[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4304121B2 - Reinforcing bar breakage detection method for concrete structures - Google Patents

Reinforcing bar breakage detection method for concrete structures Download PDF

Info

Publication number
JP4304121B2
JP4304121B2 JP2004141859A JP2004141859A JP4304121B2 JP 4304121 B2 JP4304121 B2 JP 4304121B2 JP 2004141859 A JP2004141859 A JP 2004141859A JP 2004141859 A JP2004141859 A JP 2004141859A JP 4304121 B2 JP4304121 B2 JP 4304121B2
Authority
JP
Japan
Prior art keywords
reinforcing bar
magnetic field
magnetic
magnetizing
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004141859A
Other languages
Japanese (ja)
Other versions
JP2005326152A (en
Inventor
宇太郎 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004141859A priority Critical patent/JP4304121B2/en
Publication of JP2005326152A publication Critical patent/JP2005326152A/en
Application granted granted Critical
Publication of JP4304121B2 publication Critical patent/JP4304121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、コンクリート内に配設した鉄筋の破断を検知するためのコンクリート構造物の鉄筋破断検知方法に関するものである。   The present invention relates to a method for detecting breakage of a reinforcing bar in a concrete structure for detecting breakage of a reinforcing bar disposed in the concrete.

近年、橋梁などのコンクリート構造物においてはアルカリ骨材反応(ASR)が問題となっている。このアルカリ骨材反応とは、コンクリート中のアルカリ金属イオンと骨材中の特定の鉱物とが化学反応を生じ、その反応により生成するアルカリシリカゲルが水分の供給により膨張する現象である。   In recent years, alkaline aggregate reaction (ASR) has become a problem in concrete structures such as bridges. The alkali-aggregate reaction is a phenomenon in which alkali metal ions in the concrete and a specific mineral in the aggregate cause a chemical reaction, and the alkali silica gel produced by the reaction expands when water is supplied.

この反応に起因するコンクリート構造物の損傷は、コンクリートの膨張によるひび割れや、コンクリート内部の鉄筋が引きち切られて破断する現象となって現れる。   The damage to the concrete structure due to this reaction appears as a crack due to the expansion of the concrete or a phenomenon in which the reinforcing bar inside the concrete is torn off and broken.

この鉄筋の破断をそのまま放置しておくことは構造強度上極めて危険であり、コンクリートを破壊せずに、非破壊検査によって検知することが強く望まれている。   It is extremely dangerous in terms of structural strength to leave the rupture of the reinforcing bar as it is, and it is strongly desired to detect it by nondestructive inspection without destroying the concrete.

しかし現在のところ、この鉄筋の破断を非破壊的に有効に検知する装置はなく、次のような方法で破壊検査による調査を行っている。   At present, however, there is no device that can effectively detect the breakage of the reinforcing bar in a non-destructive manner, and the following method is used for investigation by destructive inspection.

(1)定期点検によりコンクリートのひび割れを発見する。   (1) Find cracks in concrete through regular inspections.

(2)白色ゲル状物質の析出などといった特徴からアルカリ骨材反応が発生しているかを推定する。   (2) Estimate whether an alkali-aggregate reaction has occurred from characteristics such as precipitation of a white gel-like substance.

(3)アルカリ骨材反応が発生していると判断された部位については、ひび割れ幅を測定するなどの詳細調査を行う。   (3) A detailed investigation such as measurement of the crack width is performed on the site where the alkali-aggregate reaction is determined to have occurred.

(4)詳細調査に基づいて、構造上耐久性に影響を及ぼすと判断される部位のひび割れについて、ひび割れ幅が一定値以上の場合は全数、それ以外はサンプリングによりコンクリートを剥がし、内部の鉄筋の破断状況を確認する。   (4) Based on the detailed investigation, the number of cracks in the parts that are judged to have an effect on the durability structurally, if the crack width is more than a certain value, remove the concrete by sampling, otherwise remove the internal rebar. Check the breaking condition.

本出願人は磁気センサを用いた非破壊測定方法を既に出願しているが、測定に際して磁気センサを移動させる必要があり、測定に時間がかかる、或いは高価な磁気センサを複数個使用しなければならないという問題がある。   The applicant has already filed a nondestructive measurement method using a magnetic sensor. However, it is necessary to move the magnetic sensor during measurement, and it takes time for the measurement or a plurality of expensive magnetic sensors must be used. There is a problem of not becoming.

また通常、鉄筋は格子状に配置されていることが多く、測定すべき鉄筋に沿って磁気センサを移動させて磁力を測定する際に、所々で測定すべき鉄筋と直角方向に敷設された鉄筋の上を横切ることになる。また、破断部の真下に直交する鉄筋がある可能性もあり、測定値はこれらの鉄筋から発生する磁力の影響を受けてしまい、この影響を排除することはなかなか至難である。   In general, the reinforcing bars are often arranged in a grid, and when measuring the magnetic force by moving the magnetic sensor along the reinforcing bars to be measured, the reinforcing bars laid in a direction perpendicular to the reinforcing bars to be measured in some places. Will cross over. In addition, there is a possibility that there are reinforcing bars that are orthogonally below the fractured portion, and the measured value is affected by the magnetic force generated from these reinforcing bars, and it is very difficult to eliminate this influence.

更に、鉄筋の残留磁気の大きさ方向は、製造時或いは施工時の要因により異なるため、殆ど磁化がなされていない個所が破断しても、その破断を検出することは難しい。   Furthermore, since the magnitude direction of the remanent magnetism of the reinforcing bar varies depending on factors at the time of manufacture or construction, it is difficult to detect the break even when a portion that is hardly magnetized is broken.

これらの磁気的測定の問題点を解決するため、周囲一帯を脱磁した後に、測定すべき鉄筋のみを着磁して測定する方法も提案されているが、測定に時間がかかる上に脱磁装置が必要になる。   In order to solve these problems of magnetic measurement, a method of magnetizing only the reinforcing bar to be measured after demagnetizing the surrounding area has also been proposed. Equipment is required.

本発明の目的は、短時間で直交する鉄筋や、測定すべき鉄筋の製造、施工時に起因する残留磁気の影響を排除して、埋設された鉄筋の破断点を正確に検知し得るコンクリート構造物の鉄筋破断検知方法を提供することにある。 An object of the present invention is to provide a concrete structure capable of accurately detecting the breaking point of an embedded reinforcing bar by eliminating the influence of residual magnetism caused by manufacturing and construction of reinforcing bars to be measured in a short time and reinforcing bars to be measured. An object of the present invention is to provide a method for detecting rebar breakage.

上記目的を達成するための本発明に係るコンクリート構造物の鉄筋破断検知方法は、コンクリート構造物内の鉄筋の磁束を基に、第1の磁気センサと第2の磁気センサ間における前記鉄筋の破断部を検出する方法であって、前記鉄筋を着磁する第1次着磁工程と、該第1次着磁工程後に前記鉄筋の残留磁気によるコンクリート表面上の磁界を検出する第1次磁界検出工程と、前記鉄筋を第1次着磁工程とは逆極性で着磁する第2次着磁工程と、該第2次着磁工程後に前記鉄筋の残留磁気によるコンクリート表面上の磁界を検出する第2次磁界検出工程と、前記第1次、第2次磁界検出工程で得られた検出信号を基に前記鉄筋の破断を検知する破断検知工程とから成り、前記第2の磁気センサは前記着磁工程で使用する着磁手段側に配置し、前記第1次、第2次磁界検出工程では、前記第1、第2の磁気センサによりそれぞれの位置において前記鉄筋の磁界を検知し、前記破断検知工程では、前記第1の磁気センサの前記第1次、第2次磁界検出工程におけるそれぞれの検出信号の差D0を求め、前記第2の磁気センサの前記第1次、第2次磁界検出工程におけるそれぞれの検出信号の差D1を求め、前記差D0、差D1の比D1/D0を求めることを特徴とする。 In order to achieve the above object, a method for detecting the breakage of a reinforcing bar in a concrete structure according to the present invention is based on the magnetic flux of the reinforcing bar in the concrete structure, and the breaking of the reinforcing bar between the first magnetic sensor and the second magnetic sensor. A first magnetic field detection method for detecting a magnetic field on a concrete surface due to a remanent magnetism of the reinforcing bar after the first magnetization step. step and a second-order magnetization step of magnetizing the reinforcing bars and the first-order magnetization process with reverse polarity, detecting the magnetic field on the concrete surface by the residual magnetism of the reinforcing bar after said second magnetization step Secondary magnetic field detection step, and a breakage detection step of detecting breakage of the reinforcing bar based on the detection signals obtained in the primary and secondary magnetic field detection steps, the second magnetic sensor Arranged on the magnetizing means side used in the magnetizing step, the front In the first and second magnetic field detection steps, the magnetic field of the reinforcing bar is detected at the respective positions by the first and second magnetic sensors, and in the breakage detection step, the first magnetic sensor detects the first magnetic sensor. Next, the difference D0 between the detection signals in the second and second magnetic field detection steps is obtained, the difference D1 between the detection signals in the first and second magnetic field detection steps of the second magnetic sensor is obtained, and the difference A ratio D1 / D0 of D0 and difference D1 is obtained .

本発明に係るコンクリート構造物の鉄筋破断検知方法によれば、コンクリート内の鉄筋の破断部を、鉄筋の深さ、太さ、材質に関係なく、短時間で非破壊的にかつ精度良く検知することができる。 According to the method for detecting the breakage of a reinforcing bar in a concrete structure according to the present invention, the broken part of the reinforcing bar in the concrete is detected nondestructively and accurately in a short time regardless of the depth, thickness and material of the reinforcing bar. be able to.

図1は本発明に先立つ参考例1であり、コンクリートC内に配置され測定すべき鉄筋Rxに沿って着磁装置1と磁気センサ2を破断が予想される破断点Xを挟んで配置する。着磁装置1は着磁用電源3に接続しコンクリートCに近接する着磁コイル4を有している。なお、説明の都合上、測定すべき鉄筋Rxは磁化されていないとし、これに直交する鉄筋Ryは磁化されているものとする。 FIG. 1 shows a first reference example prior to the present invention, in which a magnetizing device 1 and a magnetic sensor 2 are arranged in a concrete C along a reinforcing bar Rx to be measured with a break point X at which breakage is expected. The magnetizing apparatus 1 has a magnetizing coil 4 connected to the magnetizing power source 3 and close to the concrete C. For convenience of explanation, it is assumed that the reinforcing bar Rx to be measured is not magnetized, and the reinforcing bar Ry orthogonal to this is magnetized.

なお、鉄筋Rxの残留磁気によるコンクリート表面の磁束密度は、5〜500マイクロテスラ(μT)であり極めて微少である。このため、普及しているホール素子型の磁気センサでは精度良く検出するには十分でない。従って、磁気センサ2として高精度のフラックスゲート型磁気センサや磁気インダクタンス(MI)型磁気センサを用いることにより、より正確な検知が可能になる。   Note that the magnetic flux density on the concrete surface due to the residual magnetism of the reinforcing bars Rx is 5 to 500 microtesla (μT), which is extremely small. For this reason, a Hall element type magnetic sensor that is widely used is not sufficient for accurate detection. Therefore, by using a high-precision fluxgate type magnetic sensor or a magnetic inductance (MI) type magnetic sensor as the magnetic sensor 2, more accurate detection can be performed.

図2は参考例1のブロック回路構成図であり、磁気センサ2の出力はA/D変換器11を経て、着磁前データメモリ12と着磁後データメモリ13に択一的に接続されている。着磁前データメモリ12と着磁後データメモリ13の出力は減算回路14を経て比較回路15、表示部16に接続されている。また比較回路15には、減算回路14の出力と比較するために閾値メモリ17の出力が接続されている。 FIG. 2 is a block circuit configuration diagram of Reference Example 1. The output of the magnetic sensor 2 is alternatively connected to a pre-magnetization data memory 12 and a post-magnetization data memory 13 via an A / D converter 11. Yes. Outputs of the pre-magnetization data memory 12 and the post-magnetization data memory 13 are connected to a comparison circuit 15 and a display unit 16 via a subtraction circuit 14. Further, the output of the threshold memory 17 is connected to the comparison circuit 15 for comparison with the output of the subtraction circuit 14.

基本的な測定の手順を説明すると、(1)先ず着磁装置1を作動させずに、磁気センサ2で鉄筋Rxの残留磁気を測定する。   The basic measurement procedure will be described. (1) First, the magnetism sensor 1 is not operated, and the residual magnetism of the rebar Rx is measured by the magnetic sensor 2.

磁気センサ2でコンクリートCの表面の磁界の大きさを電圧信号に変え、更にA/D変換器11でデジタルデータ(D1)を得て、着磁前データメモリ12に記憶する。   The magnetic sensor 2 changes the magnitude of the magnetic field on the surface of the concrete C into a voltage signal, and the A / D converter 11 obtains digital data (D1) and stores it in the pre-magnetization data memory 12.

(2)次に、着磁用電源3により着磁装置1の着磁コイル4に一時的に通電し、着磁コイル4から発生する磁束により鉄筋Rxを着磁する。   (2) Next, the magnetizing power source 3 temporarily energizes the magnetizing coil 4 of the magnetizing device 1 and magnetizes the rebar Rx by the magnetic flux generated from the magnetizing coil 4.

(3)再び、磁気センサ2により鉄筋Rxの残留磁気を測定する。   (3) The residual magnetism of the reinforcing bar Rx is again measured by the magnetic sensor 2.

着磁後の磁界の大きさを(1)と同様に検出し、デジタルデータ(D2)を着磁後データメモリ13に記憶する。   The magnitude of the magnetic field after magnetization is detected in the same manner as (1), and the digital data (D2) is stored in the data memory 13 after magnetization.

(4)磁気センサ2による(1)、(3)で得られた信号D1、D2の差分を求めて鉄筋Rxの破断の有無を検知する。   (4) The difference between the signals D1 and D2 obtained in (1) and (3) by the magnetic sensor 2 is obtained to detect the presence or absence of breakage of the reinforcing bar Rx.

減算回路14において差分D2−D1を計算し、この差分を比較回路15で閾値メモリ17の閾値と比較し、閾値よりも小さければ破断があると判断して表示部16に表示する。   The subtraction circuit 14 calculates the difference D2-D1, and the comparison circuit 15 compares the difference with the threshold value of the threshold value memory 17. If the difference is smaller than the threshold value, it is determined that there is a break and is displayed on the display unit 16.

実際にコンクリートCの表面の磁界を検出する際には、鉄筋Rxの残留磁気による磁界だけが検出されるわけでなく、地磁気又は近くを通る送電線等を流れる電流による磁界などの外部磁界の影響を受けることになる。例えば、鉄筋Rxから100mm離れた磁気センサ2の位置における鉄筋Rxの残留磁気による磁束密度は、前述したように5〜500マイクロテスラ程度であるが、地磁気による磁束密度は、日本周辺では50マイクロテスラ程度あり、無視できない値である。   When actually detecting the magnetic field on the surface of the concrete C, not only the magnetic field due to the residual magnetism of the reinforcing bar Rx is detected, but also the influence of external magnetic fields such as the magnetic field due to the geomagnetism or the current flowing through the nearby transmission line. Will receive. For example, the magnetic flux density due to the residual magnetism of the reinforcing bar Rx at the position of the magnetic sensor 2 100 mm away from the reinforcing bar Rx is about 5 to 500 microtesla as described above, but the magnetic flux density due to geomagnetism is 50 microtesla around Japan. There is a level that cannot be ignored.

着磁前後の磁界の差分D2−D1を求めると、地磁気や直交する鉄筋Ry等による磁界は着磁前後で一定であるため、このように差分を求めることによりこれらの影響は相殺され、鉄筋Rxを着磁して増加した磁界のみが得られる。   When the magnetic field difference D2-D1 between before and after magnetization is obtained, the magnetic field due to the geomagnetism or the orthogonal reinforcing bar Ry is constant before and after magnetization. Thus, by obtaining the difference in this way, these influences are offset, and the reinforcing bar Rx. Only the magnetic field increased by magnetizing can be obtained.

鉄筋Rxに破断部がない場合には、(1)の着磁装置1の作動前におけるコンクリートCの表面の測定すべき鉄筋Rxに沿った磁界の大きさは、例えば図3のデータAに示すようになり、一定の地磁気による磁界と所々で直交する鉄筋Ryの残留磁気による磁界との合成されたものになっている。   In the case where the reinforcing bar Rx has no fracture portion, the magnitude of the magnetic field along the reinforcing bar Rx to be measured on the surface of the concrete C before the operation of the magnetizing device 1 of (1) is shown in, for example, data A in FIG. Thus, a magnetic field caused by a certain geomagnetism and a magnetic field caused by the residual magnetism of the reinforcing bars Ry orthogonal to each other are combined.

この状態で、(2)で着磁コイル4に一時的に直流電流を流して鉄筋Rxを磁化させると、コンクリートCの表面における磁界の大きさは、図3のデータBに示すようになる。着磁の影響は磁気センサ2により検出されるが、データAと同様に地磁気や鉄筋Ryの残留磁気はそのまま上乗せされている。なお、図3のデータDはデータAとBの差分を示している。   In this state, when a direct current is temporarily passed through the magnetized coil 4 in (2) to magnetize the rebar Rx, the magnitude of the magnetic field on the surface of the concrete C is as shown in data B of FIG. Although the influence of magnetization is detected by the magnetic sensor 2, as in the case of data A, the geomagnetism and the residual magnetism of the reinforcing bar Ry are added as they are. Note that data D in FIG. 3 indicates the difference between data A and B.

図4は鉄筋Rxが破断している場合に、鉄筋Rxに沿ったコンクリートCの表面の磁界の大きさについて、着磁前のデータA、着磁後のデータB及び着磁前後の差分データDを示している。   FIG. 4 shows data A before magnetization, data B after magnetization, and difference data D before and after magnetization for the magnitude of the magnetic field on the surface of the concrete C along the reinforcement Rx when the reinforcement Rx is broken. Is shown.

更に、図5は図3と図4の差分データD同士を比較するために、それぞれの差分データDを同一のグラフ図に表現している。この図5からも明らかなように、着磁前後の磁界の差分は、着磁装置1の中心から破断点X付近までは破断の有無に拘わらずほぼ一致している。しかし、破断点Xから先においては、破断している場合の差分は破断していない場合と比べると極めて小さく、その大きさは破断がないときの十分の1以下になる。これは破断がないときは、着磁による影響が鉄筋Rxを通じて遠くまで及ぶのに対し、破断していると破断部Xから先にはその影響が殆ど及ばないためである。   Furthermore, FIG. 5 represents each difference data D in the same graph in order to compare the difference data D of FIG. 3 and FIG. As is apparent from FIG. 5, the difference between the magnetic fields before and after magnetization is substantially the same from the center of the magnetizing apparatus 1 to the vicinity of the breaking point X regardless of whether or not there is a break. However, after the break point X, the difference in the case of breakage is extremely small compared to the case of not breakage, and the size thereof is 1 or less, which is sufficient when there is no breakage. This is because when there is no breakage, the influence of magnetization reaches far through the reinforcing bar Rx, whereas when the breakage occurs, the influence from the breakage part X hardly reaches.

図3〜図5からも分かるように、鉄筋Rxに沿った全ての磁界を測定しなくとも、破断点Xよりも離れた1個所に磁気センサ2を配置して、着磁前後の磁界の大きさの差を測定すれば、鉄筋Rxの破断の有無を検知できる。この方法によれば、磁気センサ2を動かす必要もなく、或いは多数の磁気センサ2を配置することもなく、破断点Xの有無を検知できることになる。   As can be seen from FIG. 3 to FIG. 5, the magnetic sensor 2 is arranged at one place away from the breaking point X without measuring all the magnetic fields along the reinforcing bars Rx, and the magnitude of the magnetic field before and after magnetization. If the difference in thickness is measured, the presence or absence of breakage of the reinforcing bar Rx can be detected. According to this method, it is possible to detect the presence or absence of the breaking point X without having to move the magnetic sensor 2 or arranging a large number of magnetic sensors 2.

しかし、コンクリート構造物に使用されている鉄筋Rxは、一般に製造時或いは施工時の要因による残留磁気により、何らかの大きさで磁化されており、その大きさ、方向或いは分布は必ずしも一定でない。   However, the rebar Rx used in the concrete structure is generally magnetized in some size due to residual magnetism due to factors during manufacture or construction, and its size, direction or distribution is not necessarily constant.

一方、着磁装置1により鉄筋Rxに着磁する際に、磁化の大きさを大きくしても、鉄筋Rxの磁気飽和特性により或る値以上に着磁されることはない。このため、測定すべき鉄筋Rxが着磁前に既に或る極性に、或る大きさに磁化されている場合には、それと同じ極性に着磁を行っても、着磁前後の残留磁気の変化は小さなものになる。   On the other hand, when magnetizing the reinforcing bar Rx by the magnetizing device 1, even if the magnitude of magnetization is increased, the magnetic saturation characteristic of the reinforcing bar Rx does not magnetize it beyond a certain value. For this reason, when the reinforcing bar Rx to be measured is already magnetized to a certain polarity and to a certain size before magnetization, the residual magnetism before and after magnetization is magnetized even if it is magnetized to the same polarity. Change will be small.

このように、参考例1のように単に着磁前後のコンクリートCの表面上の磁界を大きさの変化を測定するだけでは、測定前の鉄筋Rxの磁化状態の影響を受け、正確に破断の有無を検知ができない場合がある。 In this way, just by measuring the change in the magnitude of the magnetic field on the surface of the concrete C before and after magnetization as in Reference Example 1 , it is affected by the magnetization state of the rebar Rx before the measurement, and is accurately broken. The presence / absence may not be detected.

この問題を解決する方法として、着磁コイル4の極性つまり磁化の極性を、電流の方向を切換えることにより任意に切換えできるようにする。図6はこの参考例2のブロック回路構成図であり、図2のブロック回路構成図と比較して、着磁前データメモリ12、着磁後データメモリ13が、それぞれ正着磁データメモリ21、負着磁データメモリ22に置換されている。 As a method for solving this problem, the polarity of the magnetizing coil 4, that is, the polarity of magnetization, can be arbitrarily switched by switching the direction of the current. FIG. 6 is a block circuit configuration diagram of the reference example 2. Compared with the block circuit configuration diagram of FIG. 2, the pre-magnetization data memory 12 and the post-magnetization data memory 13 are respectively connected to the positive magnetization data memory 21, The negative magnetization data memory 22 is replaced.

この場合の測定の手順は次の通りである。   The measurement procedure in this case is as follows.

(11)参考例1と同様に、鉄筋Rxの破断を測定すべき個所を挟んで、一方に着磁装置1を配置し他方に磁気センサ2を配置し、着磁装置1の極性切換回路を正にセットして、着磁コイル4により鉄筋Rxが飽和するような大きさの磁界を一時的に加えて、鉄筋Rxを着磁する。これにより、鉄筋Rxは着磁前の磁化の極性、大きさとは関係なく一定の大きさで着磁される。 (11) Similarly to the reference example 1 , the magnetizing device 1 is arranged on one side, the magnetic sensor 2 is arranged on the other side, and the polarity switching circuit of the magnetizing device 1 is arranged across the portion where the breakage of the reinforcing bar Rx is to be measured. The magnet is set to be positive, and a magnetic field having a magnitude that saturates the reinforcing bar Rx is temporarily applied by the magnetizing coil 4 to magnetize the reinforcing bar Rx. As a result, the rebar Rx is magnetized with a constant magnitude regardless of the polarity and magnitude of magnetization before magnetization.

(12)磁気センサ2により磁界の大きさを電圧信号に変え、更にA/D変換器11でデジタルデータ(DP)を得て、正着磁データメモリ21に記憶する。   (12) The magnitude of the magnetic field is changed to a voltage signal by the magnetic sensor 2, and digital data (DP) is obtained by the A / D converter 11 and stored in the positive magnetization data memory 21.

(13)着磁装置1の極性切換回路を負にセットして、着磁コイル4に(11)と逆方向の電流を流して、鉄筋Rxが飽和するような大きさの磁界を一時的に加えて着磁する。   (13) The polarity switching circuit of the magnetizing apparatus 1 is set to be negative, and a current in a direction opposite to that of (11) is passed through the magnetizing coil 4 to temporarily apply a magnetic field having a magnitude that saturates the rebar Rx. In addition, it is magnetized.

(14)着磁後の磁界の大きさを(12)と同様に求め、得られたデジタルデータ(DM)を負着磁データメモリ22に記憶する。   (14) The magnitude of the magnetic field after magnetization is obtained in the same manner as in (12), and the obtained digital data (DM) is stored in the negative magnetization data memory 22.

(15)減算回路14で正着磁データメモリ21と負着磁データメモリ22の差分(DM−DP)を計算する。   (15) The subtraction circuit 14 calculates the difference (DM-DP) between the positive magnetization data memory 21 and the negative magnetization data memory 22.

(17)この差分データDM−DPを比較回路15で閾値メモリ17の閾値と比較し、閾値よりも小さければ破断があると判断して表示部16に表示する。   (17) The difference data DM-DP is compared with the threshold value of the threshold value memory 17 by the comparison circuit 15, and if it is smaller than the threshold value, it is determined that there is a break and is displayed on the display unit 16.

(15)で得られる1回目と2回目の極性を変えた着磁による鉄筋Rxの残留磁気による磁界の大きさの差分は、参考例1の図5と比較して大きさが2倍になるだけで曲線の形状は同じである。従って、磁気センサ2で測定した正負逆極性で着磁したときの磁界の大きさの差分(DM−DP)を求めれば、測定前の鉄筋Rxの磁化状態に関係なく、破断の有無を検知することができる。 The difference in the magnitude of the magnetic field due to the residual magnetism of the reinforcing bar Rx due to the first and second polarity changes obtained in (15) is twice that of FIG. Just the shape of the curve is the same. Therefore, if the difference (DM-DP) in the magnitude of the magnetic field when magnetized with the positive and negative polarities measured by the magnetic sensor 2 is obtained, the presence or absence of fracture is detected regardless of the magnetization state of the rebar Rx before the measurement. be able to.

一般に、コンクリートCの表面から測定すべき鉄筋Rxまでの深さは一定ではない。このため、同じ着磁装置1を使っても鉄筋Rxまでの距離が遠くなるほど、鉄筋Rxが磁化される度合いは小さくなる。また、磁化された鉄筋Rxの残留磁気による磁界の大きさも、鉄筋Rxから磁気センサ2までの距離が大きくなるほど小さくなる。   Generally, the depth from the surface of the concrete C to the reinforcing bar Rx to be measured is not constant. For this reason, even if the same magnetizing apparatus 1 is used, the degree to which the reinforcing bar Rx is magnetized decreases as the distance to the reinforcing bar Rx increases. Further, the magnitude of the magnetic field due to the residual magnetism of the magnetized rebar Rx also decreases as the distance from the rebar Rx to the magnetic sensor 2 increases.

また、磁気発生源から離れた個所の磁界の大きさは、その距離の三乗に反比例するので、鉄筋Rxの深さが大きくなると、着磁装置1による着磁前後の鉄筋Rxの残留磁気による磁界の大きさの差は、図7に示すように急激に小さくなる。 In addition , the magnitude of the magnetic field at a location away from the magnetism source is inversely proportional to the cube of the distance. The difference in the magnitude of the magnetic field decreases rapidly as shown in FIG.

また、鉄筋Rxの太さや材質によっても磁化による残留磁気の大きさは異なるので、鉄筋Rxの深さ、太さや材質が分かっていないと、着磁前後の磁界の大きさの差の値からだけでは、破断の有無を判断することは難しい。   In addition, since the magnitude of residual magnetism due to magnetization differs depending on the thickness and material of the reinforcing bar Rx, if the depth, thickness and material of the reinforcing bar Rx are not known, only the value of the difference in magnetic field magnitude before and after magnetization Then, it is difficult to determine the presence or absence of breakage.

しかし、図7から分かるように、深さが異なっても着磁前後の磁界の大きさの差の曲線は、破断の有無が同じであれば相似形であり、大きさが異なるだけである。   However, as can be seen from FIG. 7, even if the depth is different, the difference in the magnitude of the magnetic field before and after magnetization is similar if the fracture is the same, and only the magnitude is different.

本実施例においては、図7に示すように第2の磁気センサ2’を破断を測定する個所よりも着磁装置1側、例えば着磁コイル4の中心位置に配置する。磁気センサ2’は磁気センサ2と同様に着磁前後の磁界の大きさの差分を求め、その値(D0)を基準として、磁気センサ2で得られた着磁前後の磁界の大きさの差分(D1)を除算した値(K=D1/D0)を求めれば、鉄筋Rxの深さに関係なく、破断点Xの有無に応じてほぼ一定の値になる。鉄筋Rxの直径、材質が異なる場合も同様である。 In the present embodiment , as shown in FIG. 7, the second magnetic sensor 2 ′ is arranged on the magnetizing device 1 side, for example, at the center position of the magnetizing coil 4 from the location where the fracture is measured. The magnetic sensor 2 ′ obtains the difference between the magnitudes of the magnetic fields before and after the magnetization similarly to the magnetic sensor 2, and uses the value (D0) as a reference to obtain the difference between the magnitudes of the magnetic fields before and after the magnetization obtained by the magnetic sensor 2. If a value obtained by dividing (D1) (K = D1 / D0) is obtained, it becomes a substantially constant value according to the presence or absence of the break point X regardless of the depth of the reinforcing bar Rx. The same applies when the diameter and material of the reinforcing bar Rx are different.

図8は本実施例で使用するブロック回路構成図であり、磁気センサ2、2’は出力は択一的にA/D変換器11に接続されている。A/D変換器11の出力は磁気センサ2、2’の切換え、着磁コイル4の正逆切換えに応じて、センサ2正着磁データメモリ31、センサ2負着磁データメモリ32、センサ2’正着磁データメモリ33、センサ2’負着磁データメモリ34に選択的に接続されている。センサ2正着磁データメモリ31とセンサ2負着磁データメモリ32の出力はセンサ2用減算回路35に接続され、センサ2’正着磁データメモリ33とセンサ2’負着磁データメモリ34の出力はセンサ2’用減算回路36に接続されている。 FIG. 8 is a block circuit configuration diagram used in this embodiment . The outputs of the magnetic sensors 2 and 2 ′ are alternatively connected to the A / D converter 11. The output of the A / D converter 11 is the sensor 2 positive magnetization data memory 31, the sensor 2 negative magnetization data memory 32, and the sensor 2 in accordance with the switching of the magnetic sensors 2, 2 ′ and the forward / reverse switching of the magnetizing coil 4. 'Positive magnetization data memory 33, sensor 2' is selectively connected to negative magnetization data memory 34. The outputs of the sensor 2 positive magnetization data memory 31 and the sensor 2 negative magnetization data memory 32 are connected to the sensor 2 subtraction circuit 35, and the sensor 2 ′ positive magnetization data memory 33 and the sensor 2 ′ negative magnetization data memory 34 The output is connected to the subtracting circuit 36 for the sensor 2 ′.

そして、センサ2用減算回路35とセンサ2’用減算回路36の出力は除算回路37に接続されており、以降の構成は図2、図6のブロック回路図と同様である。   The outputs of the sensor 2 subtraction circuit 35 and the sensor 2 'subtraction circuit 36 are connected to a division circuit 37, and the subsequent configuration is the same as the block circuit diagrams of FIGS.

この実施例の測定の手順は次の通りである。 The measurement procedure of this example is as follows.

(21)鉄筋Rxの破断を測定すべき個所を挟んで、一方に着磁装置1及び第2の磁気センサ2’を配置し、他方に磁気センサ2を配置する。着磁装置1の極性切換回路を正にセットして、大きな磁界を一時的に加えて鉄筋Rxを着磁する。   (21) The magnetizing device 1 and the second magnetic sensor 2 ′ are arranged on one side and the magnetic sensor 2 is arranged on the other side with a portion where the breakage of the reinforcing bar Rx is to be measured. The polarity switching circuit of the magnetizing apparatus 1 is set to be positive, and a large magnetic field is temporarily applied to magnetize the rebar Rx.

(22)磁気センサ2の出力をA/D変換器11でデジタルデータ(D1P)を得て、磁気センサ2正着磁データメモリ31に記憶する。   (22) Digital data (D1P) is obtained from the output of the magnetic sensor 2 by the A / D converter 11 and stored in the magnetic sensor 2 positive magnetization data memory 31.

(23)磁気センサ2’の出力をA/D変換器11でデジタルデータ(D0P)を得て、磁気センサ2’正着磁データメモリ33に記憶する。   (23) Digital data (D0P) is obtained from the output of the magnetic sensor 2 ′ by the A / D converter 11 and stored in the magnetic sensor 2 ′ positive magnetization data memory 33.

(24)着磁装置1の極性切換回路を負に切換え、着磁コイル4に(21)と逆方向の電流を流して、大きな磁界を一時的に加えて鉄筋Rxを着磁する。   (24) The polarity switching circuit of the magnetizing device 1 is switched to negative, a current in the opposite direction to (21) is passed through the magnetizing coil 4, and a large magnetic field is temporarily applied to magnetize the rebar Rx.

(25)磁気センサ2の出力をA/D変換器11でデジタルデータ(D1M)を得て、磁気センサ2負着磁データメモリ32に記憶する。   (25) The A / D converter 11 obtains digital data (D1M) from the output of the magnetic sensor 2 and stores it in the magnetic sensor 2 negative magnetization data memory 32.

(26)磁気センサ2’の出力をA/D変換器11でデジタルデータ(D0M)を得て、磁気センサ2’負着磁データメモリ34に記憶する。   (26) The A / D converter 11 obtains digital data (D0M) from the output of the magnetic sensor 2 ′ and stores it in the magnetic sensor 2 ′ negative magnetization data memory 34.

(27)センサ2用減算回路35でD1=D1M−D1Pを計算する。   (27) The sensor 2 subtraction circuit 35 calculates D1 = D1M−D1P.

(28)センサ2’用減算回路36でD0=D0M−D0Pを計算する。   (28) The sensor 2 'subtraction circuit 36 calculates D0 = D0M-D0P.

(29)除算回路37でK=D1/D0=(D1M−D1P)/(D0M−D0P)を計算する。   (29) The division circuit 37 calculates K = D1 / D0 = (D1M−D1P) / (D0M−D0P).

(30)得られた値Kを比較回路15で閾値メモリ17の閾値と比較し、値Kが閾値よりも小さければ、破断があると判断して表示部16に表示する。   (30) The obtained value K is compared with the threshold value of the threshold value memory 17 by the comparison circuit 15, and if the value K is smaller than the threshold value, it is determined that there is a break and is displayed on the display unit 16.

このような手順により、図7のグラフ図の鉄筋Rxで得られたデータは次の表1の通りである。   The data obtained with the reinforcing bar Rx in the graph of FIG.

表1
D1 D0 K=D1/D0
破断無し・深さ50mm −102μT 170μT −0.6
破断あり・深さ50mm −9μT 149μT −0.06
破断無し・深さ75mm −30μT 51μT −0.59
破断あり・深さ75mm −2.5μT 44μT −0.057
Table 1
D1 D0 K = D1 / D0
No break, depth 50mm -102μT 170μT -0.6
With break and depth 50mm -9μT 149μT -0.06
No break, depth 75mm -30μT 51μT -0.59
With fracture, depth 75mm -2.5μT 44μT -0.057

このように値Kは破断の有無でほぼ1桁異なる値であり、容易に鉄筋Rxの破断を判別することができる。   Thus, the value K is a value that differs by almost an order of magnitude depending on the presence or absence of breakage, and the breakage of the rebar Rx can be easily determined.

なお、値Kは磁気センサ2、2’の位置、着磁コイル4の直径などの着磁装置1の特性により異なるが、これらを常に一定にして測定すれば、鉄筋Rxの深さ、太さ、材質に関係なく同じ値になるので、破断の有無を正しく検知することができる。   The value K varies depending on the characteristics of the magnetizing device 1 such as the positions of the magnetic sensors 2 and 2 'and the diameter of the magnetizing coil 4. However, if these are always kept constant, the depth and thickness of the rebar Rx are measured. Because the value is the same regardless of the material, the presence or absence of breakage can be detected correctly.

また、磁気センサ2’を着磁装置1の中心位置に置いた例を示したが、破断点Xよりも着磁装置1側にあれば、必ずしも着磁装置1の中心位置である必要はない。   Further, although an example in which the magnetic sensor 2 ′ is placed at the center position of the magnetizing device 1 is shown, the center position of the magnetizing device 1 is not necessarily required as long as it is closer to the magnetizing device 1 side than the break point X. .

実施例においては、着磁装置1、磁気センサ2、2’を測定すべき鉄筋Rxの真上に配置させることが好ましく、このため予め鉄筋Rxの位置を知る必要がある。実際の検査現場では、コンクリート構造物の外観から鉄筋Rxの敷設方向は容易に判断できるが、鉄筋Rxが何処に埋設されているかは分からないことが多い。 In the embodiment , it is preferable to dispose the magnetizing device 1 and the magnetic sensors 2 and 2 ′ directly above the reinforcing bar Rx to be measured. For this reason, it is necessary to know the position of the reinforcing bar Rx in advance. In an actual inspection site, the laying direction of the reinforcing bar Rx can be easily determined from the appearance of the concrete structure, but it is often unknown where the reinforcing bar Rx is embedded.

この場合に、鉄筋Rxの残留磁気による磁界を検出する磁気センサ2を、鉄筋Rxの長さ方向と直角な方向に移動させ、鉄筋Rxの残留磁気による磁界を測定する。得られる磁界の大きさは磁気センサ2と鉄筋Rxまでの距離の三乗に反比例するので、図9に示すように着磁コイル4と磁気センサ2とを一体の筐体内等に配置して動かすと、着磁コイル4と磁気センサ2を結ぶ線が鉄筋Rxの長手方向と一致したときが、磁気センサ2の出力は最も大きくなる。   In this case, the magnetic sensor 2 that detects the magnetic field due to the residual magnetism of the reinforcing bar Rx is moved in a direction perpendicular to the length direction of the reinforcing bar Rx, and the magnetic field due to the residual magnetism of the reinforcing bar Rx is measured. Since the magnitude of the magnetic field obtained is inversely proportional to the cube of the distance between the magnetic sensor 2 and the reinforcing bar Rx, the magnetizing coil 4 and the magnetic sensor 2 are arranged and moved in an integral housing as shown in FIG. When the line connecting the magnetizing coil 4 and the magnetic sensor 2 coincides with the longitudinal direction of the reinforcing bar Rx, the output of the magnetic sensor 2 becomes the largest.

従って、着磁コイル4と磁気センサ2を鉄筋Rxの長さ方向と直角な方向に移動させながら、出力が最大になる位置を求めることにより、鉄筋Rxの存在位置を知ることができ、その後に破断検知を行えばよい。   Therefore, by obtaining the position where the output is maximized while moving the magnetizing coil 4 and the magnetic sensor 2 in the direction perpendicular to the length direction of the rebar Rx, the position where the rebar Rx exists can be known. What is necessary is just to detect a fracture.

なお、着磁装置1として、コンクリートCの表面に近接した着磁コイル4に着磁用電源3から一時的に直流電流を流す方法を示したが、必ずしも着磁コイル4を使う必要はなく、強力な永久磁石を一時的に近付けた後に、遠去ける方法でもよい。また、永久磁石は例えば裏返しにすることにより、簡便に極性を切換えることができる
更に、着磁装置1、磁気センサ2を直線的に配置した例を説明したが、鉄筋Rxの折り曲げ加工部を検査する場合には、図10に示すように配置することにより、平面の場合と同様に測定することができる。
In addition, although the method of flowing a direct current from the magnetizing power supply 3 to the magnetizing coil 4 close to the surface of the concrete C as the magnetizing device 1 was shown, it is not always necessary to use the magnetizing coil 4. A method of moving away after temporarily approaching a strong permanent magnet may be used. In addition, the polarity of the permanent magnet can be switched easily by turning it over, for example. Furthermore, the example in which the magnetizing device 1 and the magnetic sensor 2 are arranged linearly has been explained, but the bending portion of the reinforcing bar Rx is inspected. In this case, the measurement can be performed in the same manner as in the case of a plane by arranging as shown in FIG.

測定原理の説明図である。It is explanatory drawing of a measurement principle. 参考例1のブロック回路構成図である。 6 is a block circuit configuration diagram of Reference Example 1. FIG. 鉄筋に破断がない場合のデータの説明図である。It is explanatory drawing of the data when there is no fracture in a reinforcing bar. 鉄筋に破断がある場合のデータの説明図である。It is explanatory drawing of the data when there exists a fracture | rupture in a reinforcing bar. 差分データの比較の説明図である。It is explanatory drawing of the comparison of difference data. 参考例2のブロック回路構成図である。 6 is a block circuit configuration diagram of Reference Example 2. FIG. 鉄筋の破断の有無と深さが異なる場合のデータの説明図である。It is explanatory drawing of the data when the presence or absence and depth of a reinforcing bar are different. 実施例のブロック回路構成図である。It is a block circuit block diagram of an Example . 鉄筋を探索する場合の説明図である。It is explanatory drawing in the case of searching for a reinforcing bar. コンクリート角部における検知の説明図である。It is explanatory drawing of the detection in a concrete corner | angular part.

1 着磁装置
2、2’ 磁気センサ
3 着磁用電源
4 着磁コイル
11 A/D変換器
12、13、21、22、31〜34 データメモリ
14、35、36 減算回路
15 比較回路
16 表示部
17 閾値メモリ
37 除算回路
DESCRIPTION OF SYMBOLS 1 Magnetization apparatus 2, 2 'Magnetic sensor 3 Power supply for magnetization 4 Magnetization coil 11 A / D converter 12, 13, 21, 22, 31-34 Data memory 14, 35, 36 Subtraction circuit 15 Comparison circuit 16 Display Part 17 Threshold memory 37 Dividing circuit

Claims (3)

コンクリート構造物内の鉄筋の磁束を基に、第1の磁気センサと第2の磁気センサ間における前記鉄筋の破断部を検出する方法であって、前記鉄筋を着磁する第1次着磁工程と、該第1次着磁工程後に前記鉄筋の残留磁気によるコンクリート表面上の磁界を検出する第1次磁界検出工程と、前記鉄筋を第1次着磁工程とは逆極性で着磁する第2次着磁工程と、該第2次着磁工程後に前記鉄筋の残留磁気によるコンクリート表面上の磁界を検出する第2次磁界検出工程と、前記第1次、第2次磁界検出工程で得られた検出信号を基に前記鉄筋の破断を検知する破断検知工程とから成り、前記第2の磁気センサは前記着磁工程で使用する着磁手段側に配置し、前記第1次、第2次磁界検出工程では、前記第1、第2の磁気センサによりそれぞれの位置において前記鉄筋の磁界を検知し、前記破断検知工程では、前記第1の磁気センサの前記第1次、第2次磁界検出工程におけるそれぞれの検出信号の差D0を求め、前記第2の磁気センサの前記第1次、第2次磁界検出工程におけるそれぞれの検出信号の差D1を求め、前記差D0、差D1の比D1/D0を求めることを特徴とするコンクリート構造物の鉄筋破断検知方法。 A method for detecting a broken portion of the reinforcing bar between the first magnetic sensor and the second magnetic sensor based on the magnetic flux of the reinforcing bar in the concrete structure, wherein the first magnetization step magnetizes the reinforcing bar And a first magnetic field detecting step for detecting a magnetic field on the concrete surface due to the residual magnetism of the reinforcing bar after the first magnetizing step, and a first magnetizing the reinforcing bar with a polarity opposite to that of the first magnetizing step. a secondary magnetizing step, a second-order magnetic field detection step of detecting a magnetic field on the concrete surface by the residual magnetism of the reinforcing bar after said second magnetization step, the first-order, second-order magnetic field detection step A break detecting step for detecting breakage of the reinforcing bar based on the obtained detection signal, and the second magnetic sensor is disposed on the side of the magnetizing means used in the magnetizing step, and the first, first, In the secondary magnetic field detection step, the first and second magnetic sensors respectively The magnetic field of the reinforcing bar is detected in the setting, and in the fracture detection step, a difference D0 between the detection signals in the first and second magnetic field detection steps of the first magnetic sensor is obtained, and the second magnetic Reinforcing bar breakage detection method for concrete structure characterized in that difference D1 between respective detection signals in said primary and secondary magnetic field detection steps of sensor is obtained and ratio D1 / D0 of said difference D0 and difference D1 is obtained. . 前記着磁工程は着磁コイルに電流を流すことにより行うことを特徴とする請求項に記載のコンクリート構造物の鉄筋破断検知方法。 2. The method for detecting rebar breakage in a concrete structure according to claim 1 , wherein the magnetizing step is performed by passing a current through the magnetizing coil. 前記各工程に先立ち、前記第1の磁気センサを鉄筋方向と直角方向に動かして鉄筋の位置を予め検知しておくことを特徴とする請求項に記載のコンクリート構造物の鉄筋破断検知方法。 Wherein prior to each step, rebar breaking detection method for a concrete structure according to claim 1, said first magnetic sensor is characterized in that in advance detect the position of the rebar by moving the reinforcing bars a direction perpendicular to the direction.
JP2004141859A 2004-05-12 2004-05-12 Reinforcing bar breakage detection method for concrete structures Expired - Lifetime JP4304121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141859A JP4304121B2 (en) 2004-05-12 2004-05-12 Reinforcing bar breakage detection method for concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141859A JP4304121B2 (en) 2004-05-12 2004-05-12 Reinforcing bar breakage detection method for concrete structures

Publications (2)

Publication Number Publication Date
JP2005326152A JP2005326152A (en) 2005-11-24
JP4304121B2 true JP4304121B2 (en) 2009-07-29

Family

ID=35472632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141859A Expired - Lifetime JP4304121B2 (en) 2004-05-12 2004-05-12 Reinforcing bar breakage detection method for concrete structures

Country Status (1)

Country Link
JP (1) JP4304121B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4860987B2 (en) * 2005-11-21 2012-01-25 株式会社四国総合研究所 Nondestructive inspection method
JP4876248B2 (en) * 2006-04-25 2012-02-15 国立大学法人九州工業大学 Nondestructive inspection method and apparatus
CN109997038B (en) * 2016-12-01 2023-02-17 东京制纲株式会社 Method and apparatus for evaluating damage of magnetic linear body
EP3575783A4 (en) * 2017-01-26 2020-09-09 Shimadzu Corporation Magnetic body inspection device and magnetic body inspection method
CN108760874A (en) * 2018-05-29 2018-11-06 河北布鲁克科技有限公司 A kind of non-destructive testing device and method of steel wire rope
CN110671993B (en) * 2019-10-14 2024-05-17 广州市建筑材料工业研究所有限公司 Instrument for judging distance between steel bars in steel concrete structure and thickness of protective layer by adopting magnetic force
WO2024057869A1 (en) * 2022-09-12 2024-03-21 コニカミノルタ株式会社 Non-destructive testing method, program, and non-destructive testing system

Also Published As

Publication number Publication date
JP2005326152A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP2005003405A (en) Method for detecting breaking of reinforcing rod of concrete structure
JP2012145330A (en) Corrosion sensor device, manufacturing method of corrosion sensor device, corrosion detection method, sensor and manufacturing method of sensor
JP4304121B2 (en) Reinforcing bar breakage detection method for concrete structures
CN107850570B (en) Defect measuring method, defect measuring device, and inspection probe
JP6305860B2 (en) Nondestructive inspection method and nondestructive inspection device
JP2007292572A (en) Nondestructive inspection method and device
JP3734822B1 (en) Nondestructive inspection method
JP2013130452A (en) Nondestructive inspection method and nondestructive inspection device
Sivasubramanian et al. Covermeter for identifying cover depth and rebar diameter in high strength concrete
CN109813799A (en) Corrosion of steel structure Magnetic sensing methods in armored concrete
JP5222714B2 (en) Nondestructive inspection method and nondestructive inspection equipment
KR20140042240A (en) How to detect damaged steel reinforcement of concrete electric pole using magnetizer and mobile phone
JP2016008960A (en) Nondestructive inspection method and nondestructive inspection device
JP4860987B2 (en) Nondestructive inspection method
JP2004279372A (en) Breaking detection method
JP6305859B2 (en) Nondestructive inspection method
JP2018132426A (en) Reinforcement diameter of ferroconcrete, measuring device of covering, and reinforcement arrangement direction measuring method
US2874349A (en) Apparatus for detecting and measuring the depth of reinforcing rods
CN104296711A (en) Calibration device for cover protectometer
Kumar et al. Sensor systems for corrosion monitoring in concrete structures
JP2018151168A (en) Nondestructive inspection method and nondestructive inspection device
JP5531124B2 (en) Nondestructive inspection method
KR100288534B1 (en) Multiple coil probes capable of measuring the depth and thickness of reinforcing bars in concrete at the same time and measuring methods using them
JP6211311B2 (en) Nondestructive inspection method
WO2020027028A1 (en) Non-destructive inspection device, non-destructive inspection system, and non-destructive inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081030

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4304121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250