JP4309106B2 - InGaN系化合物半導体発光装置の製造方法 - Google Patents
InGaN系化合物半導体発光装置の製造方法 Download PDFInfo
- Publication number
- JP4309106B2 JP4309106B2 JP2002240116A JP2002240116A JP4309106B2 JP 4309106 B2 JP4309106 B2 JP 4309106B2 JP 2002240116 A JP2002240116 A JP 2002240116A JP 2002240116 A JP2002240116 A JP 2002240116A JP 4309106 B2 JP4309106 B2 JP 4309106B2
- Authority
- JP
- Japan
- Prior art keywords
- ingan
- light
- substrate
- emitting device
- based compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
Landscapes
- Led Device Packages (AREA)
- Led Devices (AREA)
Description
【発明の属する技術分野】
本発明はInGaN系化合物半導体発光装置の製造方法に関し、特に発光スペクトルの調整に関する。
【0002】
【従来の技術】
従来より、GaN系化合物半導体を用いた発光装置(LEDや半導体レーザ)が知られている。波長360〜600nm帯で発光するLEDは、InxGa1-xNを発光層として用いる場合が多い。InxGa1-xNを発光層として用いた場合、組成xを変化させることで発光波長は360nm〜600nmの範囲で変化する。すなわち、x=0の場合は発光波長360nmであり、xを増大させるほど長波長側にシフトする。360nm〜600nmの波長帯で発光するLEDは、表示用や照明用など多くの用途が考えられている。表示用の光源として考えた場合、原理的には光の3原色(R、G、B)を混ぜることで任意の色を表現できるので光源のスペクトルとしてはR、G、Bの3つの波長を有していれば足り、全ての視感度領域の波長を有する必要はない。しかしながら、より自然に近い色や、白色あるいは液晶ディスプレイのバックライトとして自然な色を表現するためには、光源の波長分布はできるだけ広く、望ましくは全ての視感度領域をカバーできる方がよい。
【0003】
【発明が解決しようとする課題】
このような観点から、本願出願人は先に特願2002−104821にて広い半値幅を有するLEDを提案した。この技術においては、基板上にGaN系化合物半導体を形成する際に、面内で温度分布を生じさせながら形成することで発光層に面内組成分布を生じさせる。発光層としてのInGaNやAlInGaNを形成する際、その組成は温度変化に対して高感度に変化し、組成変化は発光波長の変化を生じさせる。したがって、同一デバイス内で意図的に面内温度分布を生じさせることで発光波長を広範囲に変化させることができ、組成の異なる領域を同時に駆動することで多数の発光ピーク波長が互いに重畳された広帯域スペクトル特性を得ることができる。
【0004】
ところで、一般に半導体pn接合LEDの動作電圧はその材料のバンドギャップエネルギでほぼ決定され、バンドギャップエネルギが小さい材料ほど動作電圧は低くなる。発光スペクトルもバンドギャップエネルギで決定されるので、赤色LEDの動作電圧は青色LEDの動作電圧よりも小さくなる。したがって、面内組成分布によりバンドギャップエネルギが面内で変動している領域にわたって電極(透明電極)を形成し駆動した場合、バンドギャップエネルギが小さい領域に流れる電流密度が相対的に大きくなってしまう。このため、発光スペクトルを高精度に調整するためには、電極形成面内での組成変動の程度を高精度に調整する必要が生じるが、製造工程が複雑化するため容易ではない。
【0005】
本発明は、上記課題に鑑みなされたものであり、その目的は、発光スペクトルが広く、あるいは、発光スペクトルを所望の値に設定することができる発光装置の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、InGaN系化合物半導体発光装置を製造する方法であって、(a)絶縁透明基板面内で周期的に温度分布を生じさせるステップと、(b)前記面内の温度分布のピッチよりも小さいピッチで前記基板上にモノリシックに複数のInGaN系発光素子を形成するステップと、(c)前記複数のInGaN系発光素子を直列接続するステップを有することを特徴とする。
【0017】
このように、本発明では単に温度分布を形成して発光層を成長させるのではなく、温度分布を形成して発光スペクトルを広帯域化するとともに、複数の発光素子をモノリシックに形成して互いに直列接続する。直列接続することで各発光素子に流れる電流は同一となり、バンドギャップエネルギに高低が生じていてもフラットな発光スペクトルが得られる。
【0018】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態について説明する。
【0019】
図1には、本実施形態においてGaN系化合物半導体としてのLED1の基本構成が示されている。LED1は、基板10上に順次GaN層12、Siドープのn型GaN層14、InGaN発光層16、AlGaN層18、p型GaN層20が積層され、p型GaN層20に接してp型電極22、n型GaN層14に接してn型電極24が形成される構成である。
【0020】
図1に示されたLEDは以下のプロセスにより作製される。すなわち、まず、MOCVD装置にてサファイアc面基板を水素雰囲気中で1100℃、10分間熱処理する。そして、温度を500℃まで降温させ、シランガスとアンモニアガスを100秒間供給して不連続なSiN膜を基板10上に形成する。なお、このプロセスはデバイス中の転位密度を低減させるためのものであり、図ではSiN膜は省略している。次に、同一温度でトリメチルガリウム及びアンモニアガスを供給してGaN層を20nm厚成長させる。温度を1050℃に昇温し、再びトリメチルガリウム及びアンモニアガスを供給してアンドープGaN(u−GaN)層12及びSiドープのn型GaN層14を各2μm厚成長させる。その後、温度を700℃程度まで降温してInGaN発光層16を2nm厚成長させる。目標組成はx=0.15、すなわちIn0.15Ga0.85Nである。発光層16成長後、温度を1000℃まで昇温してAlGaN正孔注入層18を成長させ、さらにp型GaN層20を成長させる。
【0021】
p型GaN層20を成長させた後、ウエハをMOCVD装置から取り出し、Ni10nm厚、Au10nm厚を順次真空蒸着で成長層表面に形成する。5%の酸素を含む窒素ガス雰囲気中で520℃熱処理することで金属膜はp型透明電極22となる。透明電極形成後、全面にフォトレジストを塗布し、n型電極形成のためのエッチングをフォトレジストをマスクとして行う。エッチング深さは、例えば600nm程度である。エッチングで露出したn型GaN層14上にTi5nm厚、Al5nm厚を形成し、窒素ガス雰囲気中で450℃30分間熱処理してn型電極24を形成する。最後に、基板10の裏面を100μmまで研磨してチップを切り出し、マウントすることでLED1が得られる。
【0022】
In0.15Ga0.85N発光層16の発光ピーク波長は450nm、発光スペクトルの半値幅は約15〜20nmである。発光ピーク波長は、InGaNの成長温度に敏感で、例えば成長温度が10℃異なると発光ピーク波長は20nm以上変化する。これは、InGaNの成長温度がInNの蒸発温度(約500℃)より高いので、InXGa1-xNの組成xが、InNの蒸発率とInGaNの供給率とのバランスで決定されるからである。具体的には、温度が高いと、InNが蒸発してIn組成xは低下し、組成xの低下に伴い発光波長が短波長側にシフトする。
【0023】
また、温度が低いと、InNの蒸発が抑制され、In組成xが増大して発光波長が長波長側にシフトする。
【0024】
このことは、同一ウエハ面内において温度分布が存在すると、その温度分布に起因して発光ピーク波長が変化することを意味し、逆に、ウエハ面内で意図的に温度分布を生ぜしめることで異なる発光ピーク波長を有する領域を形成できることを意味する。すなわち、温度分布を形成することで複数の発光波長ピークを任意に形成できる。このような原理に基づき、ウエハ内において意図的に温度分布を形成し、これにより発光層16の組成に分布を生ぜしめて発光ピーク波長を変化させ半値幅を増大させる。
【0025】
図2には、面内温度分布を生成するための一つの方法が示されている。基板10の裏面側、すなわちGaN層が形成される表面と反対側に不連続的に膜を形成する。膜は、例えばGaNの成長温度よりも高い融点を有し、かつ、アンモニアなどの原料ガスと反応しないTi等を用いることができる。膜の材料としては金属ではなく、半導体あるいは絶縁体を用いることも可能である。図2においては基板10のある領域にTi膜9が形成されている。サファイア基板10は絶縁体で透明であり、基板10の加熱は、ヒータ加熱された基板フォルダに基板10を接触させて行われる。基板10の裏面にTi膜9を形成すると、基板フォルダからの放射熱はこのTi膜9により吸収されて基板10に伝達され、また、基板フォルダとの熱的接触状態が変化することでTi膜9が形成された領域と形成されていない領域とで熱伝導に差が生じ、結果として基板10に面内温度分布が生じる。従って、Ti膜9が形成された基板10を用いて図1に示されるようなLED1を形成すると、Ti膜9が形成された領域と形成されていない領域においてInGaN発光層16のIn組成xに分布が生じ、発光ピーク波長が異なる領域を同一基板10上に生成できる。
【0026】
なお、温度分布が生じるとInGaNの成長温度分布が生じ、これにより組成だけでなくInGaN層16の厚さも変化する。InGaNの発光ピーク波長はその厚さにも依存するため、厳密には、温度分布により組成分布及び層厚分布が生じ、これにより発光ピーク波長がシフトすると云うこともできよう。
【0027】
図3には、このようにして面内組成分布が生じた発光装置の平面図が示されている。発光装置のサイズは300×200μm2である。図において、斜線部分が基板10の裏面にTi膜9を形成した領域である。p型透明電極22及びn型電極24は、基板10の裏面にTi膜9が形成された領域と形成されていない領域にわたって共通形成される。p型透明電極22の一部(Ti膜9が形成された領域と形成されていない領域の境界)にワイヤボンディング用のAuパッド26が形成される。両領域の面積比rをr=(Ti形成領域面積/Ti非形成領域面積)とし、面積比rを変化させると発光スペクトルが変化する。20mAの電流を流したとき、482nmと499nmに2つのピークを持つスペクトルが得られる。
【0028】
図4には、r=1の時の発光スペクトルが示されている。r=1の時、ピーク強度の比(483nm/505nm)は約1.4である。483nmと505nmの間では両方のピークの裾が重なるため、460〜520nmの広帯域にわたって発光スペクトルを有する光が得られる。
【0029】
一方、既に述べたように、面内で組成変化、すなわちバンドギャップエネルギ変化が生じている領域にわたって透明電極22、24を形成することで、バンドギャップエネルギが小さい領域に流れる電流密度が相対的に大きくなってしまう。従って、広い発光スペクトルを有し、かつ所望の強度分布を有する発光スペクトルを得るためには、このようにバンドギャップエネルギが面内で分布していてもほぼ同一の電流密度で駆動できるような構成とすることが必要である。そこで、基板10面内で温度分布を生じさせてInGaN発光層16を形成するとともに、基板10上にモノリシックに複数のLED1を形成し、これら複数のLED1を直列接続する。モノリシックに形成された複数のLED1を直列接続することで、各LED1に供給される電流密度が同一となり、これにより半値幅が約30nm以上と広く、所望の発光スペクトルで発光する発光デバイスが得られる。
【0030】
なお、基板10に面内温度分布を形成するためには、図2に示されるようにTi膜9を不連続的に基板10の裏面に形成する他、図5に示されるように基板10の裏面に不連続的に溝8を形成することによっても達成できる。溝8は、例えば所定の幅及び所定のピッチでストライプ状に形成される。溝8は、ダイヤモンド粒を埋め込んだブレードによりウエハを切断する装置を用いて形成できる。溝8の幅はブレードの厚さで決定され、例えば200μmとする。基板10の裏面に溝8を形成して凹凸を形成することで熱伝導に分布が生じ、これによりInGaNの組成分布が生じて発光ピーク波長がシフトする。
【0031】
さらに、基板10の裏面に溝8を形成するだけでなく、溝8内に(溝8の底に)Ti膜9を形成して面内温度分布を生成することもできる。本願出願人は、図6に示されるように溝8を形成し、さらに溝8内にTi膜9を形成することで、より一層効果的に面内温度分布を形成して大きな組成変化を起こさせることができることを確認している。
【0032】
図7には、基板10上にモノリシックに形成された2個のLED1を互いに直列接続する場合の構成が示されている。なお、図において、LED1の構成は説明の都合上簡略化して示されている。すなわち、図7において、各LED1は、基板10上にn型GaN層14、p型GaN層20、p電極22、n電極24を有して構成されている。実際には、図1に示されるようにInGaN発光層16を有することは云うまでもない。2つのLED1は、絶縁基板である基板10により互いに分離される。LED1同士の分離は、フォトレジストや反応性イオンエッチング、ウエットエッチングを併用することでLED1以外の領域を基板10に達するまでエッチング除去することで達成される。LED1同士はp電極22及びn電極24をエアブリッジ配線28で接続される。エアブリッジ配線28を用いることで素子表面に絶縁膜を塗布し、この上に電極を形成してp電極22とn電極24とを電気的に接続する場合に比べ、エッチング溝に沿って電極を配置する必要がなくなるため、配線切れ、あるいは絶縁膜からn型GaN層14やp型GaN層20へ絶縁体材料を構成する元素が熱拡散してLED1を劣化させる問題を回避できる。エアブリッジ配線28は、LED1間のみならずLED1と図示しない駆動電極との間の接続にも使用される。エアブリッジ配線28は、例えば以下のようにして形成される。すなわち、全面に2μmの厚さのフォトレジストを塗布し、エアブリッジ配線の形状に穴を開けた後にポストベークする。その上に、真空蒸着でTiを10nm、Auを10nmこの順序で蒸着する。さらにその上の全面に2μm厚さでフォトレジストを再度塗布し、エアブリッジ配線を形成する部分のみに穴を開ける。次いで、TiとAuを電極として電解液中でイオンプレーティング(メッキ)により電極全面に3〜5μmの厚さのAuを付着させる。その後、試料をアセトンに浸し、超音波洗浄によりフォトレジストを溶解除去してエアブリッジ配線28が完成する。
【0033】
図8には、図6に示される方法で面内温度分布を生成しInGaN発光層16のIn組成に分布を生じさせた場合の組成分布と、図7に示されるように基板10上に複数のLED1をモノリシックに形成してエアブリッジ配線28で直列接続した場合のピッチの関係が示されている。図において、グラフAは基板ウエハ面内位置に対するIn組成分布を示すものである。図6に示されるように溝8及びTi膜9を周期的に基板10の裏面に形成することで、In組成も周期的に変動する。組成分布のピッチよりも基板10上にモノリシックに形成される複数のLED1のピッチを小さく設定する。LED1の形成ピッチを小さく設定することで各LED1からの発光ピーク波長が組成分布を反映して異なるものとなり、しかも各LED1に流れる電流が均一であるから、フラットな広帯域発光スペクトルを得ることができる。LED1は基板10上にモノリシックに複数形成され直列接続されるが、一次元的に形成するのではなく二次元的に形成することも可能である。二次元的に形成する場合も、組成分布のピッチよりも各LED1の形成ピッチを小さくすることで、ブロードな発光スペクトルを設定できる。
【0034】
次に、LED1を複数個二次元アレイ状に形成した発光装置について説明する。図9には、基板10の裏面に溝8及びTi膜9が周期的に形成された平面図が示されている。溝8は、例えば200μm幅、500μmピッチで形成される。このようにして周期的に溝8及びその溝8内にTi膜9を形成した上で基板10を加熱しつつ基板ウエハ上に複数のLED1をモノリシックに形成していく。
【0035】
図10には、40個のLED1が二次元アレイ状に配列した平面図が示されており、図11には図10の回路図、図12にはその等価回路図が示されている。合計40個のLED1はそれぞれ20個ずつ2組に分けられ、エアブリッジ配線28によって直列接続されて2つのLED列30を形成している。これら2つのLED列30は、2個の電極32に互いに逆極性となるように並列接続される。
【0036】
20個のLED1を直列接続し、1個のLED1当たりの駆動電圧を5Vとすると、全体として100Vの駆動電圧となる。これは、商用電源で駆動できるレベルである。LED列30を2個電極32に逆極性で配列接続しているので、交流電圧(例えば商用の100V、60Hz)を印加すると各LED列30が交互に発光する。このため発光効率を向上できるとともに放熱特性も向上する。
【0037】
なお、LED1を二次元アレイ状に配置した場合、これを直列接続するためにはエアブリッジ配線28に交差部分34が必然的に生じる。エアブリッジ配線28は図7に示されるようにサファイア基板10等に接着しておらず、サファイア基板10から離れて空中を通過するので交差部分34においてエアブリッジ配線28同士が接触して短絡する事態を回避できる。エアブリッジ配線28とする利点の一つがここにある。以下に実施例を示す。
【0038】
【実施例】
厚さ330μmのサファイアc面基板の裏面全面にフォトレジストを塗布し、ダイアモンドブレードで幅200μm、ピッチ500μm、深さ150μmの溝を形成した。この面全体にTiを真空蒸着で形成し、アセトンの中に浸けるとフォトレジストが溶け、基板裏面の溝の底にTi膜が形成された構造ができた。その後、MOCVD法にて基板表面にLED構造を成長させ、ピッチ120μm、20個のLEDを直列に接続したものを並列に接続し、合計40個のLEDアレイ(チップ)を作製した。全体の大きさは約1mm×1mmである。このLEDアレイにDC20mAを流したときの電圧は約70V、積分球で測定した発光出力は約60mWであった。DC駆動したときは、直列接続された20個のLEDが交互に点灯するのが確認できた。AC駆動した場合、40個全てのLEDが発光した。顕微鏡で発光を観察すると、各チップ毎に発光色が異なることが確認された。発光スペクトルは波長470nm〜490nmまでほぼフラットな強度を保ち、半値幅は約460nm〜510nmまでの50nmであった。肉眼には青緑色に見えた。
【0039】
また、InGaN発光層の成長条件を変え、平均In組成を大きくすると波長は長波長側にシフトした。特に、成長温度(基板ホルダ温度)を650℃程度まで下げ、各原料ガスの流量と成長圧力を調整するとウエハ面内でPL(フォトルミネセンス)ピーク波長が470nmから580nmまで変化した。変化の周期は、基板裏面に形成した溝の周期500μmと一致していた。このウエハを用いて1mm角の20個+20個のLEDアレイを作製してその発光を観察した。発光色は肉眼には白色に見えた。
【0040】
さらに、500μm×500μmサイズで20個のLEDを直列に接続した発光装置では、発光装置の形成位置により同じ白色であってもその色合いは微妙に違って見えた。これは、図13に示されるように、ウエハから500μm×500μmの発光装置(チップ)100を切り出す際に、ウエハの場所によって発光装置(20個のLEDを含む)内に形成された各波長帯のLED個数が変化するためである。すなわち、あるチップは短波長側のLEDの個数が相対的に多くなり、別の場所のチップは長波長側のLEDの個数が相対的に多くなる。このことは、同一のウエハから、異なる発光スペクトルを有するチップを作製できることを意味する。
【0041】
このように、本実施形態における発光装置は、LEDのピッチを十分小さくすることで、半値幅が50nm以上でフラットな発光スペクトルを有することができ、In組成を調整することで肉眼で白色に見える発光スペクトルが得られる。一般に、白色のLEDを作製するための方法として、(1)R,G,Bの3原色のLEDを用いる、(2)青色LEDの上にYAG(イットリウム・アルミニウム・ガーネット)系の蛍光体を載せて黄色を発光せしめ、蛍光体を通過した青と混ぜることで白色を出す、(3)紫外線LEDにより3原色を発光する蛍光体を励起して白色を出す、(4)LEDの活性層に発光色の異なる発光層を重ね、単一のpn接合から全ての発光層に電流注入を行う、等の方法がある。(1)の方法は、3種類のLEDと電源が必要であり、(2)の方法は、互いに補色関係にある2原色により白色を作っているのでその色合いの調整ができないという問題がある。特に、青+黄色の場合は、赤成分を含まないので暖かみのある色合いが出せない。(3)の方法は原理的に電圧損失が発生し、電力効率が他の方法よりも悪くなる問題がある。また、全ての色を蛍光体で出すので、エネルギ効率がほとんど蛍光体で決定され、励起する紫外線の波長によっては励起効率が悪くなる。また、蛍光体の効率に温度依存性があり、その依存性が色により異なるので周囲温度が変化すると色合いが変化する問題もある。(4)の方法は、pn接合の境界面に複数の層を挟み、それらの発光色を変えるというものであるが、pn接合に印加する電圧により各層に注入されるキャリア数が変わるので、印加電圧により色が変化してしまう問題がある。また、印加電圧は波長の最も短い層に合わせて決定されるので、電圧損失が生じ、エネルギ効率が悪くなる問題がある。さらに、色合いを調整するのは各発光層の膜厚、組成、層数など多数のパラメータにより決定されるので、再現性を確保するのが困難である。
【0042】
これに対し、本実施形態の発光装置では、このような問題を生じることなく白色を得ることができる。また、ウエハ面内の組成分布を大きくすれば色合いをさらに自然な色に近づけることが可能である。また、各LEDはそれぞれ最適な電圧で動作しているため、電圧損失も発生しない。
【0043】
なお、(2)の方法に関しては、従来では青色LEDを用いて蛍光体を励起させ、青色と黄色を混合して白色を出しているが、本実施形態の発光装置では上述したように波長470nm〜490nmまでほぼフラットな強度を保ち、半値幅が約460nm〜510nmまでの50nmの青緑色の光を発光することができるため、これを一次光源として用いて(2)の方法を採用することで、色合いの調整が可能となる効果も奏する。すなわち、本実施形態の発光装置上にYAG系の蛍光体を載せ、発光装置からの青緑色の光によりYAG系蛍光体を励起させる。
【0044】
より具体的には、LEDチップを被覆する樹脂モールド中にYAG系蛍光体を含有させる。YAG系蛍光体を用いた白色LEDは公知であり、例えば特開平11−243232号公報に開示されている。光源として、青色LEDの代わりに本実施形態の発光装置を用いればよい。青緑色の一次光と蛍光体からの二次光との混合により従来にはない色合いを作成できる。
【0045】
以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく種々の変更が可能である。
【0046】
例えば、本実施形態では発光層としてInGaNを用いたが、AlInGaNを用いることもでき、一般式ではAlyInxGa1-x-yN(0≦x≦1、0≦y≦1)と表現できる。
【0047】
また、本実施形態において、同一ウエハ内においてチップを切り出す位置によりそのチップ内に存在する各波長帯域のLEDの個数に相違が生じているが、同一ウエハ内にモノリシックに複数のLEDを形成する際に、より意図的に組成分布に対して不均一にLEDを形成することも可能である。例えば、組成分布は図9に示されるように周期的に形成しつつ、LEDの形成密度(LED個数)をウエハ位置によって変化させる(ある位置では高密度に形成し、別の位置では低密度に形成する)、あるいはLEDの面積をウエハ位置によって変化させる(ある位置では大面積で形成し、別の位置では小面積で形成する)。これによりチップを切り出すウエハ位置により発光スペクトルが変化する。LED密度(個数)や面積は、組成分布のピッチに応じて設定する。
【0048】
【発明の効果】
以上説明したように、本発明によれば、発光スペクトルが広く、あるいは、発光スペクトルを所望の値に設定することができる発光装置を得ることができる。
【図面の簡単な説明】
【図1】 LEDの基本構成図である。
【図2】 温度分布形成説明図である。
【図3】 LEDの平面図である。
【図4】 図3の発光スペクトル説明図である。
【図5】 他の温度分布形成説明図である。
【図6】 さらに他の温度分布形成説明図である。
【図7】 LEDの直列接続説明図である。
【図8】 LEDアレイのピッチと組成分布との関係を示す説明図である。
【図9】 溝の形成ピッチを示す説明図である。
【図10】 二次元LEDアレイの配置説明図である。
【図11】 図10の回路図である。
【図12】 図10の等価回路図である。
【図13】 ウエハ内の形成位置説明図である。
【符号の説明】
10 基板(ウエハ)、12 u−GaN層、14 n型GaN層、16 InGaN発光層、18 AlGaN層、20 p−GaN層、22 p−電極、24 n−電極。
Claims (8)
- InGaN系化合物半導体発光装置を製造する方法であって、
(a)絶縁透明基板面内で周期的に温度分布を生じさせるステップと、
(b)前記面内の温度分布のピッチよりも小さいピッチで前記基板上にモノリシックに複数のInGaN系発光素子を形成するステップと、
(c)前記複数のInGaN系発光素子を直列接続するステップ、
を有することを特徴とするInGaN系化合物半導体発光装置の製造方法。 - 請求項1記載の方法において、
前記(a)ステップは、
(a1)前記基板の裏面に周期的に溝を形成するステップと、
(a2)前記溝内に膜を形成するステップと、
(a3)前記基板の裏面側から加熱するステップ
を有することを特徴とするInGaN系化合物半導体発光装置の製造方法。 - 請求項2記載の方法において、
前記膜はチタン膜であることを特徴とするInGaN系化合物半導体発光装置の製造方法。 - 請求項1記載の方法において、
前記(b)ステップは、
(b1)前記基板上に複数のn型GaN系層を形成するステップと、
(b2)前記n型GaN系層上にAlyInxGa1-x-yN(但し、0≦x≦1,0≦y≦1)発光層を形成するステップと、
(b3)前記発光層上にp型GaN系層を形成するステップと、
(b4)前記n型GaN系層及びp型GaN系層にそれぞれn電極及びp電極を接続するステップ
を有し、複数の前記発光素子がモノリシックに直列接続されることを特徴とするInGaN系化合物半導体発光装置の製造方法。 - 請求項4記載の方法において、
前記(b)ステップにおいて前記基板上に形成される複数の前記発光素子の密度を変化させることを特徴とするInGaN系化合物半導体発光装置の製造方法。 - 請求項4記載の方法において、
前記(b)ステップにおいて前記基板上に形成される前記発光素子の面積を変化させることを特徴とするInGaN系化合物半導体発光装置の製造方法。 - 請求項4記載の方法において、さらに、
(d)前記発光素子を所定数毎に切り出して発光チップを形成するステップ
を有することを特徴とするInGaN系化合物半導体発光装置の製造方法。 - 請求項7記載の方法において、
前記温度分布を調整することにより発光チップの発光スペクトルの半値幅を30nm以上とすることを特徴とするInGaN系化合物半導体発光装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002240116A JP4309106B2 (ja) | 2002-08-21 | 2002-08-21 | InGaN系化合物半導体発光装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002240116A JP4309106B2 (ja) | 2002-08-21 | 2002-08-21 | InGaN系化合物半導体発光装置の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004079867A JP2004079867A (ja) | 2004-03-11 |
JP4309106B2 true JP4309106B2 (ja) | 2009-08-05 |
Family
ID=32022985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002240116A Expired - Lifetime JP4309106B2 (ja) | 2002-08-21 | 2002-08-21 | InGaN系化合物半導体発光装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4309106B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101448153B1 (ko) | 2008-06-25 | 2014-10-08 | 삼성전자주식회사 | 발광 다이오드용 멀티칩 패키지 및 멀티칩 패키지 방식의발광 다이오드 소자 |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100665299B1 (ko) | 2004-06-10 | 2007-01-04 | 서울반도체 주식회사 | 발광물질 |
US8318044B2 (en) | 2004-06-10 | 2012-11-27 | Seoul Semiconductor Co., Ltd. | Light emitting device |
ATE524839T1 (de) * | 2004-06-30 | 2011-09-15 | Cree Inc | Verfahren zum kapseln eines lichtemittierenden bauelements und gekapselte lichtemittierende bauelemente im chip-massstab |
TW200501464A (en) | 2004-08-31 | 2005-01-01 | Ind Tech Res Inst | LED chip structure with AC loop |
KR101274041B1 (ko) * | 2004-12-31 | 2013-06-12 | 서울반도체 주식회사 | 발광 장치 |
KR101138944B1 (ko) * | 2005-01-26 | 2012-04-25 | 서울옵토디바이스주식회사 | 직렬 연결된 복수개의 발광셀들을 갖는 발광 소자 및그것을 제조하는 방법 |
CN100464111C (zh) * | 2005-03-04 | 2009-02-25 | 吕大明 | 交流led照明灯 |
US7446345B2 (en) * | 2005-04-29 | 2008-11-04 | Cree, Inc. | Light emitting devices with active layers that extend into opened pits |
WO2006137711A1 (en) | 2005-06-22 | 2006-12-28 | Seoul Opto-Device Co., Ltd. | Light emitting device and method of manufacturing the same |
KR100646635B1 (ko) * | 2005-06-24 | 2006-11-23 | 서울옵토디바이스주식회사 | 복수 셀의 단일 발광 소자 및 이의 제조 방법 |
KR100646636B1 (ko) | 2005-06-28 | 2006-11-23 | 서울옵토디바이스주식회사 | 발광 소자 및 이의 제조 방법 |
KR100608920B1 (ko) | 2005-06-30 | 2006-08-03 | 서울옵토디바이스주식회사 | 다수의 발광셀이 어레이 된 발광소자의 배선형상 |
KR100616415B1 (ko) * | 2005-08-08 | 2006-08-29 | 서울옵토디바이스주식회사 | 교류형 발광소자 |
KR100690321B1 (ko) | 2005-08-09 | 2007-03-09 | 서울옵토디바이스주식회사 | 발광셀 어레이들을 갖는 발광 다이오드 및 그것을 제조하는방법 |
WO2007018360A1 (en) * | 2005-08-09 | 2007-02-15 | Seoul Opto Device Co., Ltd. | Ac light emitting diode and method for fabricating the same |
KR100721454B1 (ko) * | 2005-11-10 | 2007-05-23 | 서울옵토디바이스주식회사 | 광 결정 구조체를 갖는 교류용 발광소자 및 그것을제조하는 방법 |
KR100644215B1 (ko) | 2005-11-25 | 2006-11-10 | 서울옵토디바이스주식회사 | 발광소자와 그 제조방법 |
KR101055772B1 (ko) * | 2005-12-15 | 2011-08-11 | 서울반도체 주식회사 | 발광장치 |
KR100652864B1 (ko) | 2005-12-16 | 2006-12-04 | 서울옵토디바이스주식회사 | 개선된 투명전극 구조체를 갖는 교류용 발광 다이오드 |
DE112006002927B4 (de) | 2006-01-09 | 2010-06-02 | Seoul Opto Device Co. Ltd., Ansan | Licht emittierende Diode mit ITO-Schicht und Verfahren zur Herstellung einer solchen |
KR100875443B1 (ko) | 2006-03-31 | 2008-12-23 | 서울반도체 주식회사 | 발광 장치 |
JP2009532895A (ja) * | 2006-08-31 | 2009-09-10 | エピヴァレー カンパニー リミテッド | Iii族窒化物半導体発光素子 |
JP2008071805A (ja) * | 2006-09-12 | 2008-03-27 | Institute Of National Colleges Of Technology Japan | 複数種の蛍光体を2種類以上の半導体発光素子上に塗布した多波長発光装置。 |
WO2009025469A2 (en) | 2007-08-22 | 2009-02-26 | Seoul Semiconductor Co., Ltd. | Non stoichiometric tetragonal copper alkaline earth silicate phosphors and method of preparing the same |
KR101055769B1 (ko) | 2007-08-28 | 2011-08-11 | 서울반도체 주식회사 | 비화학양론적 정방정계 알칼리 토류 실리케이트 형광체를채택한 발광 장치 |
CN104600167B (zh) * | 2009-09-07 | 2017-12-12 | 崇高种子公司 | 半导体发光元件 |
KR101601624B1 (ko) | 2010-02-19 | 2016-03-09 | 삼성전자주식회사 | 멀티셀 어레이를 갖는 반도체 발광장치, 발광모듈 및 조명장치 |
KR20140006485A (ko) | 2012-07-05 | 2014-01-16 | 삼성전자주식회사 | 멀티셀 어레이를 갖는 반도체 발광장치 및 그 제조 방법 |
FR3001334B1 (fr) * | 2013-01-24 | 2016-05-06 | Centre Nat De La Rech Scient (Cnrs) | Procede de fabrication de diodes blanches monolithiques |
JP2016042534A (ja) * | 2014-08-18 | 2016-03-31 | ナイトライド・セミコンダクター株式会社 | InGaN系化合物半導体発光装置の製造方法及び波長調整方法 |
DE102017109812A1 (de) | 2016-05-13 | 2017-11-16 | Osram Opto Semiconductors Gmbh | Licht emittierender Halbleiterchip und Verfahren zur Herstellung eines Licht emittierenden Halbleiterchips |
DE102017108949B4 (de) | 2016-05-13 | 2021-08-26 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Halbleiterchip |
DE102017109809B4 (de) * | 2016-05-13 | 2024-01-18 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung eines Halbleiterchips |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2687668B2 (ja) * | 1990-04-17 | 1997-12-08 | 日本電気株式会社 | 高出力半導体レーザ素子及びその製造方法 |
JP3115775B2 (ja) * | 1994-11-16 | 2000-12-11 | 三菱電機株式会社 | 半導体レーザの製造方法 |
JP3298390B2 (ja) * | 1995-12-11 | 2002-07-02 | 日亜化学工業株式会社 | 窒化物半導体多色発光素子の製造方法 |
JPH1051028A (ja) * | 1996-08-06 | 1998-02-20 | Toshiba Corp | 窒化ガリウム系化合物半導体発光素子 |
JP3575657B2 (ja) * | 1997-06-17 | 2004-10-13 | 豊田合成株式会社 | 窒化ガリウム系化合物半導体素子の製造方法 |
JP2000031595A (ja) * | 1998-07-10 | 2000-01-28 | Nec Corp | 光半導体素子、光半導体素子の製造方法及びその製造装置 |
JP3497741B2 (ja) * | 1998-09-25 | 2004-02-16 | 株式会社東芝 | 半導体発光装置及び半導体発光装置の駆動方法 |
JP2001237192A (ja) * | 2000-02-24 | 2001-08-31 | Sony Corp | 形成用基板、窒化物系iii−v族化合物層、窒化物系iii−v族化合物基板の製造方法および半導体素子 |
JP2001307506A (ja) * | 2000-04-17 | 2001-11-02 | Hitachi Ltd | 白色発光装置および照明器具 |
-
2002
- 2002-08-21 JP JP2002240116A patent/JP4309106B2/ja not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101448153B1 (ko) | 2008-06-25 | 2014-10-08 | 삼성전자주식회사 | 발광 다이오드용 멀티칩 패키지 및 멀티칩 패키지 방식의발광 다이오드 소자 |
Also Published As
Publication number | Publication date |
---|---|
JP2004079867A (ja) | 2004-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4309106B2 (ja) | InGaN系化合物半導体発光装置の製造方法 | |
JP5032171B2 (ja) | 半導体発光素子およびその製造方法ならびに発光装置 | |
EP1754265B1 (en) | Led with a fluorescent substance | |
US6329676B1 (en) | Flat panel solid state light source | |
KR100723233B1 (ko) | 백색 발광 소자 | |
TWI630733B (zh) | 發光元件封裝及其製造方法 | |
KR20050063924A (ko) | 질화물 반도체 발광소자 및 그 제조방법 | |
JP4852755B2 (ja) | 化合物半導体素子の製造方法 | |
JP2009530803A (ja) | モノリシック白色発光ダイオード | |
JP2009283876A (ja) | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法 | |
JP3946541B2 (ja) | 発光装置およびそれを用いた照明装置、ならびに該発光装置の製造方法と設計方法 | |
JP4815013B2 (ja) | 窒化物系半導体発光素子、照明装置、液晶表示装置および照明装置の製造方法 | |
JP4008656B2 (ja) | 半導体発光装置 | |
JP3087742B2 (ja) | 白色led | |
JP6521750B2 (ja) | 窒化物半導体発光素子 | |
JP3511923B2 (ja) | 発光素子 | |
JP2017045787A (ja) | 窒化物半導体発光素子 | |
JP2002305327A (ja) | 窒化物系半導体発光素子 | |
JP5543946B2 (ja) | 半導体発光素子および発光装置 | |
KR100670929B1 (ko) | 플립칩 구조의 발광 소자 및 이의 제조 방법 | |
TWI484659B (zh) | 具有高效率波長轉換之發光裝置及其形成方法 | |
CN115188862A (zh) | 一种覆晶型的发光二极管结构与制作方法 | |
KR101068864B1 (ko) | 반도체 발광소자 및 그 제조방법 | |
JP2013229638A (ja) | 半導体発光素子および発光装置 | |
KR20120002818A (ko) | 질화물 반도체 발광소자 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090407 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090507 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4309106 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150515 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |