[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4312509B2 - Manufacturing method of metal nanoparticle low symmetry two-dimensional superlattice - Google Patents

Manufacturing method of metal nanoparticle low symmetry two-dimensional superlattice Download PDF

Info

Publication number
JP4312509B2
JP4312509B2 JP2003161930A JP2003161930A JP4312509B2 JP 4312509 B2 JP4312509 B2 JP 4312509B2 JP 2003161930 A JP2003161930 A JP 2003161930A JP 2003161930 A JP2003161930 A JP 2003161930A JP 4312509 B2 JP4312509 B2 JP 4312509B2
Authority
JP
Japan
Prior art keywords
nanoparticle
metal nanoparticles
nanoparticles
protected
dimensional superlattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003161930A
Other languages
Japanese (ja)
Other versions
JP2004358629A (en
Inventor
利治 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003161930A priority Critical patent/JP4312509B2/en
Publication of JP2004358629A publication Critical patent/JP2004358629A/en
Application granted granted Critical
Publication of JP4312509B2 publication Critical patent/JP4312509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ナノテクノロジーに関するものであり、詳しくは、酸及び塩基性配位子で保護した新規な金属ナノ粒子、及び該金属ナノ粒子の配位子間のクローン相互作用を利用して二次元超格子を創製する方法に関する。
本発明の金属ナノ粒子は、エレクトロニクス分野、特にナノ電子デバイス分野において有用である。
【0002】
【従来の技術】
近年、機能単位である金属ナノ粒子を基板上に規則配列させることにより、そのナノデバイスへの応用が精力的に研究されている。本発明者らはこれまでに、室温でクーロンブロッケードが発現する粒径2nm以下の金属ナノ粒子を構成単位とした電子デバイスの実現を目指し、保護配位子間のπ−π相互作用を利用した六方晶金ナノ粒子二次元超格子の創製(非特許文献1参照)や金ナノ粒子一次元鎖列の創製(非特許文献2参照)を報告してきた。一方、電子デバイスの実現にはこれらの技術と共に二次元超格子の種々のパターニング技術の開発も必要不可欠である。
通常、有機配位子で保護された金属ナノ粒子は、溶媒蒸発に伴う自己組織化により、六回対称の六方晶二次元超格子を形成する。また、有機配位子の長さを変えることにより、四回対称正方晶(square)構造又は三回対称擬似ハニカム(honeycomb)構造等の二次元超格子が形成することがあった。
しかしながら、配位子の種類を変えることなく、四回対称正方晶構造又は三回対称擬似ハニカム構造等のナノ粒子低対称性二次元超格子を製造する方法については、これまで全く報告がなされておらず、そのような方法により得られた金属ナノ粒子低対称性二次元超格子は未だ知られていない。
【0003】
【発明が解決しようとする課題】
本発明は、塩基性配位子保護金属ナノ粒子を用い、配位子の種類を変えることなく、四回対称正方晶構造又は三回対称擬似ハニカム構造等のナノ粒子低対称性二次元超格子を創製しようとするものである。
【0004】
【課題を解決するための手段】
本発明は、塩基性配位子で保護された金属ナノ粒子を用い、有機酸でナノ粒子の表面を修飾することにより、配位子の種類を変えることなく、ナノ粒子低対称性二次元超格子を製造する方法に関する。
【0005】
また、本発明は、下記一般式[1]
【化6】

Figure 0004312509
(式中、Rはアルキル基を表し、nは正の整数を表す。)
で示されるベンジルジアルキルアミン誘導体で保護された金属ナノ粒子を有機溶媒中に分散させ、これを有機酸で処理することにより得られた金属ナノ粒子を水に溶解し、該水溶液を親水性の基板上に添加、塗布、乾燥させることにより自己組織化させることを特徴とする、ナノ粒子低対称性二次元超格子の製造方法に関する。
【0006】
更に、本発明は、塩基性配位子で保護された金属ナノ粒子の表面を有機酸で修飾してなる金属ナノ粒子に関する。
【0007】
更にまた、本発明は、下記一般式[1]
【化7】
Figure 0004312509
(式中、Rはアルキル基を表し、nは正の整数を表す。)
で示されるベンジルジアルキルアミン誘導体に関する。
【0008】
即ち、本発明者らは、新たに合成したジアルキルアンモニウム基を有する保護配位子を用いて金ナノ粒子を調製し、有機酸で該ナノ粒子表面を修飾することにより、配位子の種類を変えることなく、配位子間のクーロン相互作用を利用して新規二次元超格子を創製すべく研究を行った結果、本発明を完成するに到った。
【0009】
【発明の実施の形態】
本発明の製造方法により得られるナノ粒子低対称性二次元超格子は、四回対称正方晶構造又は三回対称擬似ハニカム構造等を有する。
【0010】
本発明の製造方法において用いられる塩基性配位子としては、例えばジアルキルアンモニウム基を有する保護配位子が挙げられる。
そのような配位子の好ましいものとしては、例えば、下記一般式[1]
【化8】
Figure 0004312509
(式中、Rはアルキル基を表し、nは正の整数を表す。)
で示されるベンジルジアルキルアミン誘導体が挙げられる。
【0011】
上記一般式[1]において、Rで表されるアルキル基としては、直鎖状又は分岐状の、例えば炭素数1〜10、好ましくは炭素数1〜6、より好ましくは炭素数1〜4の低級アルキル基が挙げられ、具体例としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基等が挙げられる。
上記一般式[1]で示されるベンジルジアルキルアミン誘導体の好ましい具体例としては、例えば下式[2]
【化9】
Figure 0004312509
で示される、ビス−4,4’−(4,4’−ジチオブチルベンジル)−N,N,N’,N’−テトラエチルアミン等が挙げられる。
【0012】
本発明の製造方法において用いられる有機酸としては、例えば、酢酸、マロン酸、しゅう酸、プロピオン酸等の脂肪族カルボン酸や1,3,5−ベンゼントリカルボン酸(以下、BTCAと略す。)、2,6−ナフタレンジカルボン酸等の芳香族カルボン酸、5−スルホ−イソフタル酸などのスルホン酸等が挙げられる。
【0013】
本発明に係る、塩基性配位子で保護された金属ナノ粒子の粒径は、通常5nm以下、好ましくは3nm以下である。
本発明に係る金属ナノ粒子における金属としては、例えば金、銀、銅、鉄、白金などの遷移金属が挙げられるが、電気特性や保護物質の導入のしやすさなどから金が好ましい。
【0014】
本発明に係るナノ粒子低対称性二次元超格子の製造方法は、より具体的には、上記一般式[1]で示されるベンジルジアルキルアミン誘導体で保護された金属ナノ粒子を有機溶媒中に分散させ、これを有機酸で処理することにより得られた金属ナノ粒子を水に溶解し、該水溶液を親水性の基板上に添加、塗布、乾燥させて自己組織化させることにより、ナノ粒子低対称性二次元超格子とするものであるが、ここで用いられる有機溶媒としては、例えば、酢酸エチル、ジメチルアセトアミド、エチレングリコール、トルエン、クロロホルム等が挙げられる。
また、親水性の基板としては、例えば、親水性ポリビニルフォルマールやポリビニルフォルマールで被覆した銅網、或いは、親水性シリカ膜、親水性窒化シリコン等が挙げられる。
【0015】
本発明の製造方法において塩基性配位子として用いられる上記一般式[1]で示されるベンジルジアルキルアミン誘導体の製造法を、上記式[2]で示される、ビス−4,4’−(4,4’−ジチオブチルベンジル)−N,N,N’,N’−テトラエチルアミン(以下、TBAと略す。)を例にして示すと概略以下のようになる。
即ち、先ず、p,α−ジブロモトルエンのジエチルアミンによる求接置換、次いで、4−ブテニルマグネシウムとのパラジウム触媒によるクロスカップリング、続いて、チオ酢酸の光ラジカル付加、そして、加溶媒分解、更には、自動酸化を経ることにより、TBAが合成される。
【0016】
また、上記一般式[1]で示されるベンジルジアルキルアミン誘導体で保護された金属ナノ粒子の製造法を、金属として金を用い、ベンジルジアルキルアミン誘導体としてTBAを用いた場合を例にして示すと概略以下のようになる。
即ち、先ず、HAuCl・4HOをジメチルアセトアミド(DMAc)に溶解し、次いでこれをTBAの存在下、NaBHで還元すれば、TBAで保護された金属ナノ粒子(以下、TBA−Auナノ粒子と略す。)が得られる。得られたTBA−Auナノ粒子は、通常、粒径2.4±0.2nmであり、DMAc溶液からの自己組織化により、アモルファス炭素基板上に六方晶二次元超格子を形成する。
【0017】
更に、本発明に係る、塩基性配位子で保護された金属ナノ粒子、例えばTBA−Auナノ粒子の表面を有機酸で修飾してなる金属ナノ粒子は、概略以下のようにして製造することが出来る。
即ち、精製後のTBA−Auナノ粒子を、例えば酢酸エチルやジメチルアセトアミド(DMAc)等の有機溶媒に溶解又は分散させ、得られた溶液又は分散液に、例えば酢酸或いは1,3,5−ベンゼントリカルボン酸等の有機酸を添加すると、ナノ粒子表面が有機酸塩に転化し、水溶性ナノ粒子が得られる。このとき、系内にエチレングリコールを存在させておくと、基板上に添加、塗布した金ナノ粒子水溶液を蒸発、乾燥させる際の蒸発速度を低下し、格子への溶液の親和性が改善されて二次元超格子の有機的な領域が広がるので好ましい。
この金ナノ粒子水溶液を親水性の基板、例えば親水性のポリビニルフォルマール上に滴下・乾燥することにより、自己組織化した四回対称正方晶構造或いは三回対称擬似ハニカム構造二次元超格子が得られる。
【0018】
上記本発明に係るTBA−Auナノ粒子においては、ジスルフィド基が金の表面に配位するように働き、ベンゼン環がAuナノ粒子に有機溶媒に対する溶解性を与え、アミノ基がアンモニウム塩を形成して二次元超格子の構造を制御しているものと考えられる。
【0019】
【実施例】
以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
【0020】
実施例1 塩基性配位子 ビス−4,4’−(4,4’−ジチオブチルベンジル)−N,N,N’,N’−テトラエチルアミン(TBA)の合成
(1)4−ブロモ−N,N−ジエチルベンジルアミンの合成
ジエチルアミン(50ml)に4−ブロモ−ベンジルブロミド(10.0g、39.0mmol)を室温で加え、溶液を1時間還流した。反応後、減圧下に溶媒を留去し、これにジクロロメタンを加えた後、混合物を希苛性ソーダ水溶液で洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去し濃縮した。残渣をカラムクロマトグラフィー(活性アルミナ、酢酸エチル)により精製して、4−ブロモ−N,N−ジエチルベンジルアミン(10.0g、収率:97%)を得た。
H NMR (400MHz, CDCl): δ 7.41 (d, Ar, 2H), 7.21 (d, Ar, 2H), 3.50 (s, ArCHN, 2H), 2.49 (q, NCHCH, 4H), 1.02 (t, NCHCH, 6H)。GC-MS m/z: 241 (M+)。
【0021】
(2)(4−ブテン−3−イル)−N,N−ジエチルベンジルアミンの合成
上記(1)で得られた4−ブロモ−N,N−ジエチルベンジルアミン(2.0g、8.3mmol)をPdCl(dppf)(67mg、83μmol)と共に無水THF(50ml)中に分散させ、この分散液に、マグネシウム及び4−ブロモブテンから調製した4−ブテニルマグネシウムブロミド(18mmol)の無水THF溶液(50ml)を室温にて1滴ずつ加えた後、溶液を1.5時間還流した。次いで、減圧下に溶媒を留去し、これにジクロロメタンを加えた後、混合物を希塩化アンモニウム水溶液で洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去し濃縮した。残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン:酢酸エチル=1:1→酢酸エチル:ジエチルアミン=10:1)により精製して、(4−ブテン−3−イル)−N,N−ジエチルベンジルアミン(1.60g、収率:89%)を得た。
H NMR (400MHz, CDCl): δ 7.24 (d, Ar, 2H), 7.12 (d, Ar, 2H), 5.86 (m, olefH, 1H), 5.00 (m, olefH, 2H), 3.50 (s, ArCHN, 2H), 2.68 (t, ArCHCH, 2H), 2.50 (q, NCHCH, 4H), 2.38 (q, ArCHCH, 2H), 1.04 (t, NCHCH, 6H)。GC-MS m/z: 217 (M+)。
【0022】
(3)メチル4−(4−ジエチルアミノメチルフェニル)チオブタノエートの合成
上記(2)で得られた(4−ブテン−3−イル)−N,N−ジエチルベンジルアミン(1.60g、7.36mmol)をジクロロエタン(50ml)に溶解し、これにチオ酢酸(2.8ml、39mmol)を加えて、450Wの低圧水銀ランプで4時間照射した。減圧下に溶媒を留去し、これにジクロロメタンを加えた後、混合物を飽和炭酸水素ナトリウム水溶液で洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去し濃縮した。残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン:酢酸エチル=1:1→酢酸エチル:ジエチルアミン=100:1)により精製して、メチル4−(4−ジエチルアミノメチルフェニル)チオブタノエート(1.73g、収率:80%)を得た。
H NMR (400MHz, CDCl): δ 7.23 (d, Ar, 2H), 7.10 (d, Ar, 2H), 3.53 (s, ArCHN, 2H), 2.89 (t, CHS, 2H), 2.60 (t, ArCHCH, 2H), 2.52 (q, NCHCH, 4H), 2.32 (s, COCH, 3H), 1.65 (m, CHCH, 4H), 1.04 (t, NCHCH, 6H)。GC-MS m/z: 293 (M+) 。
【0023】
(4)ビス−4,4’−(4,4’−ジチオブチルベンジル)−N,N,N’,N’−テトラエチルアミン(TBA)の合成
上記(3)で得られたメチル4−(4−ジエチルアミノメチルフェニル)チオブタノエート(1.70g、5.79mmol)を2−プロパノール(20ml)に溶解し、この溶液にKOH(660mg、10.0mmol)を加えて、室温、大気中下で、26時間撹拌した。減圧下に溶媒を留去し、これにジクロロメタンを加えた後、混合物を希苛性ソーダ水溶液で洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去し濃縮した。残渣をカラムクロマトグラフィー(活性アルミナ、ジクロロメタン:ジエチルアミン=100:1)により精製して、淡黄色の油状物としてTBA(0.98g、収率:68%、通算収率:47%)を得た。
H NMR (400MHz, CDCl): δ 7.23 (d, Ar, 4H), 7.10 (d, Ar, 4H), 3.53 (s, ArCHN, 4H), 2.68 (t, CHS, 4H), 2.61 (t, ArCHCH, 4H), 2.51 (q, NCHCH, 8H), 1.70 (m, CHCH, 8H), 1.04 (t, NCHCH, 12H)。 GC-MS m/z: 501 (M+)。
【0024】
実施例2 TBA−Auナノ粒子の合成
保護剤としてTBAを用いてTBA−Auナノ粒子を調製した。
DMAc(44ml)中にTBA(5μmol)を加えて撹拌混合し、これにHAuCl・4HO(10μmol)の10mM DMAc溶液を1ml加え、激しく撹拌しながら、NaBH(0.1mmol)のメタノール(5ml)溶液を加えた。更に30分間撹拌すると、溶液の色は茶色に変わった。水(約50ml)でナノ粒子を沈殿させて、これを濾取し、メタノール/水(2/1、容積/容積)の混合溶媒で数回洗浄した。得られたTBAで保護されたAuナノ粒子(TBA−Auナノ粒子)は、大きさが2.4±0.2nmであり、トルエンのような非極性溶媒のみならず、酢酸エチルやDMAcのような極性溶媒にも良好な溶解性を示した。
該TBA−Auナノ粒子は、DMAc溶液からの自己組織化により、アモルファス炭素基板上に六方晶二次元超格子を形成した。
得られたTBA−Auナノ粒子六方晶二次元超格子の透過型電子顕微鏡(TEM)像を図1に示す。なお、図1中の挿入図は、TBAの化学構造を示す。
【0025】
実施例3 ナノ粒子低対称性二次元超格子の製造
1mM BTCA(又は酢酸)水溶液(100μl)にエチレングリコール(2μl)とTBA−Auの酢酸エチル溶液(10μl、Au原子として2mM)の混合物を加えて激しく撹拌すると水層が緑褐色に変り、金の表面に吸着されたTBAがアンモニウム塩を形成したことを示した。得られたAuナノ粒子は水に対して良好な溶解性を示した。
次いで、ポリビニルホルマールを被覆した銅網上にこれらのナノ粒子水溶液を載せ、溶媒をゆっくりと蒸発させて低対称性二次元超格子を得た。
エチレングリコールを添加したことにより蒸発速度が低下し、格子への溶液の親和性が改善されて二次元超格子の有機的な領域が広がった。
BTCA添加により形成したTBA保護金ナノ粒子擬似ハニカム二次元超格子のTEM像を図2に示す。また、酢酸添加により形成したTBA保護金ナノ粒子正方晶二次元超格子のTEM像を図3に示す。
【0026】
【発明の効果】
本発明は、塩基性配位子で保護された金属ナノ粒子を用い、有機酸でナノ粒子の表面を修飾することにより、配位子の種類を変えることなく、四回対称正方晶構造又は三回対称擬似ハニカム構造等のナノ粒子低対称性二次元超格子を製造する方法を提供するものであり、添加する有機酸の種類により、同一粒子から種々の対称性を有する自己組織化二次元超格子を形成させることが出来るため、創製する二次元超格子の物性(特に電子・光物性)の構造対称性依存性を検討する上で極めて有効である。また、添加有機酸の長さを変えることにより、超格子の粒子間距離も容易に制御することが出来る。
【図面の簡単な説明】
【図1】図1は、2.4nmビス−4,4’−(4,4’−ジチオブチルベンジル)−N,N,N’,N’−テトラエチルアミン(TBA)保護金ナノ粒子六方晶二次元超格子の透過型電子顕微鏡(TEM)像を示す。挿入図は、TBAの化学構造を示す。
【図2】図2は、1,3,5−ベンゼントリカルボン酸添加により形成したTBA保護金ナノ粒子擬似ハニカム二次元超格子のTEM像を示す。
【図3】図3は、酢酸添加により形成したTBA保護金ナノ粒子正方晶二次元超格子のTEM像を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to nanotechnology, and more specifically, novel metal nanoparticles protected with acid and basic ligands, and two-dimensional using clonal interaction between ligands of the metal nanoparticles. The present invention relates to a method of creating a superlattice.
The metal nanoparticles of the present invention are useful in the electronics field, particularly in the nanoelectronic device field.
[0002]
[Prior art]
In recent years, by regularly arranging metal nanoparticles, which are functional units, on a substrate, their application to nanodevices has been energetically studied. The present inventors have so far utilized a π-π interaction between protective ligands for the purpose of realizing an electronic device using a metal nanoparticle having a particle size of 2 nm or less in which Coulomb blockade appears at room temperature as a structural unit. The creation of a hexagonal gold nanoparticle two-dimensional superlattice (see Non-Patent Document 1) and the creation of a gold nanoparticle one-dimensional chain (see Non-Patent Document 2) have been reported. On the other hand, development of various patterning technologies for two-dimensional superlattices is indispensable for realizing electronic devices.
Usually, metal nanoparticles protected with an organic ligand form a hexagonal two-dimensional superlattice with sixfold symmetry by self-assembly accompanying solvent evaporation. In addition, by changing the length of the organic ligand, a two-dimensional superlattice such as a quadruple symmetric tetragonal (square) structure or a three-fold symmetric pseudo-honeycomb (honeycomb) structure may be formed.
However, there has been no report on a method for producing a nanoparticle low-symmetry two-dimensional superlattice such as a quadruple symmetric tetragonal structure or a three-fold symmetric pseudo-honeycomb structure without changing the type of ligand. In addition, a metal nanoparticle low-symmetry two-dimensional superlattice obtained by such a method is not yet known.
[0003]
[Problems to be solved by the invention]
The present invention uses a basic ligand-protected metal nanoparticle, and a nanoparticle low-symmetric two-dimensional superlattice such as a quadruple symmetric tetragonal structure or a three-fold symmetric pseudo-honeycomb structure without changing the type of ligand Is to create.
[0004]
[Means for Solving the Problems]
The present invention uses a metal nanoparticle protected with a basic ligand and modifies the surface of the nanoparticle with an organic acid, so that the nanoparticle low symmetry two-dimensional super The present invention relates to a method of manufacturing a grating.
[0005]
Further, the present invention provides the following general formula [1]
[Chemical 6]
Figure 0004312509
(In the formula, R represents an alkyl group, and n represents a positive integer.)
The metal nanoparticles protected with a benzyldialkylamine derivative represented by the formula (1) are dispersed in an organic solvent, and the metal nanoparticles obtained by treating the metal nanoparticles with an organic acid are dissolved in water, and the aqueous solution is dissolved in a hydrophilic substrate. The present invention relates to a method for producing a nanoparticle low-symmetry two-dimensional superlattice, which is self-assembled by adding, coating and drying.
[0006]
Furthermore, the present invention relates to a metal nanoparticle obtained by modifying the surface of a metal nanoparticle protected with a basic ligand with an organic acid.
[0007]
Furthermore, the present invention provides the following general formula [1]
[Chemical 7]
Figure 0004312509
(In the formula, R represents an alkyl group, and n represents a positive integer.)
And a benzyldialkylamine derivative represented by the formula:
[0008]
That is, the present inventors prepared gold nanoparticles using a newly synthesized protective ligand having a dialkylammonium group, and modified the surface of the nanoparticle with an organic acid, thereby changing the type of ligand. As a result of research to create a new two-dimensional superlattice using Coulomb interaction between ligands without changing, the present invention has been completed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The nanoparticle low-symmetric two-dimensional superlattice obtained by the production method of the present invention has a quadruple symmetric tetragonal structure, a three-fold symmetric pseudo honeycomb structure, or the like.
[0010]
Examples of the basic ligand used in the production method of the present invention include a protective ligand having a dialkylammonium group.
Preferred examples of such a ligand include, for example, the following general formula [1]
[Chemical 8]
Figure 0004312509
(In the formula, R represents an alkyl group, and n represents a positive integer.)
The benzyl dialkylamine derivative shown by these is mentioned.
[0011]
In the general formula [1], the alkyl group represented by R is linear or branched, for example, having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms. Specific examples include a lower alkyl group, and specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a tert-butyl group.
Preferable specific examples of the benzyldialkylamine derivative represented by the general formula [1] include, for example, the following formula [2]
[Chemical 9]
Figure 0004312509
And bis-4,4 ′-(4,4′-dithiobutylbenzyl) -N, N, N ′, N′-tetraethylamine and the like.
[0012]
Examples of the organic acid used in the production method of the present invention include aliphatic carboxylic acids such as acetic acid, malonic acid, oxalic acid, and propionic acid, and 1,3,5-benzenetricarboxylic acid (hereinafter abbreviated as BTCA). Examples thereof include aromatic carboxylic acids such as 2,6-naphthalenedicarboxylic acid, and sulfonic acids such as 5-sulfo-isophthalic acid.
[0013]
The particle size of the metal nanoparticles protected with a basic ligand according to the present invention is usually 5 nm or less, preferably 3 nm or less.
Examples of the metal in the metal nanoparticles according to the present invention include transition metals such as gold, silver, copper, iron, and platinum. Gold is preferable from the viewpoint of electrical characteristics and ease of introduction of a protective substance.
[0014]
More specifically, the method for producing a nanoparticle low-symmetric two-dimensional superlattice according to the present invention comprises dispersing metal nanoparticles protected with a benzyldialkylamine derivative represented by the above general formula [1] in an organic solvent. The metal nanoparticles obtained by treating this with an organic acid are dissolved in water, and the aqueous solution is added onto a hydrophilic substrate, coated, dried, and self-assembled, whereby the nanoparticles have low symmetry. The organic solvent used here is, for example, ethyl acetate, dimethylacetamide, ethylene glycol, toluene, chloroform or the like.
In addition, examples of the hydrophilic substrate include hydrophilic polyvinyl formal, a copper net covered with polyvinyl formal, a hydrophilic silica film, and hydrophilic silicon nitride.
[0015]
The production method of the benzyldialkylamine derivative represented by the above general formula [1] used as the basic ligand in the production method of the present invention is the same as the bis-4,4 ′-(4 represented by the above formula [2]. , 4′-dithiobutylbenzyl) -N, N, N ′, N′-tetraethylamine (hereinafter abbreviated as TBA) is shown as an example as follows.
That is, first, the cleavable substitution of p, α-dibromotoluene with diethylamine, followed by palladium-catalyzed cross-coupling with 4-butenylmagnesium, followed by photoradical addition of thioacetic acid, and solvolysis, TBA is synthesized through autoxidation.
[0016]
In addition, the method for producing metal nanoparticles protected with the benzyldialkylamine derivative represented by the general formula [1] is schematically illustrated using gold as a metal and TBA as a benzyldialkylamine derivative. It becomes as follows.
That is, first, if HAuCl 4 · 4H 2 O is dissolved in dimethylacetamide (DMAc) and then reduced with NaBH 4 in the presence of TBA, TBA-protected metal nanoparticles (hereinafter referred to as TBA-Au nanoparticles). Abbreviated particle)). The obtained TBA-Au nanoparticles usually have a particle size of 2.4 ± 0.2 nm, and form a hexagonal two-dimensional superlattice on the amorphous carbon substrate by self-assembly from the DMAc solution.
[0017]
Furthermore, the metal nanoparticles protected by the basic ligand according to the present invention, for example, the metal nanoparticles obtained by modifying the surface of the TBA-Au nanoparticles with an organic acid, can be manufactured as follows. I can do it.
That is, purified TBA-Au nanoparticles are dissolved or dispersed in an organic solvent such as ethyl acetate or dimethylacetamide (DMAc), and the resulting solution or dispersion is mixed with, for example, acetic acid or 1,3,5-benzene. When an organic acid such as tricarboxylic acid is added, the nanoparticle surface is converted into an organic acid salt, and water-soluble nanoparticles are obtained. At this time, if ethylene glycol is present in the system, the evaporation rate when the gold nanoparticle aqueous solution added and applied on the substrate is evaporated and dried is reduced, and the affinity of the solution to the lattice is improved. This is preferable because the organic region of the two-dimensional superlattice widens.
By dropping and drying this aqueous solution of gold nanoparticles on a hydrophilic substrate, for example, hydrophilic polyvinyl formal, a self-organized four-fold symmetric tetragonal structure or three-fold symmetric pseudo-honeycomb structure two-dimensional superlattice is obtained. It is done.
[0018]
In the TBA-Au nanoparticle according to the present invention, the disulfide group works to coordinate with the gold surface, the benzene ring gives the Au nanoparticle solubility in an organic solvent, and the amino group forms an ammonium salt. Thus, the structure of the two-dimensional superlattice is considered to be controlled.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.
[0020]
Example 1 Synthesis of basic ligand bis-4,4 ′-(4,4′-dithiobutylbenzyl) -N, N, N ′, N′-tetraethylamine (TBA) (1) 4-bromo- Synthesis of N, N-diethylbenzylamine 4-Bromo-benzylbromide (10.0 g, 39.0 mmol) was added to diethylamine (50 ml) at room temperature and the solution was refluxed for 1 hour. After the reaction, the solvent was distilled off under reduced pressure, dichloromethane was added thereto, and the mixture was washed with dilute caustic soda aqueous solution. After drying over anhydrous sodium sulfate, the solvent was distilled off and concentrated. The residue was purified by column chromatography (activated alumina, ethyl acetate) to obtain 4-bromo-N, N-diethylbenzylamine (10.0 g, yield: 97%).
1 H NMR (400 MHz, CDCl 3 ): δ 7.41 (d, Ar, 2H), 7.21 (d, Ar, 2H), 3.50 (s, ArCH 2 N, 2H), 2.49 (q, NCH 2 CH 3 , 4H ), 1.02 (t, NCH 2 CH 3 , 6H). GC-MS m / z: 241 (M +).
[0021]
(2) Synthesis of (4-buten-3-yl) -N, N-diethylbenzylamine 4-bromo-N, N-diethylbenzylamine obtained in the above (1) (2.0 g, 8.3 mmol) Was dispersed in anhydrous THF (50 ml) with PdCl 2 (dppf) (67 mg, 83 μmol), and 4-butenylmagnesium bromide (18 mmol) prepared from magnesium and 4-bromobutene was added to this dispersion in anhydrous THF (50 ml). ) Was added dropwise at room temperature, and the solution was refluxed for 1.5 hours. Next, the solvent was distilled off under reduced pressure, dichloromethane was added thereto, and the mixture was washed with a dilute aqueous ammonium chloride solution. After drying over anhydrous sodium sulfate, the solvent was distilled off and concentrated. The residue was purified by column chromatography (silica gel, hexane: ethyl acetate = 1: 1 → ethyl acetate: diethylamine = 10: 1) to give (4-buten-3-yl) -N, N-diethylbenzylamine (1 .60 g, yield: 89%).
1 H NMR (400 MHz, CDCl 3 ): δ 7.24 (d, Ar, 2H), 7.12 (d, Ar, 2H), 5.86 (m, olefH, 1H), 5.00 (m, olefH, 2H), 3.50 (s , ArCH 2 N, 2H), 2.68 (t, ArCH 2 CH 2 , 2H), 2.50 (q, NCH 2 CH 3 , 4H), 2.38 (q, ArCH 2 CH 2 , 2H), 1.04 (t, NCH 2 CH 3, 6H). GC-MS m / z: 217 (M +).
[0022]
(3) Synthesis of methyl 4- (4-diethylaminomethylphenyl) thiobutanoate (4-buten-3-yl) -N, N-diethylbenzylamine (1.60 g, 7.36 mmol) obtained in (2) above Was dissolved in dichloroethane (50 ml), thioacetic acid (2.8 ml, 39 mmol) was added thereto, and irradiated with a 450 W low pressure mercury lamp for 4 hours. The solvent was distilled off under reduced pressure, dichloromethane was added thereto, and the mixture was washed with a saturated aqueous sodium hydrogen carbonate solution. After drying over anhydrous sodium sulfate, the solvent was distilled off and concentrated. The residue was purified by column chromatography (silica gel, hexane: ethyl acetate = 1: 1 → ethyl acetate: diethylamine = 100: 1) to give methyl 4- (4-diethylaminomethylphenyl) thiobutanoate (1.73 g, yield: 80%).
1 H NMR (400 MHz, CDCl 3 ): δ 7.23 (d, Ar, 2H), 7.10 (d, Ar, 2H), 3.53 (s, ArCH 2 N, 2H), 2.89 (t, CH 2 S, 2H) , 2.60 (t, ArCH 2 CH 2 , 2H), 2.52 (q, NCH 2 CH 3 , 4H), 2.32 (s, COCH 3 , 3H), 1.65 (m, CH 2 CH 2 , 4H), 1.04 (t , NCH 2 CH 3 , 6H). GC-MS m / z: 293 (M +).
[0023]
(4) Synthesis of bis-4,4 ′-(4,4′-dithiobutylbenzyl) -N, N, N ′, N′-tetraethylamine (TBA) Methyl 4- () obtained in the above (3) 4-Diethylaminomethylphenyl) thiobutanoate (1.70 g, 5.79 mmol) was dissolved in 2-propanol (20 ml), and KOH (660 mg, 10.0 mmol) was added to this solution. Stir for hours. The solvent was distilled off under reduced pressure, dichloromethane was added thereto, and the mixture was washed with dilute aqueous sodium hydroxide solution. After drying over anhydrous sodium sulfate, the solvent was distilled off and concentrated. The residue was purified by column chromatography (activated alumina, dichloromethane: diethylamine = 100: 1) to obtain TBA (0.98 g, yield: 68%, total yield: 47%) as a pale yellow oil. .
1 H NMR (400 MHz, CDCl 3 ): δ 7.23 (d, Ar, 4H), 7.10 (d, Ar, 4H), 3.53 (s, ArCH 2 N, 4H), 2.68 (t, CH 2 S, 4H) , 2.61 (t, ArCH 2 CH 2 , 4H), 2.51 (q, NCH 2 CH 3 , 8H), 1.70 (m, CH 2 CH 2 , 8H), 1.04 (t, NCH 2 CH 3 , 12H). GC-MS m / z: 501 (M +).
[0024]
Example 2 Synthesis of TBA-Au nanoparticles TBA-Au nanoparticles were prepared using TBA as a protective agent.
TBA (5 μmol) was added to DMAc (44 ml) and mixed with stirring. To this, 1 ml of 10 mM DMAc solution of HAuCl 4 .4H 2 O (10 μmol) was added, and methanol with NaBH 4 (0.1 mmol) was stirred vigorously. (5 ml) solution was added. After stirring for an additional 30 minutes, the color of the solution turned brown. The nanoparticles were precipitated with water (about 50 ml), which was collected by filtration and washed several times with a mixed solvent of methanol / water (2/1, volume / volume). The obtained TBA-protected Au nanoparticles (TBA-Au nanoparticles) have a size of 2.4 ± 0.2 nm and are not only nonpolar solvents such as toluene, but also ethyl acetate and DMAc. Good solubility in polar solvents.
The TBA-Au nanoparticles formed a hexagonal two-dimensional superlattice on the amorphous carbon substrate by self-assembly from the DMAc solution.
A transmission electron microscope (TEM) image of the obtained TBA-Au nanoparticle hexagonal two-dimensional superlattice is shown in FIG. The inset in FIG. 1 shows the chemical structure of TBA.
[0025]
Example 3 Preparation of Nanoparticle Low Symmetric Two-Dimensional Superlattice A mixture of ethylene glycol (2 μl) and TBA-Au in ethyl acetate (10 μl, 2 mM as Au atom) was added to 1 mM BTCA (or acetic acid) aqueous solution (100 μl). When vigorously stirred, the aqueous layer turned greenish brown, indicating that TBA adsorbed on the gold surface formed an ammonium salt. The obtained Au nanoparticles showed good solubility in water.
Next, these aqueous nanoparticle solutions were placed on a copper net covered with polyvinyl formal, and the solvent was slowly evaporated to obtain a low-symmetric two-dimensional superlattice.
The addition of ethylene glycol decreased the evaporation rate, improved the affinity of the solution for the lattice, and expanded the organic area of the two-dimensional superlattice.
FIG. 2 shows a TEM image of a TBA-protected gold nanoparticle pseudo honeycomb two-dimensional superlattice formed by adding BTCA. Further, FIG. 3 shows a TEM image of a TBA-protected gold nanoparticle tetragonal two-dimensional superlattice formed by adding acetic acid.
[0026]
【The invention's effect】
The present invention uses a metal nanoparticle protected with a basic ligand, and modifies the surface of the nanoparticle with an organic acid, thereby changing the type of the ligand without changing the type of the ligand. It provides a method for producing nano-particle low-symmetry two-dimensional superlattices such as symmetric quasi-honeycomb structures. Depending on the type of organic acid added, self-organized two-dimensional super-symmetry with various symmetries from the same particle Since a lattice can be formed, it is extremely effective in examining the dependency of the physical properties (particularly electronic and optical properties) of the two-dimensional superlattice to be created on the structure symmetry. Further, the distance between the particles of the superlattice can be easily controlled by changing the length of the added organic acid.
[Brief description of the drawings]
FIG. 1 shows 2.4 nm bis-4,4 ′-(4,4′-dithiobutylbenzyl) -N, N, N ′, N′-tetraethylamine (TBA) protected gold nanoparticles hexagonal crystal 2 shows a transmission electron microscope (TEM) image of a two-dimensional superlattice. The inset shows the chemical structure of TBA.
FIG. 2 shows a TEM image of a TBA-protected gold nanoparticle pseudo-honeycomb two-dimensional superlattice formed by adding 1,3,5-benzenetricarboxylic acid.
FIG. 3 shows a TEM image of a TBA-protected gold nanoparticle tetragonal two-dimensional superlattice formed by the addition of acetic acid.

Claims (9)

下記一般式[1]
Figure 0004312509
(式中、Rはアルキル基を表し、nは正の整数を表す。)
で示されるベンジルジアルキルアミン誘導体で保護された金属ナノ粒子を有機溶媒中に溶解又は分散させ、これを有機酸で処理することにより得られた金属ナノ粒子を水に溶解し、該水溶液を、親水性ポリビニルフォルマール又はポリビニルフォルマールで被覆した銅網、親水性シリカ膜、及び親水性窒化シリコンからなる群から選ばれる親水性の基板上に添加、塗布、乾燥させることにより自己組織化させることを特徴とする、ナノ粒子低対称性二次元超格子の製造方法。
The following general formula [1]
Figure 0004312509
(In the formula, R represents an alkyl group, and n represents a positive integer.)
A metal nanoparticle protected with a benzyldialkylamine derivative represented by is dissolved or dispersed in an organic solvent, and the metal nanoparticle obtained by treating the metal nanoparticle with an organic acid is dissolved in water. To be self-assembled by adding, applying, and drying on a hydrophilic substrate selected from the group consisting of a conductive polyvinyl formal or a copper net coated with polyvinyl formal, a hydrophilic silica film, and hydrophilic silicon nitride. A method for producing a nanoparticle low-symmetry two-dimensional superlattice.
低対称性二次元超格子が、四回対称正方晶構造又は三回対称擬似ハニカム構造である請求項1に記載の製造方法。  The manufacturing method according to claim 1, wherein the low-symmetric two-dimensional superlattice has a four-fold symmetric tetragonal structure or a three-fold symmetric pseudo honeycomb structure. ベンジルジアルキルアミン誘導体が、ビス−4,4’−(4,4’−ジチオブチルベンジル)−N,N,N’,N’−テトラエチルアミンである請求項1又は2に記載の製造方法。  The production method according to claim 1 or 2, wherein the benzyldialkylamine derivative is bis-4,4 '-(4,4'-dithiobutylbenzyl) -N, N, N', N'-tetraethylamine. 有機溶媒が、酢酸エチル又はジメチルアセトアミドである請求項1〜3の何れかに記載の製造方法。  The production method according to claim 1, wherein the organic solvent is ethyl acetate or dimethylacetamide. 有機酸が、酢酸又は1,3,5−ベンゼントリカルボン酸である請求項1〜4の何れかに記載の製造方法。  The production method according to claim 1, wherein the organic acid is acetic acid or 1,3,5-benzenetricarboxylic acid. 塩基性配位子で保護された金属ナノ粒子の粒径が、5nm以下である請求項1〜5の何れかに記載の製造方法。  The production method according to any one of claims 1 to 5, wherein the metal nanoparticles protected with a basic ligand have a particle size of 5 nm or less. 塩基性配位子で保護された金属ナノ粒子の粒径が、3nm以下である請求項6に記載の方法。  The method according to claim 6, wherein the particle size of the metal nanoparticles protected with a basic ligand is 3 nm or less. 金属ナノ粒子が、遷移金属のナノ粒子である請求項1〜7の何れかに記載の製造方法。  The manufacturing method according to claim 1, wherein the metal nanoparticles are transition metal nanoparticles. 金属ナノ粒子が、金のナノ粒子である請求項1〜8のいずれかに記載の方法。  The method according to claim 1, wherein the metal nanoparticles are gold nanoparticles.
JP2003161930A 2003-06-06 2003-06-06 Manufacturing method of metal nanoparticle low symmetry two-dimensional superlattice Expired - Fee Related JP4312509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161930A JP4312509B2 (en) 2003-06-06 2003-06-06 Manufacturing method of metal nanoparticle low symmetry two-dimensional superlattice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161930A JP4312509B2 (en) 2003-06-06 2003-06-06 Manufacturing method of metal nanoparticle low symmetry two-dimensional superlattice

Publications (2)

Publication Number Publication Date
JP2004358629A JP2004358629A (en) 2004-12-24
JP4312509B2 true JP4312509B2 (en) 2009-08-12

Family

ID=34054214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161930A Expired - Fee Related JP4312509B2 (en) 2003-06-06 2003-06-06 Manufacturing method of metal nanoparticle low symmetry two-dimensional superlattice

Country Status (1)

Country Link
JP (1) JP4312509B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815586B2 (en) * 2005-08-12 2011-11-16 国立大学法人 筑波大学 Selective mass synthesis method of Au25 cluster

Also Published As

Publication number Publication date
JP2004358629A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP5186387B2 (en) Selective placement of carbon nanotubes by functionalization
Scaiano et al. Photochemical routes to silver and gold nanoparticles
JP5315240B2 (en) Complexes of carbon nanotubes and fullerenes with molecular clips and their use
US20060177376A1 (en) Stabilized and chemically functionalized nanoparticles
KR101235873B1 (en) A process for the preparation of silver nano particles
US20110165428A1 (en) Photosensitive self-assembled monolayer for selective placement of hydrophilic structures
Safaei-Ghomi et al. Sonochemically synthesis of arylethynyl linked triarylamines catalyzed by CuI nanoparticles: A rapid and green procedure for Sonogashira coupling
KR20140014224A (en) Carbon nanotube manufacturing method
Mohammadi et al. [ZrFe2O4@ SiO2–N–(TMSP)–ASP–Pd (0)] Complex: Synthesis, characterizations, and its application as a nanomagnetic catalyst in cross-coupling and click reactions
Norouzi et al. Synthesis, characterization and catalytic application of a novel ethyl and boron sulfonic acid based bifunctional periodic mesoporous organosilica
Biswas et al. Template-assisted alloying of atom-precise silver nanoclusters: a new approach to generate cluster functionality
JP4312509B2 (en) Manufacturing method of metal nanoparticle low symmetry two-dimensional superlattice
JP4331927B2 (en) Inorganic nanoparticle-organic compound composite and one-dimensional array integrated structure thereof
JP4815586B2 (en) Selective mass synthesis method of Au25 cluster
JP4109458B2 (en) Fullerene derivatives and metal complexes
Dutta et al. CuI incorporated cobalt ferrite nanoparticles as a magnetically separable catalyst for oxidative amidation reaction
JP2006265151A (en) Complex of amphiphilic compound with soluble carbon nanotube
JP4099526B2 (en) Separation and purification of porphyrin dimer derivatives and carbon nanotubes using them
KR20080027681A (en) Method of preparing metal nano particle using alkylamine as reducing agent
KR102062869B1 (en) Water-soluble organic photocatalyst and water splitting hydrogen evolution photocatalytic system using the same
JP3977649B2 (en) Phenylazomethine dendron complex
JP4352131B2 (en) Metal complex nanowire and manufacturing method thereof
JP3855057B2 (en) Surface-modified gold nanoparticles and method for producing the same
JP2021084896A (en) Novel dendrimer having alkyl shell structure and production method of metal sub-nanoparticle
KR20150091634A (en) A preparing method of metal nanoparticle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees