[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4314668B2 - Process for producing polyphenylene ether excellent in melt fluidity - Google Patents

Process for producing polyphenylene ether excellent in melt fluidity Download PDF

Info

Publication number
JP4314668B2
JP4314668B2 JP09264999A JP9264999A JP4314668B2 JP 4314668 B2 JP4314668 B2 JP 4314668B2 JP 09264999 A JP09264999 A JP 09264999A JP 9264999 A JP9264999 A JP 9264999A JP 4314668 B2 JP4314668 B2 JP 4314668B2
Authority
JP
Japan
Prior art keywords
polyphenylene ether
group
intrinsic viscosity
aromatic compound
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09264999A
Other languages
Japanese (ja)
Other versions
JP2000281780A (en
Inventor
弘也 藤井
昌美 小川
雅彦 石川
明夫 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP09264999A priority Critical patent/JP4314668B2/en
Publication of JP2000281780A publication Critical patent/JP2000281780A/en
Application granted granted Critical
Publication of JP4314668B2 publication Critical patent/JP4314668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固有粘度0.3〜0.6で、微粉が少なくかつ他の樹脂と混合後の溶融流動特性に優れたポリフェニレンエーテル重合物の製造法に関する。
【0002】
【従来の技術】
ポリフェニレンエーテルは、優れた機械特性、耐熱特性、電気特性などを有するエンジニアリングプラスチックであるが、溶融時の流動特性が悪く、成形加工性に問題があり、通常はポリスチレンに代表される他の樹脂との組成物として利用される。しかしながら、ポリフェニレンエーテルの優れた特性を生かすためには、ポリフェニレンエーテルの組成比を大きくする必要があり、昨今の高い製品性能要求のもとでは、ポリフェニレンエーテルそのものの溶融時の流動性を改良することが必要となっている。
【0003】
この問題に対し、重合反応時の分子量分布を調節する方法(特開平6−21207)、あるいは、組成物の押出混合製造時に、粘度の低いポリフェニレンエーテルを同時に添加する方法(特開平4−342761)が示されているが、前者のように分子量分布をコントロールすることは現実には大幅なプロセスの変更が伴うこと、また、後者は流動性を確保するためには極端に粘度の低いポリフェニレンエーテル(固有粘度0.25以下)を製造しなければならない。この際に、重合反応後のポリフェニレンエーテルの芳香族化合物溶液に、メタノールを加えてポリフェニレンエーテル粒子を析出させる工程で、大量の微粉が発生し、固液分離工程に支障をきたすとともに、得られた製品の混合には特殊な押出機を用いなければならないのが現状である。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、現行のプロセスを大幅に変えることなく安価で、組成物製造時に一般的な押出機を用いることができるように微粉の少ない、流動性の改良されたポリフェニレンエーテルを製造ことにある。
【0005】
【課題を解決するための手段】
本発明者らは、鋭意検討の結果、ポリフェニレンエーテル粉末中の微粉を減少させるためには、芳香族化合物中でポリフェニレンエーテルを重合させた後、沈殿化を工程での重合物の固有粘度が重要であることを見いだし、さらに、この反応後の芳香族溶液の時点で低い固有粘度(0.39以下)のものと、高い固有粘度(0.40以上)のものを、適宜混合した後に、沈殿化を行えば、微粉の低減が可能であることを見いだした。
【0006】
【発明の実施の形態】
即ち、本発明の溶融流動性に優れ、かつ乾燥粉末中の140メッシュ以下の微粉量が60%以下のポリフェニレンエーテルは、(a)芳香族化合物溶媒、銅化合物及びアミン類の存在下で、一種あるいは二種以上のフェノール化合物を酸化重合させて、固有粘度0.15〜0.39のポリフェニレンエーテルを合成する工程、(b)芳香族化合物溶媒、銅化合物及びアミン類の存在下で、一種あるいは二種以上のフェノール化合物を酸化重合させて、固有粘度0.40〜0.65のポリフェニレンエーテルを合成する工程、(c)(a)及び(b)で得られるポリフェニレンエーテルの芳香族化合物溶液を、(a):(b) = 5:95〜95:5の範囲で混合した後、非溶媒のメタノールを加えてポリフェニレンエーテル粒子を析出させる工程、(d)(b)で得られるポリフェニレンエーテルのスラリーを固液分離し、さらにポリフェニレンエーテルの粒子をメタノールで洗浄する工程、(e)(d)で得られるポリフェニレンエーテルのスラリーを連続的に窒素気流下で乾燥し、ポリフェニレンエーテル粉末を得る工程、を含む製造方法である。
【0007】
本発明の重合に用いられる重合反応溶剤は、キシレン及び/またはトルエンを50%以上、望ましくは70%以上含む溶剤である。
【0008】
本発明にいうポリフェニレンエーテルは、一般式(1)で表される構造の繰り返し単位からなる。
【化2】

Figure 0004314668
(式中、R1は、第一級もしくは第二級アルキル基、アリール基、アミノアルキル基、ハロゲン原子、ハロ炭化水素基、炭化水素オキシ基もしくはハロ炭化水素オキシ基を表し、R2は、水素原子、第一級もしくは第二級アルキル基、ハロゲン原子、ハロ炭化水素基、炭化水素オキシ基もしくはハロ炭化水素オキシ基を表す。)
【0009】
代表的なものとしては、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−エチル−1,4−フェニレン)エーテル、ポリ(2,6−ジエチル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−n−プロピル−1,4−フェニレン)エーテル、ポリ(2,6−ジ−n−プロピル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−n−ブチル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−イソプロピル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−クロロエチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−ヒドロキシエチル−1,4−フェニレン)エーテル等のホモポリマー、また2,6−ジメチルフェノールに共重合体成分として2,3,6−トリメチルフェノールおよびo−クレゾールの1種あるいは両方を組み合わせたポリフェニレンエーテル共重合体等が挙げられる。
【0010】
本発明では、混合に用いる各々ポリフェニレンエーテル芳香族化合物溶液は、銅化合物及びアミン類の存在下、空気または希釈した酸素、あるいは純酸素を酸素元として溶液中で重合反応を行うことがきるが、反応停止前の重合物溶液を得るための方法は、連続反応、バッチ反応等公知のいずれの方法でもかまわない。また、これらを各々に使用することもできる。
【0011】
重合反応後の反応溶液の混合は、混合槽への逐次投入、連続投入による混合、連続的な混合機による混合等、溶液混合に用いられる公知の方法であればいずれの方法でもかまわないが、望ましくは攪拌混合機のついた混合槽へ逐次あるいは連続的に相互の反応溶液を投入し混合する方法が挙げられる。このとき、各重合反応溶液の比率は、5:95から95:5の間望ましくは10:90から90:10で行い、これ以上比率が大きくても小さくても、混合による効果の発現は見いだせない。
【0012】
混合後の反応液は、エチレンジアミンあるいはその化合物のうちの一種以上と、還元剤を含む水溶液(c)と、重合反応溶液(d)を c:d = 0.1:1から5:1の比での接触混合により反応を停止する。
【0013】
反応停止後、沈殿化処理を行うために、重合反応液を、含まれる重合物に対し2から35wt%に調整した後、溶剤に対し0.2〜5倍のメタノールを添加して、重合物を析出させる。沈殿化は、攪拌に往復攪拌機を用いる以外は、連続沈殿化、バッチ沈殿化等公知の沈殿化方法であれば、いずれの方法でも用いることができる。
【0014】
析出した重合物は、遠心濾過、連続濾過等公知の方法で濾過される。
【0015】
固液分離によって得られたスラリーは、乾燥処理を行いポリフェニレンエーテル粉末を得る。乾燥方法は公知の方法であればとくに制約を受けないが、窒素気流下、攪拌式乾燥機を用いて連続的に乾燥することが望ましい。
【0016】
【実施例】
以下に具体例により本発明を説明するが、本発明はこれらに限定されるものではない。
【0017】
本発明で得られたポリフェニレンエーテル乾粉の粒子の粒度分布、平均粒径及び106μm以下の粒子の割合は、下記の方法で測定した。粒度分布及び140メッシュパスの106μm以下粒子の割合は、JIS規格(JIS Z8801)に準じた。10、18.5、60、120、140、280メッシュの篩を用い、TNK篩振動機(タナカ化学機器社製)を用いて10分間振動し篩をかけた後に、通過しない重量を測定した。また、平均粒径は50%重量平均径により求めた。
【0018】
押出試験は、東芝機械(株)製2軸押出機(TEM50B)を用い、乾燥後のポリフェニレンエーテル粉体70重量部とポリスチレン系樹脂(電気化学工業(株)製、商品名HI-UM-301 )30重量部を溶融混練して樹脂組成物を押出して、ペレットを製造する際、押出機の吐出量の安定性から押出し不良を判定した。
【0019】
バーフロー試験として、このペレットを300℃で射出成型器(東芝(株)製IS150EN)で1t×20wのバーフロー金型を使用して判定した。
【0020】
実施例1
臭化第二銅2kgをジブチルアミン35kg、トルエン800kg、に溶解させた。この触媒溶液に、2,6−ジメチルフェノール200kgをトルエン500kgに溶かした溶液を加えた。これらの混合液を反応機内にて、酸素を供給しながら40℃で重合を行った。反応停止後、水と接触させて反応液から触媒を除去し、ポリフェニレンエーテル重合反応液を得た。このポリフェニレンエーテル重合反応液を濃縮しポリフェニレンエーテルの濃度が、25wt%であるトルエン溶液(a)を得た。この重合物の固有粘度は0.31dl/gであった。また,上記と同様の方法で反応時間を変えて重合を行い、ポリフェニレンエーテルを25wt%含むトルエン溶液(b)を得た。この重合物の固有粘度は0.50dl/gであった。
このポリフェニレンエーテル溶液(a)と(b)を50:50の割合で混合した。このポリフェニレンエーテル混合液をメタノール水溶液に添加し攪拌しながら析出・沈殿化させた。その後、固液分離機にて液を分離し、湿潤個体を得た。この湿潤固体を窒素気流下、140℃で連続的に乾燥してポリフェニレンエーテル樹脂乾分を得た。この乾粉の固有粘度は0.44dl/gであった。
こうして得られたポリフェニレンエーテル樹脂粉体中の106μm以下の微粒子は35.2wt%であり、またバーフロー試験を行ったところ145であった。機械物性試験の結果を合わせて表1に示す。
【0021】
参考例1
ポリフェニレンエーテル重合反応液を混合しないこと以外は、実施例1と同様の方法で固有粘度0.44dl/gのポリフェニレンエーテル乾分を得た。結果を表1に示す。
【0022】
参考例2
ポリフェニレンエーテル重合反応液を混合しないこと以外は、実施例1と同様の方法で固有粘度0.31dl/gのポリフェニレンエーテル乾分を得た。このとき、沈殿化の際に白濁状態となり、固液分離機の濾過時間は参考例1の2倍を要した。結果を表1に示す。
【0023】
参考例3
ポリフェニレンエーテル重合反応液を混合しないこと以外は、実施例1と同様の方法で固有粘度0.25dl/gのポリフェニレンエーテル粉末を得ようとしたが、沈殿化の際に白濁状態となり、ポリフェニレンエーテル乾分としては得ることが難しかった。結果を表1に示す。
【0024】
実施例2
実施例1の(a)成分の固有粘度を0.25dl/g、(b)成分の固有粘度を0.50dl/g、(a):(b) = 30:70 として、実施例1を繰り返した。結果を表1に示す。
【0025】
実施例3
実施例1の(a)成分の固有粘度を0.25dl/g、(b)成分の固有粘度を0.50dl/g、(a):(b) = 50:50 として、実施例1を繰り返した。結果を表1に示す。
【0026】
実施例4
実施例1の(a)成分の固有粘度を0.25dl/g、(b)成分の固有粘度を0.50dl/g、(a):(b) = 30:70 として、実施例1を繰り返した。結果を表1に示す。
【0027】
比較例1
参考例1で得られたポリフェニレンエーテル粉末と参考例2で得られたポリフェニレンエーテルを50:50の割合で、混合した後、実施例1を繰り返した。結果を表1に示す。
【0028】
比較例2
参考例1で得られたポリフェニレンエーテル粉末と参考例2で得られたポリフェニレンエーテルを70:30の割合で、混合した後、実施例1を繰り返した。結果を表1に示す。
【0029】
比較例3
実施例1の(a)成分の固有粘度を0.25dl/g、(b)成分の固有粘度を0.50dl/g、(a):(b) = 2:98 として、実施例1を繰り返した。結果を表1に示す。
【0030】
【表1】
Figure 0004314668
【0031】
【発明の効果】
本発明の製造方法によれば、流動性に優れ、かつ微粉の少ない、他樹脂との混合にきわめて容易なポリフェニレンエーテルを得ることができ、ポリフェニレンエーテルの優れた機械特性、耐熱特性、電気特性を生かした組成物を提供することが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing a polyphenylene ether polymer having an intrinsic viscosity of 0.3 to 0.6, a small amount of fine powder, and excellent melt flow characteristics after mixing with another resin.
[0002]
[Prior art]
Polyphenylene ether is an engineering plastic that has excellent mechanical properties, heat resistance properties, electrical properties, etc., but has poor flow properties when melted, has a problem in molding processability, and is usually different from other resins typified by polystyrene. It is utilized as a composition. However, in order to take advantage of the excellent properties of polyphenylene ether, it is necessary to increase the composition ratio of polyphenylene ether. Under the recent high product performance requirements, the flowability of polyphenylene ether itself when melted should be improved. Is required.
[0003]
To solve this problem, a method of adjusting the molecular weight distribution during the polymerization reaction (Japanese Patent Laid-Open No. 6-21207) or a method of simultaneously adding low-viscosity polyphenylene ether during the extrusion mixing production of the composition (Japanese Patent Laid-Open No. 4-342761) However, controlling the molecular weight distribution as in the former actually involves a significant process change, and the latter in the polyphenylene ether having extremely low viscosity (in order to ensure fluidity) Intrinsic viscosity 0.25 or less) must be produced. At this time, in the step of adding methanol to the polyphenylene ether aromatic compound solution after the polymerization reaction to precipitate polyphenylene ether particles, a large amount of fine powder was generated, which hindered the solid-liquid separation step and was obtained. The current situation is that a special extruder must be used to mix the products.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to improve the flowability of polyphenylene ether, which is inexpensive without significantly changing the current process, and has a small amount of fine powder so that a general extruder can be used for producing the composition. Is in manufacturing.
[0005]
[Means for Solving the Problems]
As a result of intensive studies, the inventors have determined that the intrinsic viscosity of the polymer in the process of precipitation after polymerizing polyphenylene ether in an aromatic compound in order to reduce the fine powder in the polyphenylene ether powder. Furthermore, after the reaction, the aromatic solution after the reaction was mixed with a low intrinsic viscosity (0.39 or less) and a high intrinsic viscosity (0.40 or more) as appropriate before precipitation. It was found that fine powder can be reduced if the process is changed.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
That is, the polyphenylene ether having excellent melt fluidity and having a fine powder amount of 140 mesh or less in a dry powder of 60% or less is a kind of (a) aromatic compound solvent, copper compound and amines. Or a step of oxidatively polymerizing two or more phenol compounds to synthesize polyphenylene ether having an intrinsic viscosity of 0.15 to 0.39, (b) in the presence of an aromatic compound solvent, a copper compound and amines, A step of synthesizing polyphenylene ether having an intrinsic viscosity of 0.40 to 0.65 by oxidative polymerization of two or more phenolic compounds, and (c) an aromatic compound solution of polyphenylene ether obtained in (a) and (b). , (A) :( b) = 5: 95 to 95: 5 After mixing, non-solvent methanol is added to deposit polyphenylene ether particles. (D) a step of solid-liquid separation of the polyphenylene ether slurry obtained in (b), and further washing the polyphenylene ether particles with methanol; and (e) the polyphenylene ether slurry obtained in (d) continuously. And a step of drying under a nitrogen stream to obtain a polyphenylene ether powder.
[0007]
The polymerization reaction solvent used in the polymerization of the present invention is a solvent containing xylene and / or toluene at 50% or more, desirably 70% or more.
[0008]
The polyphenylene ether referred to in the present invention comprises a repeating unit having a structure represented by the general formula (1).
[Chemical formula 2]
Figure 0004314668
(In the formula, R1 represents a primary or secondary alkyl group, an aryl group, an aminoalkyl group, a halogen atom, a halohydrocarbon group, a hydrocarbonoxy group or a halohydrocarbonoxy group, and R2 represents a hydrogen atom. Represents a primary or secondary alkyl group, a halogen atom, a halohydrocarbon group, a hydrocarbonoxy group or a halohydrocarbonoxy group.)
[0009]
Typical examples include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, poly (2,6-diethyl-1 , 4-phenylene) ether, poly (2-ethyl-6-n-propyl-1,4-phenylene) ether, poly (2,6-di-n-propyl-1,4-phenylene) ether, poly (2 -Methyl-6-n-butyl-1,4-phenylene) ether, poly (2-ethyl-6-isopropyl-1,4-phenylene) ether, poly (2-methyl-6-chloroethyl-1,4-phenylene) ) Homopolymers such as ether and poly (2-methyl-6-hydroxyethyl-1,4-phenylene) ether, and 2,3,6-trimethyl as a copolymer component in 2,6-dimethylphenol. Polyphenylene ether copolymers such as a combination of one or both of the chill phenol and o- cresol.
[0010]
In the present invention, each polyphenylene ether aromatic compound solution used for mixing can be polymerized in solution in the presence of copper compound and amines in the presence of air or diluted oxygen, or pure oxygen as the oxygen source. The method for obtaining the polymer solution before stopping the reaction may be any known method such as continuous reaction or batch reaction. Moreover, these can also be used for each.
[0011]
The mixing of the reaction solution after the polymerization reaction may be any method as long as it is a known method used for solution mixing, such as sequential charging into a mixing tank, mixing by continuous charging, mixing by a continuous mixer, etc. Desirably, there can be mentioned a method in which the mutual reaction solutions are introduced sequentially or continuously into a mixing tank equipped with a stirring mixer. At this time, the ratio of each polymerization reaction solution is preferably 5:95 to 95: 5, preferably 10:90 to 90:10, and even if the ratio is larger or smaller than this, the effect of mixing can be found. Absent.
[0012]
The reaction solution after mixing is composed of ethylenediamine or one or more of its compounds, an aqueous solution (c) containing a reducing agent, and a polymerization reaction solution (d) in a ratio of c: d = 0.1: 1 to 5: 1. The reaction is stopped by contact mixing at.
[0013]
After the reaction is stopped, in order to carry out a precipitation treatment, the polymerization reaction solution is adjusted to 2 to 35 wt% with respect to the contained polymer, then 0.2 to 5 times methanol is added to the solvent, and the polymer is obtained. To precipitate. For the precipitation, any known precipitation method such as continuous precipitation or batch precipitation can be used except that a reciprocating stirrer is used for stirring.
[0014]
The precipitated polymer is filtered by a known method such as centrifugal filtration or continuous filtration.
[0015]
The slurry obtained by solid-liquid separation is dried to obtain polyphenylene ether powder. The drying method is not particularly limited as long as it is a known method, but it is desirable to dry continuously using a stirring dryer in a nitrogen stream.
[0016]
【Example】
Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited thereto.
[0017]
The particle size distribution, average particle size, and ratio of particles of 106 μm or less of the polyphenylene ether dry powder obtained in the present invention were measured by the following methods. The particle size distribution and the ratio of particles of 106 μm or less in the 140 mesh pass were in accordance with JIS standard (JIS Z8801). Using a sieve of 10, 18.5, 60, 120, 140, 280 mesh, and vibrating for 10 minutes using a TNK sieve vibrator (manufactured by Tanaka Chemical Equipment Co., Ltd.), the weight that did not pass was measured. Moreover, the average particle diameter was calculated | required by 50% weight average diameter.
[0018]
The extrusion test was performed using a twin-screw extruder (TEM50B) manufactured by Toshiba Machine Co., Ltd., and 70 parts by weight of polyphenylene ether powder after drying and polystyrene resin (trade name HI-UM-301 manufactured by Denki Kagaku Kogyo Co., Ltd. ) When 30 parts by weight were melt-kneaded and the resin composition was extruded to produce pellets, the extrusion failure was judged from the stability of the discharge amount of the extruder.
[0019]
As a bar flow test, this pellet was determined at 300 ° C. using an injection molding machine (IS150EN manufactured by Toshiba Corporation) using a 1 t × 20 w bar flow mold.
[0020]
Example 1
2 kg of cupric bromide was dissolved in 35 kg of dibutylamine and 800 kg of toluene. A solution prepared by dissolving 200 kg of 2,6-dimethylphenol in 500 kg of toluene was added to the catalyst solution. These mixed liquids were polymerized in a reactor at 40 ° C. while supplying oxygen. After stopping the reaction, the catalyst was removed from the reaction solution by contacting with water to obtain a polyphenylene ether polymerization reaction solution. The polyphenylene ether polymerization reaction solution was concentrated to obtain a toluene solution (a) having a polyphenylene ether concentration of 25 wt%. The intrinsic viscosity of this polymer was 0.31 dl / g. Moreover, it superposed | polymerized by changing the reaction time by the method similar to the above, and the toluene solution (b) containing 25 wt% of polyphenylene ether was obtained. The intrinsic viscosity of this polymer was 0.50 dl / g.
The polyphenylene ether solutions (a) and (b) were mixed at a ratio of 50:50. This polyphenylene ether mixed solution was added to a methanol aqueous solution and precipitated and precipitated while stirring. Thereafter, the liquid was separated with a solid-liquid separator to obtain a wet solid. This wet solid was continuously dried at 140 ° C. under a nitrogen stream to obtain a polyphenylene ether resin dry matter. The intrinsic viscosity of this dry powder was 0.44 dl / g.
The fine particles of 106 μm or less in the thus obtained polyphenylene ether resin powder accounted for 35.2 wt%, and it was 145 when the bar flow test was conducted. The results of the mechanical property test are shown together in Table 1.
[0021]
Reference example 1
A polyphenylene ether dry matter having an intrinsic viscosity of 0.44 dl / g was obtained in the same manner as in Example 1 except that the polyphenylene ether polymerization reaction solution was not mixed. The results are shown in Table 1.
[0022]
Reference example 2
A polyphenylene ether dry matter having an intrinsic viscosity of 0.31 dl / g was obtained in the same manner as in Example 1 except that the polyphenylene ether polymerization reaction solution was not mixed. At this time, the mixture became cloudy during precipitation, and the filtration time of the solid-liquid separator required twice as long as that in Reference Example 1. The results are shown in Table 1.
[0023]
Reference example 3
An attempt was made to obtain a polyphenylene ether powder having an intrinsic viscosity of 0.25 dl / g by the same method as in Example 1 except that the polyphenylene ether polymerization reaction solution was not mixed. It was difficult to get as a minute. The results are shown in Table 1.
[0024]
Example 2
Example 1 was repeated with the intrinsic viscosity of component (a) of Example 1 being 0.25 dl / g, the intrinsic viscosity of component (b) being 0.50 dl / g, and (a) :( b) = 30: 70 It was. The results are shown in Table 1.
[0025]
Example 3
Example 1 was repeated with the intrinsic viscosity of component (a) of Example 1 being 0.25 dl / g, the intrinsic viscosity of component (b) being 0.50 dl / g, and (a) :( b) = 50: 50 It was. The results are shown in Table 1.
[0026]
Example 4
Example 1 was repeated with the intrinsic viscosity of component (a) of Example 1 being 0.25 dl / g, the intrinsic viscosity of component (b) being 0.50 dl / g, and (a) :( b) = 30: 70 It was. The results are shown in Table 1.
[0027]
Comparative Example 1
After mixing the polyphenylene ether powder obtained in Reference Example 1 and the polyphenylene ether obtained in Reference Example 2 in a ratio of 50:50, Example 1 was repeated. The results are shown in Table 1.
[0028]
Comparative Example 2
After mixing the polyphenylene ether powder obtained in Reference Example 1 and the polyphenylene ether obtained in Reference Example 2 at a ratio of 70:30, Example 1 was repeated. The results are shown in Table 1.
[0029]
Comparative Example 3
Example 1 was repeated with the intrinsic viscosity of component (a) in Example 1 being 0.25 dl / g, the intrinsic viscosity of component (b) being 0.50 dl / g, and (a) :( b) = 2: 98 It was. The results are shown in Table 1.
[0030]
[Table 1]
Figure 0004314668
[0031]
【The invention's effect】
According to the production method of the present invention, it is possible to obtain a polyphenylene ether which is excellent in fluidity, has a small amount of fine powder, and is extremely easy to mix with other resins, and has excellent mechanical characteristics, heat resistance characteristics and electrical characteristics of polyphenylene ether. It has become possible to provide an effective composition.

Claims (3)

(a)芳香族化合物溶媒、銅化合物及びアミン類の存在下で、一種あるいは二種以上のフェノール化合物を酸化重合させて、固有粘度0.15〜0.39のポリフェニレンエーテルを合成する工程、
(b)芳香族化合物溶媒、銅化合物及びアミン類の存在下で、一種あるいは二種以上のフェノール化合物を酸化重合させて、固有粘度0.40〜0.65のポリフェニレンエーテルを合成する工程、
(c)(a)及び(b)で得られるポリフェニレンエーテルの芳香族化合物溶液を、(a):(b) = 5:95〜95:5の範囲で混合した後、非溶媒のメタノールを加えてポリフェニレンエーテル粒子を析出させる工程、
(d)(b)で得られるポリフェニレンエーテルのスラリーを固液分離し、さらにポリフェニレンエーテルの粒子をメタノールで洗浄する工程、
(e)(d)で得られるポリフェニレンエーテルのスラリーを連続的に窒素気流下で乾燥し、ポリフェニレンエーテル粉末を得る工程、
を含む、溶融流動性に優れた、固有粘度0.3〜0.6のポリフェニレンエーテルの製造方法。
(A) a step of synthesizing a polyphenylene ether having an intrinsic viscosity of 0.15 to 0.39 by oxidative polymerization of one or more phenolic compounds in the presence of an aromatic compound solvent, a copper compound and amines;
(B) a step of oxidatively polymerizing one or more phenolic compounds in the presence of an aromatic compound solvent, a copper compound and amines to synthesize polyphenylene ether having an intrinsic viscosity of 0.40 to 0.65;
(C) After the aromatic compound solution of polyphenylene ether obtained in (a) and (b) is mixed in the range of (a) :( b) = 5: 95 to 95: 5, methanol as a non-solvent is added. A step of depositing polyphenylene ether particles,
(D) a step of solid-liquid separating the polyphenylene ether slurry obtained in (b), and further washing the polyphenylene ether particles with methanol;
(E) a step of continuously drying the polyphenylene ether slurry obtained in (d) under a nitrogen stream to obtain a polyphenylene ether powder;
A process for producing polyphenylene ether having an intrinsic viscosity of 0.3 to 0.6 and excellent in melt fluidity.
ポリフェニレンエーテルが、一般式(1)で表される構造の繰り返し単位からなる請求項1記載のポリフェニレンエーテルの製造方法。
Figure 0004314668
(式中、R1は、第一級もしくは第二級アルキル基、アリール基、アミノアルキル基、ハロゲン原子、ハロ炭化水素基、炭化水素オキシ基もしくはハロ炭化水素オキシ基を表し、R2は、水素原子、第一級もしくは第二級アルキル基、ハロゲン原子、ハロ炭化水素基、炭化水素オキシ基もしくはハロ炭化水素オキシ基を表す。)
The method for producing a polyphenylene ether according to claim 1, wherein the polyphenylene ether comprises a repeating unit having a structure represented by the general formula (1).
Figure 0004314668
(In the formula, R1 represents a primary or secondary alkyl group, an aryl group, an aminoalkyl group, a halogen atom, a halohydrocarbon group, a hydrocarbonoxy group or a halohydrocarbonoxy group, and R2 represents a hydrogen atom. Represents a primary or secondary alkyl group, a halogen atom, a halohydrocarbon group, a hydrocarbonoxy group or a halohydrocarbonoxy group.)
(e)工程で得られるポリフェニレンエーテルに含まれる、140メッシュ以下の微粉量が60wt%以下であるところの請求項1記載のポリフェニレンエーテルの製造方法。The method for producing polyphenylene ether according to claim 1, wherein the amount of fine powder of 140 mesh or less contained in the polyphenylene ether obtained in the step (e) is 60 wt% or less.
JP09264999A 1999-03-31 1999-03-31 Process for producing polyphenylene ether excellent in melt fluidity Expired - Lifetime JP4314668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09264999A JP4314668B2 (en) 1999-03-31 1999-03-31 Process for producing polyphenylene ether excellent in melt fluidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09264999A JP4314668B2 (en) 1999-03-31 1999-03-31 Process for producing polyphenylene ether excellent in melt fluidity

Publications (2)

Publication Number Publication Date
JP2000281780A JP2000281780A (en) 2000-10-10
JP4314668B2 true JP4314668B2 (en) 2009-08-19

Family

ID=14060317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09264999A Expired - Lifetime JP4314668B2 (en) 1999-03-31 1999-03-31 Process for producing polyphenylene ether excellent in melt fluidity

Country Status (1)

Country Link
JP (1) JP4314668B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078912B (en) * 2018-01-26 2021-11-09 蓝星(北京)技术中心有限公司 Continuous pressure filtration washing method for polyphenyl ether

Also Published As

Publication number Publication date
JP2000281780A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
US3923738A (en) Process for the formation of polyphenylene ethers of controlled particle size
KR100728424B1 (en) Method of separating a polyarylene ether from a solvent
JP4223722B2 (en) Method for isolating polymer resin from solution slurry
JP4145243B2 (en) Precipitation method of polyphenylene ether
US4246398A (en) Method for recovering polyphenylene oxides
US3819761A (en) High impact strength thermoplastic compositions
JP4314666B2 (en) Method for producing low viscosity polyphenylene ether
JP4314668B2 (en) Process for producing polyphenylene ether excellent in melt fluidity
US6107415A (en) Uncompatibilized polyphenylene ether-polyamide compositions
JP4214336B2 (en) Method for producing polyphenylene ether resin powder
JP4288435B2 (en) Method for producing polyphenylene ether resin
EP1969060A1 (en) Polymer blend and method for its isolation
JPH0623248B2 (en) Aryloxytriazine capped polyphenylene ether and process for its preparation
JPH06207002A (en) Preparation of pulverulent polyphenylene ether
EP0594228A2 (en) Process for removing volatile components from solutions containing polyphenylene ethers
CN107446125B (en) Method for producing polyphenylene ether
CN101351491A (en) Method for preparing poly (arylidene aether) and relative combination
US5484831A (en) Polyphenylene ether resin composition
JP2003313290A (en) Process for depositing low-molecular weight polyphenylene ether
JPH083435A (en) Polyphenylene ether resin composition
JP2001040087A (en) Production of polyphenylene ether
JPH0619012B2 (en) Polyphenylene ether-polyamide compositions derived from aryloxytriazine-capped polyphenylene ethers
KR910006959B1 (en) Compatibilized polyphenylene etherpolyamide composition
JP2001026651A (en) Preparation of resin composition
JP2000281773A (en) Method for depositing polyphenylene ether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

EXPY Cancellation because of completion of term