[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4320718B2 - WDM signal monitor - Google Patents

WDM signal monitor Download PDF

Info

Publication number
JP4320718B2
JP4320718B2 JP2003286406A JP2003286406A JP4320718B2 JP 4320718 B2 JP4320718 B2 JP 4320718B2 JP 2003286406 A JP2003286406 A JP 2003286406A JP 2003286406 A JP2003286406 A JP 2003286406A JP 4320718 B2 JP4320718 B2 JP 4320718B2
Authority
JP
Japan
Prior art keywords
wavelength
refractive index
correction value
diffraction grating
altitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003286406A
Other languages
Japanese (ja)
Other versions
JP2004170383A (en
Inventor
泰幸 鈴木
義広 三瓶
誠 小宮山
賢治 荻野
頼樹 岡田
修平 岡田
伸 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2003286406A priority Critical patent/JP4320718B2/en
Publication of JP2004170383A publication Critical patent/JP2004170383A/en
Application granted granted Critical
Publication of JP4320718B2 publication Critical patent/JP4320718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Communication System (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

本発明は、波長分散素子を用いたWDM(wavelength division multiplexing:波長分割多重)信号モニタに関し、詳しくは、使用環境に影響されずに、波長測定の確度を向上することができるWDM信号モニタに関するものである。   The present invention relates to a WDM (wavelength division multiplexing) signal monitor using a wavelength dispersion element, and more particularly to a WDM signal monitor capable of improving the accuracy of wavelength measurement without being affected by the use environment. It is.

WDM信号モニタは、WDM信号である被測定光を波長分散素子によって波長ごとに異なる角度に出射して分光し、この波長分散素子が分光した被測定光を光検出器で受光し検出し、この光検出器からの出力によって、光信号の波長測定を行うものである(例えば、特許文献1参照)。   The WDM signal monitor emits light to be measured, which is a WDM signal, at different angles for each wavelength by a wavelength dispersive element and separates the light, and the light to be measured dispersed by the wavelength dispersive element is received and detected by a photodetector. The wavelength of the optical signal is measured by the output from the photodetector (see, for example, Patent Document 1).

図4は、このようなWDM信号モニタの従来例を示す構成図である。図4において、分光器10は、被測定光が入力され、この被測定光のスペクトルを測定して、サンプリングデータである測定データを出力する。また、分光器10は、光ファイバ11、コリメーティングレンズ12、回折格子13、フォーカシングレンズ14、フォトダイオードアレイモジュール15を有する。   FIG. 4 is a block diagram showing a conventional example of such a WDM signal monitor. In FIG. 4, the spectroscope 10 receives measurement light, measures the spectrum of the measurement light, and outputs measurement data that is sampling data. The spectroscope 10 includes an optical fiber 11, a collimating lens 12, a diffraction grating 13, a focusing lens 14, and a photodiode array module 15.

光ファイバ11は、被測定光を出射する出射口を有する伝送路である。コリメーティングレンズ12は、光ファイバ11の出射口に対向して設置され、光ファイバ11から出射された被測定光を平行光にして出射する。   The optical fiber 11 is a transmission line having an emission port that emits light to be measured. The collimating lens 12 is installed to face the exit of the optical fiber 11 and emits the light to be measured emitted from the optical fiber 11 as parallel light.

回折格子13は波長分散素子であり、コリメーティングレンズ12からの出射光を所望の角度に回折するため、コリメーティングレンズ12に対して傾けて設置してある。また、回折格子13は被測定光を波長ごと異なる角度に出射して分光する。フォーカシングレンズ14は、回折格子13からの出射光の光路上に設置され、出射光を収束して結像させる。   The diffraction grating 13 is a wavelength dispersion element, and is inclined with respect to the collimating lens 12 in order to diffract the emitted light from the collimating lens 12 to a desired angle. Further, the diffraction grating 13 emits the light to be measured at a different angle for each wavelength and separates it. The focusing lens 14 is installed on the optical path of the outgoing light from the diffraction grating 13, and converges the outgoing light to form an image.

フォトダイオードアレイモジュール(以下、PDMと略す)15は、光検出器であり、受光素子であるフォトダイオードを複数有するものであり、被測定光が収束し、結像する位置に設置される。また、PDM15は、被測定光の光パワーを受光素子によってサンプリングし、サンプリングデータを測定データとして出力する。そして、PDM15は、受光素子ごとにあらかじめ波長が割り当てられている。   A photodiode array module (hereinafter abbreviated as PDM) 15 is a photodetector having a plurality of photodiodes as light receiving elements, and is installed at a position where the light to be measured converges and forms an image. The PDM 15 samples the optical power of the light to be measured by the light receiving element, and outputs the sampling data as measurement data. The PDM 15 is assigned a wavelength in advance for each light receiving element.

メモリ20は、記憶部であり分光器10からの測定データを格納する。波長演算手段30は、メモリ20の測定データを読み出し、PDM15の受光素子ごとに割り当てられた波長から光信号の波長を演算する。   The memory 20 is a storage unit and stores measurement data from the spectrometer 10. The wavelength calculation unit 30 reads the measurement data in the memory 20 and calculates the wavelength of the optical signal from the wavelength assigned to each light receiving element of the PDM 15.

このような装置の動作を説明する。光ファイバ11から出射された被測定光は、コリメーティングレンズ12で平行光となる。コリメーティングレンズ12を透過した被測定光は、回折格子13に入射する。そして、被測定光が回折格子13によって、波長ごとに分光される。すなわち、波長ごとに回折格子13からの出射角度が異なる。そして、回折格子13によって波長ごとに分光された被測定光が、フォーカシングレンズ14によってPDM15の受光素子それぞれで収束し、結像する。   The operation of such an apparatus will be described. The light to be measured emitted from the optical fiber 11 becomes parallel light by the collimating lens 12. The light to be measured that has passed through the collimating lens 12 enters the diffraction grating 13. Then, the light to be measured is split by the diffraction grating 13 for each wavelength. In other words, the emission angle from the diffraction grating 13 differs for each wavelength. Then, the light to be measured dispersed by the diffraction grating 13 for each wavelength is converged by the focusing lens 14 at each light receiving element of the PDM 15 to form an image.

例えば、図4中”FP01”、”FP02”、”FP03”に位置する受光素子では、異なる波長の光が収束され、結像する。そして、PDM15の各受光素子がそれぞれの被測定光の光パワーに対応する電流(光電流)を出力する。また、PDM15が図示しない変換部によって、各受光素子から出力された光電流を電圧に変換する。また、この電圧に変換された信号はアナログ信号なので、変換部がアナログ信号をデジタル信号に変換し、測定データとしてメモリ20に格納する。このように、測定データは受光素子によってサンプリングされたサンプリングデータとなっている。   For example, in the light receiving elements located at “FP01”, “FP02”, and “FP03” in FIG. 4, light of different wavelengths is converged and imaged. And each light receiving element of PDM15 outputs the electric current (photocurrent) corresponding to the optical power of each to-be-measured light. In addition, the PDM 15 converts the photocurrent output from each light receiving element into a voltage by a converter (not shown). Further, since the signal converted into the voltage is an analog signal, the conversion unit converts the analog signal into a digital signal and stores it in the memory 20 as measurement data. Thus, the measurement data is sampling data sampled by the light receiving element.

そして、波長演算手段30が、メモリ20の測定データを読み出し、各受光素子に割り当てられた波長から光信号の波長を求め、これらの演算結果を図示しない出力部に出力し、この出力部は、演算結果を、例えば表示部の画面に表示したり、図示しない外部装置に出力する。   Then, the wavelength calculation means 30 reads the measurement data of the memory 20, obtains the wavelength of the optical signal from the wavelength assigned to each light receiving element, and outputs these calculation results to an output unit (not shown). For example, the calculation result is displayed on the screen of the display unit or output to an external device (not shown).

続いて、回折格子13による被測定光の入射角度と出射角度の関係を説明する。回折格子13による被測定光の入射角度と出射角度は下記の式(1)で表される
sinθgi+sinθgo=λ/(n・d) (1)
Subsequently, the relationship between the incident angle and the outgoing angle of the light to be measured by the diffraction grating 13 will be described. The incident angle and the emission angle of the light to be measured by the diffraction grating 13 sinθ gi + sinθ go = λ / represented by the following formula (1) (n a · d ) (1)

ここで、θgiは、回折格子13への被測定光の入射角度である。θgoは、回折格子13からの被測定光の出射角度である。λは、波長である。nは回折格子13が使用される環境の媒質(一般的には空気)の屈折率であり、dは、回折格子13の格子定数である。 Here, θ gi is the incident angle of the light to be measured to the diffraction grating 13. θ go is the emission angle of the light to be measured from the diffraction grating 13. λ is a wavelength. n a is the refractive index of the medium of the environment in which the diffraction grating 13 is used (generally air), d is the lattice constant of the diffraction grating 13.

また、波長の変化と出射角度の変化の関係は式(1)より、下記の式(2)で表される。
Δλ/Δθgo=n・d・cosθgo (2)
Further, the relationship between the change in wavelength and the change in emission angle is expressed by the following equation (2) from the equation (1).
Δλ / Δθ go = n a · d · cos θ go (2)

このように、複数の波長の光信号が重畳された被測定光であっても、回折格子13が波長ごとに異なる角度で出射し、PDM15の受光素子の異なる位置で被測定光が収束されて結像されるので、各光信号の波長を求めることができる。   As described above, even when the light to be measured is superimposed with the optical signals having a plurality of wavelengths, the diffraction grating 13 emits at different angles for each wavelength, and the light to be measured is converged at different positions of the light receiving element of the PDM 15. Since the image is formed, the wavelength of each optical signal can be obtained.

特開2000−304613号公報JP 2000-304613 A

しかしながら、所望の波長を求める場合、媒質(空気)の屈折率が一定であることが必要だが、使用環境である空気の組成、高度、標高、気圧、温度、湿度、水蒸気圧等が異なると、空気の屈折率も変動する。そのため、同じ波長の被測定光であっても、回折格子13からの出射角度が変動してしまう。   However, when obtaining the desired wavelength, it is necessary that the refractive index of the medium (air) is constant, but if the composition of the air, altitude, altitude, atmospheric pressure, temperature, humidity, water vapor pressure, etc. that are used are different, The refractive index of air also varies. For this reason, even if the light to be measured has the same wavelength, the emission angle from the diffraction grating 13 varies.

そして、媒質の屈折率変化に対する出射角度の変化は、式(1)より、下記の式(3)で表される。
Δθgo/Δn=−λ/(n ・d・cosθgo) (3)
The change in the emission angle with respect to the change in the refractive index of the medium is expressed by the following formula (3) from the formula (1).
Δθ go / Δn a = −λ / (n a 2 · d · cos θ go ) (3)

例えば、λ=1.55[μm]、d=1.111[μm]、n=1.000268、θgo=1.248[rad](71.5[deg])の場合、式(3)より、
Δθgo/Δn≒−4.42
となる。
For example, in the case of λ = 1.55 [μm], d = 1.111 [μm], n a = 1.000268, θ go = 1.248 [rad] (71.5 [deg]), the formula (3 )Than,
Δθ go / Δn a ≈−4.42
It becomes.

よって空気の屈折率nが、1.000268から1.000258へと、僅か0.00001変化(標高でいえば、0[m]から約300[m]に変化)しても、出射角度は0.0442[mrad]変化する。これは、式(2)より、波長換算で15.5[pm]に相当する。すなわち、同一の波長であっても空気の屈折率が変化するとPDM15上の結像位置も変化してしまう。そして、このPDM15上の結像位置から波長演算手段30が、被測定光の波長演算を行うため、確度が悪化するという問題があった。 Thus the refractive index n a of the air, and from 1.000268 to 1.000258, (in terms of the altitude change to 0 [m] to about 300 [m]) slightly 0.00001 change even if the emission angle 0.0442 [mrad] changes. This corresponds to 15.5 [pm] in terms of wavelength from the equation (2). That is, even if the wavelength is the same, if the refractive index of air changes, the imaging position on the PDM 15 also changes. Then, since the wavelength calculation unit 30 calculates the wavelength of the light to be measured from the image formation position on the PDM 15, there is a problem that accuracy is deteriorated.

そこで本発明の目的は、使用環境に影響されずに、波長測定の確度を向上したWDM信号モニタを実現することにある。   Therefore, an object of the present invention is to realize a WDM signal monitor with improved accuracy of wavelength measurement without being affected by the use environment.

請求項1記載の発明は、
被測定光を回折格子によって波長ごとに異なる角度に出射して分光し、この回折格子が分光した被測定光を光検出器が受光し、この光検出器からの出力によって、波長演算手段が被測定光の波長を求めるWDM信号モニタにおいて、
前記回折格子の設けられる媒質の屈折率に基づき、前記波長演算手段が求めた波長を補正する補正部と、
前記回折格子の設けられる高度または標高の少なくとも一方に加え前記回折格子の設けられる空気の組成、気圧、湿度または水蒸気圧の少なくとも一つから、媒質の屈折率を求め、求めた屈折率を前記補正部に出力する屈折率演算手段と、
前記高度または前記標高に加え、前記空気の組成、前記気圧、前記湿度または前記水蒸気圧の少なくとも一つを測定し、これらの測定結果を前記屈折率演算手段に出力する環境測定手段と
を設け、
前記補正部は、
波長の補正値を記憶する補正値記憶手段と、
前記屈折率演算手段によって求められた回折格子の設けられる媒質の屈折率の変化によって前記回折格子から出射される被測定光の出射角度の変化により、光検出器上における結像位置の変化に基づく波長ずれを補正する補正値を求め、この補正値を補正値記憶手段に格納する補正値演算手段と、
補正値記憶手段の補正値を読み出し、波長演算手段が求めた波長を補正する波長補正手段と
を有することを特徴とするものである。
The invention described in claim 1
The light to be measured is emitted by the diffraction grating at different angles for each wavelength and dispersed, and the light to be measured dispersed by the diffraction grating is received by the photodetector, and the wavelength calculation means is covered by the output from the photodetector. In the WDM signal monitor for determining the wavelength of the measurement light,
A correction unit that corrects the wavelength obtained by the wavelength calculation unit based on the refractive index of the medium in which the diffraction grating is provided;
The composition of the air provided with the diffraction grating in addition to at least one of altitude or elevation provided with the diffraction grating, pressure, from at least one of humidity or vapor pressure, determine the refractive index of the medium, the refractive index determined the correction A refractive index calculating means for outputting to the unit ;
Environmental measurement means for measuring at least one of the composition of the air, the atmospheric pressure, the humidity or the water vapor pressure in addition to the altitude or the altitude, and outputting the measurement result to the refractive index calculation means; >
The correction unit is
Correction value storage means for storing a wavelength correction value;
Based on the change in the imaging position on the photodetector by the change in the exit angle of the light to be measured emitted from the diffraction grating due to the change in the refractive index of the medium provided with the diffraction grating obtained by the refractive index calculating means A correction value calculating means for obtaining a correction value for correcting the wavelength shift and storing the correction value in the correction value storage means;
And a wavelength correction unit that reads the correction value stored in the correction value storage unit and corrects the wavelength obtained by the wavelength calculation unit.

請求項記載の発明は、請求項記載の発明において、
前記高度または前記標高を測定する環境測定手段は、高度計であること特徴とするものである。
The invention according to claim 2 is the invention according to claim 1 ,
The environment measuring means for measuring the altitude or the altitude is an altimeter.

請求項記載の発明は、請求項記載の発明において、
前記高度または前記標高を測定する環境測定手段は、GPSであることを特徴とするものである。
The invention according to claim 3 is the invention according to claim 1 ,
The environment measuring means for measuring the altitude or the altitude is GPS.

請求項記載の発明は、請求項1〜3のいずれかに記載の発明において、
光検出器は、受光素子ごとにあらかじめ波長が割り当てられているフォトダイオードアレイモジュールであることを特徴とするものである。
The invention according to claim 4 is the invention according to any one of claims 1 to 3 ,
The photodetector is a photodiode array module in which a wavelength is assigned in advance for each light receiving element.

本発明によれば、以下のような効果がある。
請求項1〜4によれば、補正部が、波長分散素子の設けられる媒質の屈折率に基づいて、波長演算手段が求めた波長を補正する。これにより、媒質の屈折率が変化して、波長分散素子からの出射角度が変化して、光検出器上における被測定光の結像位置がずれ、波長演算手段の演算結果に誤差が生じても、誤差を軽減することができる。従って、使用環境に影響されずに、波長測定の確度を向上することができる。
The present invention has the following effects.
According to the first to fourth aspects , the correction unit corrects the wavelength obtained by the wavelength calculation unit based on the refractive index of the medium in which the wavelength dispersion element is provided. As a result, the refractive index of the medium changes, the emission angle from the wavelength dispersion element changes, the imaging position of the light to be measured on the photodetector shifts, and an error occurs in the calculation result of the wavelength calculation means. Even the error can be reduced. Therefore, the accuracy of wavelength measurement can be improved without being affected by the use environment.

また、屈折率演算手段が、波長分散素子が設置される使用環境における媒質の屈折率を求め、補正部に出力するので、一般的に求めるのが困難な屈折率を保守要員が補正部に入力する必要が無い。これにより、容易に波長の補正値を求めることができる。
In addition , since the refractive index calculation means calculates the refractive index of the medium in the usage environment where the wavelength dispersion element is installed and outputs it to the correction unit, maintenance personnel input a refractive index that is generally difficult to determine to the correction unit. There is no need to do. Thereby, the wavelength correction value can be easily obtained.

そして、環境測定手段が、波長分散素子近傍の使用環境を測定し、屈折率演算手段に出力するので、保守要員を必要とせず、さらに所望のときに使用環境を求めて、この使用環境から波長ずれを補正する補正値を求めることができる。これにより、コスト削減を行えると共に、所望のときに補正値を新たに求めることができる。
The environment measuring means measures the use environment near the wavelength dispersion element and outputs it to the refractive index calculation means, so that maintenance personnel are not required, and the use environment is obtained at a desired time. A correction value for correcting the deviation can be obtained. Thereby, cost can be reduced and a correction value can be newly obtained when desired.

以下図面を用いて本発明の実施の形態を説明する。
[第1の実施例]
図1は本発明の第1の実施例を示す構成図である。ここで、図4と同一のものは同一符号を付し、説明を省略する。図1において、補正部40が新たに設けられ、回折格子13の設けられる空気の屈折率に基づき、波長演算手段30が求めた波長を補正する。また、補正部40は、補正値演算手段41、補正値記憶手段42、波長補正手段43を有する。
Embodiments of the present invention will be described below with reference to the drawings.
[First embodiment]
FIG. 1 is a block diagram showing a first embodiment of the present invention. Here, the same components as those in FIG. In FIG. 1, a correction unit 40 is newly provided, and corrects the wavelength obtained by the wavelength calculation unit 30 based on the refractive index of air in which the diffraction grating 13 is provided. The correction unit 40 includes a correction value calculation unit 41, a correction value storage unit 42, and a wavelength correction unit 43.

補正値演算手段41は、回折格子13の設けられる空気の屈折率から、波長のずれを補正する補正値を求める。補正値記憶手段42は、補正値演算手段41の求めた補正値を記憶する。波長補正手段43は、補正値記憶手段42から補正値を読み出し、波長演算手段30が求めた波長を補正する。   The correction value calculation means 41 obtains a correction value for correcting the wavelength shift from the refractive index of the air provided with the diffraction grating 13. The correction value storage unit 42 stores the correction value obtained by the correction value calculation unit 41. The wavelength correction unit 43 reads the correction value from the correction value storage unit 42 and corrects the wavelength obtained by the wavelength calculation unit 30.

このような装置の動作を説明する。保守要員が図示しない入力手段、例えば、キーボードや操作ボタン等から回折格子13の設けられる空気の屈折率を補正値演算手段41に入力する。   The operation of such an apparatus will be described. A maintenance person inputs the refractive index of the air provided with the diffraction grating 13 to the correction value calculation means 41 from an input means (not shown) such as a keyboard or operation buttons.

そして、補正値演算手段41が式(2)、式(3)より入力手段から入力された屈折率における波長の補正値、すなわち空気の屈折率の変化によって回折格子13から出射される被測定光の出射角度の変化により、PDM15上における結像位置の変化に基づく波長ずれを補正する補正値を求め、補正値記憶手段42に格納する。さらに、波長補正手段43が、補正値記憶手段42の補正値を読み出し、この補正値によって波長演算手段30の求めた波長を補正する。そして補正部40が、これらの演算結果を図示しない出力部に出力し、この出力部は、演算結果を、例えば表示部の画面に表示したり、図示しない外部装置に出力する。   Then, the correction value calculating means 41 measures the wavelength correction value at the refractive index input from the input means from the expressions (2) and (3), that is, the light to be measured emitted from the diffraction grating 13 by the change in the refractive index of air. The correction value for correcting the wavelength shift based on the change of the image forming position on the PDM 15 is obtained by the change of the emission angle of and is stored in the correction value storage means 42. Further, the wavelength correction means 43 reads the correction value stored in the correction value storage means 42 and corrects the wavelength obtained by the wavelength calculation means 30 with this correction value. Then, the correction unit 40 outputs these calculation results to an output unit (not shown), and this output unit displays the calculation results on, for example, a screen of the display unit or outputs it to an external device (not shown).

また、補正部40が、回折格子13の設けられる空気の屈折率から、波長のずれを補正する補正値を求め、この補正値によって波長演算手段30が求めた波長を補正する以外の動作は図4に示す装置と同様なので説明を省略する。   The correction unit 40 obtains a correction value for correcting the shift of the wavelength from the refractive index of the air in which the diffraction grating 13 is provided, and the operations other than correcting the wavelength obtained by the wavelength calculation means 30 using this correction value are shown in FIG. Since this is the same as the apparatus shown in FIG.

このように、補正値演算手段41が、回折格子13の設けられる空気の屈折率における波長の補正値を求め、この補正値に基づいて波長補正手段43が波長演算手段30の求めた波長を補正する。これにより、空気の屈折率が変化して、PDM15上における被測定光の結像位置がずれ、波長演算手段30の演算結果に誤差が生じても、誤差を軽減することができる。従って、使用環境に影響されずに、波長測定の確度を向上することができる。   In this way, the correction value calculation means 41 obtains the wavelength correction value for the refractive index of the air in which the diffraction grating 13 is provided, and the wavelength correction means 43 corrects the wavelength obtained by the wavelength calculation means 30 based on this correction value. To do. Thereby, even if the refractive index of air changes, the imaging position of the light to be measured on the PDM 15 is shifted, and an error occurs in the calculation result of the wavelength calculation means 30, the error can be reduced. Therefore, the accuracy of wavelength measurement can be improved without being affected by the use environment.

[第2の実施例]
図2は本発明の第2の実施例を示す構成図である。ここで、図1と同一のものは同一符号を付し、説明を省略する。図2において、屈折率演算手段50が新たに設けられ、回折格子13が設けられる標高における空気の屈折率を求め、この求めた屈折率を補正部40の補正値演算手段41に出力する。
[Second Embodiment]
FIG. 2 is a block diagram showing a second embodiment of the present invention. Here, the same components as those in FIG. In FIG. 2, the refractive index calculating means 50 is newly provided, the refractive index of air at the altitude where the diffraction grating 13 is provided is obtained, and the obtained refractive index is output to the correction value calculating means 41 of the correction unit 40.

このような装置の動作を説明する。
屈折率演算手段50に、保守要員が図示しない入力装置、例えば、キーボードやボタン等から、回折格子13を有する分光器10が設置される標高を入力する。そして、屈折率演算手段50が、入力された標高における空気の屈折率を求め、この求めた屈折率を補正部40の補正値演算手段41に出力する。そして、補正値演算手段41が図1に示す装置と同様に、式(2)、式(3)より屈折率演算手段50が求めた屈折率における波長の補正値を求め、補正値記憶手段42に格納する。
The operation of such an apparatus will be described.
The altitude at which the spectroscope 10 having the diffraction grating 13 is installed is input to the refractive index calculating means 50 from an input device (not shown) such as a keyboard or a button. Then, the refractive index calculation means 50 calculates the refractive index of air at the input altitude and outputs the calculated refractive index to the correction value calculation means 41 of the correction unit 40. Then, the correction value calculating means 41 obtains the correction value of the wavelength at the refractive index obtained by the refractive index calculating means 50 from the equations (2) and (3), similarly to the apparatus shown in FIG. To store.

また、屈折率演算手段40が、回折格子13の設けられる標高における空気の屈折率を求め、補正部40の補正値演算手段41に出力する以外の動作は、図1に示す装置と同様なので説明を省略する。   Further, since the refractive index calculation means 40 obtains the refractive index of air at the altitude at which the diffraction grating 13 is provided and outputs it to the correction value calculation means 41 of the correction unit 40, the operation is the same as that of the apparatus shown in FIG. Is omitted.

このように、屈折率演算手段50が、回折格子13を有する分光器10が設置される標高における空気の屈折率を求める。例えば、分光器10が設置される局所内は、空気調整、温度調整が行われており、空気の屈折率は標高によって決定される。これにより、標高のみから屈折率を求めることができるので、容易に波長の補正値を求めることができる。   In this way, the refractive index calculating means 50 obtains the refractive index of air at the altitude at which the spectroscope 10 having the diffraction grating 13 is installed. For example, in the local area where the spectroscope 10 is installed, air adjustment and temperature adjustment are performed, and the refractive index of air is determined by altitude. Thereby, since a refractive index can be calculated | required only from an altitude, the correction value of a wavelength can be calculated | required easily.

[第3の実施例]
図3は本発明の第3の実施例を示す構成図である。ここで、図2と同一のものは同一符号を付し、説明を省略すると共に図示も省略する。図3において、環境測定手段60が、分光器10の回折格子13の近傍に新たに設けられ、環境測定手段60の標高を測定し、この求めた標高を屈折率演算手段50に出力する。また、環境測定手段60は、例えば、高度計やGPS(Global Positioning System:全地球測位システム)等である。
[Third embodiment]
FIG. 3 is a block diagram showing a third embodiment of the present invention. 2 that are the same as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted and illustration is omitted. In FIG. 3, an environment measuring unit 60 is newly provided in the vicinity of the diffraction grating 13 of the spectrometer 10, measures the altitude of the environment measuring unit 60, and outputs the obtained altitude to the refractive index calculating unit 50. The environment measuring means 60 is, for example, an altimeter, GPS (Global Positioning System) or the like.

このような装置の動作を説明する。
環境測定手段60は、回折格子13近傍の標高を測定し、この求めた標高を屈折率演算手段50に出力する。そして、屈折率演算手段50が図2に示す装置と同様に、標高から屈折率を求める。
The operation of such an apparatus will be described.
The environment measuring unit 60 measures the altitude near the diffraction grating 13 and outputs the obtained altitude to the refractive index calculating unit 50. Then, the refractive index calculating means 50 obtains the refractive index from the altitude as in the apparatus shown in FIG.

また、環境測定手段60が、回折格子13近傍の標高を測定し、この求めた標高を屈折率演算手段50に出力する以外の動作は、図2に示す装置と同様なので説明を省略する。   Further, since the environment measurement unit 60 measures the altitude near the diffraction grating 13 and outputs the obtained altitude to the refractive index calculation unit 50, the operation is the same as that of the apparatus shown in FIG.

このように、環境測定手段60が、回折格子13近傍の標高を測定し、屈折率演算手段50に出力するので、保守要員を必要とせず、さらに所望のときに標高を求めて、この標高から波長ずれを補正する補正値を求めることができる。これにより、コスト削減を行えると共に、所望のときに補正値を新たに求めることができる。   Thus, since the environment measuring means 60 measures the altitude near the diffraction grating 13 and outputs it to the refractive index calculating means 50, maintenance personnel are not required, and the altitude is obtained when desired, and from this altitude. A correction value for correcting the wavelength shift can be obtained. Thereby, cost can be reduced and a correction value can be newly obtained when desired.

なお、本発明はこれに限定されるものではなく、以下のようなものでもよい。
図1に示す装置において、入力された屈折率から補正値演算手段41が補正値を求め、補正値記憶手段42に格納する構成を示したが、あらかじめ分光器10の設置される標高等の使用環境が既知ならば、補正値演算手段41を設けず、空気の屈折率に基づく波長の補正値をあらかじめ求めて、補正値記憶手段42に記憶させておいてもよい。そして、波長補正手段43が、この補正値記憶手段42から補正値を読み出し、波長演算手段30の求めた波長を補正する構成としてもよい。
In addition, this invention is not limited to this, The following may be sufficient.
In the apparatus shown in FIG. 1, the correction value calculation means 41 obtains the correction value from the input refractive index and stores it in the correction value storage means 42. However, the altitude or the like where the spectroscope 10 is installed in advance is shown. If the environment is known, the correction value calculation means 41 may not be provided, and a wavelength correction value based on the refractive index of air may be obtained in advance and stored in the correction value storage means 42. The wavelength correction unit 43 may read the correction value from the correction value storage unit 42 and correct the wavelength obtained by the wavelength calculation unit 30.

また、図2、図3に示す装置において、一定の海面を基準とした高さを示す標高から屈折率演算手段50が屈折率を求める構成を示したが、所望の位置の地面を基準とした高さを示す高度から屈折率を求める構成としてよい。もちろんこの場合、環境測定手段60は、標高でなく高度を出力する。   Moreover, in the apparatus shown in FIG. 2 and FIG. 3, although the refractive index calculating means 50 showed the structure which calculates | requires a refractive index from the altitude which shows the height on the basis of a fixed sea surface, the ground of the desired position was made into the reference | standard. It is good also as a structure which calculates | requires a refractive index from the height which shows height. Of course, in this case, the environment measuring means 60 outputs altitude instead of altitude.

また、図2、図3に示す装置において、一定の海面を基準とした高さを示す標高から屈折率演算手段50が屈折率を求める構成を示したが、分光器10が設置される局所の故障、停電等により局所内の空気調整、温度調整が停止した場合を考慮し、標高だけでなくその他の使用環境である空気の組成(窒素、酸素、アルゴン、二酸化炭素等)、高度、気圧、湿度、温度、水蒸気圧等から屈折率を求める構成としてよい。また、これら使用環境のパラメータのうち少なくも一つを用いればよい。同様に、図3に示す装置において、環境測定手段60が標高を測定し、出力する構成を示したが、使用環境のパラメータのうち少なくも一つを測定し、この測定結果を屈折率演算手段50に出力してもよい。もちろん、環境測定手段60は、測定する使用環境のパラメータごとに適宜変更する。例えば、温度測定なら温度センサを用いる。   Moreover, in the apparatus shown in FIG. 2 and FIG. 3, although the refractive index calculating means 50 showed the structure which calculates | requires a refractive index from the altitude which shows the height on the basis of a fixed sea surface, the local where the spectrometer 10 is installed is shown. Considering the case where local air conditioning and temperature regulation are stopped due to failure, power outage, etc., not only the altitude but also other usage environment air composition (nitrogen, oxygen, argon, carbon dioxide, etc.), altitude, atmospheric pressure, The refractive index may be obtained from humidity, temperature, water vapor pressure, or the like. Further, at least one of the parameters of the usage environment may be used. Similarly, in the apparatus shown in FIG. 3, the environment measuring means 60 measures and outputs the altitude. However, at least one of the parameters of the operating environment is measured, and the measurement result is used as the refractive index calculating means. 50 may be output. Of course, the environment measuring means 60 is appropriately changed for each parameter of the usage environment to be measured. For example, a temperature sensor is used for temperature measurement.

また、図1〜図3に示す装置において、ポリクロメータ方式の分光器10をあげたが、被測定光を分光し、分光したスペクトルをサンプリングする構成の分光器は全て本発明に含まれる。   1 to 3, the polychromator type spectrometer 10 has been described. However, all the spectrometers configured to disperse the light to be measured and sample the dispersed spectrum are included in the present invention.

また、図1〜図3に示す装置において、被測定光を分光する波長分散素子に回折格子13を用いる構成を示したが、回折格子13の代わりにプリズム等を用いて被測定光を分光してもよい。   In addition, in the apparatus shown in FIGS. 1 to 3, the configuration in which the diffraction grating 13 is used for the wavelength dispersion element that splits the measured light is shown. However, instead of the diffraction grating 13, the measured light is split using a prism or the like. May be.

さらに、図1〜図3に示す装置において、分光器10は、レンズ12、14を用いる透過型光学系を示したが、放物面鏡等を用いた反射型光学系としてもよい。   Further, in the apparatus shown in FIGS. 1 to 3, the spectroscope 10 is a transmission type optical system using lenses 12 and 14, but may be a reflection type optical system using a parabolic mirror or the like.

本発明の第1の実施例を示した構成図である。It is the block diagram which showed the 1st Example of this invention. 本発明の第2の実施例を示した構成図である。It is the block diagram which showed the 2nd Example of this invention. 本発明の第3の実施例を示した構成図である。It is the block diagram which showed the 3rd Example of this invention. 従来のWDM信号モニタの構成図である。It is a block diagram of the conventional WDM signal monitor.

符号の説明Explanation of symbols

13 回折格子
15 フォトダイオードアレイモジュール
30 波長演算手段
40 補正部
41 補正値演算手段
42 補正値記憶手段
43 波長補正手段
50 屈折率演算手段
60 環境測定手段
13 Diffraction grating 15 Photodiode array module 30 Wavelength calculation means 40 Correction unit 41 Correction value calculation means 42 Correction value storage means 43 Wavelength correction means 50 Refractive index calculation means 60 Environmental measurement means

Claims (4)

被測定光を回折格子によって波長ごとに異なる角度に出射して分光し、この回折格子が分光した被測定光を光検出器が受光し、この光検出器からの出力によって、波長演算手段が被測定光の波長を求めるWDM信号モニタにおいて、
前記回折格子の設けられる媒質の屈折率に基づき、前記波長演算手段が求めた波長を補正する補正部と、
前記回折格子の設けられる高度または標高の少なくとも一方に加え前記回折格子の設けられる空気の組成、気圧、湿度または水蒸気圧の少なくとも一つから、媒質の屈折率を求め、求めた屈折率を前記補正部に出力する屈折率演算手段と、
前記高度または前記標高に加え、前記空気の組成、前記気圧、前記湿度または前記水蒸気圧の少なくとも一つを測定し、これらの測定結果を前記屈折率演算手段に出力する環境測定手段と
を設け、
前記補正部は、
波長の補正値を記憶する補正値記憶手段と、
前記屈折率演算手段によって求められた回折格子の設けられる媒質の屈折率の変化によって前記回折格子から出射される被測定光の出射角度の変化により、光検出器上における結像位置の変化に基づく波長ずれを補正する補正値を求め、この補正値を補正値記憶手段に格納する補正値演算手段と、
補正値記憶手段の補正値を読み出し、波長演算手段が求めた波長を補正する波長補正手段と
を有することを特徴とするWDM信号モニタ。
The light to be measured is emitted by the diffraction grating at different angles for each wavelength and dispersed, and the light to be measured dispersed by the diffraction grating is received by the photodetector, and the wavelength calculation means is covered by the output from the photodetector. In the WDM signal monitor for determining the wavelength of the measurement light,
A correction unit that corrects the wavelength obtained by the wavelength calculation unit based on the refractive index of the medium in which the diffraction grating is provided;
The composition of the air provided with the diffraction grating in addition to at least one of altitude or elevation provided with the diffraction grating, pressure, from at least one of humidity or vapor pressure, determine the refractive index of the medium, the refractive index determined the correction A refractive index calculating means for outputting to the unit ;
Environmental measurement means for measuring at least one of the composition of the air, the atmospheric pressure, the humidity or the water vapor pressure in addition to the altitude or the altitude, and outputting these measurement results to the refractive index calculation means; >
The correction unit is
Correction value storage means for storing a wavelength correction value;
Based on the change in the imaging position on the photodetector by the change in the exit angle of the light to be measured emitted from the diffraction grating due to the change in the refractive index of the medium provided with the diffraction grating obtained by the refractive index calculating means A correction value calculating means for obtaining a correction value for correcting the wavelength shift and storing the correction value in the correction value storage means;
A WDM signal monitor, comprising: wavelength correction means for reading the correction value stored in the correction value storage means and correcting the wavelength obtained by the wavelength calculation means.
前記高度または前記標高を測定する環境測定手段は、高度計であること特徴とする請求項記載のWDM信号モニタ。 The altitude or environment measuring means for measuring the elevation, WDM signal monitor according to claim 1, wherein it is altimeter. 前記高度または前記標高を測定する環境測定手段は、GPSであることを特徴とする請求項記載のWDM信号モニタ。 The altitude or environment measuring means for measuring the elevation, WDM signal monitor according to claim 1, characterized in that the GPS. 光検出器は、受光素子ごとにあらかじめ波長が割り当てられているフォトダイオードアレイモジュールであることを特徴とする請求項1〜3のいずれかに記載のWDM信号モニタ。 Photodetector, WDM signal monitor according to claim 1, characterized in that a photodiode array module assigned in advance wavelength for each light-receiving element.
JP2003286406A 2002-10-29 2003-08-05 WDM signal monitor Expired - Fee Related JP4320718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003286406A JP4320718B2 (en) 2002-10-29 2003-08-05 WDM signal monitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002313713 2002-10-29
JP2003286406A JP4320718B2 (en) 2002-10-29 2003-08-05 WDM signal monitor

Publications (2)

Publication Number Publication Date
JP2004170383A JP2004170383A (en) 2004-06-17
JP4320718B2 true JP4320718B2 (en) 2009-08-26

Family

ID=32715739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286406A Expired - Fee Related JP4320718B2 (en) 2002-10-29 2003-08-05 WDM signal monitor

Country Status (1)

Country Link
JP (1) JP4320718B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645176B2 (en) * 2004-11-30 2011-03-09 株式会社ニコン Spectroscopic microscope
JP7245633B2 (en) * 2018-11-08 2023-03-24 三星電子株式会社 SPECTRAL OPTICAL SYSTEM, SPECTRAL MEASUREMENT SYSTEM, AND SEMICONDUCTOR INSPECTION METHOD

Also Published As

Publication number Publication date
JP2004170383A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
US7515271B2 (en) Wavelength calibration in a fiber optic gyroscope
JP5775687B2 (en) Spectroscopic detector
JP5023507B2 (en) Wavelength calibration method and wavelength calibration apparatus
KR100803237B1 (en) An optical system, an optical spectrum analyzer, and its method for providing concurrent detection of a calibration signal and a test signal in an optical spectrum analyzer
JP2004191244A (en) Spectrograph and correction method
US20040105098A1 (en) Apparatus and method for determining wavelength from coarse and fine measurements
US5828061A (en) Apparatus for detecting a rotation angle of a diffraction grating
JP2013501254A (en) Optical transceiver and fiber optic gyro
JP2004109137A (en) Radiation measuring device and method
US5933235A (en) Optical spectrum analyzer and spectrometer
JP4320718B2 (en) WDM signal monitor
JPH11211571A (en) Wavelength measuring apparatus
JP5016571B2 (en) Optical spectrum monitor
US6885447B2 (en) Spectrometer and optical spectrum analyzer
US6573989B2 (en) Spectrometer
US20070002429A1 (en) Optical channel monitor
US10612977B2 (en) Grouped molecular absorption line wavelength calibration apparatus and method
JP4247742B2 (en) Wavelength measuring method and spectroscopic device using the same
JPS59164924A (en) Automatic correction system of calibrated wavelength
JP3861792B2 (en) Spectroscopic method
JP3678201B2 (en) WDM signal monitor
JP2003204302A (en) Wdm signal monitor
EP0760469A1 (en) Optical spectrum analyser and spectroscope
US12143156B2 (en) Multi-point self-calibration for broadband optical sensor interrogator
JP2012127779A (en) Optical fiber distribution type measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140612

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees