JP4312509B2 - Manufacturing method of metal nanoparticle low symmetry two-dimensional superlattice - Google Patents
Manufacturing method of metal nanoparticle low symmetry two-dimensional superlattice Download PDFInfo
- Publication number
- JP4312509B2 JP4312509B2 JP2003161930A JP2003161930A JP4312509B2 JP 4312509 B2 JP4312509 B2 JP 4312509B2 JP 2003161930 A JP2003161930 A JP 2003161930A JP 2003161930 A JP2003161930 A JP 2003161930A JP 4312509 B2 JP4312509 B2 JP 4312509B2
- Authority
- JP
- Japan
- Prior art keywords
- nanoparticle
- metal nanoparticles
- nanoparticles
- protected
- dimensional superlattice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002082 metal nanoparticle Substances 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 239000002105 nanoparticle Substances 0.000 claims description 41
- 239000010931 gold Substances 0.000 claims description 31
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical group CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 30
- 239000003446 ligand Substances 0.000 claims description 22
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 18
- 229910052737 gold Inorganic materials 0.000 claims description 17
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 16
- 150000007524 organic acids Chemical class 0.000 claims description 13
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 9
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical group [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- 239000003960 organic solvent Substances 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims description 6
- 229920002554 vinyl polymer Polymers 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 229910021524 transition metal nanoparticle Inorganic materials 0.000 claims 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 239000002904 solvent Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- -1 aromatic carboxylic acids Chemical class 0.000 description 5
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 4
- 238000004440 column chromatography Methods 0.000 description 4
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000001338 self-assembly Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- XOYLKUHQDWLPJV-UHFFFAOYSA-N C=CC(C)C1=CC=C(CN(CC)CC)C=C1 Chemical compound C=CC(C)C1=CC=C(CN(CC)CC)C=C1 XOYLKUHQDWLPJV-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 125000005131 dialkylammonium group Chemical group 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000013110 organic ligand Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- KOUKXHPPRFNWPP-UHFFFAOYSA-N pyrazine-2,5-dicarboxylic acid;hydrate Chemical compound O.OC(=O)C1=CN=C(C(O)=O)C=N1 KOUKXHPPRFNWPP-UHFFFAOYSA-N 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- DMAYBPBPEUFIHJ-UHFFFAOYSA-N 4-bromobut-1-ene Chemical compound BrCCC=C DMAYBPBPEUFIHJ-UHFFFAOYSA-N 0.000 description 1
- CARJPEPCULYFFP-UHFFFAOYSA-N 5-Sulfo-1,3-benzenedicarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(S(O)(=O)=O)=C1 CARJPEPCULYFFP-UHFFFAOYSA-N 0.000 description 1
- KSRGIVDQYNEWTG-UHFFFAOYSA-N BrC1=CC=C(CN(CC)CC)C=C1.C=CC(C)C1=CC=C(CN(CC)CC)C=C1 Chemical compound BrC1=CC=C(CN(CC)CC)C=C1.C=CC(C)C1=CC=C(CN(CC)CC)C=C1 KSRGIVDQYNEWTG-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 101150003085 Pdcl gene Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000006701 autoxidation reaction Methods 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- SXEJQBLAVTUYPB-UHFFFAOYSA-N n-[(4-bromophenyl)methyl]-n-ethylethanamine Chemical compound CCN(CC)CC1=CC=C(Br)C=C1 SXEJQBLAVTUYPB-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000010651 palladium-catalyzed cross coupling reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000003797 solvolysis reaction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
Images
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ナノテクノロジーに関するものであり、詳しくは、酸及び塩基性配位子で保護した新規な金属ナノ粒子、及び該金属ナノ粒子の配位子間のクローン相互作用を利用して二次元超格子を創製する方法に関する。
本発明の金属ナノ粒子は、エレクトロニクス分野、特にナノ電子デバイス分野において有用である。
【0002】
【従来の技術】
近年、機能単位である金属ナノ粒子を基板上に規則配列させることにより、そのナノデバイスへの応用が精力的に研究されている。本発明者らはこれまでに、室温でクーロンブロッケードが発現する粒径2nm以下の金属ナノ粒子を構成単位とした電子デバイスの実現を目指し、保護配位子間のπ−π相互作用を利用した六方晶金ナノ粒子二次元超格子の創製(非特許文献1参照)や金ナノ粒子一次元鎖列の創製(非特許文献2参照)を報告してきた。一方、電子デバイスの実現にはこれらの技術と共に二次元超格子の種々のパターニング技術の開発も必要不可欠である。
通常、有機配位子で保護された金属ナノ粒子は、溶媒蒸発に伴う自己組織化により、六回対称の六方晶二次元超格子を形成する。また、有機配位子の長さを変えることにより、四回対称正方晶(square)構造又は三回対称擬似ハニカム(honeycomb)構造等の二次元超格子が形成することがあった。
しかしながら、配位子の種類を変えることなく、四回対称正方晶構造又は三回対称擬似ハニカム構造等のナノ粒子低対称性二次元超格子を製造する方法については、これまで全く報告がなされておらず、そのような方法により得られた金属ナノ粒子低対称性二次元超格子は未だ知られていない。
【0003】
【発明が解決しようとする課題】
本発明は、塩基性配位子保護金属ナノ粒子を用い、配位子の種類を変えることなく、四回対称正方晶構造又は三回対称擬似ハニカム構造等のナノ粒子低対称性二次元超格子を創製しようとするものである。
【0004】
【課題を解決するための手段】
本発明は、塩基性配位子で保護された金属ナノ粒子を用い、有機酸でナノ粒子の表面を修飾することにより、配位子の種類を変えることなく、ナノ粒子低対称性二次元超格子を製造する方法に関する。
【0005】
また、本発明は、下記一般式[1]
【化6】
(式中、Rはアルキル基を表し、nは正の整数を表す。)
で示されるベンジルジアルキルアミン誘導体で保護された金属ナノ粒子を有機溶媒中に分散させ、これを有機酸で処理することにより得られた金属ナノ粒子を水に溶解し、該水溶液を親水性の基板上に添加、塗布、乾燥させることにより自己組織化させることを特徴とする、ナノ粒子低対称性二次元超格子の製造方法に関する。
【0006】
更に、本発明は、塩基性配位子で保護された金属ナノ粒子の表面を有機酸で修飾してなる金属ナノ粒子に関する。
【0007】
更にまた、本発明は、下記一般式[1]
【化7】
(式中、Rはアルキル基を表し、nは正の整数を表す。)
で示されるベンジルジアルキルアミン誘導体に関する。
【0008】
即ち、本発明者らは、新たに合成したジアルキルアンモニウム基を有する保護配位子を用いて金ナノ粒子を調製し、有機酸で該ナノ粒子表面を修飾することにより、配位子の種類を変えることなく、配位子間のクーロン相互作用を利用して新規二次元超格子を創製すべく研究を行った結果、本発明を完成するに到った。
【0009】
【発明の実施の形態】
本発明の製造方法により得られるナノ粒子低対称性二次元超格子は、四回対称正方晶構造又は三回対称擬似ハニカム構造等を有する。
【0010】
本発明の製造方法において用いられる塩基性配位子としては、例えばジアルキルアンモニウム基を有する保護配位子が挙げられる。
そのような配位子の好ましいものとしては、例えば、下記一般式[1]
【化8】
(式中、Rはアルキル基を表し、nは正の整数を表す。)
で示されるベンジルジアルキルアミン誘導体が挙げられる。
【0011】
上記一般式[1]において、Rで表されるアルキル基としては、直鎖状又は分岐状の、例えば炭素数1〜10、好ましくは炭素数1〜6、より好ましくは炭素数1〜4の低級アルキル基が挙げられ、具体例としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基等が挙げられる。
上記一般式[1]で示されるベンジルジアルキルアミン誘導体の好ましい具体例としては、例えば下式[2]
【化9】
で示される、ビス−4,4’−(4,4’−ジチオブチルベンジル)−N,N,N’,N’−テトラエチルアミン等が挙げられる。
【0012】
本発明の製造方法において用いられる有機酸としては、例えば、酢酸、マロン酸、しゅう酸、プロピオン酸等の脂肪族カルボン酸や1,3,5−ベンゼントリカルボン酸(以下、BTCAと略す。)、2,6−ナフタレンジカルボン酸等の芳香族カルボン酸、5−スルホ−イソフタル酸などのスルホン酸等が挙げられる。
【0013】
本発明に係る、塩基性配位子で保護された金属ナノ粒子の粒径は、通常5nm以下、好ましくは3nm以下である。
本発明に係る金属ナノ粒子における金属としては、例えば金、銀、銅、鉄、白金などの遷移金属が挙げられるが、電気特性や保護物質の導入のしやすさなどから金が好ましい。
【0014】
本発明に係るナノ粒子低対称性二次元超格子の製造方法は、より具体的には、上記一般式[1]で示されるベンジルジアルキルアミン誘導体で保護された金属ナノ粒子を有機溶媒中に分散させ、これを有機酸で処理することにより得られた金属ナノ粒子を水に溶解し、該水溶液を親水性の基板上に添加、塗布、乾燥させて自己組織化させることにより、ナノ粒子低対称性二次元超格子とするものであるが、ここで用いられる有機溶媒としては、例えば、酢酸エチル、ジメチルアセトアミド、エチレングリコール、トルエン、クロロホルム等が挙げられる。
また、親水性の基板としては、例えば、親水性ポリビニルフォルマールやポリビニルフォルマールで被覆した銅網、或いは、親水性シリカ膜、親水性窒化シリコン等が挙げられる。
【0015】
本発明の製造方法において塩基性配位子として用いられる上記一般式[1]で示されるベンジルジアルキルアミン誘導体の製造法を、上記式[2]で示される、ビス−4,4’−(4,4’−ジチオブチルベンジル)−N,N,N’,N’−テトラエチルアミン(以下、TBAと略す。)を例にして示すと概略以下のようになる。
即ち、先ず、p,α−ジブロモトルエンのジエチルアミンによる求接置換、次いで、4−ブテニルマグネシウムとのパラジウム触媒によるクロスカップリング、続いて、チオ酢酸の光ラジカル付加、そして、加溶媒分解、更には、自動酸化を経ることにより、TBAが合成される。
【0016】
また、上記一般式[1]で示されるベンジルジアルキルアミン誘導体で保護された金属ナノ粒子の製造法を、金属として金を用い、ベンジルジアルキルアミン誘導体としてTBAを用いた場合を例にして示すと概略以下のようになる。
即ち、先ず、HAuCl4・4H2Oをジメチルアセトアミド(DMAc)に溶解し、次いでこれをTBAの存在下、NaBH4で還元すれば、TBAで保護された金属ナノ粒子(以下、TBA−Auナノ粒子と略す。)が得られる。得られたTBA−Auナノ粒子は、通常、粒径2.4±0.2nmであり、DMAc溶液からの自己組織化により、アモルファス炭素基板上に六方晶二次元超格子を形成する。
【0017】
更に、本発明に係る、塩基性配位子で保護された金属ナノ粒子、例えばTBA−Auナノ粒子の表面を有機酸で修飾してなる金属ナノ粒子は、概略以下のようにして製造することが出来る。
即ち、精製後のTBA−Auナノ粒子を、例えば酢酸エチルやジメチルアセトアミド(DMAc)等の有機溶媒に溶解又は分散させ、得られた溶液又は分散液に、例えば酢酸或いは1,3,5−ベンゼントリカルボン酸等の有機酸を添加すると、ナノ粒子表面が有機酸塩に転化し、水溶性ナノ粒子が得られる。このとき、系内にエチレングリコールを存在させておくと、基板上に添加、塗布した金ナノ粒子水溶液を蒸発、乾燥させる際の蒸発速度を低下し、格子への溶液の親和性が改善されて二次元超格子の有機的な領域が広がるので好ましい。
この金ナノ粒子水溶液を親水性の基板、例えば親水性のポリビニルフォルマール上に滴下・乾燥することにより、自己組織化した四回対称正方晶構造或いは三回対称擬似ハニカム構造二次元超格子が得られる。
【0018】
上記本発明に係るTBA−Auナノ粒子においては、ジスルフィド基が金の表面に配位するように働き、ベンゼン環がAuナノ粒子に有機溶媒に対する溶解性を与え、アミノ基がアンモニウム塩を形成して二次元超格子の構造を制御しているものと考えられる。
【0019】
【実施例】
以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
【0020】
実施例1 塩基性配位子 ビス−4,4’−(4,4’−ジチオブチルベンジル)−N,N,N’,N’−テトラエチルアミン(TBA)の合成
(1)4−ブロモ−N,N−ジエチルベンジルアミンの合成
ジエチルアミン(50ml)に4−ブロモ−ベンジルブロミド(10.0g、39.0mmol)を室温で加え、溶液を1時間還流した。反応後、減圧下に溶媒を留去し、これにジクロロメタンを加えた後、混合物を希苛性ソーダ水溶液で洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去し濃縮した。残渣をカラムクロマトグラフィー(活性アルミナ、酢酸エチル)により精製して、4−ブロモ−N,N−ジエチルベンジルアミン(10.0g、収率:97%)を得た。
1H NMR (400MHz, CDCl3): δ 7.41 (d, Ar, 2H), 7.21 (d, Ar, 2H), 3.50 (s, ArCH2N, 2H), 2.49 (q, NCH2CH3, 4H), 1.02 (t, NCH2CH3, 6H)。GC-MS m/z: 241 (M+)。
【0021】
(2)(4−ブテン−3−イル)−N,N−ジエチルベンジルアミンの合成
上記(1)で得られた4−ブロモ−N,N−ジエチルベンジルアミン(2.0g、8.3mmol)をPdCl2(dppf)(67mg、83μmol)と共に無水THF(50ml)中に分散させ、この分散液に、マグネシウム及び4−ブロモブテンから調製した4−ブテニルマグネシウムブロミド(18mmol)の無水THF溶液(50ml)を室温にて1滴ずつ加えた後、溶液を1.5時間還流した。次いで、減圧下に溶媒を留去し、これにジクロロメタンを加えた後、混合物を希塩化アンモニウム水溶液で洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去し濃縮した。残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン:酢酸エチル=1:1→酢酸エチル:ジエチルアミン=10:1)により精製して、(4−ブテン−3−イル)−N,N−ジエチルベンジルアミン(1.60g、収率:89%)を得た。
1H NMR (400MHz, CDCl3): δ 7.24 (d, Ar, 2H), 7.12 (d, Ar, 2H), 5.86 (m, olefH, 1H), 5.00 (m, olefH, 2H), 3.50 (s, ArCH2N, 2H), 2.68 (t, ArCH2CH2, 2H), 2.50 (q, NCH2CH3, 4H), 2.38 (q, ArCH2CH2, 2H), 1.04 (t, NCH2CH3, 6H)。GC-MS m/z: 217 (M+)。
【0022】
(3)メチル4−(4−ジエチルアミノメチルフェニル)チオブタノエートの合成
上記(2)で得られた(4−ブテン−3−イル)−N,N−ジエチルベンジルアミン(1.60g、7.36mmol)をジクロロエタン(50ml)に溶解し、これにチオ酢酸(2.8ml、39mmol)を加えて、450Wの低圧水銀ランプで4時間照射した。減圧下に溶媒を留去し、これにジクロロメタンを加えた後、混合物を飽和炭酸水素ナトリウム水溶液で洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去し濃縮した。残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン:酢酸エチル=1:1→酢酸エチル:ジエチルアミン=100:1)により精製して、メチル4−(4−ジエチルアミノメチルフェニル)チオブタノエート(1.73g、収率:80%)を得た。
1H NMR (400MHz, CDCl3): δ 7.23 (d, Ar, 2H), 7.10 (d, Ar, 2H), 3.53 (s, ArCH2N, 2H), 2.89 (t, CH2S, 2H), 2.60 (t, ArCH2CH2, 2H), 2.52 (q, NCH2CH3, 4H), 2.32 (s, COCH3, 3H), 1.65 (m, CH2CH2, 4H), 1.04 (t, NCH2CH3, 6H)。GC-MS m/z: 293 (M+) 。
【0023】
(4)ビス−4,4’−(4,4’−ジチオブチルベンジル)−N,N,N’,N’−テトラエチルアミン(TBA)の合成
上記(3)で得られたメチル4−(4−ジエチルアミノメチルフェニル)チオブタノエート(1.70g、5.79mmol)を2−プロパノール(20ml)に溶解し、この溶液にKOH(660mg、10.0mmol)を加えて、室温、大気中下で、26時間撹拌した。減圧下に溶媒を留去し、これにジクロロメタンを加えた後、混合物を希苛性ソーダ水溶液で洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去し濃縮した。残渣をカラムクロマトグラフィー(活性アルミナ、ジクロロメタン:ジエチルアミン=100:1)により精製して、淡黄色の油状物としてTBA(0.98g、収率:68%、通算収率:47%)を得た。
1H NMR (400MHz, CDCl3): δ 7.23 (d, Ar, 4H), 7.10 (d, Ar, 4H), 3.53 (s, ArCH2N, 4H), 2.68 (t, CH2S, 4H), 2.61 (t, ArCH2CH2, 4H), 2.51 (q, NCH2CH3, 8H), 1.70 (m, CH2CH2, 8H), 1.04 (t, NCH2CH3, 12H)。 GC-MS m/z: 501 (M+)。
【0024】
実施例2 TBA−Auナノ粒子の合成
保護剤としてTBAを用いてTBA−Auナノ粒子を調製した。
DMAc(44ml)中にTBA(5μmol)を加えて撹拌混合し、これにHAuCl4・4H2O(10μmol)の10mM DMAc溶液を1ml加え、激しく撹拌しながら、NaBH4(0.1mmol)のメタノール(5ml)溶液を加えた。更に30分間撹拌すると、溶液の色は茶色に変わった。水(約50ml)でナノ粒子を沈殿させて、これを濾取し、メタノール/水(2/1、容積/容積)の混合溶媒で数回洗浄した。得られたTBAで保護されたAuナノ粒子(TBA−Auナノ粒子)は、大きさが2.4±0.2nmであり、トルエンのような非極性溶媒のみならず、酢酸エチルやDMAcのような極性溶媒にも良好な溶解性を示した。
該TBA−Auナノ粒子は、DMAc溶液からの自己組織化により、アモルファス炭素基板上に六方晶二次元超格子を形成した。
得られたTBA−Auナノ粒子六方晶二次元超格子の透過型電子顕微鏡(TEM)像を図1に示す。なお、図1中の挿入図は、TBAの化学構造を示す。
【0025】
実施例3 ナノ粒子低対称性二次元超格子の製造
1mM BTCA(又は酢酸)水溶液(100μl)にエチレングリコール(2μl)とTBA−Auの酢酸エチル溶液(10μl、Au原子として2mM)の混合物を加えて激しく撹拌すると水層が緑褐色に変り、金の表面に吸着されたTBAがアンモニウム塩を形成したことを示した。得られたAuナノ粒子は水に対して良好な溶解性を示した。
次いで、ポリビニルホルマールを被覆した銅網上にこれらのナノ粒子水溶液を載せ、溶媒をゆっくりと蒸発させて低対称性二次元超格子を得た。
エチレングリコールを添加したことにより蒸発速度が低下し、格子への溶液の親和性が改善されて二次元超格子の有機的な領域が広がった。
BTCA添加により形成したTBA保護金ナノ粒子擬似ハニカム二次元超格子のTEM像を図2に示す。また、酢酸添加により形成したTBA保護金ナノ粒子正方晶二次元超格子のTEM像を図3に示す。
【0026】
【発明の効果】
本発明は、塩基性配位子で保護された金属ナノ粒子を用い、有機酸でナノ粒子の表面を修飾することにより、配位子の種類を変えることなく、四回対称正方晶構造又は三回対称擬似ハニカム構造等のナノ粒子低対称性二次元超格子を製造する方法を提供するものであり、添加する有機酸の種類により、同一粒子から種々の対称性を有する自己組織化二次元超格子を形成させることが出来るため、創製する二次元超格子の物性(特に電子・光物性)の構造対称性依存性を検討する上で極めて有効である。また、添加有機酸の長さを変えることにより、超格子の粒子間距離も容易に制御することが出来る。
【図面の簡単な説明】
【図1】図1は、2.4nmビス−4,4’−(4,4’−ジチオブチルベンジル)−N,N,N’,N’−テトラエチルアミン(TBA)保護金ナノ粒子六方晶二次元超格子の透過型電子顕微鏡(TEM)像を示す。挿入図は、TBAの化学構造を示す。
【図2】図2は、1,3,5−ベンゼントリカルボン酸添加により形成したTBA保護金ナノ粒子擬似ハニカム二次元超格子のTEM像を示す。
【図3】図3は、酢酸添加により形成したTBA保護金ナノ粒子正方晶二次元超格子のTEM像を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to nanotechnology, and more specifically, novel metal nanoparticles protected with acid and basic ligands, and two-dimensional using clonal interaction between ligands of the metal nanoparticles. The present invention relates to a method of creating a superlattice.
The metal nanoparticles of the present invention are useful in the electronics field, particularly in the nanoelectronic device field.
[0002]
[Prior art]
In recent years, by regularly arranging metal nanoparticles, which are functional units, on a substrate, their application to nanodevices has been energetically studied. The present inventors have so far utilized a π-π interaction between protective ligands for the purpose of realizing an electronic device using a metal nanoparticle having a particle size of 2 nm or less in which Coulomb blockade appears at room temperature as a structural unit. The creation of a hexagonal gold nanoparticle two-dimensional superlattice (see Non-Patent Document 1) and the creation of a gold nanoparticle one-dimensional chain (see Non-Patent Document 2) have been reported. On the other hand, development of various patterning technologies for two-dimensional superlattices is indispensable for realizing electronic devices.
Usually, metal nanoparticles protected with an organic ligand form a hexagonal two-dimensional superlattice with sixfold symmetry by self-assembly accompanying solvent evaporation. In addition, by changing the length of the organic ligand, a two-dimensional superlattice such as a quadruple symmetric tetragonal (square) structure or a three-fold symmetric pseudo-honeycomb (honeycomb) structure may be formed.
However, there has been no report on a method for producing a nanoparticle low-symmetry two-dimensional superlattice such as a quadruple symmetric tetragonal structure or a three-fold symmetric pseudo-honeycomb structure without changing the type of ligand. In addition, a metal nanoparticle low-symmetry two-dimensional superlattice obtained by such a method is not yet known.
[0003]
[Problems to be solved by the invention]
The present invention uses a basic ligand-protected metal nanoparticle, and a nanoparticle low-symmetric two-dimensional superlattice such as a quadruple symmetric tetragonal structure or a three-fold symmetric pseudo-honeycomb structure without changing the type of ligand Is to create.
[0004]
[Means for Solving the Problems]
The present invention uses a metal nanoparticle protected with a basic ligand and modifies the surface of the nanoparticle with an organic acid, so that the nanoparticle low symmetry two-dimensional super The present invention relates to a method of manufacturing a grating.
[0005]
Further, the present invention provides the following general formula [1]
[Chemical 6]
(In the formula, R represents an alkyl group, and n represents a positive integer.)
The metal nanoparticles protected with a benzyldialkylamine derivative represented by the formula (1) are dispersed in an organic solvent, and the metal nanoparticles obtained by treating the metal nanoparticles with an organic acid are dissolved in water, and the aqueous solution is dissolved in a hydrophilic substrate. The present invention relates to a method for producing a nanoparticle low-symmetry two-dimensional superlattice, which is self-assembled by adding, coating and drying.
[0006]
Furthermore, the present invention relates to a metal nanoparticle obtained by modifying the surface of a metal nanoparticle protected with a basic ligand with an organic acid.
[0007]
Furthermore, the present invention provides the following general formula [1]
[Chemical 7]
(In the formula, R represents an alkyl group, and n represents a positive integer.)
And a benzyldialkylamine derivative represented by the formula:
[0008]
That is, the present inventors prepared gold nanoparticles using a newly synthesized protective ligand having a dialkylammonium group, and modified the surface of the nanoparticle with an organic acid, thereby changing the type of ligand. As a result of research to create a new two-dimensional superlattice using Coulomb interaction between ligands without changing, the present invention has been completed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The nanoparticle low-symmetric two-dimensional superlattice obtained by the production method of the present invention has a quadruple symmetric tetragonal structure, a three-fold symmetric pseudo honeycomb structure, or the like.
[0010]
Examples of the basic ligand used in the production method of the present invention include a protective ligand having a dialkylammonium group.
Preferred examples of such a ligand include, for example, the following general formula [1]
[Chemical 8]
(In the formula, R represents an alkyl group, and n represents a positive integer.)
The benzyl dialkylamine derivative shown by these is mentioned.
[0011]
In the general formula [1], the alkyl group represented by R is linear or branched, for example, having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms. Specific examples include a lower alkyl group, and specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a tert-butyl group.
Preferable specific examples of the benzyldialkylamine derivative represented by the general formula [1] include, for example, the following formula [2]
[Chemical 9]
And bis-4,4 ′-(4,4′-dithiobutylbenzyl) -N, N, N ′, N′-tetraethylamine and the like.
[0012]
Examples of the organic acid used in the production method of the present invention include aliphatic carboxylic acids such as acetic acid, malonic acid, oxalic acid, and propionic acid, and 1,3,5-benzenetricarboxylic acid (hereinafter abbreviated as BTCA). Examples thereof include aromatic carboxylic acids such as 2,6-naphthalenedicarboxylic acid, and sulfonic acids such as 5-sulfo-isophthalic acid.
[0013]
The particle size of the metal nanoparticles protected with a basic ligand according to the present invention is usually 5 nm or less, preferably 3 nm or less.
Examples of the metal in the metal nanoparticles according to the present invention include transition metals such as gold, silver, copper, iron, and platinum. Gold is preferable from the viewpoint of electrical characteristics and ease of introduction of a protective substance.
[0014]
More specifically, the method for producing a nanoparticle low-symmetric two-dimensional superlattice according to the present invention comprises dispersing metal nanoparticles protected with a benzyldialkylamine derivative represented by the above general formula [1] in an organic solvent. The metal nanoparticles obtained by treating this with an organic acid are dissolved in water, and the aqueous solution is added onto a hydrophilic substrate, coated, dried, and self-assembled, whereby the nanoparticles have low symmetry. The organic solvent used here is, for example, ethyl acetate, dimethylacetamide, ethylene glycol, toluene, chloroform or the like.
In addition, examples of the hydrophilic substrate include hydrophilic polyvinyl formal, a copper net covered with polyvinyl formal, a hydrophilic silica film, and hydrophilic silicon nitride.
[0015]
The production method of the benzyldialkylamine derivative represented by the above general formula [1] used as the basic ligand in the production method of the present invention is the same as the bis-4,4 ′-(4 represented by the above formula [2]. , 4′-dithiobutylbenzyl) -N, N, N ′, N′-tetraethylamine (hereinafter abbreviated as TBA) is shown as an example as follows.
That is, first, the cleavable substitution of p, α-dibromotoluene with diethylamine, followed by palladium-catalyzed cross-coupling with 4-butenylmagnesium, followed by photoradical addition of thioacetic acid, and solvolysis, TBA is synthesized through autoxidation.
[0016]
In addition, the method for producing metal nanoparticles protected with the benzyldialkylamine derivative represented by the general formula [1] is schematically illustrated using gold as a metal and TBA as a benzyldialkylamine derivative. It becomes as follows.
That is, first, if HAuCl 4 · 4H 2 O is dissolved in dimethylacetamide (DMAc) and then reduced with NaBH 4 in the presence of TBA, TBA-protected metal nanoparticles (hereinafter referred to as TBA-Au nanoparticles). Abbreviated particle)). The obtained TBA-Au nanoparticles usually have a particle size of 2.4 ± 0.2 nm, and form a hexagonal two-dimensional superlattice on the amorphous carbon substrate by self-assembly from the DMAc solution.
[0017]
Furthermore, the metal nanoparticles protected by the basic ligand according to the present invention, for example, the metal nanoparticles obtained by modifying the surface of the TBA-Au nanoparticles with an organic acid, can be manufactured as follows. I can do it.
That is, purified TBA-Au nanoparticles are dissolved or dispersed in an organic solvent such as ethyl acetate or dimethylacetamide (DMAc), and the resulting solution or dispersion is mixed with, for example, acetic acid or 1,3,5-benzene. When an organic acid such as tricarboxylic acid is added, the nanoparticle surface is converted into an organic acid salt, and water-soluble nanoparticles are obtained. At this time, if ethylene glycol is present in the system, the evaporation rate when the gold nanoparticle aqueous solution added and applied on the substrate is evaporated and dried is reduced, and the affinity of the solution to the lattice is improved. This is preferable because the organic region of the two-dimensional superlattice widens.
By dropping and drying this aqueous solution of gold nanoparticles on a hydrophilic substrate, for example, hydrophilic polyvinyl formal, a self-organized four-fold symmetric tetragonal structure or three-fold symmetric pseudo-honeycomb structure two-dimensional superlattice is obtained. It is done.
[0018]
In the TBA-Au nanoparticle according to the present invention, the disulfide group works to coordinate with the gold surface, the benzene ring gives the Au nanoparticle solubility in an organic solvent, and the amino group forms an ammonium salt. Thus, the structure of the two-dimensional superlattice is considered to be controlled.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.
[0020]
Example 1 Synthesis of basic ligand bis-4,4 ′-(4,4′-dithiobutylbenzyl) -N, N, N ′, N′-tetraethylamine (TBA) (1) 4-bromo- Synthesis of N, N-diethylbenzylamine 4-Bromo-benzylbromide (10.0 g, 39.0 mmol) was added to diethylamine (50 ml) at room temperature and the solution was refluxed for 1 hour. After the reaction, the solvent was distilled off under reduced pressure, dichloromethane was added thereto, and the mixture was washed with dilute caustic soda aqueous solution. After drying over anhydrous sodium sulfate, the solvent was distilled off and concentrated. The residue was purified by column chromatography (activated alumina, ethyl acetate) to obtain 4-bromo-N, N-diethylbenzylamine (10.0 g, yield: 97%).
1 H NMR (400 MHz, CDCl 3 ): δ 7.41 (d, Ar, 2H), 7.21 (d, Ar, 2H), 3.50 (s, ArCH 2 N, 2H), 2.49 (q, NCH 2 CH 3 , 4H ), 1.02 (t, NCH 2 CH 3 , 6H). GC-MS m / z: 241 (M +).
[0021]
(2) Synthesis of (4-buten-3-yl) -N, N-diethylbenzylamine 4-bromo-N, N-diethylbenzylamine obtained in the above (1) (2.0 g, 8.3 mmol) Was dispersed in anhydrous THF (50 ml) with PdCl 2 (dppf) (67 mg, 83 μmol), and 4-butenylmagnesium bromide (18 mmol) prepared from magnesium and 4-bromobutene was added to this dispersion in anhydrous THF (50 ml). ) Was added dropwise at room temperature, and the solution was refluxed for 1.5 hours. Next, the solvent was distilled off under reduced pressure, dichloromethane was added thereto, and the mixture was washed with a dilute aqueous ammonium chloride solution. After drying over anhydrous sodium sulfate, the solvent was distilled off and concentrated. The residue was purified by column chromatography (silica gel, hexane: ethyl acetate = 1: 1 → ethyl acetate: diethylamine = 10: 1) to give (4-buten-3-yl) -N, N-diethylbenzylamine (1 .60 g, yield: 89%).
1 H NMR (400 MHz, CDCl 3 ): δ 7.24 (d, Ar, 2H), 7.12 (d, Ar, 2H), 5.86 (m, olefH, 1H), 5.00 (m, olefH, 2H), 3.50 (s , ArCH 2 N, 2H), 2.68 (t, ArCH 2 CH 2 , 2H), 2.50 (q, NCH 2 CH 3 , 4H), 2.38 (q, ArCH 2 CH 2 , 2H), 1.04 (t, NCH 2 CH 3, 6H). GC-MS m / z: 217 (M +).
[0022]
(3) Synthesis of methyl 4- (4-diethylaminomethylphenyl) thiobutanoate (4-buten-3-yl) -N, N-diethylbenzylamine (1.60 g, 7.36 mmol) obtained in (2) above Was dissolved in dichloroethane (50 ml), thioacetic acid (2.8 ml, 39 mmol) was added thereto, and irradiated with a 450 W low pressure mercury lamp for 4 hours. The solvent was distilled off under reduced pressure, dichloromethane was added thereto, and the mixture was washed with a saturated aqueous sodium hydrogen carbonate solution. After drying over anhydrous sodium sulfate, the solvent was distilled off and concentrated. The residue was purified by column chromatography (silica gel, hexane: ethyl acetate = 1: 1 → ethyl acetate: diethylamine = 100: 1) to give methyl 4- (4-diethylaminomethylphenyl) thiobutanoate (1.73 g, yield: 80%).
1 H NMR (400 MHz, CDCl 3 ): δ 7.23 (d, Ar, 2H), 7.10 (d, Ar, 2H), 3.53 (s, ArCH 2 N, 2H), 2.89 (t, CH 2 S, 2H) , 2.60 (t, ArCH 2 CH 2 , 2H), 2.52 (q, NCH 2 CH 3 , 4H), 2.32 (s, COCH 3 , 3H), 1.65 (m, CH 2 CH 2 , 4H), 1.04 (t , NCH 2 CH 3 , 6H). GC-MS m / z: 293 (M +).
[0023]
(4) Synthesis of bis-4,4 ′-(4,4′-dithiobutylbenzyl) -N, N, N ′, N′-tetraethylamine (TBA) Methyl 4- () obtained in the above (3) 4-Diethylaminomethylphenyl) thiobutanoate (1.70 g, 5.79 mmol) was dissolved in 2-propanol (20 ml), and KOH (660 mg, 10.0 mmol) was added to this solution. Stir for hours. The solvent was distilled off under reduced pressure, dichloromethane was added thereto, and the mixture was washed with dilute aqueous sodium hydroxide solution. After drying over anhydrous sodium sulfate, the solvent was distilled off and concentrated. The residue was purified by column chromatography (activated alumina, dichloromethane: diethylamine = 100: 1) to obtain TBA (0.98 g, yield: 68%, total yield: 47%) as a pale yellow oil. .
1 H NMR (400 MHz, CDCl 3 ): δ 7.23 (d, Ar, 4H), 7.10 (d, Ar, 4H), 3.53 (s, ArCH 2 N, 4H), 2.68 (t, CH 2 S, 4H) , 2.61 (t, ArCH 2 CH 2 , 4H), 2.51 (q, NCH 2 CH 3 , 8H), 1.70 (m, CH 2 CH 2 , 8H), 1.04 (t, NCH 2 CH 3 , 12H). GC-MS m / z: 501 (M +).
[0024]
Example 2 Synthesis of TBA-Au nanoparticles TBA-Au nanoparticles were prepared using TBA as a protective agent.
TBA (5 μmol) was added to DMAc (44 ml) and mixed with stirring. To this, 1 ml of 10 mM DMAc solution of HAuCl 4 .4H 2 O (10 μmol) was added, and methanol with NaBH 4 (0.1 mmol) was stirred vigorously. (5 ml) solution was added. After stirring for an additional 30 minutes, the color of the solution turned brown. The nanoparticles were precipitated with water (about 50 ml), which was collected by filtration and washed several times with a mixed solvent of methanol / water (2/1, volume / volume). The obtained TBA-protected Au nanoparticles (TBA-Au nanoparticles) have a size of 2.4 ± 0.2 nm and are not only nonpolar solvents such as toluene, but also ethyl acetate and DMAc. Good solubility in polar solvents.
The TBA-Au nanoparticles formed a hexagonal two-dimensional superlattice on the amorphous carbon substrate by self-assembly from the DMAc solution.
A transmission electron microscope (TEM) image of the obtained TBA-Au nanoparticle hexagonal two-dimensional superlattice is shown in FIG. The inset in FIG. 1 shows the chemical structure of TBA.
[0025]
Example 3 Preparation of Nanoparticle Low Symmetric Two-Dimensional Superlattice A mixture of ethylene glycol (2 μl) and TBA-Au in ethyl acetate (10 μl, 2 mM as Au atom) was added to 1 mM BTCA (or acetic acid) aqueous solution (100 μl). When vigorously stirred, the aqueous layer turned greenish brown, indicating that TBA adsorbed on the gold surface formed an ammonium salt. The obtained Au nanoparticles showed good solubility in water.
Next, these aqueous nanoparticle solutions were placed on a copper net covered with polyvinyl formal, and the solvent was slowly evaporated to obtain a low-symmetric two-dimensional superlattice.
The addition of ethylene glycol decreased the evaporation rate, improved the affinity of the solution for the lattice, and expanded the organic area of the two-dimensional superlattice.
FIG. 2 shows a TEM image of a TBA-protected gold nanoparticle pseudo honeycomb two-dimensional superlattice formed by adding BTCA. Further, FIG. 3 shows a TEM image of a TBA-protected gold nanoparticle tetragonal two-dimensional superlattice formed by adding acetic acid.
[0026]
【The invention's effect】
The present invention uses a metal nanoparticle protected with a basic ligand, and modifies the surface of the nanoparticle with an organic acid, thereby changing the type of the ligand without changing the type of the ligand. It provides a method for producing nano-particle low-symmetry two-dimensional superlattices such as symmetric quasi-honeycomb structures. Depending on the type of organic acid added, self-organized two-dimensional super-symmetry with various symmetries from the same particle Since a lattice can be formed, it is extremely effective in examining the dependency of the physical properties (particularly electronic and optical properties) of the two-dimensional superlattice to be created on the structure symmetry. Further, the distance between the particles of the superlattice can be easily controlled by changing the length of the added organic acid.
[Brief description of the drawings]
FIG. 1 shows 2.4 nm bis-4,4 ′-(4,4′-dithiobutylbenzyl) -N, N, N ′, N′-tetraethylamine (TBA) protected gold nanoparticles hexagonal crystal 2 shows a transmission electron microscope (TEM) image of a two-dimensional superlattice. The inset shows the chemical structure of TBA.
FIG. 2 shows a TEM image of a TBA-protected gold nanoparticle pseudo-honeycomb two-dimensional superlattice formed by adding 1,3,5-benzenetricarboxylic acid.
FIG. 3 shows a TEM image of a TBA-protected gold nanoparticle tetragonal two-dimensional superlattice formed by the addition of acetic acid.
Claims (9)
で示されるベンジルジアルキルアミン誘導体で保護された金属ナノ粒子を有機溶媒中に溶解又は分散させ、これを有機酸で処理することにより得られた金属ナノ粒子を水に溶解し、該水溶液を、親水性ポリビニルフォルマール又はポリビニルフォルマールで被覆した銅網、親水性シリカ膜、及び親水性窒化シリコンからなる群から選ばれる親水性の基板上に添加、塗布、乾燥させることにより自己組織化させることを特徴とする、ナノ粒子低対称性二次元超格子の製造方法。The following general formula [1]
A metal nanoparticle protected with a benzyldialkylamine derivative represented by is dissolved or dispersed in an organic solvent, and the metal nanoparticle obtained by treating the metal nanoparticle with an organic acid is dissolved in water. To be self-assembled by adding, applying, and drying on a hydrophilic substrate selected from the group consisting of a conductive polyvinyl formal or a copper net coated with polyvinyl formal, a hydrophilic silica film, and hydrophilic silicon nitride. A method for producing a nanoparticle low-symmetry two-dimensional superlattice.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003161930A JP4312509B2 (en) | 2003-06-06 | 2003-06-06 | Manufacturing method of metal nanoparticle low symmetry two-dimensional superlattice |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003161930A JP4312509B2 (en) | 2003-06-06 | 2003-06-06 | Manufacturing method of metal nanoparticle low symmetry two-dimensional superlattice |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004358629A JP2004358629A (en) | 2004-12-24 |
JP4312509B2 true JP4312509B2 (en) | 2009-08-12 |
Family
ID=34054214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003161930A Expired - Fee Related JP4312509B2 (en) | 2003-06-06 | 2003-06-06 | Manufacturing method of metal nanoparticle low symmetry two-dimensional superlattice |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4312509B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4815586B2 (en) * | 2005-08-12 | 2011-11-16 | 国立大学法人 筑波大学 | Selective mass synthesis method of Au25 cluster |
-
2003
- 2003-06-06 JP JP2003161930A patent/JP4312509B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004358629A (en) | 2004-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5186387B2 (en) | Selective placement of carbon nanotubes by functionalization | |
Scaiano et al. | Photochemical routes to silver and gold nanoparticles | |
JP5315240B2 (en) | Complexes of carbon nanotubes and fullerenes with molecular clips and their use | |
US20060177376A1 (en) | Stabilized and chemically functionalized nanoparticles | |
KR101235873B1 (en) | A process for the preparation of silver nano particles | |
US20110165428A1 (en) | Photosensitive self-assembled monolayer for selective placement of hydrophilic structures | |
Safaei-Ghomi et al. | Sonochemically synthesis of arylethynyl linked triarylamines catalyzed by CuI nanoparticles: A rapid and green procedure for Sonogashira coupling | |
KR20140014224A (en) | Carbon nanotube manufacturing method | |
Mohammadi et al. | [ZrFe2O4@ SiO2–N–(TMSP)–ASP–Pd (0)] Complex: Synthesis, characterizations, and its application as a nanomagnetic catalyst in cross-coupling and click reactions | |
Norouzi et al. | Synthesis, characterization and catalytic application of a novel ethyl and boron sulfonic acid based bifunctional periodic mesoporous organosilica | |
Biswas et al. | Template-assisted alloying of atom-precise silver nanoclusters: a new approach to generate cluster functionality | |
JP4312509B2 (en) | Manufacturing method of metal nanoparticle low symmetry two-dimensional superlattice | |
JP4331927B2 (en) | Inorganic nanoparticle-organic compound composite and one-dimensional array integrated structure thereof | |
JP4815586B2 (en) | Selective mass synthesis method of Au25 cluster | |
JP4109458B2 (en) | Fullerene derivatives and metal complexes | |
Dutta et al. | CuI incorporated cobalt ferrite nanoparticles as a magnetically separable catalyst for oxidative amidation reaction | |
JP2006265151A (en) | Complex of amphiphilic compound with soluble carbon nanotube | |
JP4099526B2 (en) | Separation and purification of porphyrin dimer derivatives and carbon nanotubes using them | |
KR20080027681A (en) | Method of preparing metal nano particle using alkylamine as reducing agent | |
KR102062869B1 (en) | Water-soluble organic photocatalyst and water splitting hydrogen evolution photocatalytic system using the same | |
JP3977649B2 (en) | Phenylazomethine dendron complex | |
JP4352131B2 (en) | Metal complex nanowire and manufacturing method thereof | |
JP3855057B2 (en) | Surface-modified gold nanoparticles and method for producing the same | |
JP2021084896A (en) | Novel dendrimer having alkyl shell structure and production method of metal sub-nanoparticle | |
KR20150091634A (en) | A preparing method of metal nanoparticle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090513 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120522 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120522 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130522 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |