnetic levitation propulsion system according to claim 5, wherein the magnetomotive force at the front end and rear end magnetic poles is smaller than the magnetomotive force at the central magnetic pole. 前端部および後端部の磁極は中央部の磁極よりも高い位置に配設されてなる請求項6に記載の磁気浮上推進システム。   The magnetic levitation propulsion system according to claim 6, wherein the magnetic poles at the front end and the rear end are disposed at a position higher than the magnetic pole at the center. 前記浮上コイルは120度ピッチで配設されてなる請求項1〜7の何れか1項に記載の磁気浮上推進システム。   The magnetic levitation propulsion system according to any one of claims 1 to 7, wherein the levitation coils are arranged at a pitch of 120 degrees. 前記界磁は超電導磁石である請求項1〜8の何れか1項に記載の磁気浮上推進システム。   The magnetic levitation propulsion system according to claim 1, wherein the field is a superconducting magnet. 前記界磁は常電導磁石である請求項1〜8の何れか1項に記載の磁気浮上推進システム。   The magnetic levitation propulsion system according to claim 1, wherein the field is a normal conducting magnet. 前記界磁は永久磁石である請求項1〜8の何れか1項に記載の磁気浮上推進システム。   The magnetic levitation propulsion system according to claim 1, wherein the field is a permanent magnet. 請求項1〜11の何れか1項に記載の磁気浮上推進システムを備え、前記磁気浮上推進システムにおける界磁は車上に設けられてなることを特徴とする磁気浮上式鉄道。   A magnetic levitation railway comprising the magnetic levitation propulsion system according to any one of claims 1 to 11, wherein a field in the magnetic levitation propulsion system is provided on a vehicle. 前記界磁の備える磁極は超電導コイルである請求項12に記載の磁気浮上式鉄道。   The magnetic levitation railway according to claim 12, wherein the magnetic pole of the field is a superconducting coil.
JP2005360958A 2005-12-14 2005-12-14 Magnetic levitation propulsion system and magnetic levitation railway Expired - Fee Related JP4324589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360958A JP4324589B2 (en) 2005-12-14 2005-12-14 Magnetic levitation propulsion system and magnetic levitation railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360958A JP4324589B2 (en) 2005-12-14 2005-12-14 Magnetic levitation propulsion system and magnetic levitation railway

Publications (2)

Publication Number Publication Date
JP2007166812A JP2007166812A (en) 2007-06-28
JP4324589B2 true JP4324589B2 (en) 2009-09-02

Family

ID=38249081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360958A Expired - Fee Related JP4324589B2 (en) 2005-12-14 2005-12-14 Magnetic levitation propulsion system and magnetic levitation railway

Country Status (1)

Country Link
JP (1) JP4324589B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289248B1 (en) * 2020-04-07 2021-08-12 한국철도기술연구원 Emergency Braking System in Subsonic Capsule Train

Also Published As

Publication number Publication date
JP2007166812A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
US6629503B2 (en) Inductrack configuration
JP4846237B2 (en) Magnetic suspension system
KR101544383B1 (en) Magnetic levitation system having switch for guide elctromagnetic and stoping method thereof
KR101137968B1 (en) Magnetically levitated system and magnetically levitated vehicle system using superconductor
CN111373097B (en) Permanent magnetic suspension train adopting passive low-frequency electromagnetic stabilization
KR101009465B1 (en) Magnetic levitation system and magnetic levitation method using halbach array
KR20110001648A (en) Linear motor haviang segment structure magnetic levitation system
JP2009177888A (en) Magnetic levitation mechanism
JP4324589B2 (en) Magnetic levitation propulsion system and magnetic levitation railway
KR20140087677A (en) Magnetic levitation system having slanted permanent magnet
WO2021029783A1 (en) Magnetic levitation vehicle
JP5009138B2 (en) Magnetic levitation mechanism
CN102350956B (en) Magnetic suspension mechanism integrating suspension, guiding and hauling functions
US7626290B2 (en) One-wheel and bi-pole magnetic driving apparatus
KR101544382B1 (en) Magnetic levitation system having invertor for current angle
JP3954047B2 (en) Superconducting magnetic levitation system
KR101623474B1 (en) Magnetic levitation system having slanted electromagnet
CN114649920B (en) Double-magnet multiphase superconducting linear synchronous motor
KR101474975B1 (en) Magnetic levitation system having cross connected invertor
JP2009142137A (en) Magnetic levitation propulsion device
KR20140087676A (en) Magnetic levitation system having inclined permanent magnet
JP3854281B2 (en) Magnetic induction levitation mechanism
JP3595784B2 (en) Ground coil for magnetic levitation railway
JP2678542B2 (en) Magnetic levitation train current collector
KR101230045B1 (en) Magnetic levitation craft haviang permanent magnet module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Ref document number: 4324589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees