[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4399871B2 - Manufacturing method of non-aqueous secondary battery - Google Patents

Manufacturing method of non-aqueous secondary battery Download PDF

Info

Publication number
JP4399871B2
JP4399871B2 JP19686297A JP19686297A JP4399871B2 JP 4399871 B2 JP4399871 B2 JP 4399871B2 JP 19686297 A JP19686297 A JP 19686297A JP 19686297 A JP19686297 A JP 19686297A JP 4399871 B2 JP4399871 B2 JP 4399871B2
Authority
JP
Japan
Prior art keywords
electrolyte
battery
polymer
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19686297A
Other languages
Japanese (ja)
Other versions
JPH1140163A (en
Inventor
洋悦 吉久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP19686297A priority Critical patent/JP4399871B2/en
Publication of JPH1140163A publication Critical patent/JPH1140163A/en
Application granted granted Critical
Publication of JP4399871B2 publication Critical patent/JP4399871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は正極および負極が、リチウムを吸蔵放出可能な単体または化合物から成り、電解質として高分子固体電解質または高分子ゲル電解質を用いた非水二次電池に関するものである。
【0002】
【従来の技術】
近年、携帯機器の小型化、高機能化が進むに伴い、その電源となる電池に対しても小型軽量、高エネルギー化の要求が高まっている。この要求に応えるものとして、リチウム二次電池が製品化されている。中でも負極に炭素および錫(Sn)や珪素(Si)など遷移元素の酸化物で構成された二次電池、いわゆるリチウムイオン二次電池がサイクル性能に優れ、かつ高エネルギー密度を有する電池として需要が伸びている。
【0003】
リチウムイオン二次電池においては、正極活物質はコバルト酸リチウム(LiCoO2 )やマンガン酸リチウム(LiMn2 4 )で構成される。充電によって、Liが正極から負極に移行し、負極に吸蔵される。逆に放電によって、Liが負極から正極に移行する。一般的に正極活物質、負極活物質共に粉末である。従来の電池においては、これら活物質粉末を例えばポリフッ化ビニリデン(PVDF)などの結着剤やポリエチレンオキシド(PEO)等の高分子固体電解質および炭素等の導電剤と混合してペースト状とし、このペーストがアルミニウム箔、銅箔上に塗布されて、正極および負極を形成していた。
【0004】
【発明が解決しようとする課題】
しかし、従来の電池に於ては充放電サイクルの経過に伴い容量が低下し、充放電サイクル性能が満足できるものではなかった。特に緊圧の掛かりにくい角形や偏平形電池に於いて、その欠点は顕著であった。
【0005】
このサイクルの経過に伴う容量低下は、電池のインピーダンスの増大に起因している。即ち、前記正極活物質および負極活物質は充放電時にリチウムイオンが出入りするに際して、その結晶の格子定数が変化する。これに伴い活物質粉末も膨張収縮を繰り返す。このことが、電極の電子伝導度の低下や電極と電解質の界面のインピーダンスの増大に結び付いているものと考えられる。従来、負極炭素と電解質の密着を改善するために種々の提案が成されている。その1は、負極炭素の表面改質に関するものである。例えば特開平7ー105938号のプラズマ処理や特開平7ー183027号のコロナ放電処理である。その他、特開平ー8273659号には炭素粒子表面にSiを介在させる提案がされている。
【0006】
その2は、結着剤の改良に関するもので、結着剤の材質の改良に関するものである。例えば特開平7ー201315号ではポリフッビニリデン(PVDF)を架橋する提案がされている。その3は、電解液組成の改良に関するもので、特にソルベントの組合せ、添加剤に関して多数の提案がされている。
【0007】
以上記述した通り、充放電サイクル時の電池の内部インピーダンス増大抑制を目的として、従来種々の提案がされたが、その効果は十分では無く、更なる改良が求められていた。
本発明は上述した従来の電池の欠点に鑑み成されたもので、正極および負極が、Liを吸蔵放出可能な物質で構成される非水二次電池に於て、高負荷での放電特性、充放電サイクル性能の優れた電池を提供せんとするものである。
【0008】
【課題を解決するための手段】
本発明は、正極および負極が、リチウムを吸蔵放出可能な単体または化合物から成り、少なくとも負極を構成する前記単体または化合物の表面に、ビニル化合物がグラフト重合され、電解質として高分子固体電解質または高分子ゲル電解質を用い、前記ビニル化合物のグラフト重合と、高分子固体電解質または高分子ゲル電解質の硬化とが同時に実施される、非水二次電池の製造方法である。
【0009】
【発明の実施の形態】
本発明に係る電池では正極および負極の中少なくとも負極の活物質粒子表面にグラフト重合されたビニル化合物が配され、繰り返し充放電をしたときに電極の電子伝導および電極と電解質の界面インピーダンスが良好に維持される。
本発明に係る電池は、正極および負極が、リチウムを吸蔵放出可能な単体または化合物から成り、少なくとも負極を構成する前記単体または化合物の表面に、ビニル化合物がグラフト重合されている非水二次電池である。該ビニル化合物のモノマーユニットの分子量は200以下であり、更に好ましくは150以下である。
【0010】
具体例としては以下のものが挙げられる。アクリル酸メチル(MA)、メタクリル酸メチル(MMA)、メタクリル酸グリシジル(MAG)、メタクリル酸ニトリル(MAN)、Nビニルピロリドン(NVP)、イソプレン(IP)、アクリロニトリル(AN)、アリルアセトアセテート、アリルベンゼン、アリルエチルエーテル、アリルフェニルエーテル、アリルグリシジルエーテル、スチレン(ST)、ビニルピリジン(VP)、ビニルスルフォネート(VSL)等である。さらにはこれらの共重合物でもよい。これら分子量が200、好ましくは150以下のビニル化合物は粘度が低く、活物質粒子との親和性にすぐれる。また、分子サイズが小さいので、グラフトの密度を高くすることが可能で、強固な結合を得ることができる。また、これらのビニル化合物は非水二次電池の電解液や高分子ゲル電解質の主な溶媒であるPC、ECとの親和性が良い。また、高分子固体電解質のポリマーであるPEOなどのポリエーテルやフォスフォアゼン、シロキサン系ポリマーなどとの親和性も良い。このことから、これらのビニル化合物をグラフトした活物質粒子と電解質の間でのリチウムイの移行が速やかに進み、電池として良好な電気的特性が得られる。
【0011】
グラフトには、予め重合されたポリマーを使用するよりも、モノマーを使用するほうが、望ましい。モノマーを使用することにより、表面にち密な膜が得られる。
【0012】
これらのビニル化合物は、活物質粒子表面にグラフトされることにより強固に結合している。また、電解液との親和性が良く、内部に電解液を取り込む性質がある。このため、活物質粒子と電解液のコンタクトを良好に維持できる。特に電解質が高分子固体電解質(SPE)のように固体状電解質の場合、活物質粒子と電解質の固体同士のコンタクトの善し悪しが、電池の特性を大きく左右する。前記ビニル化合物ポリエチレンオキシド等から成る高分子固体電解質との親和性も良く、電解液の場合と同様活物質粒子と電解質のコンタクトを良好に維持できる。
【0013】
本発明によれば、高分子固体電解質の場合に於て、前記モノマーの活物質粒子表面へのグラフトと高分子固体電解質を構成するポリマーの硬化を同時に実施することにより、前記の効果が有効に奏される。それは両ポリマー鎖同士の絡み合いや、化学的結合が生じ、強いコンタクトが形成されるためと考えられる。活物質粒子とモノマーの比率を選択することにとり被膜の生量をコントロールできる。
【0014】
また、表面にビニル化合物をグラフトされた活物質粒子は、合剤ペースト中での分散性に優れるため、均一なペーストが得られ、ペーストが柔らかくコーテイ ング性に優れる。また、活物質粒子の充填密度が向上し、その結果放電容量が増大する。
【0015】
【実施例】
以下、本発明に係る電池を実施例により説明する。
【0016】
図1は実施例に係る非水二次電池の1例を示す電池の断面図である。1は活物質コバルト酸リチウム(LiCoO2 )の粉末、導電剤のアセチレンブラック(AB)とバインダー樹脂PVDFや高分子固体電解の混合物から成る正極で、アルミニウム(Al)製の正極集電体3上にコートされている。2は黒鉛などの炭素またはSi、Sn、Pb、Pなどの遷移元素の酸化物やカルコゲナイトの粉末とバインダー樹脂PVDFや高分子固体電解質の混合物から成る負極で、銅(Cu)製の負極集電体4上にコートされている。5はポリエチレン(PE)やポリプロピレン(PP)の微孔フィルムや高分子固体電解質フィルムから成るセパレータである。6の電解液はLiPF6 やLiBF4 等のLi塩をプロピレンカーボネイト(PC)、EC、ジメチルカーボネイト(DMC)、ジエチルカーボネイト(DEC)等の混合溶媒で構成される。また、高分子固体電解質はPEOなどのポリマーと前記リチウム塩で構成される。また、可塑剤としてPCやEC等の溶剤を含む系やポリアクリロニトリル等のポリマーと電解液とで構成されるゲル電解質でもよい。
【0017】
前記正極および負極のうち、少なくとも負極の活物質粒子は表面にグラフト重合により結合された前記ビニル化合物を有する。例えば、負極活物質である炭素粉末の表面にMMAをグラフトするには、ヘキサン溶媒中でノルマルブチルリチウム(nBuLi)の存在下でMMAモノマーを反応させる。あるいは電子線等の放射線照射によってグラフトする。炭素粒子表面にグラフトする場合、炭素粒子を弱酸化性雰囲気で加熱処理をするか、硝酸等の酸化性の強酸で処理することにより、炭素粒子表面にカルボキシルやカルボニル基等の官能基の付与を実施する。本処理により、ち密に、かつ効率良くグラフトすることができる。
【0018】
以下負極構成材料が炭素粒子、該炭素粒子表面のグラフト層がPMMAの場合を例に採って本発明に係る電池について説明する。図1に於て1は正極である。正極1は平均粒径10μmの活物質LiCoO2 が90重量部、導電材ABが5重量部、PVDFが5重量部から成る。3はAlメッシュ製の正極集電体である。正極1の厚さは約200μmである。2は負極であり、平均粒径10μmの炭素粒子が95重量部とPVDFが5重量部の混合物から成る。負極2の厚さは約200μmである。4はCuメッシュ製の負極集電体である。5は厚さが25μmで平均孔径が約0.5μmポリエチレンフィルム製のセパレータである。6は支持電解質が6フツ 化リン酸リチウム(LiPF6 )、ソルベントがECとDECとDMCが容量比で1:1:1である混合ソルベントの溶液である電解液である。
【0019】
負極活物質である炭素粒子表面には、予め所定量(炭素1gに対し、PMMA約20mg)のPMMAがグラフトされている。グラフトされたPMMAは電解液をとりこむので活物質粒子と電解液のコンタクトを向上させる。また、活物質粒子同士を強固に結着する。
【0020】
図2に於て、1は正極である。正極1は実施例1と同じLiCoO2 、75重量部、黒鉛粉末5重量部の混合粉体と高分子ゲル電解質20重量部の混合体から成る。高分子ゲル電解質は容積比で0.3:0.7のPCとECの混合溶媒の1MのLiPF6 溶液6重量部とポリエチレンオキシド(PEO)4重量部からなり、正極製膜後PEOは架橋され、ゲル状にされる。正極1の厚さは200μmである。2は負極である。負極2は、表面にPMMAがグラフトされた炭素粒子80重量部と高分子ゲル電解質20重量部の混合体である。負極2の厚さは200μmである。3は高分子ゲル電解質から成るセパレータで、厚さは100μmである。4は電槽、5は蓋である。6はAl箔製の正極集電体、7はCu箔製の負極集電体である。8はポリプロピレン(PP)製のガスケットである。
【0021】
LiCoO2 や炭素粒子表面には、前記同様予めPMMAがグラフトされている。本MMAは高分子固体電解質を構成するポリエーテルと親和性が良く、互いの分子鎖同士が絡み合ったり、化学結合するので、活物質粒子と電解質のコンタクトが強固になる。特にエーテルモノマーが官能基を有する液体であって、前記炭素粒子との混合物の塗膜形成後硬化され場合、PMMAとポリエーテルの分子鎖の絡み合い、結合が十分に進み、極めて強固な結合が達成される。
【0022】
以上、図2では高分子固体電解質の例を記述したが、高分子をマトリックスとしてこれにPCやEC等のソルベントを含む高分子ゲル電解質の場合も、PMMAと高分子マトリックスとの親和性の良さや結合によって、高分子固体電解質の場合と同様の効果が得られる。
【0023】
ただし、活物質粒子表面に電気絶縁性のポリマーをグラフトするので、ポリマーの比率が大き過ぎると、電極の導電性が保てず、逆に特性が悪くなる。従って、固体粒子とポリマーの比率には、適切な値が存在する。図3は負極の炭素粒子とその表面にグラフトされたPMMAの量と、電池の放電容量の関係を示したものである。PMMAの量は炭素粒子の単位面積当りのg数で表示してある。電解液は液体の場合で、放電のレートは0.2C(5時間率)である。図3から判る如く、PMMAの量は0.01〜0.1g/m2 、更に望ましくは0.02〜0.07g/m2 が望ましい。ここでは活物質粒子が炭素、ビニル化合物がPMMAを例にとって記述したが、MMAの量をg/m2 で規定し、ビニル化合物を前記モノマー分子量200以下のものにすれば、他の材料であっても望ましいMMAの量は同じである。
【0024】
本発明に係る電池に於いては、電極を構成する活物質粒子と電解質との密着が良い。また活物質充填密度が高い。図4は効果の著しい高分子固体電解質、高分子ゲル電解質を用いた電池の中、高分子ゲル電解質を用いた電池の放電レートと放電容量の関係を示した図である。電池1は正極活物質LiCoO2 粒子、負極炭素粒子共にPMMAを0.02g/m2 表面にグラフトした電池である。電池2は、負極炭素粒子のみグラフトした電池である。いずれの電池もグラフト重合されたビニル化合物を備えていない従来電池に比べ、0.1Cでの低率放電でも、1C、2Cの高率(高負荷)放電ではなおさら、放電特性において優れている。
【0025】
液体の電解液を有する電池の場合、グラフト重合されたビニル化合物を備える効果は高分子固体電解質や高分子ゲル電解質を有する電池程顕著では無いが、有効であることに変わりは無い。
【0026】
図5は前記電池2と同じく、負極の活物質である炭素粒子表面にのみPMMAをグラフトした電池であって、かつグラフトと高分子ゲル電解質の硬化反応を同時に実施した本発明電池3に係る電池の室温での充放電サイクル特性を示した図である。図5に於いて、充電は0.2Cの定電流充電、終止電圧4.2v、放電は0.2C定電流放電、終止電圧2.7vとした。図5から判る如く、グラフト重合されたビニル化合物を備えた電池はいずれも従来電池に比べ、サイクルの経過に伴う放電容量の低下が小さく、充放電サイクル特性が優れている。中でもグラフトと電解質の硬化を同時に実施した、本発明電池の特性が優れている。これは固体粒子表面にグラフトされたPMMAと高分子ゲル電解質を構成するポリマーが化学結合し、粒子と電解質の固体同士が強力にコンタクトしているためと推察される。
【0027】
また、前記と同様に液体電解液を有する電池に於いても、グラフト重合されたビニル化合物を備えた電池は従来電池に比べ、優れた充放電サイクル特性を有している。
【0028】
図6は、前記電池、本発明電池3および従来電池の、60℃での充放電サイクル試験を実施したときの、放電容量の推移を示す図である。室温の時と同様、充電は0.2C定電流、終止電圧4,2v、放電は0.2C定電流、終止電圧は2.7vである。図6に示す如く、従来電池に比べ、グラフト重合されたビニル化合物を備えた電池はいずれもサイクル特性が向上しており、その効果は室温に於いてより一層顕緒である。これは高温に於いて固体粒子と電解質のコンタクトの強さ差が加速されて現われた為と推察される。
【0029】
以上記述した如く、本発明に係る非水二次電池は、電気的特性に於いて、優れた電池である。
【0030】
【発明の効果】
本発明によれば、高分子固体電解質を用いた非水二次電池において、前記モノマーの活物質粒子表面へのグラフトと高分子固体電解質を構成するポリマーの硬化を同時に実施することにより、活物質粒子と電解質のコンタクトを良好に維持できるため、高温での繰り返し充放電作動特性の優れた電池を提供できる。
【図面の簡単な説明】
【図1】実施例に係る電池の断面図である。
【図2】実施例に係る電池の断面図である。
【図3】グラフトポリマーの添加量と放電容量の関係を示す図である。
【図4】室温における各種電池の各レートでの放電容量を示す図である。
【図5】室温における充放電サイクルテストの結果を示す図である。
【図6】60℃に於ける充放電サイクルテストの結果を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery in which a positive electrode and a negative electrode are composed of a simple substance or a compound capable of occluding and releasing lithium, and a polymer solid electrolyte or a polymer gel electrolyte is used as an electrolyte .
[0002]
[Prior art]
In recent years, with the progress of downsizing and higher functionality of portable devices, there is an increasing demand for smaller, lighter and higher energy batteries for the power source. In response to this demand, lithium secondary batteries have been commercialized. Among them, a secondary battery composed of carbon and an oxide of a transition element such as tin (Sn) or silicon (Si) as a negative electrode, a so-called lithium ion secondary battery is excellent in cycle performance and has a demand as a battery having a high energy density. It is growing.
[0003]
In the lithium ion secondary battery, the positive electrode active material is composed of lithium cobalt oxide (LiCoO 2 ) or lithium manganate (LiMn 2 O 4 ). By charging, Li shifts from the positive electrode to the negative electrode and is occluded by the negative electrode. Conversely, Li shifts from the negative electrode to the positive electrode due to discharge. Generally, both the positive electrode active material and the negative electrode active material are powders. In a conventional battery, these active material powders are mixed with a binder such as polyvinylidene fluoride (PVDF), a polymer solid electrolyte such as polyethylene oxide (PEO) and a conductive agent such as carbon to form a paste. The paste was applied on aluminum foil and copper foil to form a positive electrode and a negative electrode.
[0004]
[Problems to be solved by the invention]
However, in the conventional battery, the capacity decreased with the progress of the charge / discharge cycle, and the charge / discharge cycle performance was not satisfactory. In particular, in the case of a prismatic or flat battery that is difficult to be subjected to tight pressure, the disadvantages are remarkable.
[0005]
The capacity decrease with the progress of this cycle is due to an increase in the impedance of the battery. That is, the positive and negative electrode active materials change the crystal lattice constant when lithium ions enter and exit during charge and discharge. Along with this, the active material powder repeats expansion and contraction. This is thought to be related to a decrease in the electron conductivity of the electrode and an increase in the impedance at the interface between the electrode and the electrolyte. Conventionally, various proposals have been made to improve the adhesion between the negative electrode carbon and the electrolyte. Part 1 relates to surface modification of negative electrode carbon. For example, the plasma treatment disclosed in JP-A-7-105938 and the corona discharge treatment disclosed in JP-A-7-183027. In addition, JP-A-8273659 proposes that Si be interposed on the surface of carbon particles.
[0006]
Part 2 relates to the improvement of the binder, and relates to the improvement of the material of the binder. For example, in JP-A 7-2 No. 201315 has been proposed to cross-link the polyvinylidene fluoride (PVDF). Part 3 relates to the improvement of the electrolyte composition, and many proposals have been made regarding the combination of solvents and additives.
[0007]
As described above, various proposals have been made for the purpose of suppressing the increase in internal impedance of the battery during the charge / discharge cycle. However, the effect is not sufficient, and further improvement has been demanded.
The present invention has been made in view of the drawbacks of the conventional battery described above, and in a non-aqueous secondary battery in which the positive electrode and the negative electrode are made of a material capable of occluding and releasing Li, the discharge characteristics at high load, It is intended to provide a battery with excellent charge / discharge cycle performance.
[0008]
[Means for Solving the Problems]
In the present invention, the positive electrode and the negative electrode are composed of a simple substance or a compound capable of occluding and releasing lithium, and a vinyl compound is graft-polymerized on the surface of at least the simple substance or the compound constituting the negative electrode. This is a method for producing a non-aqueous secondary battery in which graft polymerization of the vinyl compound and curing of the polymer solid electrolyte or polymer gel electrolyte are simultaneously performed using a gel electrolyte.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the battery according to the present invention, the vinyl compound graft-polymerized is disposed on at least the surface of the active material particles of the positive electrode and the negative electrode, and the electron conductivity of the electrode and the interface impedance between the electrode and the electrolyte are excellent when repeatedly charged and discharged. Maintained.
The battery according to the present invention is a nonaqueous secondary battery in which the positive electrode and the negative electrode are composed of a simple substance or a compound capable of occluding and releasing lithium, and a vinyl compound is graft-polymerized on at least the surface of the simple substance or the compound constituting the negative electrode. It is. The molecular weight of the monomer unit of the vinyl compound is 200 or less, more preferably 150 or less.
[0010]
Specific examples include the following. Methyl acrylate (MA), methyl methacrylate (MMA), glycidyl methacrylate (MAG), nitrile methacrylate (MAN), N vinylpyrrolidone (NVP), isoprene (IP), acrylonitrile (AN), allyl acetoacetate, allyl Examples thereof include benzene, allyl ethyl ether, allyl phenyl ether, allyl glycidyl ether, styrene (ST), vinyl pyridine (VP), and vinyl sulfonate (VSL). Furthermore, these copolymers may be used. These vinyl compounds having a molecular weight of 200, preferably 150 or less, have a low viscosity and an excellent affinity for the active material particles. In addition, since the molecular size is small, the density of the graft can be increased and a strong bond can be obtained. Further, these vinyl compounds have good affinity with PC and EC, which are main solvents for the electrolyte solution of non-aqueous secondary batteries and polymer gel electrolytes. Also, it has good affinity with polyethers such as PEO, which are polymers of polymer solid electrolytes, phosphoazenes, siloxane polymers, and the like. From this, the migration of lithium ions between the active material particles grafted with these vinyl compounds and the electrolyte proceeds rapidly, and good electrical characteristics as a battery can be obtained.
[0011]
It is more desirable to use monomers for grafting than to use prepolymerized polymers. By using the monomer, a dense film can be obtained on the surface.
[0012]
These vinyl compounds are firmly bonded by being grafted onto the surface of the active material particles. In addition, it has a good affinity with the electrolytic solution and has a property of taking the electrolytic solution into the inside. For this reason, the contact between the active material particles and the electrolytic solution can be favorably maintained. In particular, when the electrolyte is a solid electrolyte such as a polymer solid electrolyte (SPE), the quality of the battery greatly depends on the contact between the active material particles and the electrolyte solid. The vinyl compound has good affinity with a polymer solid electrolyte made of polyethylene oxide or the like, and can maintain good contact between the active material particles and the electrolyte as in the case of the electrolytic solution.
[0013]
According to the present invention, in the case of a polymer solid electrolyte, the above effect can be effectively achieved by simultaneously grafting the monomer onto the active material particle surface and curing the polymer constituting the polymer solid electrolyte. Played . This is thought to be due to the entanglement between the two polymer chains and chemical bonding, resulting in the formation of a strong contact. It is taken in selecting the ratio of the active material particles and monomer can be controlled generate the amount of coating.
[0014]
In addition, since the active material particles grafted with the vinyl compound on the surface are excellent in dispersibility in the mixture paste, a uniform paste can be obtained, and the paste is soft and excellent in coating properties. Moreover, the packing density of the active material particles is improved, and as a result, the discharge capacity is increased.
[0015]
【Example】
Hereinafter, the battery according to the present invention will be described with reference to examples.
[0016]
Figure 1 is a cross-sectional view of a battery showing an example of a nonaqueous secondary battery according to the embodiment. 1 is a positive electrode made of a mixture of an active material lithium cobalt oxide (LiCoO 2 ), a conductive agent acetylene black (AB), a binder resin PVDF, and a polymer solid electrolysis, on a positive electrode current collector 3 made of aluminum (Al). It is coated. 2 is a negative electrode made of a mixture of carbon such as graphite or oxides of transition elements such as Si, Sn, Pb, and P, chalcogenite, a binder resin PVDF or a solid polymer electrolyte, and a negative current collector made of copper (Cu) It is coated on the body 4. 5 is a separator made of a microporous film of polyethylene (PE) or polypropylene (PP) or a polymer solid electrolyte film. 6 is composed of a Li salt such as LiPF 6 or LiBF 4 in a mixed solvent such as propylene carbonate (PC), EC, dimethyl carbonate (DMC), or diethyl carbonate (DEC). The solid polymer electrolyte is composed of a polymer such as PEO and the lithium salt. Further, a gel electrolyte composed of a system containing a solvent such as PC or EC as a plasticizer or a polymer such as polyacrylonitrile and an electrolytic solution may be used.
[0017]
Of the positive electrode and the negative electrode, at least the active material particles of the negative electrode have the vinyl compound bonded to the surface by graft polymerization. For example, in order to graft MMA onto the surface of the carbon powder that is the negative electrode active material, MMA monomer is reacted in the presence of normal butyl lithium (nBuLi) in a hexane solvent. Alternatively, grafting is performed by irradiation with an electron beam or the like. When grafting on the surface of carbon particles, the carbon particles are heated in a weakly oxidizing atmosphere or treated with an oxidizing strong acid such as nitric acid to add functional groups such as carboxyl and carbonyl groups to the surface of the carbon particles. carry out. By this treatment, grafting can be performed densely and efficiently.
[0018]
Hereinafter, the battery according to the present invention will be described by taking as an example the case where the negative electrode constituent material is carbon particles and the graft layer on the surface of the carbon particles is PMMA. In FIG. 1, 1 is a positive electrode. The positive electrode 1 is composed of 90 parts by weight of an active material LiCoO 2 having an average particle size of 10 μm, 5 parts by weight of a conductive material AB, and 5 parts by weight of PVDF. 3 is a positive electrode current collector made of Al mesh. The thickness of the positive electrode 1 is about 200 μm. Reference numeral 2 denotes a negative electrode, which consists of a mixture of 95 parts by weight of carbon particles having an average particle diameter of 10 μm and 5 parts by weight of PVDF. The thickness of the negative electrode 2 is about 200 μm. 4 is a negative electrode current collector made of Cu mesh. 5 is a polyethylene film separator having a thickness of 25 μm and an average pore diameter of about 0.5 μm. 6 is an electrolytic solution in which the supporting electrolyte is a lithium hexafluorophosphate (LiPF 6 ) and the solvent is a mixed solvent solution in which EC, DEC, and DMC are 1: 1: 1 in a volume ratio.
[0019]
A predetermined amount (about 20 mg of PMMA per 1 g of carbon) of PMMA is grafted on the surface of the carbon particles that are the negative electrode active material in advance. Since the grafted PMMA takes in the electrolytic solution, the contact between the active material particles and the electrolytic solution is improved. Further, the active material particles are firmly bound to each other.
[0020]
In FIG. 2, 1 is a positive electrode. The positive electrode 1 is composed of the same mixture of LiCoO 2 as in Example 1, 75 parts by weight, 5 parts by weight of graphite powder and 20 parts by weight of polymer gel electrolyte. The polymer gel electrolyte is composed of 6 parts by weight of a 1M LiPF 6 solution of a mixed solvent of PC and EC having a volume ratio of 0.3: 0.7 and 4 parts by weight of polyethylene oxide (PEO). And gelled. The thickness of the positive electrode 1 is 200 μm. 2 is a negative electrode. The negative electrode 2 is a mixture of 80 parts by weight of carbon particles grafted with PMMA on the surface and 20 parts by weight of a polymer gel electrolyte. The thickness of the negative electrode 2 is 200 μm. 3 is a separator made of a polymer gel electrolyte and has a thickness of 100 μm. 4 is a battery case and 5 is a lid. 6 is a positive electrode current collector made of Al foil, and 7 is a negative electrode current collector made of Cu foil. 8 is a gasket made of polypropylene (PP).
[0021]
Like the above, PMMA is grafted on the surface of LiCoO 2 or carbon particles. This MMA has good affinity with the polyether constituting the polymer solid electrolyte, and the molecular chains are intertwined with each other or chemically bonded, so that the contact between the active material particles and the electrolyte becomes strong. In particular, when the ether monomer is a liquid having a functional group and is cured after forming a coating film of the mixture with the carbon particles, the molecular chains of PMMA and the polyether are entangled and the bond is sufficiently advanced to achieve an extremely strong bond. Is done.
[0022]
As described above, in FIG. 2, an example of a polymer solid electrolyte is described. However, in the case of a polymer gel electrolyte including a polymer as a matrix and a solvent such as PC or EC, the affinity between PMMA and the polymer matrix is good. The effect similar to that in the case of the solid polymer electrolyte can be obtained by bonding and bonding.
[0023]
However, since an electrically insulating polymer is grafted on the surface of the active material particles, if the ratio of the polymer is too large, the conductivity of the electrode cannot be maintained, and conversely, the characteristics deteriorate. Therefore, there is an appropriate value for the ratio of solid particles to polymer. FIG. 3 shows the relationship between the amount of PMMA grafted on the carbon particles of the negative electrode and the surface thereof, and the discharge capacity of the battery. The amount of PMMA is expressed in g per unit area of carbon particles. The electrolytic solution is a liquid, and the discharge rate is 0.2 C (5 hour rate). As can be seen from FIG. 3, the amount of PMMA is preferably 0.01 to 0.1 g / m 2 , more preferably 0.02 to 0.07 g / m 2 . Here, the active material particles are carbon and the vinyl compound is PMMA as an example. However, if the amount of MMA is defined as g / m 2 and the vinyl compound has a monomer molecular weight of 200 or less, other materials may be used. However, the desired amount of MMA is the same.
[0024]
In the battery according to the present invention, the adhesion between the active material particles constituting the electrode and the electrolyte is good. Also, the active material packing density is high. FIG. 4 is a graph showing the relationship between the discharge rate and the discharge capacity of a battery using a polymer gel electrolyte among the batteries using a polymer solid electrolyte and a polymer gel electrolyte having remarkable effects. The battery 1 is a battery obtained by grafting PMMA on the surface of 0.02 g / m 2 for both the positive electrode active material LiCoO 2 particles and the negative electrode carbon particles. Battery 2 is a battery in which only negative carbon particles are grafted. Compared to conventional batteries that do not have any batteries also graft polymerized vinyl compounds, even in low-rate discharge at 0.1 C, 1C, high rate of 2C (high load) in the discharge even more, are excellent in discharge characteristics .
[0025]
In the case of a battery having a liquid electrolyte, the effect of providing a graft-polymerized vinyl compound is not as remarkable as that of a battery having a polymer solid electrolyte or a polymer gel electrolyte, but it is still effective.
[0026]
5 according to the battery 2 and also, a battery grafted with PMMA only to carbon particle surface as the active material of the negative electrode, and the present invention battery 3 was conducted grafted with a polymer of the gel electrolyte curing reaction at the same time the battery It is the figure which showed the charging / discharging cycling characteristics in room temperature. In FIG. 5, charging was performed at a constant current charge of 0.2 C and a final voltage of 4.2 v, and discharging was performed at a constant current discharge of 0.2 C and a final voltage of 2.7 v. As can be seen from FIG. 5, any battery provided with a graft-polymerized vinyl compound has a smaller decrease in discharge capacity with the progress of the cycle and superior charge / discharge cycle characteristics as compared with the conventional battery. Among these curing of the graft and the electrolyte was carried out simultaneously, characteristics of the present invention the battery 3 is excellent. This is presumably because PMMA grafted on the surface of the solid particles and the polymer constituting the polymer gel electrolyte are chemically bonded, and the solids of the particles and the electrolyte are in strong contact with each other.
[0027]
In addition, in a battery having a liquid electrolyte as described above, a battery including a graft-polymerized vinyl compound has excellent charge / discharge cycle characteristics as compared with a conventional battery.
[0028]
FIG. 6 is a diagram showing the transition of the discharge capacity when the charge / discharge cycle test at 60 ° C. of the battery 2 , the present invention battery 3 and the conventional battery is carried out. As in the case of room temperature, the charging is a constant current of 0.2 C and a final voltage of 4 and 2 v, the discharging is a constant current of 0.2 C and the final voltage is 2.7 v. As shown in FIG. 6, compared with the conventional battery, any battery provided with the graft-polymerized vinyl compound has improved cycle characteristics, and the effect is even more pronounced at room temperature. This is presumably because the difference in the strength of contact between the solid particles and the electrolyte was accelerated at high temperatures.
[0029]
As described above, the nonaqueous secondary battery according to the present invention is an excellent battery in terms of electrical characteristics.
[0030]
【The invention's effect】
According to the present invention, in a non-aqueous secondary battery using a polymer solid electrolyte, the grafting of the monomer onto the active material particle surface and the curing of the polymer constituting the polymer solid electrolyte are performed simultaneously, thereby Since the contact between the particles and the electrolyte can be maintained satisfactorily, it is possible to provide a battery having excellent repeated charge / discharge operation characteristics at high temperatures.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a battery according to an example .
FIG. 2 is a cross-sectional view of a battery according to an example .
FIG. 3 is a graph showing the relationship between the amount of graft polymer added and the discharge capacity.
FIG. 4 is a diagram showing discharge capacities at various rates of various batteries at room temperature.
FIG. 5 is a diagram showing the results of a charge / discharge cycle test at room temperature.
FIG. 6 is a diagram showing the results of a charge / discharge cycle test at 60 ° C.

Claims (1)

正極および負極が、リチウムを吸蔵放出可能な単体または化合物から成り、少なくとも負極を構成する前記単体または化合物の表面に、ビニル化合物がグラフト重合され、電解質として高分子固体電解質または高分子ゲル電解質を用い、前記ビニル化合物のグラフト重合と、高分子固体電解質または高分子ゲル電解質の硬化とが同時に実施される、非水二次電池の製造方法 The positive electrode and the negative electrode are composed of a simple substance or a compound capable of occluding and releasing lithium, and a vinyl compound is graft-polymerized on at least the surface of the simple substance or compound constituting the negative electrode, and a polymer solid electrolyte or a polymer gel electrolyte is used as an electrolyte. the graft polymerization of the vinyl compound, and curing the polymer solid electrolyte or polymer gel electrolyte is Ru are carried out simultaneously, the production method of the nonaqueous secondary battery.
JP19686297A 1997-07-23 1997-07-23 Manufacturing method of non-aqueous secondary battery Expired - Lifetime JP4399871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19686297A JP4399871B2 (en) 1997-07-23 1997-07-23 Manufacturing method of non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19686297A JP4399871B2 (en) 1997-07-23 1997-07-23 Manufacturing method of non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH1140163A JPH1140163A (en) 1999-02-12
JP4399871B2 true JP4399871B2 (en) 2010-01-20

Family

ID=16364902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19686297A Expired - Lifetime JP4399871B2 (en) 1997-07-23 1997-07-23 Manufacturing method of non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4399871B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524818B2 (en) * 1999-10-05 2010-08-18 三菱化学株式会社 Negative electrode material for lithium ion battery and lithium ion secondary battery using the same
JP5184004B2 (en) * 2007-08-28 2013-04-17 古河電池株式会社 Lithium ion secondary battery
JP5348897B2 (en) * 2008-01-21 2013-11-20 古河電池株式会社 A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
JP5806335B2 (en) * 2012-01-20 2015-11-10 トヨタ自動車株式会社 Electrode body and manufacturing method thereof
JP2021015769A (en) * 2019-07-16 2021-02-12 日産自動車株式会社 Electrode for non-aqueous electrolyte secondary battery
CN113823799B (en) * 2021-09-26 2023-10-20 珠海冠宇电池股份有限公司 Organic coating layer, electrode active material containing organic coating layer and lithium ion battery

Also Published As

Publication number Publication date
JPH1140163A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
JP4136344B2 (en) Lithium secondary battery and manufacturing method thereof
KR101027120B1 (en) The method for preparation of inorganic/organic composite membranes by radiation and inorganic/organic composite membranes thereof
EP3863084B1 (en) Negative electrode and secondary battery including same
JP2020524889A (en) Lithium secondary battery
CN110785876B (en) Positive electrode for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
JP4355970B2 (en) Solid electrolyte battery and manufacturing method thereof
CN113273014A (en) Lithium secondary battery and method for manufacturing same
JP7536331B2 (en) Secondary battery manufacturing method
JP4751502B2 (en) Polymer battery
JP2002359006A (en) Secondary battery
JP4399871B2 (en) Manufacturing method of non-aqueous secondary battery
JP2003115324A (en) Nonaqueous electrolyte battery
JP4019518B2 (en) Lithium secondary battery
JP4297472B2 (en) Secondary battery
JP4419981B2 (en) Method for manufacturing lithium secondary battery
JP2023543242A (en) Lithium secondary battery manufacturing method and lithium secondary battery manufactured thereby
JP4264209B2 (en) Nonaqueous electrolyte secondary battery
JP3618022B2 (en) Electric double layer capacitor and EL element
JPH11162506A (en) Manufacture of lithium battery
JP2002260665A (en) Nonaqueous electrolyte secondary battery
CN114051666A (en) Method for manufacturing secondary battery
JPH1021926A (en) Electrode film for nonaqueous electrolyte secondary battery
JP5299242B2 (en) Lithium polymer secondary battery
CN111373572B (en) Separator for lithium secondary battery and lithium secondary battery comprising the same
JPH11354158A (en) Lithium secondary battery and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

EXPY Cancellation because of completion of term