[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4306889B2 - Gas permeate carrying catalyst - Google Patents

Gas permeate carrying catalyst Download PDF

Info

Publication number
JP4306889B2
JP4306889B2 JP24604399A JP24604399A JP4306889B2 JP 4306889 B2 JP4306889 B2 JP 4306889B2 JP 24604399 A JP24604399 A JP 24604399A JP 24604399 A JP24604399 A JP 24604399A JP 4306889 B2 JP4306889 B2 JP 4306889B2
Authority
JP
Japan
Prior art keywords
gas
catalyst
ceramic fiber
ceramic
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24604399A
Other languages
Japanese (ja)
Other versions
JP2001038225A (en
Inventor
彰 鳥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Isolite Insulating Products Co Ltd
Original Assignee
Electric Power Development Co Ltd
Isolite Insulating Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Isolite Insulating Products Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP24604399A priority Critical patent/JP4306889B2/en
Publication of JP2001038225A publication Critical patent/JP2001038225A/en
Application granted granted Critical
Publication of JP4306889B2 publication Critical patent/JP4306889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Nonwoven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、触媒を担持したセラミック繊維製ガス透過体に、窒素酸化物及び有機塩素化合物等の有害ガスを含む燃焼排ガスを透過させ、該有害ガスを触媒の作用により分解し無害化することのできるガス透過体に関し、該ガス透過体を装備した窒素酸化物及び有機塩素化合物分解装置は、特に廃棄物焼却炉、石炭等の化石燃料を使用する燃焼設備、製鉄及び冶金用各種工業炉、セメント焼成炉、耐火物焼成炉、石油精製設備、化学プラント等から排出されるガス中の窒素酸化物及び有機塩素化合物を分解し無害化する設備に有用なものである。
【従来の技術】
燃焼排ガス中に含まれる窒素酸化物及びPCDD(ポリ塩化ジベンゾダイオキシン)、PCDF(ポリ塩化ジベンゾフラン)等の有機塩素化合物を分解する触媒の形状として良く知られているものにハニカムがある。特に窒素酸化物に関しては、酸化チタンを担体とし、五酸化バナジウムと三酸化タングステンの触媒成分から成るハニカムを容器内に収納し、ハニカムのセル内に、予め注入されたアンモニアを含む燃焼排ガスを通過させて、窒素酸化物を、窒素ガスと水とに分解し無害化するプラントが既に多数設置されている。
【0003】
また、焼却プラントから排出される燃焼排ガス中のダイオキシン等の環式有機塩素化合物を分解するための触媒素子については例えば特許開平6−386等でその形状に関する出願がなされている。これらの触媒ハニカムは、例えば、酸化チタン、五酸化バナジウム、酸化タングステン等の粉末から成る泥漿状素材を金型等で押出し成形し、乾燥及び焼成工程を経て製造されていた。
【0004】
このようにして成形された触媒ハニカムを3段構成とした脱硝装置の応用例につき図6をもとに説明する。焼却炉等から排出された窒素酸化物及び有機塩素化合物を含む排ガスは、排ガスダクト101に設けたアンモニア注入装置109にて還元剤であるアンモニア(NH)が注入され、脱硝装置入口102に流入し、脱硝ハニカム103のガス通路を通り、矢印104の方向に流れる。このとき、排ガス中の窒素酸化物(NOX)はハニカムの流路壁面の触媒との反応により、その一部が還元され、水(HO)と窒素(N)となって触媒ハニカム103から流出する。
【0005】
触媒ハニカム103から流出した燃焼排ガス中には、本来の排ガス成分以外に、未反応の窒素酸化物とアンモニアのほか、窒素酸化物の一部がアンモニアによって還元された水と窒素ガスが含まれ、2段目の触媒ハニカム入口空間105内でガスの圧力を回復し、次段の触媒ハニカム106のガス通路を通り、矢印107の方向に流れる。以後、同様の機能により2段目、3段目の順に窒素酸化物が順次還元されて、窒素酸化物濃度が低減し、脱硝装置出口110を出る燃焼排ガス111は、環境規制値以下まで窒素酸化物の濃度が低減し排出される。
【0006】
なお、図6に示す触媒ハニカム103は、より小さなサイズのハニカム要素の集合体で構成される。このハニカム要素の典型例を図7に示す。通常使用されるハニカム要素は、例えば、セルピッチ5mmで縦、横、高さがそれぞれ、200mm、200mm、500mm程度の寸法を有するものが一般的であるが、図7ではハニカムの機能を説明する都合上、模式的に4セル×4セルとしている。
【0007】
ハニカム要素112は、その一方の開口部113から矢印114の方向に、アンモニアガスを含む燃焼排ガスを導き、セル内のガス通路壁面に露出もしくは壁面から略20ミクロンまでの深さにある触媒と接触した燃焼排ガス中の窒素酸化物は触媒の働きにより、水と窒素ガスに還元されて、ハニカム要素の他方の開口部115から、矢印116の方向に排出される。
【0008】
ただし、ハニカム要素112内のガス通路を通過する燃焼排ガス中の窒素酸化物の内、触媒と接触することなく開口部115から排出される窒素酸化物も多く、通常はハニカム群1段当りの窒素酸化物を還元する割合(脱硝率)は、15〜30%程度に留まる。したがって、図6に示すように、ハニカム群を多段にして脱硝率を高めるように構成されるのが一般的である。
【0009】
【発明が解決しようとする課題】
しかしこのように酸化チタンを担体として五酸化バナジウム、三酸化タングステンの触媒成分を含むハニカムは、窒素酸化物及び有機塩素化合物を分解する役割を担う五酸化バナジウム及び三酸化タングステンが、これらハニカムの担体である酸化チタン中に分散担持されているため、ハニカム内のガスの流路壁面に露出しているか、もしくは流路壁面から略20ミクロンまでの深さにある五酸化バナジウム及び三酸化タングステンを除き、ほとんどの触媒はハニカム構造体中に埋没し、触媒としての機能を果たさない欠点があった。
【0010】
更に、このようなハニカム形状の触媒では、予めバグフィルタ等で除塵された粉塵を含まない清浄ガスを通過させる場合であっても、ハニカムのガス流路壁面に、長期間にわたって徐々に粉塵が堆積することによって起こる流路断面積の減少を考慮して、少なくとも3mm×3mm程度のガス流路断面積を確保する必要があった。加えて、ハニカムのガス流路壁面に粉塵が堆積することによって、化学的に活性な触媒表面が粉塵で覆われ、ガスと触媒との接触が阻害されて、結果的に触媒性能の低下を引き起こし、定期的な触媒ハニカムの再生処理もしくは新品の触媒ハニカムとの交換を必要とする欠点もあった。
【0011】
更にバグフィルタ等の除塵手段をガスの上流側に持たないプラントでは、粉塵の付着によるガス流路断面積の減少を考慮して、通常は10mm×10mm程度のガス流路面積を持つハニカムが使用されているが、清浄ガスを通過させるハニカムに比べ比表面積が小さく、装置が大型化する欠点があった。更に、粉塵を多量に含むガスを流路に流すため、流路表面に付着した粉塵を払い落とすためのスートブロー装置が必要であるに加え、スートブローでは払い落とせない粉塵がハニカムのガス流路壁面に徐々に堆積し、清浄ガスを通すハニカムの場合と同様、定期的なハニカムの再生処理もしくは新品のハニカムへの交換を必要とする欠点を有していた。
【0012】
【課題を解決するための手段】
以下本発明による課題を解決するための手段について図面に基づき詳細に説明する。なお、図1に示す繊維1及び粉末状触媒3は何れも繊維径および粒径とも100ミクロン以下の微少物質を多量に混合及び積層した集合体であり、各々の単一要素は図示できない微少な物質であるが、本発明を説明する上での利便性を考慮し、イラスト的に大きな形状に表現している。
【0013】
図1に示すように、請求項1に係る発明による触媒を担持したセラミック繊維製ガス透過体4は、繊維径が1〜10ミクロンの範囲でかつ繊維長さが少なくとも10mm以上あるセラミックス繊維が全体の50%以上を占めるセラミックス繊維1から成り、その空隙率が75%以上95%以下の範囲で、少なくとも10mm以上の厚さを有するセラミック繊維の成形体の中に、五酸化バナジウム又は三酸化タングステン、もしくは両者の化合物からなる平均粒径20ミクロン以上80ミクロン以下の粉末状触媒3を、略均一に分散担持させてガス透過体4を形成し、該ガス透過体の一方の壁面5から、窒素酸化物又はPCDD(ポリ塩化ジベンゾダイオキシン、PCDF(ポリ塩化ジベンゾフラン)等の有機塩素化合物もしくはこれら両方の有害ガスを含む燃焼排ガスを矢印6の方向から透過せしめ、ガス中に含まれるこれら有害物質を触媒により分解し無害化した燃焼排ガスを、もう一方の壁面7から矢印8の方向に流出せしめることを特徴とする。
【0014】
前記触媒を担持したセラミック繊維製ガス透過体4の中に含まれる粉末状触媒3は、ガス透過体4の全重量に対し、15重量%±10重量%含まれていることが望ましい。その理由は、ガス透過体4に占める粉末状触媒3の割合が5重量%以下になると、セラミック繊維製ガス透過体4を貫通して流れる燃焼排ガス中の窒素酸化物及び有機塩素化合物が、十分には分解されずに排出されてしまうからである。又、ガス透過体4に占める粉末状触媒3の割合が25重量%以上では、セラミックス繊維の成形体中に占める粉末状物質の割合が多くなって、ガス透過体4の強度が低下するため好ましくない。
【0015】
このように形成されたガス透過体は、窒素酸化物及び有機塩素化合物を含む燃焼排ガスが、一方の壁面から他方の壁面に、セラミックス繊維の成形体内部を貫通して流れるため、成形体内部に略均一に分散担持された触媒全てが有効に機能することとなり、従来技術のハニカムのように、壁面に露出した触媒及び壁面から20ミクロンの深さまでの触媒しか機能せず、かつ、ハニカムの流路内を通過した燃焼排ガス中の窒素酸化物及び有機塩素化合物の多くが、触媒と接触することなく排出されるのに比べ、排ガス中に含まれる窒素酸化物及び有機塩素化合物が触媒と接触して分解される機会が大幅に増加する。換言すればハニカムの場合に必要な触媒量に比べ、略3分の1から10分の1の触媒量でハニカムと同等の窒素酸化物及び有機塩素化合物の分解が可能となる。
【0016】
このようにして形成されたガス透過体を使用すれば、ガス中に含まれる粉塵は、ガス透過体のガス入口側壁面で捕捉され、ガス透過体内部には侵入しないため、ハニカムの場合のように、壁面に堆積した粉塵により触媒が粉塵に覆われてガスから遮断され、触媒の機能が低下する現象も起こらない。
【0017】
前記ガス透過体を構成する繊維は、少なくとも500℃以上の耐熱性があり、燃焼排ガスに対する耐食性があって、成形体を形成できるものであれば如何なるセラミックス繊維も使用することができる。アルミナ、シリカ、マグネシア、ガラス、炭化珪素、窒化珪素の何れか単一成分から成る繊維、もしくはこれらの化合物から成る繊維、もしくはこれら繊維の複合組成からなるセラミックス繊維は耐熱性、耐食性及び市場性の点で特に好ましい。
【0018】
又、前記ガス透過体に分散担持される触媒は、予め、五酸化バナジウム又は三酸化タングステンとの親和性に優れた酸化チタンを担体とした粉末状触媒に成形したものを使用することもできる。
【0019】
なお、触媒を分散担持させたセラミックス繊維製ガス透過体を製造する方法としては、例えば、アルミナゾル、シリカゾル、チタンゾル等の金属ゾルの何れか単一成分もしくは複合成分と、澱粉等の界面活性剤から成る水溶液中に触媒の粉末を加えて攪拌しつつ、セラミックス繊維を順次投入して触媒とセラミック繊維とのスラリー状混合液を作り、その後、固形分のみを捕捉し液体成分を透過することのできる鋳型に流し込んで成形し、乾燥処理の後、鋳型から取外し、焼成処理をして成形体を得ることができる。
【0020】
又は、前記金属ゾル、界面活性剤、触媒から成る混合溶液中により多くのセラミックス繊維を投入し、触媒とセラミック繊維から成る可塑性のゲル状素材とし、その後、押出し成形もしくはプレス成形し、乾燥処理及び焼成処理をして成形体を得ても良い。
【0021】
【発明の実施の形態】
以上説明したように、請求項1に係る発明による触媒を担持したセラミック繊維製ガス透過体は
従来技術である触媒を担持したハニカムに比べ、多くの利点を有するもので、以下にその実施の形態について図面をもとに詳細に説明する。
【0022】
図2は、図1に示す角型ブロック形状の、本発明による触媒を担持したセラミック繊維製ガス透過体を用いた窒素酸化物及び有機塩素化合物分解装置の1実施例を示す。
【0023】
窒素酸化物及び有機塩素化合物を含む燃焼排ガスは、ガスダクト9を通り、アンモニア注入装置17から注入されたアンモニアと混合し、有害ガス分解装置入口10から装置内に導かれ、本発明によるブロック状ガス透過体12が複数個集合した透過体群13を矢印11の方向に向かって流れ、透過体内部に分散担持された触媒により、窒素酸化物及び有機塩素化合物が分解されて無害化され、透過体群13から流出する。ガス透過体群13から流出した無害化されたガスは、集合部14を経て、有害ガス分解装置出口15から矢印16の方向に排出される。なお、有機塩素化合物を分解する目的のみに本有害ガス分解装置を使用する場合は、アンモニアを注入する必要はない。
【0024】
なお、本発明によるガス透過体のガス流れ方向の厚みは、燃焼排ガス中に含まれる窒素酸化物及び有機塩素化合物が、ガス透過体中に分散担持された触媒と十分に接触できる滞留時間を確保するため、少なくとも10mm以上とすることが望ましい。
【0025】
前記燃焼排ガスの窒素酸化物及び有機塩素化合物分解装置入口におけるガス温度は、触媒が最も効率良く機能する温度範囲である300℃±100℃の範囲で温度制御することが望ましく、更には、燃焼排ガス中の亜硫酸ガスが酸化されて硫酸となり、この硫酸と注入したアンモニアとが反応して生成する硫酸アンモニウム塩が触媒を被毒する可能性を排除できる温度範囲として300℃±50℃とすることがより好ましい。
【0026】
又、本発明による触媒を担持したセラミック繊維製ガス透過体は、従来技術である触媒ハニカムに比べ、窒素酸化物及び有機塩素化合物の分解能力が高く、従来複数段設けていた触媒ゾーンは1段で十分その機能が発揮できる。
【0027】
図3は本発明による触媒を担持したセラミック繊維製ガス透過体の他の成形例であるが、図1に示すブロック状とは異なり、両端が開放した円筒形状に成形したものである。
【0028】
窒素酸化物及び有機塩素化合物を含む燃焼排ガスは、燃焼ガス入口18から矢印19に向かって流れ、円筒の内面壁の全面20から円筒の外面壁の全面21に向かって矢印22の向きに流れ、円筒を構成するセラミックス繊維中に分散担持された触媒により、燃焼排ガス中の窒素酸化物及び有機塩素化合物は分解され無害化されて、外壁面21から流出する。なお、この場合もガス透過体中に分散担持された触媒と十分に接触できる滞留時間を確保するため、少なくとも10mm以上の厚みを有する円筒形状とすることが望ましい。
【0029】
このように両端が開放した円筒形状に成形された触媒を担持したセラミック繊維製ガス透過体を用いた窒素酸化物及び有機塩素化合物分解装置の実施例を図4示す。なお、図4中、図2と同一の部分及び機能を示すものについては図2と同一の記号を付してある。
【0030】
装置入口部10から流入した窒素酸化物及び有機塩素化合物を含む燃焼排ガスは、各々の円筒のガス入口部を矢印23の方向に流れ、円筒の内壁面から外壁面に向かって矢印24の方向に流れ、ガス集合部14を経て、装置のガス出口15を通り矢印16の方向に排出される。本実施例の場合、両端が開放した円筒形ガス透過体25は、容器内に設けた管板26及び27により、その両端が支持される構造としている。なお、円筒を構成する材料内部に分散担持された触媒の働きにより、燃焼排ガス中の窒素酸化物及び有機塩素化合物は分解され無害化されることは前述の通りである。更に、装置入口ガス温度を300℃±100℃に保持することが望ましく、より好ましくは300℃±50℃とすることは前述の通りである。又、図2と重複する部分については説明を省略する。
【0031】
円筒形状に成形した触媒を担持したセラミック繊維製ガス透過体を用いた窒素酸化物及び有機塩素化合物分解装置の他の実施例を図5に示す。なお、図5中、図2と同一の部分及び機能を示すものについては図2と同一の記号を付してある。
【0032】
本実施例の場合、円筒形状のガス透過体は、一端が開放し、他端が閉止した所謂キャンドル型とし、開放した上端部を管板30で支持し、円筒形状のガス透過体31を垂下する構造としている。
【0033】
図5に示す装置入口部10から流入した窒素酸化物及び有機塩素化合物を含む燃焼排ガスは、各々の円筒の外壁面から内壁面に向かって矢印28の方向に流れ、円筒状ガス透過体出口から矢印29の方向に流れ、ガス集合部14を経て、装置のガス出口15を通り矢印16の方向に排出される。なお、装置入口ガス温度を、より好ましくは300℃±50℃とすることは前述の通りである。また、少なくとも10mm以上の厚みを有する円筒形状とすることが望ましいことも前述の通りである。
【0034】
また、本発明によるガス透過体は、例えば図1に示すブロック状に成形した場合、図6に示す従来技術のハニカム103の構成単位である図7のハニカム要素112と同一の縦、横、高さ寸法にすることにより、既設の脱硝装置のハニカムを撤去して、本発明によるセラミック繊維製ガス透過体に置き換えることもできる。このようにして置き換えられたガス透過体は、ハニカムの場合に比べ、窒素酸化物及び有機塩素化合物の分解機能が高いため、図7に示す3段構成のハニカム群を例えば図3に示すような1段構成としても、3段構成のハニカム群の場合と同一もしくはそれ以上の窒素酸化物及び有機塩素化合物の分解能が得られる。
【0035】
【発明の効果】
以上説明したように、本発明によれば、セラミック繊維の成形体中に触媒を担持したセラミック繊維製ガス透過体の材料内部を、窒素酸化物及び有機塩素化合物を含む燃焼排ガスが貫通することになるので、材料内部に分散担持せしめた触媒全てが、ガスと遮断されることなく有効に機能することとなり、少ない触媒量であっても、燃焼排ガス中の窒素酸化物及び有機塩素化合物を実用上十分なレベルまで低減することが可能である。
【0036】
更に、従来方式である触媒ハニカムに比べ、相対的に少ない容積の中に燃焼排ガスを通過せしめ、かつ従来以上に効率良く窒素酸化物及び有機塩素化合物を分解することができるため、装置を小型化することができ、触媒の使用量低減と相俟って、装置の製作コスト低減に大きく貢献する。
【0037】
又、燃焼排ガス中に含まれる粉塵は、本発明によるガス透過体の壁面で捕捉され、ガス透過体内部には粉塵が浸透することがないので、従来方式である触媒ハニカムのように、触媒が燃焼排ガス中の粉塵に覆われて触媒機能が損なわれるような現象が起こらず、長期間にわたり、高い触媒機能を維持し続けることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るブロック状セラミックス繊維製ガス透過体の斜視図である。
【図2】図1のブロック状セラミックス繊維製ガス透過体を組込んだ有害ガス分解装置の組立断面図兼系統図である。
【図3】本発明の実施の形態に係る両端が開放した円筒形状のセラミックス繊維製ガス透過体の斜視図である。
【図4】図4の円筒形状セラミックス繊維製ガス透過体を組込んだ有害ガス分解装置の組立断面図兼系統図である。
【図5】図4の円筒形状セラミックス繊維製ガス透過体で、一端が閉止した円筒形状を組込んだ有害ガス分解装置の組立断面図兼系統図である。
【図6】従来の触媒ハニカム群を3段構成とした有害ガス分解装置の組立断面図兼系統図である。
【図7】従来の触媒ハニカムの斜視図である。
【符号の説明】
1 セラミックス繊維
2 ガス透過体の厚さ
3 触媒粉末
4 ガス透過体
5 ガス入口面
6 ガス流入方向
7 ガス出口面
8 ガス流出方向
9 燃焼排ガスダクト
10 ガス分解装置入口
11 ブロック状ガス透過体ガス入口面
12 ブロック状ガス透過体
13 ブロック状ガス透過体群
14 ガス集合部
15 有害ガス分解装置出口
16 ガス流出方向
17 アンモニア注入装置
18 円筒状ガス透過体ガス入口
19 円筒状ガス透過体ガス流入方向
20 円筒型ガス透過体ガス流入面
21 円筒型ガス透過体ガス流出面
22 円筒型ガス透過体ガス流出方向
23 円筒型ガス透過体入口
24 円筒型ガス透過体ガス透過方向
25 円筒型ガス透過体
26 円筒型ガス透過体用上部管板
27 円筒型ガス透過体用下部管板
28 キャンドル型ガス透過体ガス透過方向
29 キャンドル型ガス透過体ガス出口方向
30 キャンドル型ガス透過体用管板
[0001]
BACKGROUND OF THE INVENTION
The present invention allows a gas exhaust made of ceramic fiber carrying a catalyst to permeate combustion exhaust gas containing harmful gases such as nitrogen oxides and organochlorine compounds, and decomposes and detoxifies the harmful gases by the action of the catalyst. As regards gas permeators that can be used, nitrogen oxide and organochlorine compound decomposing devices equipped with the gas permeators include waste incinerators, combustion facilities that use fossil fuels such as coal, various industrial furnaces for iron and metallurgy, cement The present invention is useful for facilities for decomposing and detoxifying nitrogen oxides and organochlorine compounds in gases discharged from firing furnaces, refractory firing furnaces, petroleum refining facilities, chemical plants, and the like.
[Prior art]
A honeycomb is well known as a catalyst shape for decomposing nitrogen oxides and organic chlorine compounds such as PCDD (polychlorinated dibenzodioxin) and PCDF (polychlorinated dibenzofuran) contained in combustion exhaust gas. For nitrogen oxides in particular, titanium oxide is used as a carrier, and a honeycomb composed of vanadium pentoxide and tungsten trioxide catalyst components is housed in a container, and the combustion exhaust gas containing pre-injected ammonia is passed through the honeycomb cells. Many plants have already been installed that decompose nitrogen oxides into nitrogen gas and water to make them harmless.
[0003]
Regarding the catalytic element for decomposing a cyclic organic chlorine compound such as dioxin in the combustion exhaust gas discharged from the incineration plant, an application relating to its shape has been filed, for example, in Japanese Patent Laid-Open No. 6-386. These catalyst honeycombs have been manufactured by extruding a slurry-like material made of powder of titanium oxide, vanadium pentoxide, tungsten oxide or the like with a mold or the like, followed by drying and firing processes.
[0004]
An application example of a denitration apparatus having a three-stage catalyst honeycomb formed in this way will be described with reference to FIG. The exhaust gas containing nitrogen oxides and organochlorine compounds discharged from an incinerator or the like is injected with ammonia (NH 4 ) as a reducing agent by an ammonia injection device 109 provided in the exhaust gas duct 101 and flows into the denitration device inlet 102. Then, it passes through the gas passage of the denitration honeycomb 103 and flows in the direction of the arrow 104. At this time, a part of the nitrogen oxide (NOX) in the exhaust gas is reduced by the reaction with the catalyst on the channel wall surface of the honeycomb, and becomes water (H 2 O) and nitrogen (N 2 ) to form the catalyst honeycomb 103. Spill from.
[0005]
In addition to the original exhaust gas components, the combustion exhaust gas flowing out from the catalyst honeycomb 103 includes water and nitrogen gas in which a part of the nitrogen oxide is reduced by ammonia in addition to unreacted nitrogen oxide and ammonia. The gas pressure is recovered in the second stage catalyst honeycomb inlet space 105, passes through the gas passage of the next stage catalyst honeycomb 106, and flows in the direction of arrow 107. Thereafter, nitrogen oxides are sequentially reduced in the order of the second and third stages by the same function, the nitrogen oxide concentration is reduced, and the flue gas 111 exiting the denitration device outlet 110 is oxidized to the environmental regulation value or less. The concentration of objects is reduced and discharged.
[0006]
Note that the catalyst honeycomb 103 shown in FIG. 6 is composed of an assembly of smaller honeycomb elements. A typical example of this honeycomb element is shown in FIG. For example, the honeycomb elements that are usually used generally have dimensions of about 200 mm, 200 mm, and 500 mm in length, width, and height at a cell pitch of 5 mm. FIG. Above, it is typically 4 cells × 4 cells.
[0007]
The honeycomb element 112 guides combustion exhaust gas containing ammonia gas from one opening 113 in the direction of an arrow 114, and is exposed to the wall surface of the gas passage in the cell or in contact with the catalyst at a depth of approximately 20 microns from the wall surface. The nitrogen oxides in the combustion exhaust gas thus reduced are reduced to water and nitrogen gas by the action of the catalyst, and are discharged in the direction of arrow 116 from the other opening 115 of the honeycomb element.
[0008]
However, among the nitrogen oxides in the combustion exhaust gas that passes through the gas passages in the honeycomb element 112, a large amount of nitrogen oxides are discharged from the opening 115 without contacting the catalyst. The ratio of reducing oxide (denitration rate) remains at about 15 to 30%. Therefore, as shown in FIG. 6, the honeycomb group is generally configured to be multi-stage to increase the denitration rate.
[0009]
[Problems to be solved by the invention]
However, the honeycomb containing the catalyst component of vanadium pentoxide and tungsten trioxide using titanium oxide as a carrier as described above is composed of vanadium pentoxide and tungsten trioxide which play a role of decomposing nitrogen oxides and organochlorine compounds. Since it is dispersedly supported in titanium oxide, the vanadium pentoxide and tungsten trioxide that are exposed on the flow path wall of the gas in the honeycomb or at a depth of approximately 20 microns from the flow path wall are excluded. However, most of the catalysts are buried in the honeycomb structure and have a drawback of not functioning as a catalyst.
[0010]
Furthermore, in such a honeycomb-shaped catalyst, even when a clean gas that does not contain dust that has been previously removed by a bag filter or the like is passed, dust gradually accumulates on the wall of the honeycomb gas flow path over a long period of time. In consideration of the reduction in the cross-sectional area of the flow path caused by this, it is necessary to secure a gas flow-path cross-sectional area of at least about 3 mm × 3 mm. In addition, the accumulation of dust on the gas flow path wall of the honeycomb covers the chemically active catalyst surface with dust, impeding contact between the gas and the catalyst, resulting in a decrease in catalyst performance. There is also a drawback that it is necessary to periodically regenerate the catalyst honeycomb or replace it with a new catalyst honeycomb.
[0011]
Furthermore, in plants that do not have dust removal means such as bag filters on the upstream side of the gas, a honeycomb having a gas flow path area of about 10 mm × 10 mm is usually used in consideration of a reduction in the cross-sectional area of the gas flow path due to dust adhesion. However, the specific surface area is smaller than that of the honeycomb through which the clean gas is passed, and there is a disadvantage that the apparatus is enlarged. In addition, in order to flow a gas containing a large amount of dust through the flow path, a soot blow device is required to remove dust adhering to the flow path surface, and dust that cannot be removed by soot blow is applied to the wall of the gas flow path of the honeycomb. As in the case of a honeycomb that gradually accumulates and passes a clean gas, it has the disadvantage of requiring periodic honeycomb regeneration or replacement with a new honeycomb.
[0012]
[Means for Solving the Problems]
Hereinafter, means for solving the problems according to the present invention will be described in detail with reference to the drawings. The fiber 1 and the powdered catalyst 3 shown in FIG. 1 are aggregates obtained by mixing and laminating a large amount of minute substances having a fiber diameter and particle size of 100 microns or less, and each single element is a minute that cannot be illustrated. Although it is a substance, it is expressed in a large shape as an illustration in consideration of convenience in explaining the present invention.
[0013]
As shown in FIG. 1, the ceramic fiber gas permeator 4 carrying the catalyst according to the invention of claim 1 is entirely composed of ceramic fibers having a fiber diameter in the range of 1 to 10 microns and a fiber length of at least 10 mm. Of ceramic fiber 1 occupying 50% or more of the ceramic fiber, and a porosity of 75% or more and 95% or less, and a ceramic fiber molded body having a thickness of at least 10 mm or more, vanadium pentoxide or tungsten trioxide. Or a powdery catalyst 3 having an average particle size of 20 microns or more and 80 microns or less composed of the both compounds is dispersed and supported substantially uniformly to form a gas permeation body 4, and from one wall surface 5 of the gas permeation body, nitrogen Existence of oxides or organic chlorine compounds such as PCDD (polychlorinated dibenzodioxin, PCDF (polychlorinated dibenzofuran)) or both Permeate the flue gas containing harmful gas from the direction of arrow 6 and let the flue gas contained in the gas decompose and detoxify with a catalyst to flow out from the other wall surface 7 in the direction of arrow 8. Features.
[0014]
The powdery catalyst 3 contained in the ceramic fiber-made gas permeator 4 supporting the catalyst is preferably contained in an amount of 15 wt% ± 10 wt% with respect to the total weight of the gas permeator 4. The reason is that when the proportion of the powdered catalyst 3 in the gas permeator 4 is 5% by weight or less, nitrogen oxides and organochlorine compounds in the combustion exhaust gas flowing through the ceramic fiber gas permeator 4 are sufficient. It is because it is discharged without being decomposed. Further, if the ratio of the powdered catalyst 3 in the gas permeable body 4 is 25% by weight or more, the ratio of the powdered material in the ceramic fiber molded body is increased, and the strength of the gas permeable body 4 is decreased. Absent.
[0015]
The thus formed gas permeable body, a combustion exhaust gas containing nitrogen oxides and organic chlorine compounds, the other wall surface from one wall, to flow through the interior molding of the ceramic fibers, the inner molded body All of the catalysts that are dispersed and supported substantially uniformly function effectively, and only the catalyst exposed to the wall surface and the catalyst up to a depth of 20 microns from the wall surface function as in the prior art honeycomb, and the flow of the honeycomb Compared to the fact that most of the nitrogen oxides and organochlorine compounds in the flue gas passing through the road are discharged without contact with the catalyst, the nitrogen oxides and organochlorine compounds contained in the exhaust gas are in contact with the catalyst. The chances of being broken down greatly increase. In other words, it is possible to decompose the nitrogen oxides and organochlorine compounds equivalent to those of the honeycomb with a catalyst amount of about 1/3 to 1/10 of the catalyst amount required for the honeycomb.
[0016]
If the gas permeator formed in this way is used, dust contained in the gas is trapped on the gas inlet side wall surface of the gas permeator and does not enter the gas permeator. In addition, the catalyst is covered with the dust by the dust accumulated on the wall surface and is cut off from the gas, and the phenomenon that the function of the catalyst is deteriorated does not occur.
[0017]
As the fiber constituting the gas permeable material, any ceramic fiber can be used as long as it has a heat resistance of at least 500 ° C. or more, has corrosion resistance against combustion exhaust gas, and can form a molded body . A fiber composed of a single component of alumina, silica, magnesia, glass, silicon carbide, or silicon nitride, a fiber composed of these compounds, or a ceramic fiber composed of a composite composition of these fibers has high heat resistance, corrosion resistance, and marketability. Particularly preferred in terms.
[0018]
As the catalyst dispersedly supported on the gas permeable material, it is possible to use a catalyst formed in advance in the form of a powdered catalyst using titanium oxide having excellent affinity with vanadium pentoxide or tungsten trioxide.
[0019]
In addition, as a method for producing a gas permeable material made of ceramic fibers in which a catalyst is dispersed and supported, for example, a single component or a composite component of a metal sol such as alumina sol, silica sol, titanium sol and a surfactant such as starch. The catalyst powder is added to the aqueous solution and stirred, and the ceramic fibers are sequentially added to make a slurry-like mixture of the catalyst and ceramic fibers. Then, only the solid content can be captured and the liquid components can permeate. It can be cast into a mold, molded, removed from the mold after drying, and fired to obtain a molded body.
[0020]
Alternatively, a larger amount of ceramic fiber is put into a mixed solution composed of the metal sol, surfactant, and catalyst to form a plastic gel material composed of the catalyst and the ceramic fiber, and then extrusion molding or press molding, drying treatment, and You may obtain a molded object by baking processing.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the ceramic fiber gas permeator carrying the catalyst according to the first aspect of the invention has many advantages over the conventional honeycomb carrying the catalyst, and the embodiment thereof will be described below. Will be described in detail with reference to the drawings.
[0022]
FIG. 2 shows an embodiment of a nitrogen oxide and organochlorine compound decomposition apparatus using the ceramic fiber gas permeate carrying the catalyst according to the present invention having the square block shape shown in FIG.
[0023]
Combustion exhaust gas containing nitrogen oxides and organic chlorine compounds passes through the gas duct 9, mixes with ammonia injected from the ammonia injection device 17, and is led into the device from the inlet 10 of the harmful gas decomposition device. A permeate group 13 in which a plurality of permeators 12 are gathered flows in the direction of the arrow 11, and nitrogen oxides and organochlorine compounds are decomposed and made harmless by the catalyst dispersedly supported inside the permeate. Out of group 13. The detoxified gas that has flowed out of the gas permeator group 13 is discharged from the harmful gas decomposition apparatus outlet 15 in the direction of the arrow 16 through the collecting portion 14. In addition, when using this harmful gas decomposing apparatus only for the purpose of decomposing organochlorine compounds, it is not necessary to inject ammonia.
[0024]
The thickness of the gas permeation body according to the present invention in the gas flow direction ensures a residence time in which the nitrogen oxides and organochlorine compounds contained in the combustion exhaust gas can sufficiently come into contact with the catalyst dispersedly supported in the gas permeation body. Therefore, it is desirable that the thickness is at least 10 mm.
[0025]
It is desirable to control the temperature of gas at the inlet of the nitrogen oxide and organochlorine compound decomposition apparatus of the combustion exhaust gas within the range of 300 ° C. ± 100 ° C., which is the temperature range in which the catalyst functions most efficiently. The sulfurous acid gas inside is oxidized to become sulfuric acid, and the temperature range in which ammonium sulfate produced by reaction of this sulfuric acid with the injected ammonia can eliminate the possibility of poisoning the catalyst is set to 300 ° C. ± 50 ° C. preferable.
[0026]
The ceramic fiber gas permeate carrying the catalyst according to the present invention has a higher ability to decompose nitrogen oxides and organochlorine compounds than the conventional catalyst honeycomb, and the conventional catalyst zone having a plurality of stages has one stage. Can fully function.
[0027]
FIG. 3 shows another example of the ceramic fiber gas permeable material carrying the catalyst according to the present invention. Unlike the block shape shown in FIG. 1, it is formed into a cylindrical shape with both ends open.
[0028]
Combustion exhaust gas containing nitrogen oxides and organochlorine compounds flows from the combustion gas inlet 18 toward the arrow 19, flows from the entire surface 20 of the inner surface of the cylinder toward the entire surface 21 of the outer wall of the cylinder, in the direction of the arrow 22, The nitrogen oxides and organochlorine compounds in the combustion exhaust gas are decomposed and rendered harmless by the catalyst dispersedly supported in the ceramic fibers constituting the cylinder, and flow out from the outer wall surface 21. In this case as well, it is desirable that the cylindrical shape has a thickness of at least 10 mm or more in order to ensure a residence time that allows sufficient contact with the catalyst dispersedly supported in the gas permeable material.
[0029]
FIG. 4 shows an embodiment of an apparatus for decomposing nitrogen oxides and organochlorine compounds using a ceramic fiber gas permeator carrying a catalyst formed in a cylindrical shape with both ends opened in this way. In FIG. 4, the same reference numerals as those in FIG. 2 are assigned to the same parts and functions as those in FIG.
[0030]
Combustion exhaust gas containing nitrogen oxides and organochlorine compounds flowing from the apparatus inlet 10 flows through the gas inlets of the respective cylinders in the direction of the arrow 23 and from the inner wall surface of the cylinder to the outer wall surface in the direction of the arrow 24. The gas flows through the gas collecting portion 14, passes through the gas outlet 15 of the apparatus, and is discharged in the direction of the arrow 16. In the case of the present embodiment, the cylindrical gas permeable body 25 whose both ends are open has a structure in which both ends thereof are supported by tube plates 26 and 27 provided in the container. As described above, nitrogen oxides and organochlorine compounds in the combustion exhaust gas are decomposed and detoxified by the action of the catalyst dispersedly supported inside the material constituting the cylinder. Furthermore, it is desirable to maintain the apparatus inlet gas temperature at 300 ° C. ± 100 ° C., more preferably 300 ° C. ± 50 ° C. as described above. Also, the description of the same parts as those in FIG. 2 is omitted.
[0031]
FIG. 5 shows another embodiment of a nitrogen oxide and organochlorine compound decomposition apparatus using a ceramic fiber gas permeate carrying a catalyst formed in a cylindrical shape. 5 that indicate the same parts and functions as those in FIG. 2 are denoted by the same symbols as those in FIG.
[0032]
In the case of the present embodiment, the cylindrical gas permeable body is a so-called candle type in which one end is open and the other end is closed, the open upper end is supported by the tube plate 30, and the cylindrical gas permeable body 31 is suspended. It has a structure to do.
[0033]
Combustion exhaust gas containing nitrogen oxides and organochlorine compounds flowing from the apparatus inlet 10 shown in FIG. 5 flows in the direction of arrow 28 from the outer wall surface of each cylinder toward the inner wall surface, and from the cylindrical gas permeator outlet. It flows in the direction of the arrow 29, passes through the gas collecting portion 14, passes through the gas outlet 15 of the apparatus, and is discharged in the direction of the arrow 16. As described above, the gas temperature at the inlet of the apparatus is more preferably 300 ° C. ± 50 ° C. Further, as described above, it is desirable to have a cylindrical shape having a thickness of at least 10 mm.
[0034]
Further, when the gas permeable material according to the present invention is formed into a block shape shown in FIG. 1, for example, the same vertical, horizontal, and high as the honeycomb element 112 of FIG. 7 which is a structural unit of the prior art honeycomb 103 shown in FIG. By adjusting the size, the honeycomb of the existing denitration device can be removed and replaced with the ceramic fiber gas permeator according to the present invention. The gas permeator thus replaced has a higher function of decomposing nitrogen oxides and organochlorine compounds than in the case of a honeycomb. Therefore, the three-stage honeycomb group shown in FIG. Even with a single-stage configuration, the same or higher resolution of nitrogen oxides and organochlorine compounds as in the case of a three-stage honeycomb group can be obtained.
[0035]
【The invention's effect】
As described above, according to the present invention, the combustion exhaust gas containing nitrogen oxides and organochlorine compounds penetrates the inside of the ceramic fiber gas permeator carrying the catalyst in the ceramic fiber molded body. As a result, all the catalysts dispersed and supported inside the material function effectively without being interrupted by gas, and even with a small amount of catalyst, nitrogen oxides and organochlorine compounds in the combustion exhaust gas are practically used. It can be reduced to a sufficient level.
[0036]
Furthermore, compared to the conventional catalyst honeycomb, the combustion exhaust gas can be passed through a relatively small volume, and the nitrogen oxides and organochlorine compounds can be decomposed more efficiently than before. In combination with a reduction in the amount of catalyst used, this greatly contributes to a reduction in the manufacturing cost of the apparatus.
[0037]
Also, the dust contained in the combustion exhaust gas is captured by the wall of the gas permeable body according to the present invention, and the dust does not permeate inside the gas permeable body. A phenomenon that the catalyst function is impaired by being covered with dust in the combustion exhaust gas does not occur, and the high catalyst function can be maintained for a long period of time.
[Brief description of the drawings]
FIG. 1 is a perspective view of a gas permeable body made of a block-like ceramic fiber according to an embodiment of the present invention.
2 is an assembly cross-sectional view and system diagram of a harmful gas decomposition apparatus incorporating the block ceramic fiber gas permeator of FIG. 1; FIG.
FIG. 3 is a perspective view of a cylindrical ceramic fiber gas permeator with both ends open according to an embodiment of the present invention.
4 is an assembly cross-sectional view and system diagram of a harmful gas decomposition apparatus incorporating the cylindrical ceramic fiber gas permeation body of FIG. 4;
5 is an assembly cross-sectional view and system diagram of the harmful gas decomposition apparatus incorporating the cylindrical ceramic fiber gas permeable body of FIG. 4 and having a cylindrical shape with one end closed.
FIG. 6 is an assembly sectional view and system diagram of a harmful gas decomposition apparatus having a conventional catalyst honeycomb group having a three-stage configuration.
FIG. 7 is a perspective view of a conventional catalyst honeycomb.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic fiber 2 Gas permeation | transmission thickness 3 Catalyst powder 4 Gas permeation | transmission 5 Gas inlet surface 6 Gas inflow direction 7 Gas outlet surface 8 Gas outflow direction 9 Combustion exhaust gas duct 10 Gas decomposition apparatus inlet 11 Block-shaped gas permeator gas inlet Surface 12 Block-shaped gas permeator 13 Block-shaped gas permeator group 14 Gas collecting portion 15 Noxious gas decomposition device outlet 16 Gas outflow direction 17 Ammonia injection device 18 Cylindrical gas permeator gas inlet 19 Cylindrical gas permeator gas inflow direction 20 Cylindrical gas permeator gas inflow surface 21 Cylindrical gas permeator gas outflow surface 22 Cylindrical gas permeator gas outflow direction 23 Cylindrical gas permeator inlet 24 Cylindrical gas permeator gas permeation direction 25 Cylindrical gas permeator 26 Cylinder Upper gas plate 27 for cylindrical gas permeator Lower tube plate 28 for cylindrical gas permeator Candle type gas permeator Gas permeation direction 29 Cand Type gas permeate gas outlet direction 30 candle gas permeation-body tube plate

Claims (5)

セラミックス繊維の成形体中に、五酸化バナジウム又は三酸化タングステンもしくは両者の混合物からなる平均粒径20ミクロン以上80ミクロン以下の粉末状触媒を、全体重量に対して15重量%±10重量%の範囲で分散担持してガス透過体を形成したことを特徴とする触媒を担持したセラミック繊維製ガス透過体。In a ceramic fiber molded body , a powdered catalyst having an average particle diameter of 20 microns or more and 80 microns or less composed of vanadium pentoxide, tungsten trioxide or a mixture of both is in the range of 15% by weight to 10% by weight with respect to the total weight. A gas permeation body made of ceramic fiber carrying a catalyst, characterized in that a gas permeation body is formed by being dispersed and supported by the above. 前記セラミックス繊維の成形体は、平均繊維径が1〜10ミクロンの範囲でかつ繊維長さが少なくとも10mm以上あるセラミックス繊維が全体の50%以上を占めるセラミックス繊維から成り、その空隙率が75%以上95%以下の範囲であることを特徴とする請求項1記載の触媒を担持したセラミック繊維製ガス透過体。 The ceramic fiber molded body is composed of ceramic fibers having an average fiber diameter in the range of 1 to 10 microns and a fiber length of at least 10 mm or more, accounting for 50% or more of the total, and the porosity is 75% or more. 2. The ceramic fiber gas permeator carrying a catalyst according to claim 1 , wherein the content is in the range of 95% or less. 前記粉末状触媒が、酸化チタンを担体に、五酸化バナジウム又は三酸化タングステンもしくは両者の混合物からなる平均粒径20ミクロン以上80ミクロン以下の粉末状触媒であることを特徴とする請求項1記載の触媒を担持したセラミック繊維製ガス透過体。2. The powder catalyst according to claim 1, wherein the powder catalyst is a powder catalyst having an average particle diameter of 20 μm or more and 80 μm or less made of vanadium pentoxide, tungsten trioxide or a mixture of both with titanium oxide as a carrier. A ceramic fiber gas permeator carrying a catalyst. 前記触媒を担持したセラミック繊維製ガス透過体が、アルミナゾル、シリカゾル、チタンゾルから選ばれた金属ゾルの何れか単一成分もしくは複数の成分を用いて、セラミックス繊維同志及びセラミックス繊維と触媒とを接着せしめ、その後乾燥又は乾燥及び焼成処理を行い、該セラミックス繊維同志及びセラミックス繊維と触媒とを強固に結合させたことを特徴とする請求項1記載の、触媒を担持したセラミック繊維製ガス透過体。The ceramic fiber gas-permeating material carrying the catalyst is made by adhering ceramic fibers and ceramic fibers to the catalyst using a single component or a plurality of components selected from a metal sol selected from alumina sol, silica sol, and titanium sol. The ceramic fiber-supported gas permeator according to claim 1, wherein the ceramic fibers and the ceramic fibers and the catalyst are firmly bonded by drying or drying and firing treatment thereafter. 前記セラミックス繊維が、アルミナ、シリカ、マグネシア、ガラス、炭化珪素、窒化珪素の何れかの単一成分から成る繊維、もしくはこれらの化合物から成る繊維もしくはこれら繊維の複合組成からなるセラミックス繊維であることを特徴とする請求項1記載の、触媒を担持したセラミック繊維製ガス透過体。The ceramic fiber is a fiber composed of a single component of alumina, silica, magnesia, glass, silicon carbide, or silicon nitride, a fiber composed of these compounds, or a ceramic fiber composed of a composite composition of these fibers. The gas permeator made of ceramic fiber supporting a catalyst according to claim 1.
JP24604399A 1999-07-28 1999-07-28 Gas permeate carrying catalyst Expired - Fee Related JP4306889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24604399A JP4306889B2 (en) 1999-07-28 1999-07-28 Gas permeate carrying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24604399A JP4306889B2 (en) 1999-07-28 1999-07-28 Gas permeate carrying catalyst

Publications (2)

Publication Number Publication Date
JP2001038225A JP2001038225A (en) 2001-02-13
JP4306889B2 true JP4306889B2 (en) 2009-08-05

Family

ID=17142623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24604399A Expired - Fee Related JP4306889B2 (en) 1999-07-28 1999-07-28 Gas permeate carrying catalyst

Country Status (1)

Country Link
JP (1) JP4306889B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110671710B (en) * 2019-10-25 2024-10-01 深圳麦格米特电气股份有限公司 Microwave catalytic combustion treatment device and treatment method thereof

Also Published As

Publication number Publication date
JP2001038225A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
CA2976131C (en) Catalyzed ceramic candle filter and method for cleaning of off- or exhaust gases
US7856809B2 (en) Exhaust gas post treatment system
RU2660737C2 (en) Catalysed filter for treating exhaust gas
CA2976140C (en) Catalyzed ceramic candle filter and method of cleaning process off- or exhaust gases
BRPI0900186B1 (en) DEVICE FOR REDUCING POLYCHLORINATED DIBENZO-DIOXIN AND POLYCHLORINATED DIBENZO-FURAN EMISSIONS AND METHOD FOR MANUFACTURING A DEVICE TO REDUCE POLYCHLORINATED DIBENZO-DIOXIN-DIOXIN EMISSIONS
WO2011132918A2 (en) Device for discharging exhaust gas from diesel engine, having ammonolysis module
KR20150111979A (en) Ammonia oxidation catalyst
JPH0160652B2 (en)
WO1989003720A1 (en) Methods and devices for gas cleaning
JP4758071B2 (en) PM-containing exhaust gas purification filter, exhaust gas purification method, and purification apparatus
CN1902384B (en) Particulate matter-containing exhaust emission controlling filter, exhaust emission controlling method and device
MY121452A (en) Desulfurization of exhaust gases using activated carbon catalyst.
JP4306889B2 (en) Gas permeate carrying catalyst
JP2001246209A (en) Gas permeable member, method for manufacturing the same dust removing apparatus
JP4252166B2 (en) Dust removal and harmful gas decomposition equipment
JP3457917B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP2004033855A (en) Dust collection filter for gas, its manufacturing method, and exhaust gas treatment method
JP4762560B2 (en) Filter for removing particulate matter in exhaust gas and exhaust gas purification method
KR100460665B1 (en) A method for simultaneous removal of nitrogen oxides and dioxins from waste gases
KR102594138B1 (en) Regenerative oxidation apparatus with scr and sncr function
JP2002204916A (en) Exhaust gas-cleaning filter and exhaust gas-cleaning apparatus
JP2006233939A (en) Exhaust emission control filter and device
TWI637783B (en) Catalyzed ceramic candle filter and method for cleaning of off- or exhaust gases
KR20020030991A (en) Catalytic Non-woven Fabric Filters used for a Temperature Range of 150∼250℃ and Methods for Applying Catalysts to Non-woven Fabric
JPH03210009A (en) Diesel exhaust gas purifying device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

R150 Certificate of patent or registration of utility model

Ref document number: 4306889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees