JP4301484B2 - Method for producing methacrylic acid - Google Patents
Method for producing methacrylic acid Download PDFInfo
- Publication number
- JP4301484B2 JP4301484B2 JP2001371444A JP2001371444A JP4301484B2 JP 4301484 B2 JP4301484 B2 JP 4301484B2 JP 2001371444 A JP2001371444 A JP 2001371444A JP 2001371444 A JP2001371444 A JP 2001371444A JP 4301484 B2 JP4301484 B2 JP 4301484B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- catalyst layer
- methacrylic acid
- formula
- atomic ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する方法に関する。
【0002】
【従来の技術】
メタクロレインを気相接触酸化してメタクリル酸を製造する際に、モリブデンおよびリンを含むヘテロポリ酸のアルカリ金属塩を触媒として用いることは公知である。例えば、特開平4−210937号公報には、アルカリ金属の組成比を変えた活性の異なる複数の触媒を、原料ガスの入口側から出口側に向かって活性がより高くなるように個別に充填した触媒層でメタクロレインを気相接触酸化してメタクリル酸を製造する方法が記載されている。この方法は、ホットスポット部での蓄熱を抑制して熱負荷による触媒の劣化を防止するものであるが、経時的に触媒活性が大きく低下するという問題がある。また、触媒のアルカリ金属の含有量が多すぎると触媒活性が低下するという問題もあり、工業的には更なる改良が望まれているのが現状である。
【0003】
【発明が解決しようとする課題】
本発明の目的は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する方法において、長期間に渡って高い触媒活性を維持して効率的にメタクリル酸を製造する方法を提供することにある。
【0004】
【課題を解決するための手段】
すなわち本発明は、触媒充填部が原料ガス入口側から出口側に分割された複数の触媒層からなる固定床管型反応器を用いてメタクロレインを分子状酸素で気相接触酸化するメタクリル酸の製造方法において、
原料ガスの最も出口側の触媒層を除く各触媒層が、式(1)で表される触媒であって、X元素の原子比が異なる少なくとも2種類の触媒を含む混合物からなる触媒層であり、
原料ガスの最も出口側の触媒層が、式(1)で表される触媒であって、X元素の原子比が同一の触媒を含む触媒層、またはX元素の原子比が異なる少なくとも2種類の触媒を含む混合物からなる触媒層であり、
各触媒層の単位質量あたりに含まれるX元素含有質量が、反応器の入口側から出口側に向かって少ない
ことを特徴とするメタクリル酸の製造方法である。
MoaPbXcYdOe (1)
(式中、Mo、PおよびOはそれぞれモリブデン、リンおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Yは鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表す。a、b、c、dおよびeは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦6、0≦d≦3であり、eは前記各成分の原子比を満足するのに必要な酸素の原子比である。)
【0005】
上記発明において、原料ガスの最も出口側の触媒層を除く各触媒層が、式(2)で表される触媒と式(3)で表される触媒を含む混合物からなる触媒層であり、
原料ガスの最も出口側の触媒層が、式(2)で表される触媒を含む触媒層、または式(2)および式(3)で表される触媒を含む混合物からなる触媒層であることが好ましい。各触媒層の式(2)と式(3)で表される触媒の質量混合比は、原料ガスの最も入口側の触媒層で1:α(0.05≦α≦3)、原料ガスの最も出口側の触媒層で1:β(0≦β≦1かつβ<α)であることが好ましい。
MofPgXhYiOj (2)
(式中、Mo、P、X、YおよびOは式(1)に同じ。f、g、h、iおよびjは各元素の原子比を表し、f=12のとき、0.1≦g≦3、0.01≦h≦3、0≦i≦3であり、jは前記各成分の原子比を満足するのに必要な酸素の原子比である。)
MokPlXmYnOo (3)
(式中、Mo、P、X、YおよびOは式(1)に同じ。k、l、m、nおよびoは各元素の原子比を表し、k=12のとき、0.1≦l≦3、1.1≦m≦6かつ0.1≦(m−h)≦5、0≦n≦3であり、oは前記各成分の原子比を満足するのに必要な酸素の原子比である。)
【0006】
【発明の実施の形態】
本発明では、触媒充填部が原料ガス入口側から出口側に分割された複数の触媒層からなる固定床管型反応器を用いてメタクロレインを分子状酸素で気相接触酸化してメタクリル酸を製造する。
【0007】
固定床管型反応器としては、反応管が1本だけの単管型でも複数の反応管を有する多管型でもよいが、工業的には固定床多管型反応器が通常用いられる。
【0008】
反応管内は複数の触媒層に分割されており、原料ガスの最も出口側の触媒層を除く各触媒層には、前記式(1)で表される触媒であって、X元素の原子比が異なる少なくとも2種類の触媒を含む混合物が充填されている。これらの触媒層では、X元素の原子比が少なく、活性の高い触媒と、X元素の原子比が多く、熱安定性の高い触媒の少なくとも2種類の触媒が混合された状態で充填されていることが重要である。
【0009】
また、原料ガスの最も出口側の触媒層には、前記式(1)で表される触媒であって、X元素の原子比が同一の触媒を含む触媒、またはX元素の原子比が異なる少なくとも2種類の触媒を含む混合物が充填されている。
【0010】
各触媒層に充填する触媒の種類は、多いほど触媒の製造および充填が煩雑になるので、工業的には2種類が好ましい。
【0011】
また、触媒層の数は特に限定されないが、多すぎると触媒の充填が煩雑になるので工業的には2〜3層が好ましい。
【0012】
さらに、各触媒層の単位質量あたりに含まれるX元素含有質量は、反応器の入口側から出口側に向かって少なくする。例えば、2種類の触媒を使用する場合には、X元素の含有質量の多い触媒を原料ガスの入口側の触媒層ほど多く、出口側の触媒層ほど少なくするように充填して触媒層を形成させる。なお、触媒層に希釈担体が含まれる場合、触媒層の質量とは希釈担体も含めた質量を意味する。
【0013】
本発明において、原料ガスの最も出口側の触媒層を除く各触媒層は、前記式(2)で表される触媒と前記式(3)で表される触媒を含む混合物からなる触媒層であることが好ましい。また、原料ガスの最も出口側の触媒層は、式(2)で表される触媒を含む触媒層、または式(2)および式(3)で表される触媒を含む混合物からなる触媒層であることが好ましい。
【0014】
この場合、各触媒層の式(2)と式(3)で表される触媒の質量混合比は特に限定されないが、原料ガスの最も入口側の触媒層の混合比を1:αとすると、αは0.05≦α≦3が好ましく、特に0.1≦α≦1が好ましい。また、原料ガスの最も出口側の触媒層の混合比を1:β(ただしβ<α)とすると、βは0≦β≦1が好ましく、特に0≦β≦0.5が好ましい。触媒層が3層以上の場合、最も入口側の触媒層と最も出口側の触媒層を除く中間の触媒層の質量混合比は1:γ(β<γ<α)である。
【0015】
本発明で使用する前記式(2)で表される触媒としては、式(2’)のものが好ましい。
MofPgXhY’i’CupVqOj (2’)
(式中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Y’は鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、f、g、h、i’、p、qおよびjは各元素の原子比を表し、f=12のとき、gは0.1≦g≦3、好ましくは0.5≦g≦3である。同様にhは0.01≦h≦3、好ましくは0.1≦h≦3である。同様にi’は0≦i’≦2.98、好ましくは0≦i’≦2.5である。同様にpは0.01≦p≦2.99、好ましくは0.01≦p≦2である。同様にqは0.01≦q≦2.99、好ましくは0.01≦q≦2であり、jは前記各成分の原子比を満足するのに必要な酸素の原子比である。ただし、i’+p+qは0.02≦(i’+p+q)≦3である。)
【0016】
また、前記式(2)で表される触媒と併せて使用する前記式(3)で表される触媒としては、式(3’)のものが好ましい。
MokPlXmY’n’CurVsOo (3’)
(式中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Y’は鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、k、l、m、n’、r、sおよびoは各元素の原子比を表し、k=12のとき、lは0.1≦l≦3、好ましくは0.5≦l≦3である。同様にmは1.1≦m≦6、好ましくは1.5≦m≦4かつ0.1≦(m−h)≦5、好ましくは0.5≦(m−h)≦3である。同様にn’は0≦n’≦2.98、好ましくは0≦n’≦2.5である。同様にrは0.01≦r≦2.99であり、好ましくは0.01≦r≦2である。同様にsは0.01≦s≦2.99であり、好ましくは0.01≦s≦2である。oは前記各成分の原子比を満足するのに必要な酸素の原子比である。n’+r+sは0.02≦(n’+r+s)≦3である。)
【0017】
本発明に用いる触媒の製造方法は特に限定されず、共沈法、蒸発乾固法、酸化物混合法等を用いることができる。触媒の調製に用いる原料は、特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物、酸素酸等を組み合わせて使用することができる。例えば、モリブデンの原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等、リンの原料としては、リン酸、五酸化リン、リン酸アンモニウム等が使用できる。
【0018】
具体的な触媒の調製方法としては、少なくともモリブデン、リンおよびXを含む水性スラリーを乾燥したものを焼成する方法が挙げられる。水性スラリーの乾燥方法は特に限定されず、箱型乾燥機、噴霧乾燥機、ドラムドライヤー、スラリードライヤー等を用いる乾燥方法が使用できる。その際に得られる乾燥物(触媒前駆体)は成形を考慮して粉体状であることが好ましい。乾燥物はそのまま成形してもよいし、焼成した後に成形してもよい。成形方法としては特に限定されず、例えば、打錠成形、押出成形、造粒、担持等が挙げられる。担持触媒の担体としては、例えば、シリカ、アルミナ、シリカ・アルミナ、シリコンカーバイド等の不活性担体が挙げられる。成形に際しては、成形物の比表面積、細孔容積および細孔分布を制御したり、機械的強度を高めたりする目的で、例えば、硫酸バリウム、硝酸アンモニウム等の無機塩類、グラファイト等の滑剤、セルロース類、でんぷん、ポリビニルアルコール、ステアリン酸等の有機物、シリカゾル、アルミナゾル等の水酸化物ゾル、ウィスカー、ガラス繊維、炭素繊維等の無機質繊維等の添加剤を適宜添加してもよい。
【0019】
本発明において、X元素の原子比が異なる少なくとも2種類の触媒は、単一の触媒組成を有する別個の成形体であっても、X元素の原子比が異なる少なくとも2種類の触媒またはその前駆体の混合物の成形体であってもよい。前者の場合は、触媒またはその焼成前の前駆体の成形体を混合して反応管に充填する必要があるが、後者の場合は、既に2種類以上の触媒またはその焼成前の前駆体が混合されているのでこの触媒またはその焼成前の前駆体の成形体を充填するだけでもよい。反応管に前駆体を充填した場合、前駆体は反応管内で焼成した後、反応に供せられる。
【0020】
焼成条件は、用いる触媒原料、触媒組成、調製条件等によって異なるので一概に言えないが、焼成は、通常、空気等の酸素含有ガス流通下および/または不活性ガス流通下で300〜500℃、好ましくは300〜450℃で、0.5時間以上、好ましくは1〜40時間の条件で行われる。焼成後の触媒中には、ヘテロポリ酸および/またはヘテロポリ酸塩の構造が含まれていることが好ましい。
【0021】
本発明におけるメタクリル酸製造方法においては、触媒単位重量あたりに含まれるX元素の含有量が原料ガスの入口側から出口側に向かって少なくなるように充填する、すなわち、原料ガスの入口側から出口側に向かって活性がより高くなるように充填する。これにより、触媒層のホットスポット部発生が抑制され、逐次酸化による選択率の低下や蓄熱による触媒の劣化を防止することができる。更に、各触媒層において、X元素の含有量が異なる触媒を混合して充填している、すなわち、活性の高い触媒と活性の低い触媒を混合して充填しているので、特開平4−210937号公報記載の発明に比べて長期間に渡って安定にメタクリル酸製造を継続できる。活性の異なる2種類以上の触媒を混合して充填することにより、長期間安定に運転を継続できるようになる原因は明らかではないが、運転中に反応器内で、反応活性やX成分含有量の違いにより、近接する2種以上の触媒間で成分の移動が起こったり、使用される活性点の割合の経時的変化により触媒全体としての劣化防止に何らかの作用を及ぼしたりするのではないかと考えられる。
【0022】
気相接触酸化に用いる原料ガスのメタクロレイン濃度は広い範囲で変えることができるが、好ましくは1〜20容量%、特に好ましくは3〜10容量%である。原料のメタクロレインには、水、低級飽和アルデヒド等の実質的に反応に影響を与えない不純物が少量含まれている場合があるが、原料ガスにはこのようなメタクロレイン由来の不純物が含まれていてもよい。
【0023】
原料ガスには分子状酸素が含まれている必要があるが、原料ガス中の分子状酸素の量はメタクロレインの0.4〜4倍モルが好ましく、特に0.5〜3倍モルが好ましい。原料ガスの分子状酸素源には空気を用いるのが工業的に有利であるが、必要に応じて純酸素で富化した空気も使用できる。また原料ガスは、窒素、炭酸ガス等の不活性ガス、水蒸気等で希釈されていることが好ましい。
【0024】
気相接触酸化の反応圧力は常圧〜数気圧でである。反応温度は、通常200〜450℃、好ましくは250〜400℃である。原料ガスと触媒の接触時間は通常1.5〜15秒、好ましくは2〜7秒である。
【0025】
【実施例】
以下、本発明を実施例および比較例により説明する。ただし、実施例および比較例中の「部」は重量部を意味する。反応試験分析はガスクロマトグラフィーにより行った。また、原料であるメタクロレインの転化率、生成したメタクリル酸の選択率および収率は以下のように定義される。
メタクロレイン転化率(%)=(B/A)×100
メタクリル酸選択率(%)=(C/B)×100
メタクリル酸単流収率(%)=(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
【0026】
[実施例1]
(触媒1の調製) パラモリブデン酸アンモニウム100部を純水200部に溶解し、そこへメタバナジン酸アンモニウム2.8部、85重量%リン酸8.2部を純水30部に溶解した溶液、硝酸銅1.1部を純水30部に溶解した溶液および硝酸鉄3.8部を純水10部に溶解した溶液を順次加え、これを攪拌しながら90℃まで加熱し、液温を90℃に保ちつつ5時間加熱攪拌した後に硝酸セシウム6.4部を純水100部に溶解した溶液をこれに加え、混合液を加熱攪拌しながら蒸発乾固した。得られた固形物を130℃で16時間乾燥させた後に粉砕した。こうして得られた粉体100部にグラファイト3部を添加し、続いて打錠成形機により、外形5mm、内径2mm、長さ5mmのリング状に成形した。得られた成形物を空気焼成下に380℃で5時間焼成して触媒を得た。この触媒の酸素を除く元素の組成を表1に示した。
【0027】
(触媒2の調製) 触媒1と同様にして表1に示した組成の触媒2を調製した。
【0028】
(メタクリル酸の製造) 内径14mmの反応管1本を有する固定床管型反応器を用いてメタクリル酸の製造を行った。反応管の原料ガス入口側には触媒1を8gと触媒2を2g混合した混合物10g、出口側には触媒1を9.5gと触媒2を0.5g混合した混合物10gを充填し、メタクロレイン5容量%、酸素10容量%、水蒸気20容量%および窒素65容量%からなる原料ガスを反応温度290℃、接触時間3.6秒で通じた。結果を表2に示した。
【0029】
[実施例2]
(触媒3の調製) 触媒1と同様にして表1に示した組成の触媒3を調製した。
【0030】
(メタクリル酸の製造) 触媒1と触媒3を表2に示したように充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表2に示した。
【0031】
[実施例3]
(触媒4および5の調製) 触媒1と同様にして表1に示した組成の触媒4および触媒5を調製した。
【0032】
(メタクリル酸の製造) 触媒4と触媒5を表2に示したように充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表2に示した。
【0033】
[実施例4]
(触媒6および7の調製) 触媒1と同様にして表1に示した組成の触媒6および触媒7を調製した。
【0034】
(メタクリル酸の製造) 触媒6と触媒7を表2に示したように充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表2に示した。
【0035】
[実施例5]
(メタクリル酸の製造) 触媒4と触媒7を表2に示したように充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表2に示した。
【0036】
[比較例1]
(触媒8の調製) 触媒1と同様にして表1に示した組成の触媒8を調製した。なお、触媒8は実施例1の全て触媒の平均組成とした。
【0037】
(メタクリル酸の製造) 表2に示したように触媒8だけを充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表2に示した。
【0038】
[比較例2]
(メタクリル酸の製造) 触媒1と触媒2を表2に示したように充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表2に示した。
【0039】
[比較例3]
(メタクリル酸の製造) 触媒1と触媒2を表2に示したように充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表2に示した。
【0040】
[比較例4]
(メタクリル酸の製造) 触媒1と触媒9を表2に示したように充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表2に示した。
【0041】
[実施例6]
(触媒9および10の調製) 触媒1と同様にして表1に示した組成の触媒9および触媒10を調製した。
【0042】
(メタクリル酸の製造) 触媒9と触媒10を表2に示したように充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表2に示した。
【0043】
[比較例5]
(触媒11の調製) 触媒1と同様にして表1に示した組成の触媒11を調製した。なお、触媒11は実施例6の全て触媒の平均組成とした。
【0044】
(メタクリル酸の製造) 表2に示したように触媒11だけを充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表2に示した。
【0045】
【表1】
【0046】
【表2】
【発明の効果】
本発明によれば、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する方法において、長期間に渡って高い触媒活性を維持して効率的にメタクリル酸を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen.
[0002]
[Prior art]
When producing methacrylic acid by gas phase catalytic oxidation of methacrolein, it is known to use an alkali metal salt of a heteropolyacid containing molybdenum and phosphorus as a catalyst. For example, in JP-A-4-210937, a plurality of catalysts having different activities with different alkali metal composition ratios are individually packed so that the activity becomes higher from the inlet side to the outlet side of the raw material gas. A method for producing methacrylic acid by gas phase catalytic oxidation of methacrolein in a catalyst layer is described. This method suppresses heat storage in the hot spot portion to prevent deterioration of the catalyst due to heat load, but has a problem that the catalytic activity is greatly reduced over time. Further, there is a problem that the catalyst activity is lowered when the content of the alkali metal in the catalyst is too much, and further improvement is desired industrially.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently producing methacrylic acid while maintaining high catalytic activity over a long period of time in a method for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. There is to do.
[0004]
[Means for Solving the Problems]
That is, the present invention relates to methacrylic acid that undergoes gas-phase catalytic oxidation of methacrolein with molecular oxygen using a fixed bed tubular reactor having a catalyst packed portion divided from a raw material gas inlet side to an outlet side. In the manufacturing method,
Each catalyst layer excluding the catalyst layer on the most outlet side of the source gas is a catalyst represented by the formula (1), and is a catalyst layer made of a mixture containing at least two kinds of catalysts having different atomic ratios of X elements. ,
The catalyst layer at the most outlet side of the raw material gas is a catalyst represented by the formula (1), and includes a catalyst layer including a catalyst having the same atomic ratio of X elements, or at least two types of atomic ratios of different X elements A catalyst layer comprising a mixture containing a catalyst,
In the method for producing methacrylic acid, the mass of X element contained per unit mass of each catalyst layer is small from the inlet side to the outlet side of the reactor.
Mo a P b X c Y d O e (1)
(In the formula, Mo, P and O represent molybdenum, phosphorus and oxygen, respectively, X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and Y represents iron, cobalt and nickel. , Copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium Represents at least one element selected from the group consisting of aluminium, indium, sulfur, selenium, tellurium, lanthanum and cerium, wherein a, b, c, d and e represent the atomic ratio of each element, and when a = 12. 0.1 ≦ b ≦ 3, 0.01 ≦ c ≦ 6, 0 ≦ d ≦ 3, and e is An atomic ratio of oxygen required to satisfy the atomic ratio of the components.)
[0005]
In the above invention, each catalyst layer excluding the catalyst layer on the most outlet side of the raw material gas is a catalyst layer made of a mixture containing a catalyst represented by formula (2) and a catalyst represented by formula (3),
The catalyst layer on the most outlet side of the raw material gas is a catalyst layer including a catalyst represented by the formula (2) or a mixture including a catalyst represented by the formula (2) and the formula (3). Is preferred. The mass mixing ratio of the catalyst represented by the formulas (2) and (3) of each catalyst layer is 1: α (0.05 ≦ α ≦ 3) in the catalyst layer on the most inlet side of the source gas, It is preferable that 1: β (0 ≦ β ≦ 1 and β <α) in the catalyst layer on the most outlet side.
Mo f P g X h Y i O j (2)
(In the formula, Mo, P, X, Y and O are the same as in formula (1). F, g, h, i and j represent the atomic ratio of each element. When f = 12, 0.1 ≦ g ≦ 3, 0.01 ≦ h ≦ 3, 0 ≦ i ≦ 3, and j is an atomic ratio of oxygen necessary to satisfy the atomic ratio of each component.
Mo k P l X m Y n O o (3)
(In the formula, Mo, P, X, Y and O are the same as those in formula (1). K, l, m, n and o represent the atomic ratio of each element. When k = 12, 0.1 ≦ l ≦ 3, 1.1 ≦ m ≦ 6 and 0.1 ≦ (m−h) ≦ 5, 0 ≦ n ≦ 3, and o is the atomic ratio of oxygen necessary to satisfy the atomic ratio of each component. .)
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, methacrolein is vapor-phase contact-oxidized with molecular oxygen using a fixed bed tube reactor comprising a plurality of catalyst layers in which the catalyst filling portion is divided from the raw material gas inlet side to the outlet side, and methacrylic acid is then oxidized. To manufacture.
[0007]
The fixed bed tube reactor may be a single tube type having only one reaction tube or a multi-tube type having a plurality of reaction tubes, but a fixed bed multi-tube reactor is usually used industrially.
[0008]
The inside of the reaction tube is divided into a plurality of catalyst layers, and each catalyst layer excluding the catalyst layer on the most outlet side of the source gas is a catalyst represented by the above formula (1), and the atomic ratio of the X element is A mixture containing at least two different catalysts is filled. These catalyst layers are packed in a state where at least two kinds of catalysts, ie, a catalyst having a low atomic ratio of X element and a high activity and a catalyst having a high atomic ratio of X element and high thermal stability, are mixed. This is very important.
[0009]
Further, the catalyst layer on the most outlet side of the raw material gas is a catalyst represented by the formula (1), which includes a catalyst having the same atomic ratio of X elements, or at least different atomic ratios of X elements. A mixture containing two kinds of catalysts is filled.
[0010]
As the number of types of catalyst to be filled in each catalyst layer increases, the production and filling of the catalyst becomes more complicated, so two types are preferred industrially.
[0011]
Further, the number of catalyst layers is not particularly limited, but if it is too large, packing of the catalyst becomes complicated, and therefore, two to three layers are preferred industrially.
[0012]
Further, the X element-containing mass contained per unit mass of each catalyst layer is decreased from the inlet side to the outlet side of the reactor. For example, when two types of catalysts are used, a catalyst layer is formed by filling a catalyst containing a large amount of X element in such a way that the catalyst layer on the inlet side of the source gas is increased and the catalyst layer on the outlet side is decreased. Let When the catalyst layer contains a diluent carrier, the mass of the catalyst layer means the mass including the diluent carrier.
[0013]
In the present invention, each catalyst layer excluding the catalyst layer on the most outlet side of the raw material gas is a catalyst layer made of a mixture containing the catalyst represented by the formula (2) and the catalyst represented by the formula (3). It is preferable. The catalyst layer at the most outlet side of the raw material gas is a catalyst layer including a catalyst represented by the formula (2) or a mixture including a catalyst represented by the formulas (2) and (3). Preferably there is.
[0014]
In this case, the mass mixing ratio of the catalyst represented by the formulas (2) and (3) of each catalyst layer is not particularly limited, but when the mixing ratio of the catalyst layer closest to the inlet of the raw material gas is 1: α, α is preferably 0.05 ≦ α ≦ 3, particularly preferably 0.1 ≦ α ≦ 1. If the mixing ratio of the catalyst layer on the most outlet side of the raw material gas is 1: β (where β <α), β is preferably 0 ≦ β ≦ 1, and particularly preferably 0 ≦ β ≦ 0.5. When there are three or more catalyst layers, the mass mixing ratio of the intermediate catalyst layer excluding the most inlet side catalyst layer and the most outlet side catalyst layer is 1: γ (β <γ <α).
[0015]
As the catalyst represented by the formula (2) used in the present invention, a catalyst represented by the formula (2 ′) is preferable.
Mo f P g X h Y ' i' Cu p V q O j (2 ')
(Wherein Mo, P, Cu, V and O represent molybdenum, phosphorus, copper, vanadium and oxygen, respectively, and X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium. Y 'is iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, Represents at least one element selected from the group consisting of niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, where f, g, h, i ′, p, q and j are each Represents the atomic ratio of elements, and when f = 12, g is 0.1 ≦ g ≦ 3, preferably 0 5 ≦ g ≦ 3 Similarly h is 0.01 ≦ h ≦ 3, preferably 0.1 ≦ h ≦ 3 Similarly i ′ is 0 ≦ i ′ ≦ 2.98, preferably 0 ≦ i ′ ≦ 2.5 Similarly, p is 0.01 ≦ p ≦ 2.99, preferably 0.01 ≦ p ≦ 2, and similarly q is 0.01 ≦ q ≦ 2.99, preferably Is 0.01 ≦ q ≦ 2, and j is the atomic ratio of oxygen necessary to satisfy the atomic ratio of each of the above components, where i ′ + p + q is 0.02 ≦ (i ′ + p + q) ≦ 3 .)
[0016]
Moreover, as a catalyst represented by the said Formula (3) used together with the catalyst represented by the said Formula (2), the thing of Formula (3 ') is preferable.
Mo k P l X m Y ' n' Cu r V s O o (3 ')
(Wherein Mo, P, Cu, V and O represent molybdenum, phosphorus, copper, vanadium and oxygen, respectively, and X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium. Y 'is iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, Represents at least one element selected from the group consisting of niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, where k, l, m, n ′, r, s and o are each Represents the atomic ratio of elements, and when k = 12, l is 0.1 ≦ l ≦ 3, preferably 0 5 ≦ l ≦ 3 Similarly, m is 1.1 ≦ m ≦ 6, preferably 1.5 ≦ m ≦ 4 and 0.1 ≦ (m−h) ≦ 5, preferably 0.5 ≦ (m -H) ≤ 3. Similarly, n 'is 0 ≤ n' ≤ 2.98, preferably 0 ≤ n '≤ 2.5. Similarly, r is 0.01 ≤ r ≤ 2.99. Preferably, 0.01 ≦ r ≦ 2. Similarly, s is 0.01 ≦ s ≦ 2.99, preferably 0.01 ≦ s ≦ 2, and o is the atomic ratio of each component. (The atomic ratio of oxygen necessary to satisfy. N ′ + r + s is 0.02 ≦ (n ′ + r + s) ≦ 3)
[0017]
The method for producing the catalyst used in the present invention is not particularly limited, and a coprecipitation method, an evaporation to dryness method, an oxide mixing method, or the like can be used. The raw materials used for the preparation of the catalyst are not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides, oxygen acids and the like of each element can be used in combination. For example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, and the like can be used as the molybdenum source, and phosphoric acid, phosphorus pentoxide, ammonium phosphate, and the like can be used as the phosphorus source.
[0018]
As a specific method for preparing the catalyst, a method in which an aqueous slurry containing at least molybdenum, phosphorus and X is dried is calcined. The drying method of the aqueous slurry is not particularly limited, and a drying method using a box dryer, a spray dryer, a drum dryer, a slurry dryer, or the like can be used. The dried product (catalyst precursor) obtained at that time is preferably in the form of a powder in consideration of molding. The dried product may be molded as it is, or may be molded after firing. It does not specifically limit as a shaping | molding method, For example, tableting shaping | molding, extrusion molding, granulation, carrying | support etc. are mentioned. Examples of the supported catalyst carrier include inert carriers such as silica, alumina, silica / alumina, and silicon carbide. In the molding, for the purpose of controlling the specific surface area, pore volume and pore distribution of the molded product or increasing the mechanical strength, for example, inorganic salts such as barium sulfate and ammonium nitrate, lubricants such as graphite, celluloses, etc. Additives such as organic substances such as starch, polyvinyl alcohol and stearic acid, hydroxide sols such as silica sol and alumina sol, inorganic fibers such as whiskers, glass fibers and carbon fibers may be added as appropriate.
[0019]
In the present invention, at least two types of catalysts having different atomic ratios of X elements are at least two types of catalysts having different atomic ratios of X elements or precursors thereof, even if they are separate molded articles having a single catalyst composition. It may be a molded body of the mixture. In the former case, it is necessary to mix the catalyst or the molded body of the precursor before calcination and fill the reaction tube. In the latter case, two or more types of catalyst or the precursor before calcination are already mixed. Therefore, it is only necessary to fill the molded body of the catalyst or the precursor before calcination thereof. When the precursor is filled in the reaction tube, the precursor is baked in the reaction tube and then subjected to the reaction.
[0020]
Firing conditions vary depending on the catalyst raw material used, catalyst composition, preparation conditions, etc., and thus cannot be generally stated. Firing is usually performed at 300 to 500 ° C. under an oxygen-containing gas flow such as air and / or an inert gas flow. Preferably, it is performed at 300 to 450 ° C. for 0.5 hour or longer, preferably 1 to 40 hours. The catalyst after calcination preferably contains a heteropolyacid and / or heteropolyacid salt structure.
[0021]
In the method for producing methacrylic acid in the present invention, filling is performed so that the content of the X element contained per catalyst unit weight decreases from the inlet side to the outlet side of the raw material gas, that is, from the inlet side to the outlet side of the raw material gas. Fill to the side for higher activity. Thereby, generation | occurrence | production of the hot spot part of a catalyst layer is suppressed, and the deterioration of the catalyst by the selectivity fall by sequential oxidation and heat storage can be prevented. Further, in each catalyst layer, catalysts having different contents of X element are mixed and filled, that is, a catalyst having high activity and a catalyst having low activity are mixed and filled. The production of methacrylic acid can be continued stably over a long period of time as compared with the invention described in the Japanese Patent Publication. The reason why it becomes possible to continue operation stably for a long time by mixing and packing two or more types of catalysts with different activities is not clear, but the reaction activity and X component content in the reactor during operation It is thought that the movement of components may occur between two or more kinds of adjacent catalysts due to the difference in the level of the catalyst, or it may have some effect on preventing the deterioration of the catalyst as a whole due to the change in the proportion of active sites used over time. It is done.
[0022]
The concentration of methacrolein in the raw material gas used for the gas phase catalytic oxidation can be varied within a wide range, but is preferably 1 to 20% by volume, particularly preferably 3 to 10% by volume. The raw material methacrolein may contain a small amount of impurities that do not substantially affect the reaction, such as water, lower saturated aldehydes, etc., but the raw material gas contains such an impurity derived from methacrolein. It may be.
[0023]
The source gas needs to contain molecular oxygen, but the amount of molecular oxygen in the source gas is preferably 0.4 to 4 times mol, more preferably 0.5 to 3 times mol of methacrolein. . Although it is industrially advantageous to use air as the molecular oxygen source of the source gas, air enriched with pure oxygen can also be used if necessary. The source gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide, water vapor or the like.
[0024]
The reaction pressure for gas phase catalytic oxidation is from atmospheric pressure to several atmospheres. The reaction temperature is usually 200 to 450 ° C., preferably 250 to 400 ° C. The contact time between the source gas and the catalyst is usually 1.5 to 15 seconds, preferably 2 to 7 seconds.
[0025]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples. However, “parts” in Examples and Comparative Examples means parts by weight. Reaction test analysis was performed by gas chromatography. Further, the conversion rate of the raw material methacrolein, the selectivity of the produced methacrylic acid and the yield are defined as follows.
Conversion rate of methacrolein (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Methacrylic acid single stream yield (%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.
[0026]
[Example 1]
(Preparation of catalyst 1) 100 parts of ammonium paramolybdate was dissolved in 200 parts of pure water, and 2.8 parts of ammonium metavanadate and 8.2 parts of 85 wt% phosphoric acid were dissolved in 30 parts of pure water. A solution in which 1.1 parts of copper nitrate was dissolved in 30 parts of pure water and a solution in which 3.8 parts of iron nitrate were dissolved in 10 parts of pure water were sequentially added, and this was heated to 90 ° C. with stirring, and the liquid temperature was adjusted to 90 ° C. After stirring for 5 hours while maintaining the temperature, a solution prepared by dissolving 6.4 parts of cesium nitrate in 100 parts of pure water was added thereto, and the mixture was evaporated to dryness while stirring with heating. The obtained solid was dried at 130 ° C. for 16 hours and then pulverized. 3 parts of graphite was added to 100 parts of the powder thus obtained, and subsequently formed into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm by a tableting machine. The obtained molded product was calcined at 380 ° C. for 5 hours under air calcining to obtain a catalyst. Table 1 shows the composition of elements excluding oxygen in this catalyst.
[0027]
(Preparation of Catalyst 2) Catalyst 2 having the composition shown in Table 1 was prepared in the same manner as Catalyst 1.
[0028]
(Production of Methacrylic Acid) Methacrylic acid was produced using a fixed bed tube reactor having one reaction tube with an inner diameter of 14 mm. 8 g of catalyst 1 and 2 g of catalyst 2 were mixed on the raw material gas inlet side of the reaction tube, and 10 g of mixture of 9.5 g of catalyst 1 and 0.5 g of catalyst 2 were charged on the outlet side. A source gas consisting of 5% by volume, 10% by volume of oxygen, 20% by volume of water vapor and 65% by volume of nitrogen was passed at a reaction temperature of 290 ° C. and a contact time of 3.6 seconds. The results are shown in Table 2.
[0029]
[Example 2]
(Preparation of Catalyst 3) Catalyst 3 having the composition shown in Table 1 was prepared in the same manner as Catalyst 1.
[0030]
(Production of methacrylic acid) A methacrylic acid was produced in the same manner as in Example 1 except that the catalyst 1 and the catalyst 3 were filled as shown in Table 2. The results are shown in Table 2.
[0031]
[Example 3]
(Preparation of Catalysts 4 and 5) Catalyst 4 and Catalyst 5 having the compositions shown in Table 1 were prepared in the same manner as Catalyst 1.
[0032]
(Production of methacrylic acid) A methacrylic acid was produced in the same manner as in Example 1 except that the catalyst 4 and the catalyst 5 were filled as shown in Table 2. The results are shown in Table 2.
[0033]
[Example 4]
(Preparation of Catalysts 6 and 7) Catalyst 6 and Catalyst 7 having the compositions shown in Table 1 were prepared in the same manner as Catalyst 1.
[0034]
(Production of methacrylic acid) A methacrylic acid was produced in the same manner as in Example 1 except that the catalyst 6 and the catalyst 7 were filled as shown in Table 2. The results are shown in Table 2.
[0035]
[Example 5]
(Production of methacrylic acid) A methacrylic acid was produced in the same manner as in Example 1 except that the catalyst 4 and the catalyst 7 were filled as shown in Table 2. The results are shown in Table 2.
[0036]
[Comparative Example 1]
(Preparation of Catalyst 8) Catalyst 8 having the composition shown in Table 1 was prepared in the same manner as Catalyst 1. Note that the catalyst 8 had the average composition of all the catalysts in Example 1.
[0037]
(Production of methacrylic acid) As shown in Table 2, methacrylic acid was produced in the same manner as in Example 1 except that only the catalyst 8 was filled. The results are shown in Table 2.
[0038]
[Comparative Example 2]
(Production of methacrylic acid) A methacrylic acid was produced in the same manner as in Example 1 except that the catalyst 1 and the catalyst 2 were filled as shown in Table 2. The results are shown in Table 2.
[0039]
[Comparative Example 3]
(Production of methacrylic acid) A methacrylic acid was produced in the same manner as in Example 1 except that the catalyst 1 and the catalyst 2 were filled as shown in Table 2. The results are shown in Table 2.
[0040]
[Comparative Example 4]
(Production of methacrylic acid) A methacrylic acid was produced in the same manner as in Example 1 except that the catalyst 1 and the catalyst 9 were filled as shown in Table 2. The results are shown in Table 2.
[0041]
[Example 6]
(Preparation of Catalysts 9 and 10) Catalyst 9 and Catalyst 10 having the compositions shown in Table 1 were prepared in the same manner as Catalyst 1.
[0042]
(Production of methacrylic acid) A methacrylic acid was produced in the same manner as in Example 1 except that the catalyst 9 and the catalyst 10 were filled as shown in Table 2. The results are shown in Table 2.
[0043]
[Comparative Example 5]
(Preparation of Catalyst 11) Catalyst 11 having the composition shown in Table 1 was prepared in the same manner as Catalyst 1. The catalyst 11 had the average composition of all the catalysts in Example 6.
[0044]
(Production of methacrylic acid) As shown in Table 2, methacrylic acid was produced in the same manner as in Example 1 except that only the catalyst 11 was filled. The results are shown in Table 2.
[0045]
[Table 1]
[0046]
[Table 2]
【The invention's effect】
According to the present invention, in a method for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, methacrylic acid can be efficiently produced while maintaining high catalytic activity over a long period of time. .
Claims (1)
Mo Mo ff PP gg XX hh Y’Y ’ i’i ’ CuCu pp VV qq OO jj (2’) (2 ’)
(式中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Y’は鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、f、g、h、i’、p、qおよびjは各元素の原子比を表し、f=12のとき、0.1≦g≦3、0.01≦h≦3、0≦i’≦2.98、0.01≦p≦2.99、0.01≦q≦2.99であり、jは前記各成分の原子比を満足するのに必要な酸素の原子比である。ただし、i’+p+qは0.02≦(i’+p+q)≦3である。)(Wherein Mo, P, Cu, V and O represent molybdenum, phosphorus, copper, vanadium and oxygen, respectively, and X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium. Y 'is iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, Represents at least one element selected from the group consisting of niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, where f, g, h, i ′, p, q and j are each Represents the atomic ratio of elements, and when f = 12, 0.1 ≦ g ≦ 3, 0.01 ≦ h ≦ 0 ≦ i ′ ≦ 2.98, 0.01 ≦ p ≦ 2.99, 0.01 ≦ q ≦ 2.99, and j is an oxygen atom necessary to satisfy the atomic ratio of each component (Where i ′ + p + q is 0.02 ≦ (i ′ + p + q) ≦ 3).
Mo Mo kk PP ll XX mm Y’Y ’ n’n ’ CuCu rr VV ss OO oo (3’) (3 ’)
(式中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Y’は鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、k、l、m、n’、r、sおよびoは各元素の原子比を表し、k=12のとき、0.1≦l≦3、1.1≦m≦6かつ0.1≦(m−h)≦5かつ0.01≦h≦3、0≦n’≦2.98、0.01≦r≦2.99、0.01≦s≦2.99であり、oは前記各成分の原子比を満足するのに必要な酸素の原子比である。ただし、n’+r+sは0.02≦(n’+r+s)≦3であり、hは前記式(2’)のhと同じである。)(Wherein Mo, P, Cu, V and O represent molybdenum, phosphorus, copper, vanadium and oxygen, respectively, and X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium. Y 'is iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, Represents at least one element selected from the group consisting of niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, where k, l, m, n ′, r, s and o are each Represents the atomic ratio of elements, and when k = 12, 0.1 ≦ l ≦ 3, 1.1 ≦ m ≦ 6 0.1 ≦ (m−h) ≦ 5 and 0.01 ≦ h ≦ 3, 0 ≦ n ′ ≦ 2.98, 0.01 ≦ r ≦ 2.99, 0.01 ≦ s ≦ 2.99 And o is the atomic ratio of oxygen necessary to satisfy the atomic ratio of each component, where n ′ + r + s is 0.02 ≦ (n ′ + r + s) ≦ 3, and h is the formula (2 Same as h in ').)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001371444A JP4301484B2 (en) | 2001-12-05 | 2001-12-05 | Method for producing methacrylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001371444A JP4301484B2 (en) | 2001-12-05 | 2001-12-05 | Method for producing methacrylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003171339A JP2003171339A (en) | 2003-06-20 |
JP4301484B2 true JP4301484B2 (en) | 2009-07-22 |
Family
ID=19180484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001371444A Expired - Lifetime JP4301484B2 (en) | 2001-12-05 | 2001-12-05 | Method for producing methacrylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4301484B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100425589C (en) | 2003-08-29 | 2008-10-15 | 三菱丽阳株式会社 | Method for producing methacrylic acid |
JP4745653B2 (en) * | 2003-12-05 | 2011-08-10 | 三菱レイヨン株式会社 | Method for producing methacrylic acid |
-
2001
- 2001-12-05 JP JP2001371444A patent/JP4301484B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003171339A (en) | 2003-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR890000517B1 (en) | Catalyst for manufacturing methacrolein | |
US6545177B2 (en) | Complex oxide catalyst and process for preparation of acrylic acid | |
JP2014185164A (en) | Method for catalytic gas-phase oxidation of propene to acrylic acid | |
US7015354B2 (en) | Preparation of (meth)acrolein and/or (meth)acrylic acid | |
JP2011092882A (en) | Method for producing catalyst for preparation of methacrylic acid, and method for preparing methacrylic acid | |
JP5680373B2 (en) | Catalyst and method for producing acrylic acid | |
JP3800043B2 (en) | Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid | |
KR20000071822A (en) | A process for producing methacrylic acid | |
JP4022047B2 (en) | Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method | |
JP5500761B2 (en) | Method for producing catalyst for synthesis of methacrylic acid | |
JP5793345B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP5214500B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP3668386B2 (en) | Catalyst for synthesizing methacrolein and methacrylic acid and method for producing methacrolein and methacrylic acid | |
JPH09299803A (en) | Oxidation catalyst, manufacture thereof and preparation of methacrylic acid | |
JP3028327B2 (en) | Method for producing methacrolein and methacrylic acid | |
JP2005058909A (en) | Production method for catalyst for synthesizing methacrylic acid | |
JP4301484B2 (en) | Method for producing methacrylic acid | |
JP4745653B2 (en) | Method for producing methacrylic acid | |
JP4811977B2 (en) | Method for producing catalyst for synthesis of methacrylic acid | |
JP4947753B2 (en) | Catalyst for methacrylic acid synthesis and method for producing methacrylic acid | |
JP4950986B2 (en) | Method for producing methacrolein and / or methacrylic acid | |
JP4236415B2 (en) | Catalyst for methacrylic acid synthesis and method for producing methacrylic acid | |
JP2015120133A (en) | Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst | |
JP4225530B2 (en) | Process for producing methacrolein and methacrylic acid synthesis catalyst | |
JP3540623B2 (en) | Method for producing methacrylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090416 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090417 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120501 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4301484 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120501 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120501 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130501 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130501 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130501 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130501 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140501 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |