[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4314696B2 - Polymer electrolyte fuel cell stack - Google Patents

Polymer electrolyte fuel cell stack Download PDF

Info

Publication number
JP4314696B2
JP4314696B2 JP31672299A JP31672299A JP4314696B2 JP 4314696 B2 JP4314696 B2 JP 4314696B2 JP 31672299 A JP31672299 A JP 31672299A JP 31672299 A JP31672299 A JP 31672299A JP 4314696 B2 JP4314696 B2 JP 4314696B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
fuel cell
fastening
cell stack
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31672299A
Other languages
Japanese (ja)
Other versions
JP2001135343A (en
Inventor
伸介 竹口
英夫 小原
一仁 羽藤
達人 山崎
敏宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP31672299A priority Critical patent/JP4314696B2/en
Publication of JP2001135343A publication Critical patent/JP2001135343A/en
Application granted granted Critical
Publication of JP4314696B2 publication Critical patent/JP4314696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポータブル電源、電気自動車用電源、家庭内コージェネシステム等に使用する高分子電解質を用いた燃料電池スタックに関し、特にその締結方法に関する。
【0002】
【従来の技術】
高分子電解質を用いた燃料電池は、水素を含有する燃料ガスと、空気などの酸素を含有する燃料ガスとを、電気化学的に反応させることで、電力と熱とを同時に発生させるものである。その構造は、まず、水素イオンを選択的に輸送する高分子電解質膜の両面に、白金系の金属触媒を担持したカーボン粉末を主成分とする触媒反応層を形成する。次に、この触媒反応層の外面に、燃料ガスの通気性と、電子導電性を併せ持つ拡散層を形成し、この拡散層と触媒反応層とを合わせて電極とする。
【0003】
次に、供給する燃料ガスが外にリークしたり、二種類の燃料ガスが互いに混合しないように、電極の周囲には高分子電解質膜を挟んでガスシール材やガスケットを配置する。このシール材やガスケットは、電極及び高分子電解質膜と一体化してあらかじめ組み立て、これを、MEA(電極電解質膜接合体)と呼ぶ。MEAの外側には、これを機械的に固定するとともに、隣接したMEAを互いに電気的に直列に接続するための導電性のセパレータ板を配置する。セパレータ板のMEAと接触する部分には、電極面に反応ガスを供給し、生成ガスや余剰ガスを運び去るためのガス流路を形成する。ガス流路はセパレータ板と別に設けることもできるが、セパレータの表面に溝を設けてガス流路とする方式が一般的である。
【0004】
この溝に燃料ガスを供給するためには、燃料ガスを供給する配管を、使用するセパレータの枚数に分岐し、その分岐先を直接セパレータ状の溝につなぎ込む配管治具が必要となる。この治具をマニホールドと呼び、上記のような燃料ガスの供給配管から直接つなぎ込むタイプを外部マニホールドと呼ぶ。このマニホールドには、構造をより簡単にした内部マニホールドと呼ぶ形式のものがある。内部マニホールドとは、ガス流路を形成したセパレータ板に、貫通した孔を設け、ガス流露の出入り口をこの孔まで通し、この孔から直接燃料ガスを供給するものである。
【0005】
燃料電池は運転中に発熱するので、電池を良好な温度状態に維持するために、冷却水等で冷却する必要がある。通常、1〜3セル毎に冷却水を流す冷却部をセパレータとセパレータとの間に挿入するが、セパレータの背面に冷却水流路を設けて冷却部とする場合が多い。これらのMEAとセパレータおよび冷却部を交互に重ねていき、10〜200セル積層した後、集電板と絶縁板を介し、端板でこれを挟み、締結ボルトで両端から固定するのが一般的な積層電池の構造である。
【0006】
高分子電解質型の燃料電池では、単電池を積層する際に高分子電解質膜と電極に一定の面圧を与えることで、電池のインピーダンスを減らし、スムーズに水素/酸素の酸化還元反応を促進させる必要がある。この時、MEAの表面に均一な面圧を与えることが重要である。MEAの加圧にバラツキがあると、強い加圧部分で集中的に反応が起こり、その部分に電流が集中する。このとき、電池の分極がその部分に集中するため、局所的に温度が大きく上昇し、電極が劣化したり、高分子電解質膜に破損が生じる可能性がある。
【0007】
このような状況で、高分子電解質型燃料電池の従来の締結方法は、電池スタックの積層方向の両端にエンドプレートを配置し、同じ直径の4個以上のボルトを配置した締結板でこのエンドプレートを加圧していた。また、締結でのひずみを均一化するため、締結板を2分割した方法も提案されている。
【0008】
【発明が解決しようとする課題】
同じ直径の4個以上のボルトを配置した締結板で、エンドプレートを加圧すると、エンドプレートの加圧状態が、面方向でバラツク。この理由は、平面は3つの点で一意的に限定されるが、点が4個だと、2つの平面が発生する。4本脚の机がガタガタするのは、このためである。4個のボルトを完全に同じ圧力で絞めたときは、当然バラツキは起こらないが、数十個の電池を積層した高分子型燃料電池スタックの締結で、完全に同じ圧力で締め上げることは難しい。
【0009】
また、このような電池スタックを電気自動車の電力源として用いたときは、電池スタックが自動車の走行により、強い振動を受ける。そのときは、上記の加圧の面内バラツキが、更に助長され、電池の特性劣化を生む原因になる。
【0010】
また、従来の締結方法では、締結のための部品点数が多くなると共に、燃料電池の組み立てにおける作業工程が増えることになり、また、電池に対してのひずみが大きくなってしまい、毎回の組み立てでの電極に与える面圧の不均一性のために、これらが実用化の為の障害となる。
【0011】
また、締結部品が極端に過剰な力を受けた状態で電池を長期間運転すると、前記部品の劣化が予想され、燃料ガスの漏れ発生などの安全面において疑問視されるという課題がある。
【0012】
【課題を解決するための手段】
以上の課題を解決するため本発明の高分子電解質型燃料電池スタックは、水素イオン伝導性高分子電解質膜と、前記水素イオン伝導性高分子電解質膜の両面に配置した一対の電極と、前記電極の一方に燃料ガスを供給排出し、他方に酸化剤ガスを供給排出するガス流路を有する一対の導電性セパレータとを具備した単電池を、複数個積層した高分子電解質型燃料電池スタックであって、
前記電池スタックの積層方向の両端に配置された一対のエンドプレートと、
前記一対のエンドプレートを前記電池スタックの積層方向に加圧する帯状締結枠と
前記帯状締結枠に配置され、かつ、前記一対のエンドプレートのうちの一方の側に配置された3本のボルトと、を具備し、
前記帯状締結枠に配置された3本の前記ボルトの径を、前記一対のエンドプレートのうちの一方の表面の中心部に近いものほど大きくしたことを特徴とする。
【0014】
また、3本の前記ボルトが配置された前記帯状締結枠を複数個具備したことが有効である。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら説明する。
【0016】
本発明のポイントは、面を規定する3点の異径締結ボルトで燃料電池を締結することで電池全面に対しひずみを取りながら、締結に必要とする部品点数と作業工程の削減を可能にし、均一な面圧を常に維持させる方法を見出したことである。
【0017】
【実施例】
本発明に適する実施例を図面に従って、具体的に説明する。
【0018】
(実施例1)
まず、本発明のポイントである燃料電池の締め付け構造を、図1、図2及び図3を用いて説明する。図1は締め付け構造を示した外面図であり、図2はその断面図である。図1において、11は単位電池の積層部分である。単位電池の積層部分11の上下にはエンドプレート12を配置する。13は集電板であり出力端子14と電気的につながっている。単位電池の積層部分11とエンドプレート12とは、特に図示していないが、絶縁手段によって電気的に絶縁する。エンドプレート12及び単位電池の積層部分11は、締結板14と締結部材15により締め付けられている。即ち、図2に於いて、エンドプレート及び単位電池の積層部分に対して、その左右の周囲を締結部材15で覆い、上部から締結ボルト16および17、下部から皿バネ22でエンドプレート12に圧力を加え、これで単位電池の積層部分11を締め付ける。ただし、締結ボルト17の位置は、締結ボルト16の位置に較べて、電池の平面方向で中央部にあるため、電池を平面方向に均一に加圧するためには、より大きな力で締め付けなければならない。そこで、締結ボルト16は直径10mmのものを用い、締結ボルト17は直径16mmのものを用いた。締結板14におけるボルト16とボルト17の取り付け位置の概略を図3(a)に示した。
【0019】
以下、燃料電池の製造方法を説明する。
【0020】
炭素微粉末(米国キャボット社製VXC72、一次粒子径:30nm、比表面積:254m2/g)に、平均粒径約30Åの白金粒子を25重量%担持したものを電極の触媒とした。この触媒粉末をイソプロパノ−ルに分散させた溶液に、水素イオン伝導性高分子電解質であるパーフルオロカーボンスルホン酸の粉末をエチルアルコールに分散したディスパージョン溶液を混合し、触媒ペーストを作成した。
【0021】
一方、電極の多孔性基材となるカーボンペーパーを撥水処理した。厚み360μmのカ−ボン不織布(東レ製、TGP−H−120)を、ポリテトラフルオロエチレン含有の水性ディスパージョン(ダイキン工業製、ネオフロンND1)に含浸した後、これを乾燥し、400℃で30分加熱することで、撥水性を与えた。
【0022】
このカ−ボン不織布の上に、前述の触媒ペーストをクリ−ン印刷法をもちいて塗布することで触媒層を形成した。このようにして作成した触媒層とカ−ボン不織布とを合わせて電極とした。電極中に含まれる白金量は0.5mg/cm2、パーフルオロカーボンスルホン酸の量は1.2mg/cm2となるよう調整した。
【0023】
次に、外寸の大きさを前述の電極より5mm大きくした、プロトン伝導性高分子電解質膜(米国デュポン社製ナフィオン112)の裏表両面に、一対の電極を触媒層が電解質膜の側に接するようにホットプレスで接合し、これを電極電解質膜接合体(MEA)とした。
【0024】
このMEAをセパレータ板で挟み込んで単電池の構成とした。セパレータ板の作成は、カーボン粉末材料を冷間プレス成形したカーボン板に、フェノール樹脂を含浸・硬化させガスシール性を改善した樹脂含浸したものを用い、これに切削加工でガス流路を形成した。セパレータの大きさは10cm×20cm、厚さは4mmであり、溝部は幅2mmで深さ1.5mmの凹部であり、この部分をガスが流通する。また、ガス流路間のリブ部は幅1mmの凸部である。また、酸化剤ガスのマニホルド孔と、燃料ガスのマニホルド孔と、冷却水のマニホルド孔を、セパレータに形成した。また、ガス流通路と、マニホールド孔の周りに、ポリイソブチレンに導電性カーボンを分散させた導電性のガスシール剤で、ガスシール部を形成した。
【0025】
以上のように作成したMEAの両面に、導電性セパレータの表面の燃料ガス流通側と、導電性セパレータの裏面の酸化剤ガス流通側とを接合し、単電池Aとした。また、MEAの両面に、導電性セパレータの表面の燃料ガス流通側と、導電性セパレータの裏面の冷却水流通側とを接合し、単電池Bとした。
【0026】
次に、単電池Aと単電池Bとを1セルずつ交互に積層し、合計で50セル積層することで、単位電池の積層部分とした。
【0027】
この積層体の上下にエンドプレートを配し、図1、2で説明した締結構造とした。即ち、締結部材12を介して締結ボルト16、17と皿バネ22で締結力を与える構造とし、組立時の締結圧力を13kgf/cm2とした。感圧紙によりセパレータ板の圧力分布を調べたところ、全面にわたって均一な圧力分布となっていることが確認された。
【0028】
(比較例1)
実施例1では、積層電池部分を3個のボルトで締め付けたが、この部分を4個のボルトで締め付けたものを比較例とした。締結板におけるボルトの取り付け位置の概略を、図3(b)に示した。比較例では直径16mmのボルトを用いた。これ以外は、実施例1で作成した電池と全て同一とした。
【0029】
(特性評価)
以上の実施例1と比較例1で作成した電池に対して、以下の条件で特性を評価した。燃料極に純水素ガスを、空気極に空気をそれぞれ供給した。燃料ガス利用率(Uf)を70%、空気利用率(Uo)を20%とした。ガスの加湿は、燃料ガスを85℃、空気を65〜70℃の加湿バブラーに通すことで行った。電池温度は冷却水の温度と流量を調節することで75℃に維持した。駆動電流はMEAの面積あたり0.5A/cm2 とした。
【0030】
図4に、本発明の実施例の電池と比較例の電池の特性を示した。図4では、縦軸は燃料電池の出力電圧を単位電池の積層数で割ったものを示し、横軸は運転時間を示した。図4に示した結果から、本発明の電池は比較例の電池と較べて、長期信頼性に優れたものであることを確認した。
【0031】
【発明の効果】
本発明によると、燃料電池スタックの締結方法として、従来の4点支持に替わり、MEAに余計なひずみを与えず、かつ均一に面圧を与えることができるため、燃料電池の安定した運転への実現に寄与する。この効果は、この電池スタックを電気自動車に応用したとき更に顕著になる。また、部品点数と作業工程の削減により量産時におけるコスト低減が図れる。
【図面の簡単な説明】
【図1】本発明の実施例である高分子電解質型燃料電池スタックの外観を示した構成概略図
【図2】本発明の実施例である高分子電解質型燃料電池スタックの断面を示した構成概略図
【図3】本発明の実施例である高分子電解質型燃料電池スタックのボルト取り付け位置の概略図
【図4】本発明の実施例の電池と比較例の電池の特性を示したグラフ
【符号の説明】
11 単位電池の積層部分
12 エンドプレート
13 集電板
14 締結板
15 締結部材
16,17 締結ボルト
18 出力端子
22 皿バネ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell stack using a polymer electrolyte used for a portable power source, a power source for an electric vehicle, a domestic cogeneration system, and the like, and more particularly to a fastening method thereof.
[0002]
[Prior art]
A fuel cell using a polymer electrolyte generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and a fuel gas containing oxygen such as air. . In the structure, first, a catalytic reaction layer composed mainly of carbon powder carrying a platinum-based metal catalyst is formed on both surfaces of a polymer electrolyte membrane that selectively transports hydrogen ions. Next, a diffusion layer having both fuel gas permeability and electronic conductivity is formed on the outer surface of the catalytic reaction layer, and the diffusion layer and the catalytic reaction layer are combined to form an electrode.
[0003]
Next, a gas seal material or a gasket is disposed around the electrode with a polymer electrolyte membrane interposed so that the fuel gas to be supplied leaks outside or the two kinds of fuel gases are not mixed with each other. This sealing material or gasket is integrated with an electrode and a polymer electrolyte membrane and assembled in advance, and this is called an MEA (electrode electrolyte membrane assembly). On the outside of the MEA, a conductive separator plate for mechanically fixing the MEA and electrically connecting adjacent MEAs to each other in series is disposed. In the portion of the separator plate that contacts the MEA, a reaction gas is supplied to the electrode surface, and a gas flow path for carrying away the generated gas and surplus gas is formed. The gas flow path can be provided separately from the separator plate, but a system in which a groove is provided on the surface of the separator to form a gas flow path is common.
[0004]
In order to supply the fuel gas to the groove, a pipe jig for branching the pipe for supplying the fuel gas to the number of separators to be used and directly connecting the branch destination to the separator-like groove is required. This jig is called a manifold, and the type that connects directly from the fuel gas supply pipe as described above is called an external manifold. There is a type of this manifold called an internal manifold with a simplified structure. The internal manifold is a separator plate in which a gas flow path is formed with a through hole, a gas flow outlet / outlet is passed to this hole, and fuel gas is directly supplied from this hole.
[0005]
Since the fuel cell generates heat during operation, it is necessary to cool it with cooling water or the like in order to maintain the battery at a good temperature. Usually, a cooling unit that allows cooling water to flow every 1 to 3 cells is inserted between the separator and the separator. However, a cooling water channel is often provided on the back surface of the separator to form a cooling unit. These MEAs, separators and cooling units are alternately stacked, and after stacking 10 to 200 cells, it is generally sandwiched between end plates via current collector plates and insulating plates, and fixed from both ends with fastening bolts. This is a structure of a laminated battery.
[0006]
In polymer electrolyte fuel cells, when a single cell is stacked, a constant surface pressure is applied to the polymer electrolyte membrane and the electrode to reduce the cell impedance and smoothly promote the hydrogen / oxygen redox reaction. There is a need. At this time, it is important to apply a uniform surface pressure to the surface of the MEA. If there is a variation in the MEA pressurization, the reaction occurs intensively in the strong pressurization part, and the current concentrates in that part. At this time, since the polarization of the battery concentrates on the portion, the temperature may increase greatly locally, the electrode may deteriorate, or the polymer electrolyte membrane may be damaged.
[0007]
Under such circumstances, the conventional fastening method of the polymer electrolyte fuel cell is the fastening plate in which end plates are arranged at both ends in the stacking direction of the battery stack, and four or more bolts having the same diameter are arranged. Was pressurized. In addition, a method in which the fastening plate is divided into two parts has been proposed in order to make the fastening strain uniform.
[0008]
[Problems to be solved by the invention]
When the end plate is pressed with a fastening plate on which four or more bolts of the same diameter are arranged, the pressed state of the end plate varies in the surface direction. The reason is that the plane is uniquely limited by three points, but if there are four points, two planes are generated. This is why the four-legged desk rattles. When four bolts are completely tightened at the same pressure, there will naturally be no variation, but it is difficult to tighten the polymer fuel cell stack with several tens of cells stacked at the same pressure. .
[0009]
Further, when such a battery stack is used as a power source of an electric vehicle, the battery stack is subjected to strong vibrations due to the traveling of the vehicle. In that case, the in-plane variation of the pressurization is further promoted, which causes deterioration of battery characteristics.
[0010]
In addition, with the conventional fastening method, the number of parts for fastening increases, and the number of work steps in assembling the fuel cell increases, and the strain on the battery increases, so that each time assembly is performed. These are obstacles to practical use due to non-uniform surface pressure applied to the electrodes.
[0011]
In addition, when the battery is operated for a long time in a state in which the fastening part receives an extremely excessive force, the part is expected to deteriorate, and there is a problem that it is questioned in terms of safety such as occurrence of fuel gas leakage.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, a polymer electrolyte fuel cell stack according to the present invention includes a hydrogen ion conductive polymer electrolyte membrane, a pair of electrodes disposed on both sides of the hydrogen ion conductive polymer electrolyte membrane, and the electrodes A polymer electrolyte fuel cell stack in which a plurality of unit cells each having a pair of conductive separators having a gas flow path for supplying and discharging fuel gas to one side and supplying and discharging oxidant gas to the other side are stacked. And
A pair of end plates disposed at both ends in the stacking direction of the battery stack;
A band-shaped fastening frame that pressurize the pair of end plates in the stacking direction of the cell stack,
Three bolts arranged on the belt-like fastening frame and arranged on one side of the pair of end plates ;
The diameter of the three bolts arranged on the belt-like fastening frame is made larger as it is closer to the center of one surface of the pair of end plates.
[0014]
In addition, it is effective to have a plurality of the belt-like fastening frames on which the three bolts are arranged .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0016]
The point of the present invention is that the number of parts and work processes required for fastening can be reduced while tightening the fuel cell with three different diameter fastening bolts that define the surface while taking strain on the entire surface of the battery. It has been found a method of always maintaining a uniform surface pressure.
[0017]
【Example】
Embodiments suitable for the present invention will be specifically described with reference to the drawings.
[0018]
Example 1
First, a fuel cell fastening structure, which is a point of the present invention, will be described with reference to FIGS. 1, 2, and 3. FIG. 1 is an external view showing a tightening structure, and FIG. 2 is a cross-sectional view thereof. In FIG. 1, reference numeral 11 denotes a stacked portion of unit cells. End plates 12 are arranged above and below the stacked portion 11 of the unit cells. A current collector 13 is electrically connected to the output terminal 14. Although not particularly shown, the unit cell stack 11 and the end plate 12 are electrically insulated by an insulating means. The end plate 12 and the laminated portion 11 of the unit cells are fastened by a fastening plate 14 and a fastening member 15. That is, in FIG. 2, the left and right periphery of the end plate and unit cell stack are covered with the fastening member 15, and the fastening bolts 16 and 17 from the top and the disc spring 22 from the bottom are pressed against the end plate 12. Then, the stacked portion 11 of the unit cell is tightened. However, since the position of the fastening bolt 17 is in the central portion in the plane direction of the battery as compared with the position of the fastening bolt 16, it must be tightened with a larger force in order to pressurize the battery uniformly in the plane direction. . Therefore, the fastening bolt 16 having a diameter of 10 mm was used, and the fastening bolt 17 having a diameter of 16 mm was used. The outline of the attachment position of the bolt 16 and the bolt 17 on the fastening plate 14 is shown in FIG.
[0019]
Hereinafter, a method for manufacturing a fuel cell will be described.
[0020]
The electrode catalyst was a carbon fine powder (VXC72, manufactured by Cabot, USA, primary particle size: 30 nm, specific surface area: 254 m 2 / g) supported by 25% by weight of platinum particles having an average particle size of about 30 mm. A dispersion solution in which perfluorocarbonsulfonic acid powder, which is a hydrogen ion conductive polymer electrolyte, was dispersed in ethyl alcohol was mixed with a solution in which this catalyst powder was dispersed in isopropanol to prepare a catalyst paste.
[0021]
On the other hand, the carbon paper used as the porous substrate of the electrode was subjected to water repellent treatment. After impregnating a carbon non-woven fabric (manufactured by Toray Industries, Inc., TGP-H-120) having a thickness of 360 μm into a polytetrafluoroethylene-containing aqueous dispersion (manufactured by Daikin Industries, Neoflon ND1), this is dried and dried at 400 ° C. for 30 minutes. Water repellency was given by heating for a minute.
[0022]
A catalyst layer was formed on the carbon nonwoven fabric by applying the above-described catalyst paste using a clean printing method. The catalyst layer thus prepared and the carbon nonwoven fabric were combined to form an electrode. The amount of platinum is 0.5 mg / cm 2 contained in the electrode, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.
[0023]
Next, the catalyst layer is in contact with the side of the electrolyte membrane on both sides of the proton conductive polymer electrolyte membrane (Nafion 112 manufactured by DuPont, USA) whose outer size is 5 mm larger than the above electrode. Thus, it joined by hot press, and this was set as the electrode electrolyte membrane assembly (MEA).
[0024]
This MEA was sandwiched between separator plates to form a unit cell. The separator plate was prepared by using a carbon plate obtained by cold press-molding a carbon powder material and impregnating and curing a phenolic resin to improve the gas sealing property, and then forming a gas flow path by cutting. . The size of the separator is 10 cm × 20 cm, the thickness is 4 mm, the groove is a recess having a width of 2 mm and a depth of 1.5 mm, and gas flows through this part. Moreover, the rib part between gas flow paths is a convex part of width 1mm. Also, a manifold hole for oxidant gas, a manifold hole for fuel gas, and a manifold hole for cooling water were formed in the separator. A gas seal portion was formed around the gas flow passage and the manifold hole with a conductive gas sealant in which conductive carbon was dispersed in polyisobutylene.
[0025]
The fuel cell circulation side on the surface of the conductive separator and the oxidant gas circulation side on the back surface of the conductive separator were joined to both surfaces of the MEA produced as described above to form a unit cell A. Moreover, the fuel gas distribution side of the surface of the conductive separator and the cooling water distribution side of the back surface of the conductive separator were joined to both surfaces of the MEA to form a unit cell B.
[0026]
Next, the unit cells A and the unit cells B were alternately stacked one by one, and a total of 50 cells were stacked to obtain a stacked portion of the unit battery.
[0027]
End plates are arranged on the top and bottom of the laminate, and the fastening structure described in FIGS. In other words, the fastening bolts 16 and 17 and the disc spring 22 are used to provide a fastening force via the fastening member 12, and the fastening pressure during assembly is 13 kgf / cm 2 . When the pressure distribution of the separator plate was examined using pressure sensitive paper, it was confirmed that the pressure distribution was uniform over the entire surface.
[0028]
(Comparative Example 1)
In Example 1, the laminated battery part was fastened with three bolts, but this part was fastened with four bolts as a comparative example. The outline of the bolt attachment position on the fastening plate is shown in FIG. In the comparative example, a bolt having a diameter of 16 mm was used. Except for this, the batteries were the same as those prepared in Example 1.
[0029]
(Characteristic evaluation)
The characteristics of the batteries prepared in Example 1 and Comparative Example 1 were evaluated under the following conditions. Pure hydrogen gas was supplied to the fuel electrode and air was supplied to the air electrode. The fuel gas utilization rate (Uf) was 70%, and the air utilization rate (Uo) was 20%. The humidification of the gas was performed by passing the fuel gas through a humidified bubbler at 85 ° C and air at 65-70 ° C. The battery temperature was maintained at 75 ° C. by adjusting the cooling water temperature and flow rate. The drive current was 0.5 A / cm 2 per MEA area.
[0030]
FIG. 4 shows the characteristics of the battery of the example of the present invention and the battery of the comparative example. In FIG. 4, the vertical axis represents the output voltage of the fuel cell divided by the number of stacked unit cells, and the horizontal axis represents the operation time. From the results shown in FIG. 4, it was confirmed that the battery of the present invention was excellent in long-term reliability as compared with the battery of the comparative example.
[0031]
【The invention's effect】
According to the present invention, as a method of fastening the fuel cell stack, instead of the conventional four-point support, the MEA can be given uniform surface pressure without giving extra strain to the MEA. Contribute to realization. This effect becomes more prominent when this battery stack is applied to an electric vehicle. In addition, cost reduction during mass production can be achieved by reducing the number of parts and work processes.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing the appearance of a polymer electrolyte fuel cell stack according to an embodiment of the present invention. FIG. 2 is a configuration showing a cross section of the polymer electrolyte fuel cell stack according to an embodiment of the present invention. Schematic diagram [Fig. 3] Schematic diagram of bolt mounting positions of a polymer electrolyte fuel cell stack according to an embodiment of the present invention [Fig. 4] Graph showing characteristics of the battery of the embodiment of the present invention and the battery of the comparative example [ Explanation of symbols]
11 Unit Battery Stack 12 End Plate 13 Current Collector Plate 14 Fastening Plate 15 Fastening Member 16, 17 Fastening Bolt 18 Output Terminal 22 Disc Spring

Claims (2)

水素イオン伝導性高分子電解質膜と、前記水素イオン伝導性高分子電解質膜の両面に配置した一対の電極と、前記電極の一方に燃料ガスを供給排出し、他方に酸化剤ガスを供給排出するガス流路を有する一対の導電性セパレータとを具備した単電池を、複数個積層した高分子電解質型燃料電池スタックであって、
前記電池スタックの積層方向の両端に配置された一対のエンドプレートと、
前記一対のエンドプレートを前記電池スタックの積層方向に加圧する帯状締結枠と
前記帯状締結枠に配置され、かつ、前記一対のエンドプレートのうちの一方の側に配置された3本のボルトと、を具備し、
前記帯状締結枠に配置された3本の前記ボルトの径を、前記一対のエンドプレートのうちの一方の表面の中心部に近いものほど大きくしたことを特徴とする高分子電解質型燃料電池スタック。
A hydrogen ion conductive polymer electrolyte membrane, a pair of electrodes arranged on both sides of the hydrogen ion conductive polymer electrolyte membrane, and supply and discharge of fuel gas to one of the electrodes and supply and discharge of oxidant gas to the other A polymer electrolyte fuel cell stack in which a plurality of unit cells each having a pair of conductive separators having gas flow paths are stacked,
A pair of end plates disposed at both ends in the stacking direction of the battery stack;
A band-shaped fastening frame that pressurize the pair of end plates in the stacking direction of the cell stack,
Three bolts arranged on the belt-like fastening frame and arranged on one side of the pair of end plates ;
A polymer electrolyte fuel cell stack, characterized in that the diameters of the three bolts arranged in the belt-like fastening frame are larger as they are closer to the center of one surface of the pair of end plates.
3本の前記ボルトが配置された前記帯状締結枠を複数個具備したことを特徴とする請求項1に記載の高分子電解質型燃料電池スタック。 2. The polymer electrolyte fuel cell stack according to claim 1, comprising a plurality of the belt-like fastening frames on which the three bolts are arranged .
JP31672299A 1999-11-08 1999-11-08 Polymer electrolyte fuel cell stack Expired - Fee Related JP4314696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31672299A JP4314696B2 (en) 1999-11-08 1999-11-08 Polymer electrolyte fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31672299A JP4314696B2 (en) 1999-11-08 1999-11-08 Polymer electrolyte fuel cell stack

Publications (2)

Publication Number Publication Date
JP2001135343A JP2001135343A (en) 2001-05-18
JP4314696B2 true JP4314696B2 (en) 2009-08-19

Family

ID=18080185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31672299A Expired - Fee Related JP4314696B2 (en) 1999-11-08 1999-11-08 Polymer electrolyte fuel cell stack

Country Status (1)

Country Link
JP (1) JP4314696B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488875B1 (en) * 2002-11-18 2005-05-11 현대자동차주식회사 Assembling structure of electrochemical fuel cell stack
US8524028B2 (en) 2009-08-25 2013-09-03 Hamilton Sundstrnad Space Systems International, Inc. Laminate assembly sealing method and arrangement
EP2469637B1 (en) * 2010-12-24 2019-11-13 Hamilton Sundstrand Space Systems International, Inc. Laminate assembly sealing method and arrangement
JP6098615B2 (en) * 2014-11-12 2017-03-22 トヨタ自動車株式会社 Fuel cell and fuel cell system

Also Published As

Publication number Publication date
JP2001135343A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
JP3596761B2 (en) Polymer electrolyte fuel cell
JP3841347B2 (en) Polymer electrolyte fuel cell
JP4252623B2 (en) Polymer electrolyte fuel cell
JP4051076B2 (en) Polymer electrolyte fuel cell
JPWO2002047190A1 (en) Polymer electrolyte fuel cell and method of operating the same
JP4680338B2 (en) POLYMER ELECTROLYTE FUEL CELL AND METHOD OF CONNECTING THE SAME
JP2002352817A (en) Polymer electrolyte fuel cell
JP4213515B2 (en) Polymer electrolyte fuel cell
JP4314696B2 (en) Polymer electrolyte fuel cell stack
US20080014486A1 (en) Fuel Cell
JP2002343377A (en) Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same
JP4083304B2 (en) Polymer electrolyte fuel cell
JP4439646B2 (en) Conductive separator, polymer electrolyte fuel cell, and method for producing polymer electrolyte fuel cell
JP3685039B2 (en) Polymer electrolyte fuel cell system
JP2003123801A (en) Polymer electrolyte stacked fuel cell
JP4848824B2 (en) Polymer electrolyte fuel cell
JP2004164969A (en) Fuel cell stack
JP4859281B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
JP2002093434A (en) Electrolyte layer/electrode joint body and fuel cell
JP2001167789A (en) High molecule electrolyte fuel cell
JP5136051B2 (en) Fuel cell
JP4397603B2 (en) Polymer electrolyte fuel cell
JP3580525B2 (en) Polymer electrolyte fuel cell
JP2004349013A (en) Fuel cell stack
JPH11312530A (en) Solid polymer electrolyte type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees