JP4315849B2 - Artificial aggregate firing method - Google Patents
Artificial aggregate firing method Download PDFInfo
- Publication number
- JP4315849B2 JP4315849B2 JP2004090299A JP2004090299A JP4315849B2 JP 4315849 B2 JP4315849 B2 JP 4315849B2 JP 2004090299 A JP2004090299 A JP 2004090299A JP 2004090299 A JP2004090299 A JP 2004090299A JP 4315849 B2 JP4315849 B2 JP 4315849B2
- Authority
- JP
- Japan
- Prior art keywords
- firing
- raw material
- inner diameter
- fired
- rotary kiln
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Processing Of Solid Wastes (AREA)
Description
本発明は人工骨材の焼成方法に関し、特に、ロータリーキルンを用い未燃カーボンの高い石炭灰を原料としても、高強度且つ低吸水性の人工骨材を生産性よく焼成可能な人工骨材の焼成方法に関する。 The present invention relates to a method for firing an artificial aggregate, and in particular, firing an artificial aggregate capable of firing a high-strength and low water-absorbing artificial aggregate with high productivity even when using a rotary kiln and using coal ash with high unburned carbon. Regarding the method.
石炭を燃焼させると、その質量の約1割に相当する石炭灰が発生する。近年の石炭炊き火力発電所の増加により、石炭灰の発生量が増加しており、その有効な利用方法が求められている。 When coal is burned, coal ash corresponding to about 10% of its mass is generated. Due to the recent increase in coal-fired thermal power plants, the amount of coal ash generated has increased, and there is a need for an effective method for its use.
石炭灰に必要に応じて他の成分を添加し、造粒等の前処理を施した後焼成すると、適度の強度を持った焼結物となり、コンクリート用の骨材等として活用可能となる。そこで、石炭灰からそれら人工骨材を製造し、有効利用を図る試みが種々行われてきている。 When other components are added to the coal ash as necessary, pretreatment such as granulation is performed and then fired, a sintered product having an appropriate strength is obtained and can be used as an aggregate for concrete. Thus, various attempts have been made to produce these artificial aggregates from coal ash and to make effective use thereof.
しかし、石炭炊き火力発電所は安定した高品位の電力を提供することを第1の目的としているため、その副産物である石炭灰について一定の品質での供給を期待することは難しい。結局、発電所別により、あるいは同一発電所であっても、用いる石炭の銘柄や操業条件により、発生する石炭灰の品質は異なってくる。特にその中でも石炭中の炭素が完全燃焼せずに残留したいわゆる未燃カーボンの値は石炭灰により大きく異なり、1質量%未満のものから数質量%、場合によっては10質量%以上のものまで発生しているというのが現状である。 However, since the first purpose of coal-fired thermal power plants is to provide stable and high-quality power, it is difficult to expect supply of coal ash, which is a by-product, at a certain quality. Eventually, the quality of the generated coal ash varies depending on the power plant or even the same power plant, depending on the brand of coal used and the operating conditions. In particular, the value of so-called unburned carbon, in which carbon in coal remains without being completely burned, varies greatly depending on coal ash, and ranges from less than 1% by mass to several mass%, and sometimes more than 10% by mass. The current situation is that
石炭灰を原料として用いて人工骨材を焼成する場合、石炭灰中の未燃カーボンは600〜1000℃程度の温度領域(仮焼領域)で燃焼して失われ、1200℃程度以上の温度領域(焼成領域)で石炭灰の粉体が融着していき、焼結物となり、人工骨材に必要な強度をもった粒子となる。 When calcining artificial aggregate using coal ash as a raw material, unburned carbon in the coal ash is lost by burning in a temperature range of about 600 to 1000 ° C. (calcined range), and a temperature range of about 1200 ° C. or higher. The coal ash powder is fused in the (calcined region) to become a sintered product, which becomes particles having the strength required for the artificial aggregate.
ところが、石炭灰中の未燃カーボン量が1.5質量%を超える場合には、前記仮焼領域で全量燃焼しきらずに、一部は焼成領域に持ち込まれる。焼成領域で石炭灰粉体が融着を開始してから未燃カーボンが燃焼すると、発生する二酸化炭素により焼結物に気泡が生じたり、甚だしい場合には爆裂したりして、強度の高い人工骨材が得られなくなるという現象があった。 However, when the amount of unburned carbon in the coal ash exceeds 1.5% by mass, the entire amount is not burned in the calcined region, and a part is brought into the calcined region. When the unburned carbon burns after the coal ash powder starts to fuse in the firing zone, bubbles are generated in the sintered product due to the generated carbon dioxide, or in severe cases it may explode, causing high strength artificial There was a phenomenon that aggregates could not be obtained.
そこで、特許文献1においては、人工骨材の焼成に用いるロータリーキルン中の前記の仮焼領域の内800〜1000℃の温度領域に相当する部分に、突起物を設け、被焼成物である石炭灰の造粒物を掻き上げて、燃焼ガス中の酸素との接触を良くして、仮焼領域の間に十分未燃カーボンを燃焼除去するという技術が提供されている。
Therefore, in
しかし、特許文献1の技術では、突起物を800〜1000℃という高温領域に設け、被焼成物の掻き上げという機械的操作を行わせるために、その設備稼働上の条件は過酷であり、突起物を長期間残存させることは困難で、頻繁にロータリーキルンを停止して、突起物の修繕を行わなければその効果が持続しないという問題点があった。
However, in the technique of
また、そのような設備の改造を伴わない解決方法としては、焼成量を抑制し、時間を掛けて焼成する方法があるが、これによれば、人工骨材の生産性は低下し、生産コストの大幅な上昇が避けられない。 In addition, as a solution without such modification of the equipment, there is a method of suppressing the amount of firing and firing over time, but according to this, the productivity of the artificial aggregate is lowered and the production cost is reduced. Inevitable rise in
そこで、本発明は、上記従来の人工骨材の焼成における未燃カーボン対策における問題点に鑑みてなされたものであって、ロータリーキルンで未燃カーボンの高い石炭灰を原料として人工骨材を焼成する場合にも、高強度且つ低吸水性の人工骨材を生産性よく、長期間安定して焼成可能な人工骨材の焼成方法を提供することを目的とする。 Therefore, the present invention has been made in view of the problems in the countermeasure against unburned carbon in the firing of the above-mentioned conventional artificial aggregate, and fires the artificial aggregate using coal ash having high unburned carbon in a rotary kiln as a raw material. Even in this case, an object of the present invention is to provide a method for firing an artificial aggregate that can be fired stably for a long period of time with a high strength and low water absorption artificial aggregate.
上記課題を解決するため、本発明者らは、鋭意検討を行った結果、ロータリーキルンの内径を途中で変化させることにより、被焼成物の充填率を調整でき、未燃カーボンの除去に効果的であることを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors have conducted intensive studies.As a result, by changing the inner diameter of the rotary kiln on the way, the filling rate of the object to be fired can be adjusted, which is effective for removing unburned carbon. As a result, the present invention has been completed.
すなわち、請求項1の発明は、石炭灰を主原料とし、造粒した原料をロータリーキルンで焼成する人工骨材の焼成において、原料投入域から仮焼領域までの内径に対する、焼成領域から焼成物排出域までの内径の比が、0.90以上、0.95以下であるロータリーキルンを用いることを特徴とする人工骨材の焼成方法である。
That is, in the invention of
ここで、原料投入域から仮焼領域までとは、概ねロータリーキルン内の温度が600℃〜1000℃の領域に相当する。また、焼成領域から焼成物排出域までとは、概ねロータリーキルン内の温度が1000℃から、1200℃以上の焼点を越えて1000℃程度の焼成物排出温度に到るまでの領域に相当する。原料投入域から仮焼領域までの内径に対する、焼成領域から焼成物排出域までの内径の比を、0.90以上、0.95以下とすることにより、両内径部分間で、被焼成物の充填率、滞留時間が変化する。 Here, the range from the raw material charging region to the calcining region generally corresponds to a region where the temperature in the rotary kiln is 600 ° C to 1000 ° C. The term “from the firing region to the fired product discharge region” generally corresponds to a region where the temperature in the rotary kiln reaches from 1000 ° C. to a fired product discharge temperature of about 1000 ° C. beyond the burning point of 1200 ° C. or higher. The ratio of the inner diameter from the firing area to the fired product discharge area with respect to the inner diameter from the raw material charging area to the calcining area is 0.90 or more and 0.95 or less, so that the material to be fired can be separated between both inner diameter portions. Filling rate and residence time vary.
内径の大きい原料投入域から仮焼領域までの部分では、被焼成物の充填率が低くなる。このことにより、被焼成物全体が燃焼排ガス中の残存空気と接触し、石炭灰中未燃カーボンが十分に燃焼除去される。未燃カーボンが燃焼除去されると、焼点近傍の焼成領域で石炭灰粉体が融着を開始してから気泡が生じるようなことがなくなり、高強度且つ低吸水性の人工骨材を生産性よく焼成できる。 In the portion from the raw material charging area having a large inner diameter to the calcining area, the filling rate of the object to be fired is low. As a result, the entire object to be fired comes into contact with the remaining air in the combustion exhaust gas, and the unburned carbon in the coal ash is sufficiently burned and removed. When unburned carbon is burned and removed, bubbles will not be generated after coal ash powder starts fusing in the firing zone near the burning point, producing high-strength and low water-absorbing artificial bone. It can be fired with good performance.
一方、焼成領域に達した被焼成物は、ロータリーキルンの内径が0.90以上、0.95以下の比率で狭まっているため、通過速度が遅くなり、滞留時間が長くなる。これにより、石炭灰の粉体が融着していき、焼結物となる過程に十分な焼結時間を与えることが可能となる。 On the other hand, since the inner diameter of the rotary kiln is narrowed at a ratio of 0.90 or more and 0.95 or less, the material to be fired that has reached the firing region has a slow passage speed and a long residence time. Thereby, the powder of coal ash is fused, and it becomes possible to give sufficient sintering time to the process which becomes a sintered product.
前記内径の比が0.90未満となると、被焼成物が軟化してロータリーキルン内部に融着する、レンガの消耗も激しくなる等の問題があり、安定運転の妨げとなる恐れがある。該内径の比が0.95を超える場合には、未燃カーボン燃焼除去の効果が十分に得られなくなるため、好ましくない。 When the ratio of the inner diameters is less than 0.90, there is a problem that the material to be fired is softened and fused inside the rotary kiln, and the consumption of bricks becomes severe, which may hinder stable operation. When the ratio of the inner diameters exceeds 0.95, it is not preferable because the effect of removing and burning unburned carbon cannot be sufficiently obtained.
また、前記ロータリーキルンの内径の変化は、耐火物の施工厚の調整により行うことができるので、掻き上げ作用を持たせた突起物に比べ高温雰囲気での耐久性があり、長期間の安定運転が可能である。 In addition, since the change in the inner diameter of the rotary kiln can be performed by adjusting the construction thickness of the refractory, it is more durable in a high temperature atmosphere than a projection with a scraping action, and stable operation over a long period of time. Is possible.
請求項2の発明は、未燃カーボンが1.5質量%以上の石炭灰を原料として使用することを特徴とする請求項1に記載の人工骨材の焼成方法である。
The invention according to
本発明は、石炭灰中の未燃カーボンによる、人工骨材焼成への弊害を防止するものであるので、未燃カーボンが1.5質量%以上の石炭灰を原料として使用する場合に、その効果を有効に活用可能である。 Since the present invention prevents the unburned carbon in the coal ash from adversely affecting the firing of the artificial aggregate, when using coal ash whose unburned carbon is 1.5 mass% or more as a raw material, The effect can be used effectively.
請求項3の発明は、本焼成によって得られた人工骨材の性状は、絶乾密度の値が1.50g/cm3以上、2.10g/cm3以下、且つ24時間吸水率の値が0.1%以上、6%以下、且つ圧かい加重の値が直径5mmから10mmの骨材0.5kN以上、または直径10mmから15mmの骨材1.0kN以上であることを特徴とする請求項1または2のいずれか1項に記載の人工骨材の焼成方法である。
According to the invention of
本発明の焼成方法は、未燃カーボンの燃焼による焼結物の気泡発生や、爆裂を防止できることにより、絶乾密度の値が1.50g/cm3以上、2.10g/cm3以下、且つ24時間吸水率の値が0.1%以上、6%以下、且つ圧かい加重の値が直径5mmから10mmの骨材0.5kN以上、または直径10mmから15mmの骨材1.0kN以上という緻密且つ強度の高い人工骨材が得られる焼成方法である。
The firing method of the present invention can prevent the generation of bubbles and explosion in the sintered product due to the combustion of unburned carbon, so that the absolute dry density value is 1.50 g /
本発明によれば、ロータリーキルンで未燃カーボンの高い石炭灰を原料として人工骨材を焼成する場合にも、原料投入域から仮焼領域に到る間の被焼成物の充填率が低く、燃焼排ガス中の残存空気と効果的に接触するため、石炭灰中未燃カーボンを燃焼除去により十分低減可能で、緻密且つ高強度の人工骨材の焼成が可能である上に、生産性を落とすことなく長期間安定運転することができる。 According to the present invention, even when an artificial aggregate is calcined using coal ash with high unburned carbon in a rotary kiln, the filling rate of the material to be fired during the period from the raw material charging area to the calcining area is low, and combustion Effective contact with residual air in exhaust gas, unburned carbon in coal ash can be sufficiently reduced by combustion removal, and dense and high-strength artificial aggregate can be fired, and productivity is reduced. And stable operation for a long time.
本発明では、人工骨材の主原料には石炭灰を用いる。石炭灰は、石炭火力発電所から排出されるもので、微粉炭ボイラーから飛散し電気集塵機等で回収されるフライアッシュ、循環流動層ボイラーから回収されるPFBC灰等を用い、粒度調整のされていない原粉のままで用いることができる。この石炭灰に必要に応じて結合材としての各種セメント類、粘結材としてのベントナイト、カオリン鉱物、珪酸ナトリウム、パルプ製造時に廃液に含まれるリグニン等を添加する。さらに必要に応じて成分調整材を添加する。成分調整材は、石炭灰を主成分とした原料の、軟化、溶融温度を調整するために添加するもので、例えばSiO2源として珪石粉、カオリン等、Al2O3源としてアルミナ粉、アルミ灰等、CaO源として石灰粉、セメント、石膏等が用いられる。 In the present invention, coal ash is used as the main raw material for the artificial aggregate. Coal ash is discharged from a coal-fired power plant, and is adjusted in particle size using fly ash that is scattered from a pulverized coal boiler and collected by an electric dust collector, PFBC ash that is collected from a circulating fluidized bed boiler, etc. It can be used with no raw powder. If necessary, various types of cements as a binder, bentonite as a binder, kaolin mineral, sodium silicate, lignin contained in the waste liquid during pulp production, and the like are added to the coal ash. Furthermore, a component adjusting material is added as necessary. The component adjusting material is added to adjust the softening and melting temperature of the raw material mainly composed of coal ash. For example, silica powder and kaolin as the SiO 2 source, alumina powder and aluminum as the Al 2 O 3 source As the CaO source such as ash, lime powder, cement, gypsum and the like are used.
上記の原料を混合後、造粒する。造粒は所定範囲の粒径となるように成形できれば方法は問わず、パンペレタイザーを使用した転動造粒、加圧成形機を使用したプレス造粒、ヘンシェルミキサー(三井造船株式会社製、登録商標)等を使用した攪拌造粒等を用いることができる。 After mixing the above raw materials, granulate. Any method can be used as long as the granulation can be molded to a particle size within the specified range. Rolling granulation using a pan pelletizer, press granulation using a pressure molding machine, Henschel mixer (Mitsui Engineering & Shipbuilding Co., Ltd., registration) Agitation granulation using a trademark) or the like can be used.
次に、造粒された原料を焼成して、人工骨材を製造する。焼成装置としては、ロータリーキルンを用いることで、大量生産が可能で、均質な焼成物を得ることができる。そして本発明においては、原料投入域から仮焼領域までの内径に対する、焼成領域から焼成物排出域までの内径の比が、0.90以上、0.95以下であるロータリーキルンを用いる。 Next, the granulated raw material is fired to produce an artificial aggregate. By using a rotary kiln as the firing device, mass production is possible and a homogeneous fired product can be obtained. In the present invention, a rotary kiln having a ratio of the inner diameter from the firing area to the fired product discharge area to the inner diameter from the raw material charging area to the calcining area is 0.90 or more and 0.95 or less.
以下に、図を用いて従来技術に用いるロータリーキルンと、本発明に用いるロータリーキルンの相違を説明する。 Below, the difference between the rotary kiln used in the prior art and the rotary kiln used in the present invention will be described with reference to the drawings.
図2は、従来から用いられている通常のロータリーキルンの側面断面を示したものであり、原料の投入される窯尻側から、焼成物が排出される窯前側まで、内径は同一である。 FIG. 2 shows a side cross-section of a conventional rotary kiln that has been used conventionally, and the inner diameter is the same from the bottom of the kiln where the raw material is charged to the front of the kiln where the fired product is discharged.
図1(a)は本発明に係る人工骨材の焼成方法に用いられるロータリーキルンの一例の側面断面を示したものである。原料投入域から仮焼領域まで2は、一定の内径φAである。焼成領域から焼成物排出域まで3は、一定の内径φBである。そして、0.90φA≦φB≦0.95φAの関係にある。 Fig.1 (a) shows the side cross section of an example of the rotary kiln used for the baking method of the artificial aggregate which concerns on this invention. 2 from the raw material charging area to the calcining area has a constant inner diameter φA. 3 from the firing region to the fired product discharge region has a constant inner diameter φB. The relationship is 0.90φA ≦ φB ≦ 0.95φA.
図1(b)は、本発明に係る他の形態の人工骨材の焼成に用いられるロータリーキルンの一例の側面断面を示したものである。原料投入域から仮焼領域まで2は、一定の内径φAである。焼成領域から焼成物排出域まで3は、徐々に内径が狭まっているが、その平均内径φBは、0.90φA≦φB≦0.95φAの関係にある。なお、本発明において、焼成領域から焼成物排出域までの内径とは、この間が一定の内径である場合にはその内径をいい、この間の内径に変化がある場合には、その平均内径をいうものとする。 FIG.1 (b) shows the side cross section of an example of the rotary kiln used for baking of the artificial bone of the other form which concerns on this invention. 2 from the raw material charging area to the calcining area has a constant inner diameter φA. Although the inner diameter of 3 from the firing region to the fired product discharge region is gradually narrowed, the average inner diameter φB has a relationship of 0.90φA ≦ φB ≦ 0.95φA. In the present invention, the inner diameter from the firing region to the fired product discharge region refers to the inner diameter when the interval is a constant inner diameter, and refers to the average inner diameter when there is a change in the inner diameter. Shall.
石炭火力発電所より排出された未燃カーボン2.8質量%を含有する石炭灰(化学成分を表1に示す。)を主原料に、結合材として普通ポルトランドセメントを内割で15質量%混合し、この混合粉末をパンペレタイザーで水分量15質量%にて粒径5〜15mmに造粒した。次に該造粒物をロータリー式養生機により養生温度85℃、相対湿度90%以上の雰囲気で2時間養生した。養生の終了した造粒物を、以下の各仕様のロータリーキルンで、それぞれ記載した条件にて焼成し、焼成物の人工骨材の物性を測定した。その結果を表2に示す。 Coal ash containing 2.8% by mass of unburned carbon discharged from a coal-fired power plant (chemical components are shown in Table 1) as a main raw material and 15% by mass of ordinary Portland cement as a binder The mixed powder was granulated with a pan pelletizer at a water content of 15% by mass to a particle size of 5 to 15 mm. Next, the granulated material was cured for 2 hours in an atmosphere having a curing temperature of 85 ° C. and a relative humidity of 90% or more using a rotary curing machine. The granulated product after curing was fired in the rotary kiln having the following specifications under the described conditions, and the properties of the artificial aggregate of the fired product were measured. The results are shown in Table 2.
(実施例1)
ロータリーキルン(φ1.5m×20mL)内部のレンガの施工厚を変え、原料投入域から仮焼領域まで(0〜8mまで)の内径φA=1.4m、焼成領域から焼成物排出域まで(15m〜20m)の内径φB=1.26mとし図1(a)の形態のロータリーキルンを得た(内径の比=0.90)。
このロータリーキルンにて、原料送入量1.2トン/h、滞留時間1.5時間、焼成温度1240℃にて焼成を行った。
(実施例2)
ロータリーキルン(φ1.5m×20mL)内部のレンガの施工厚を変え、原料投入域から仮焼領域まで(0〜7.5mまで)の内径φA=1.4m、焼成領域から焼成物排出域まで(15m〜20m)の内径はテーパー状に絞り込み、平均内径φB=1.32mとし図1(b)の形態のロータリーキルンを得た(内径の比=0.94)。
このロータリーキルンにて、原料送入量1.4トン/h、滞留時間1.2時間、焼成温度1265℃にて焼成を行った。
(比較例)
ロータリーキルン(φ1.5m×20mL)内部の原料投入域から仮焼領域まで(0〜8mまで)の内径と焼成領域から焼成物排出域まで(15m〜20m)の内径を同一(φA=φB=1.4m)とし図2の形態のロータリーキルンを得た(内径の比=1)。
このロータリーキルンにて、原料送入量1.3トン/h、滞留時間1.4時間、焼成温度1250℃にて焼成を行った。
Example 1
Change the construction thickness of the brick inside the rotary kiln (φ1.5m × 20mL), the inner diameter φA from raw material input area to calcination area (from 0 to 8m) = 1.4m, from firing area to fired product discharge area (15m ~ 20 m), an inner diameter φB = 1.26 m, and a rotary kiln having the configuration shown in FIG.
This rotary kiln was fired at a raw material feed rate of 1.2 tons / h, a residence time of 1.5 hours, and a firing temperature of 1240 ° C.
(Example 2)
Change the construction thickness of the brick inside the rotary kiln (φ1.5m × 20mL), the inner diameter φA from the raw material input area to the calcination area (from 0 to 7.5m) = 1.4m, from the firing area to the fired product discharge area ( The inner diameter of 15m to 20m was narrowed to a taper shape, and an average inner diameter φB = 1.32 m was obtained to obtain a rotary kiln having the form of FIG. 1B (inner diameter ratio = 0.94).
This rotary kiln was fired at a feed rate of 1.4 ton / h, a residence time of 1.2 hours, and a firing temperature of 1265 ° C.
(Comparative example)
The inner diameter of the rotary kiln (φ1.5 m × 20 mL) from the raw material charging area to the calcining area (from 0 to 8 m) and the inner diameter from the baking area to the fired product discharge area (15 m to 20 m) are the same (φA = φB = 1) 4 m) to obtain a rotary kiln having the form of FIG. 2 (inner diameter ratio = 1).
This rotary kiln was fired at a raw material feed rate of 1.3 tons / h, a residence time of 1.4 hours, and a firing temperature of 1250 ° C.
(表1)
(Table 1)
(表2)
(Table 2)
表2のデータから明らかなように、本発明に係る焼成方法で焼成した実施例1及び2においては、比較例と比べ、絶乾密度、24時間吸水率、圧かい荷重で遥かに良好な数値の人工骨材を得ることができた。 As is clear from the data in Table 2, in Examples 1 and 2 fired by the firing method according to the present invention, far better numerical values were obtained in terms of absolute dry density, 24-hour water absorption rate, and compressive load as compared with the comparative example. Of artificial aggregate.
1 ロータリーキルン
2 原料投入域から仮焼領域まで
3 焼成領域から焼成物排出域まで
4 内径φA
5 内径φB
1
5 Inner diameter φB
Claims (3)
The properties of the artificial aggregate obtained by the main firing are such that the absolute dry density value is 1.50 g / cm 3 or more and 2.10 g / cm 3 or less, and the 24-hour water absorption value is 0.1% or more and 6% or less. 3. The compressive weight value is 0.5 kN or more of aggregate having a diameter of 5 mm to 10 mm, or 1.0 kN or more of aggregate having a diameter of 10 mm to 15 mm. A method for firing the described artificial aggregate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004090299A JP4315849B2 (en) | 2004-03-25 | 2004-03-25 | Artificial aggregate firing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004090299A JP4315849B2 (en) | 2004-03-25 | 2004-03-25 | Artificial aggregate firing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005272247A JP2005272247A (en) | 2005-10-06 |
JP4315849B2 true JP4315849B2 (en) | 2009-08-19 |
Family
ID=35172299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004090299A Expired - Fee Related JP4315849B2 (en) | 2004-03-25 | 2004-03-25 | Artificial aggregate firing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4315849B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5105993B2 (en) * | 2007-07-31 | 2012-12-26 | 三菱重工環境・化学エンジニアリング株式会社 | Detoxification treatment apparatus and method for treated ash |
-
2004
- 2004-03-25 JP JP2004090299A patent/JP4315849B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005272247A (en) | 2005-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104555982B (en) | A kind of can-type calcine furnace for high sulfur petroleum coke calcining | |
CN101337801A (en) | Wear resistant pouring material and method of preparing same | |
WO2016011668A1 (en) | Method for producing ceramic tiles using coal combustion waste | |
JP2001163647A (en) | Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method | |
JP2007261880A (en) | Sintered matter production method | |
JP2000119050A (en) | Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method | |
JP4315849B2 (en) | Artificial aggregate firing method | |
KR100186278B1 (en) | Light weight agregate using stone dust sludge and paper sluge and method for preparing the same | |
TWI642644B (en) | Sfc cementitious block and production method thereof | |
KR20000072111A (en) | Composition for lightweight aggregate and method for manufacturing the same | |
JP4405225B2 (en) | Manufacturing method of artificial aggregate | |
JP4315841B2 (en) | Artificial aggregate firing method and firing apparatus | |
JP4377256B2 (en) | Manufacturing method of artificial lightweight aggregate | |
KR100392933B1 (en) | Composition for lightweight aggregate | |
KR20020044899A (en) | Composition for lightweight aggregate and method for manufacturing the same | |
KR20000040829A (en) | Method for producing fly ash brick | |
JP2007269549A (en) | Method of producing artificial aggregate | |
KR101663204B1 (en) | Method for manufacturing refractory mending materials and itself | |
JP6967106B2 (en) | Molding fuel, its manufacturing method, and limestone firing method | |
JPH10259053A (en) | Ceramic product | |
JP2005281075A (en) | Method for producing alumina-based artificial aggregate and alumina-based artificial aggregate | |
JP2007261887A (en) | Method and apparatus for manufacturing artificial aggregate | |
JP2006248852A (en) | Method of manufacturing sintered material and artificial aggregate | |
JP2005219974A (en) | Method of firing artificial aggregate | |
JP2008156197A (en) | Method for producing fired material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060428 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090430 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090519 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130529 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130529 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140529 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |