[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4396843B2 - Multi-stage fluidized bed combustion method - Google Patents

Multi-stage fluidized bed combustion method Download PDF

Info

Publication number
JP4396843B2
JP4396843B2 JP2004299207A JP2004299207A JP4396843B2 JP 4396843 B2 JP4396843 B2 JP 4396843B2 JP 2004299207 A JP2004299207 A JP 2004299207A JP 2004299207 A JP2004299207 A JP 2004299207A JP 4396843 B2 JP4396843 B2 JP 4396843B2
Authority
JP
Japan
Prior art keywords
combustion
soot
furnace
fluidized bed
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004299207A
Other languages
Japanese (ja)
Other versions
JP2006112687A (en
Inventor
芳三 高田
Original Assignee
有限会社 高田エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社 高田エンジニアリング filed Critical 有限会社 高田エンジニアリング
Priority to JP2004299207A priority Critical patent/JP4396843B2/en
Publication of JP2006112687A publication Critical patent/JP2006112687A/en
Application granted granted Critical
Publication of JP4396843B2 publication Critical patent/JP4396843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、籾がらのような、無機質の含有量(SiO2 ≒15%を含有する)が多い強固な木質の有機性未利用資源を適正に完全燃焼させることにより、付加価値の高い残渣を生成する焼成方法に関するものである。 In the present invention, a residue with high added value can be obtained by properly combusting a solid woody organic unused resource having a large inorganic content (containing SiO 2 ≈15%) such as straw. It is related with the baking method to produce | generate.

〔籾がら産出の問題(年間発生量)〕
主要食料作物である米の副次産物として毎年発生する籾がらの量は、精米加工される原料籾の原料比約20%に相当することから莫大な量になる。
近年、食料生産と消費の増加に伴い毎年発生する籾がらの量は増え続け、現在、世界全体で1年間に発生する量は大凡1億屯に達しており、また、日本国内においても毎年大凡200万屯の籾がらが発生している。
[Problems of rice bran production (annual generation amount)]
The amount of rice bran generated as a by-product of rice, which is the main food crop, is enormous since it corresponds to about 20% of the raw material rice processed by rice milling.
In recent years, the amount of straw generated every year has increased as food production and consumption increased, and now the amount of waste generated in the world has reached about 100 million per year, and it is also about every year in Japan. Two million tons of straw are generated.

〔籾がらの再利用の状況〕
籾がらの利用方法については、多年にわたり世界的規模で多くの研究開発が行われ、実際に米を生産する各国においてその地域に根ざした利用法がとられてきているが、いずれも付加価値が低く、十分に再資源化されているものは見当たらない。
これらの中で、東南アジアの米生産国を中心に普及した再利用方式は一定の成果をあげている。その方式は、籾がらを旧式な火床燃焼炉で燃焼させ、その燃焼熱を利用するボイラーで発生する低圧蒸気(ほぼ5〜7kg/cm2 )を動力源としてレシプロエンジンを運転するものであり、この動力源を使って籾がらを提供する精米工場を稼働させることが可能となり、エネルギー的に自給自足できるという利点から、これらの地域では多くの精米工場でこの方式が導入されている。
[Situation of reuse of potatoes]
As for how to use rice bran, many researches and developments have been carried out on a global scale for many years, and in each country that actually produces rice, the usage rooted in that region has been taken. We cannot find anything that is low and fully recycled.
Among them, the reuse method, which has been popularized in Southeast Asian rice-producing countries, has achieved certain results. In this method, the reciprocating engine is operated using low-pressure steam (approximately 5 to 7 kg / cm 2 ) generated in a boiler that uses the combustion heat as a power source. Because of the advantage that it is possible to operate rice mills that provide rice bran using this power source and to be self-sufficient in energy, this method has been introduced in many rice mills in these regions.

しかし、この方式は燃料効率が非常に低く、出力も小さいこともあって、大型化と効率化が求められており、また、近年の米生産国の精米工場の生産システムにおいては、新しい電化方式に替わりつつあるのが実情である。
〔廃棄問題〕
近年の精米工場の大型化と電化は、多くの米生産国で毎年多量に発生する籾がらの廃棄処分に絡む深刻な公害問題に直結することになっている。このような増えつづける籾がら公害に対処するため、タイ国の都市部周辺の大型精米工場では、排出される莫大な籾がらを都市ゴミと混ぜて焼却しているところもある。
However, this system is very low in fuel efficiency and has a low output, so it is required to increase the size and efficiency. In addition, in the recent rice mill production system of rice producing countries, a new electrification system is required. The actual situation is changing.
[Disposal issue]
The increase in size and electrification of rice mills in recent years has directly led to serious pollution problems related to the disposal of rice bran, which occurs in large quantities every year in many rice-producing countries. In order to deal with such an increasing amount of potato waste pollution, some large rice mills around urban areas in Thailand are incinerating a huge amount of potato waste that is mixed with municipal waste.

また、日本国内においては、籾がらの発生量は、前述のとおり年間約200万屯程あり、近年の米穀収穫後処理設備の近代化に伴い、その発生は地域集中的に、しかもほぼ年間を通じて一定量が排出される傾向にある。
現在、米生産地域で発生する籾がらの処理状況を全国的に見ると、約80%が農業関係の資材として処理され、残りは農業廃棄物として処分されている。
籾がらの処理形態としては、農業用素材としての活用及び焼却の二つがある。農業用素材としての活用例を挙げると、堆肥資材、畜舎敷料、暗渠資材、土壌改良材等、いずれも低付加価値のものばかりで、有効活用されているとは言い難いのが現状である。
In Japan, the amount of rice crackers generated is about 2 million tons per year as described above, and with the recent modernization of post-harvest rice cereals, the generation is concentrated in the region and almost throughout the year. A certain amount tends to be discharged.
Currently, when the processing situation of rice bran generated in rice production areas is seen nationwide, about 80% is processed as agricultural materials, and the rest is disposed as agricultural waste.
There are two types of processing of rice crackers: utilization as agricultural materials and incineration. As examples of utilization as agricultural materials, compost materials, barn bedding, underdrain materials, soil improvement materials, etc. are all low-value-added materials, and it is difficult to say that they are effectively used.

〔籾がらのエネルギー変換の状況〕
籾がらのエネルギー源としての再利用拡大のため、エネルギー変換技術の研究開発プロジェクトを実施することで、より付加価値の高いエネルギー利用技術の促進が期待されている。
このような技術は、ここ半世紀の間、世界の先進国を中心に研究開発が進められてきたが、この研究開発は、籾がらの物性から熱化学的エネルギー変換のプロセスにまで及び、下記の1)〜3)に示すような変換方式を具現化し、その一部は実用化されているものもある。
[Status of energy conversion in Tsurugagara]
In order to expand reuse as an energy source, it is expected to promote energy conversion technology with higher added value by conducting research and development projects on energy conversion technology.
This technology has been researched and developed mainly in the world's advanced countries for the last half century. This research and development extends from the physical properties of straw to the process of thermochemical energy conversion. 1) to 3), and some of them are put into practical use.

1)炭化(揮発分の分解)くん炭製造方式
籾がらを約300〜400℃に加熱して燃焼させると炭化し、揮発分として可燃性ガスとタールを発生してくん炭となる。産出するくん炭の炭素量は約30〜40%であり、燃料以外の用途としては、園芸用床土、製鉄用酸化防止材、保温材(籾がらの原形を保持し水分を含まないものがよいとされる)に利用されている。
2)乾溜方式
籾がらを乾溜温度(400〜500℃)に保持した乾溜炉で連続的に炭化・乾溜させて、乾溜ガス、ガス液、タール、固定炭素を回収するもので、この生成物はいずれも熱源として使用されるが、乾溜ガスは発熱量が750〜1300Kcal/Nm3 と低い。
1) Carbonization (decomposition of volatile matter) charcoal production method When charcoal is heated to about 300-400 ° C and burned, it is carbonized to generate combustible gas and tar as volatile matter. The carbon content of the produced charcoal is about 30 to 40%, and uses other than fuel include horticultural floor soil, anti-oxidant for iron making, and heat insulating material (those that retain the original shape of straw and do not contain moisture). It is used for
2) Dry distillation system The carbon dioxide is continuously carbonized and dry distilled in a dry distillation furnace maintained at a dry distillation temperature (400 to 500 ° C.) to recover the dry distillation gas, gas liquid, tar and fixed carbon. Both are used as heat sources, but the dry gas has a low calorific value of 750-1300 Kcal / Nm 3 .

3)蒸気タービン発電方式
籾がらを直接専焼させることにより、エネルギーの変換効率を向上させる方法の一つであり、そのターゲットは商用発電を含むコージェネレーションにおいたシステムであるが、これまで開発は困難とされてきた。
〔籾がらの物性と完全燃焼の困難性〕
籾がらを再生可能エネルギー資源として直接有効利用することが困難なのは、下記の1)〜4)に示すような、籾がら固有の熱化学的変換作用を阻害する物性によるものとされている。
3) Steam turbine power generation system This is one of the methods to improve the energy conversion efficiency by directly burning firewood, and its target is a system for cogeneration including commercial power generation, but it has been difficult to develop until now. It has been said.
[Physical properties of firewood and difficulty of complete combustion]
The reason why it is difficult to effectively use rice bran as a renewable energy resource is attributed to physical properties that inhibit the thermochemical conversion action inherent to rice bran as shown in the following 1) to 4).

1)揮発分(約60%)の加熱による分解燃焼反応速度は炭素分の表面燃焼反応速度より速いので、炉内雰囲気の作用温度域を正確に調節することが難しい。このため、雰囲気温度が局所的に高温となって、籾がら表面に発生する灰分中のシリカが微量の塩基成分や結晶水と反応し、焼結して早期溶融が起こり、クリンカーの焼塊ができるため、連続燃焼が妨げられる。また、難揮発性ガス分もタール化し、凝結を起こしやすい。
2)灰分は約20%(SiO2 ≒15%を含有する)あり、バイオマスの中では最も高い値である。籾がらの燃焼反応の過程で、表面燃焼の進行につれて多量に発生する灰分が局所過熱で凝結し、O2 やCOの拡散が妨げられて燃焼むらを生じ、安定した連続燃焼ができなくなる。
1) Since the decomposition combustion reaction rate due to heating of the volatile component (about 60%) is faster than the surface combustion reaction rate of the carbon component, it is difficult to accurately adjust the operating temperature range of the furnace atmosphere. For this reason, the ambient temperature becomes locally high, and silica in the ash generated on the surface of the soot reacts with a small amount of basic components and water of crystallization, sintering and premature melting occur, and the clinker ingot is formed. As a result, continuous combustion is hindered. In addition, the hardly volatile gas content is tarized and is likely to cause condensation.
2) Ash content is about 20% (containing SiO 2 ≈15%), which is the highest value among biomass. During the combustion reaction of soot, a large amount of ash generated as the surface combustion progresses condenses due to local overheating, obstructing the diffusion of O 2 and CO, resulting in combustion unevenness, and stable continuous combustion becomes impossible.

3)籾がらは固定炭素を重量比で12〜17%含有している。燃焼装置の雰囲気温度条件が500℃以上の高温下で固定炭素はO2 の供給を得て表面燃焼するが、その燃焼速度は雰囲気温度条件に規制される。即ち、雰囲気温度を高くすれば燃焼時間は短くてすみ、低くすれば燃焼時間は長くかかることになる。この現象は、炉内で籾がらを完全燃焼させるのに必要かつ充分な雰囲気温度条件と平均滞留時間を設定するのに重要なパラメーターとなる。
4)硬度が高い。MOH付スケールで5.5〜6.5の硬度をもつ籾がらの表層を微細構造のシリカが被覆しているため軟鋼よりも硬く、このことが固形燃料化や、輸送、貯蔵等の分野での機材の磨耗問題を引き起こしている。
3) Sugagara contains 12 to 17% by weight of fixed carbon. Under high temperature of 500 ° C. or higher in the atmospheric temperature condition of the combustion apparatus, fixed carbon obtains O 2 supply and performs surface combustion, but its combustion rate is regulated by the atmospheric temperature condition. That is, if the ambient temperature is raised, the combustion time can be shortened, and if it is lowered, the combustion time takes longer. This phenomenon is an important parameter for setting the atmospheric temperature conditions and the average residence time necessary and sufficient for complete combustion of the soot in the furnace.
4) High hardness. It is harder than mild steel because the surface layer of sawdust having a hardness of 5.5 to 6.5 on the scale with MOH is coated with fine-structured silica. This is in the fields of solid fuel, transportation, storage, etc. Cause wear problems of the equipment.

本発明は、上述したような未利用の籾がらを再生可能エネルギー資源として直接有効利用する際の課題である籾がらの不完全燃焼を克服したものであり、無機質の含有量(SiO2 ≒15%を含有する)が多い強固な木質の有機性未利用資源を、融着点以下の温度に設定し、飛散する籾がら粒子(キャリオーバー)の発生を抑止して、適正に完全燃焼させることにより、付加価値の高い残渣を生成する焼成方法を提供することを目的とするものである。 The present invention overcomes the incomplete combustion of soot, which is a problem when directly utilizing the above-described unused soot as a renewable energy resource, and has an inorganic content (SiO 2 ≈15 Set the organic unused resources of solid wood with a lot of content) to a temperature below the fusing point, to suppress the generation of flying dust particles (carryover) and to burn properly properly Thus, an object of the present invention is to provide a firing method for producing a residue with high added value.

即ち、上記課題は下記の要旨の手段により達成される。
籾がらを、その融着点以下の400〜800℃の炉内温度に設定し、かつ炉雰囲気を酸化雰囲気に調整しながら、連続的に完全燃焼するように構成した一次燃焼域及び二次燃焼域からなる焼成炉の前記一次燃焼域に連続的に装入し、該一次燃焼域で加熱燃焼させて炭化した籾がらを、一次燃焼域の下部に位置する二次燃焼域の炉底床上に既に積層されている多段流動層の表面に重畳させるように供給し、一次燃焼域で時系列的に炭化した籾がらを、表面燃焼させるため、二次燃焼域の炉底床から吹き込む流動化空気に、焼成炉の炉前縁壁面に相対する炉側壁面に設置した多段空気口から横吹き空気を吹き込むことで、積層内に生ずる空気と籾がら粒子の向流接触反応を高めて、積層した籾がらを攪拌し、かくして形成された複数段の流動層からなる多段流動層を、籾がら焼層中のすべての籾がら粒子を完全燃焼するのに必要な時間以上に、ほぼ同じ時間、層内に滞留させて灰化し、かくして結晶化度の低い可溶性で反応性の高い活性シリカの多孔質体を主成分とする籾がら灰を得ることを特徴とする籾がらの多段流動層燃焼法。
That is, the said subject is achieved by the means of the following summary.
Primary combustion zone and secondary combustion configured to continuously burn completely while setting the soot inside the furnace temperature of 400 to 800 ° C. below the fusion point and adjusting the furnace atmosphere to an oxidizing atmosphere On the bottom floor of the secondary combustion zone located in the lower part of the primary combustion zone, the charcoal that is continuously charged into the primary combustion zone of the firing furnace comprising the zone and carbonized by heating and burning in the primary combustion zone. Fluidized air blown from the bottom floor of the secondary combustion zone in order to superimpose soot on the surface of the multistage fluidized bed that has already been laminated, The cross-flow contact reaction between the air generated in the stack and the soot particles is increased by laminating the air from the multistage air port installed on the side wall of the furnace facing the furnace front edge wall of the firing furnace. The stirrer is stirred and the fluidized bed thus formed A multi-stage fluidized bed that stays in the bed for about the same time as the time required to completely burn all the soot particles in the soot-fired bed, and ashes, and thus has a low crystallinity and solubility. A multistage fluidized bed combustion method of soot obtained by obtaining soot ash mainly composed of a porous body of highly active silica.

本発明によれば、籾がら焼成技術の最適化によって得られる発電を含むコージェネレーションシステムに加えて、産出できる微細構造で可溶性と反応性が高く結晶化度の低い活性シリカの多孔質体を工業原料資源として有効に回収することができる。   According to the present invention, in addition to a cogeneration system including power generation obtained by optimizing firewood baking technology, an active silica porous body having a fine structure, soluble and reactive, and low crystallinity can be produced. It can be effectively recovered as a raw material resource.

以下に、本発明について説明するが、先ず、籾がらの燃焼特性と焼成法の基本設計について述べる。
〔籾がらの燃焼特性について〕
籾がらは燃料として下記1)〜3)に示すような特性がある。
1)200℃以上の処理温度で酸化が著しく、220〜360℃の間での限界揮発減率が著しい。この作用温度域では、有機性成分(セルロース、リグニン等)の熱分解による揮発成分の発生とその著しい気相燃焼が起こり、温度は急上昇する。
2)360〜500℃までは、少量ながら限界揮発減率は増加する。この作用温度域では、熱分解残滓または熱分解しにくいタールや固定炭素の表面燃焼が起こるものと思われる。
The present invention will be described below. First, combustion characteristics of soot and basic design of the firing method will be described.
[Combustion characteristics of rice cake]
Sugagara has the following characteristics as fuels 1) to 3).
1) Oxidation is significant at a treatment temperature of 200 ° C. or higher, and the critical volatilization rate is remarkable between 220 and 360 ° C. In this operating temperature range, generation of volatile components due to thermal decomposition of organic components (cellulose, lignin, etc.) and their significant gas phase combustion occur, and the temperature rises rapidly.
2) From 360 to 500 ° C., the critical volatilization rate increases with a small amount. In this working temperature range, it is considered that thermal combustion residue or surface combustion of tar or fixed carbon which is difficult to be pyrolyzed occurs.

3)灰分を占める微細構造の多孔質活性シリカは、石英、珪石とは異なり、作用温度域950〜1000℃で多形転移による結晶変態し、クリストバライト質シリカに結晶化する。
なお、籾がらにはこれら3成分の他に水分が含まれる。
〔燃焼法の基本設計について〕
下記1)〜4)に、籾がらの燃焼特性に最適な微細構造の制御技術を使った焼成法を開発するために設計した燃焼炉について述べる。
1)全燃焼過程は炭化(揮発分の分解燃焼)と灰化(固定炭素の表面燃焼)の二つに区分して焼成用燃焼炉を設計した。
3) Unlike the quartz and silica stones, the porous active silica having a fine structure occupying the ash content undergoes crystal transformation by polymorphic transformation in the working temperature range of 950 to 1000 ° C. and crystallizes into cristobalite silica.
In addition, rice bran contains moisture in addition to these three components.
[Basic design of combustion method]
In the following 1) to 4), a combustion furnace designed to develop a firing method using a microstructure control technique optimal for the combustion characteristics of soot is described.
1) The entire combustion process was divided into carbonization (decomposition combustion of volatile matter) and ashing (surface combustion of fixed carbon), and the combustion furnace for firing was designed.

2)その炉形状は、三つの炉側壁からの空気吹き込みによって層内の乱れを強め、籾がら粒子との向流反応で流動化状態を形成する多段流動層による焼成法に適用するため、炉本体は耐火材を内張りした竪型角形とし、炉長に対して炉幅を短くした。炉底床には空気口を設けるとともに、炉の中心軸に沿って溝を設け、傾斜をつけた。炉内は可動部分のない単純な構造とし、耐久性のある維持管理しやすい設計とした。
3)炉系の通気は、炭化過程(一次燃焼域)と灰化過程(二次燃焼域)における熱移動と熱交換を効果的に調整するため、押込と誘引の方式を併用する平衡通気方式を採用した。二次燃焼域に多段の空気口を装備し、炉系内通気量の調整機構を使って炉系内の通気圧を−2〜−5mmAqで操業できるようにした。この通気設計と炉形状で多段流動層燃焼を行い、シリカを含む粉塵の飛散を抑え、伝熱面の磨耗や煙道の表面にスケールとなって析出することを防止することができるようにした。
2) The furnace shape is applied to the firing method with a multi-stage fluidized bed that strengthens the turbulence in the bed by blowing air from the three side walls of the furnace and forms a fluidized state by countercurrent reaction with the soot particles. The main body is a vertical square lined with a refractory material, and the furnace width is shorter than the furnace length. An air port was provided in the bottom floor of the furnace, and a groove was provided along the central axis of the furnace to give an inclination. The interior of the furnace has a simple structure with no moving parts and is designed to be durable and easy to maintain.
3) Ventilation in the furnace system is an equilibrium ventilation method that uses both indentation and induction methods to effectively adjust heat transfer and heat exchange in the carbonization process (primary combustion zone) and ashing process (secondary combustion zone). It was adopted. A multistage air port was installed in the secondary combustion zone, and the aeration pressure in the furnace system could be operated at -2 to -5 mmAq using the adjustment mechanism of the ventilation quantity in the furnace system. Multi-stage fluidized bed combustion is performed with this ventilation design and furnace shape to suppress the scattering of dust containing silica, and it is possible to prevent the heat transfer surface from wearing out and becoming deposited on the surface of the flue as a scale. .

4)灰化過程の炉形式は、固定炭素の表面燃焼の温度条件を炉内の作用温度域で融着点以下の600〜900℃とし、籾がらを焼成するための正確なモデルを開発するため、下記a)、b)に示すような特徴のある機能を具備させた。
a)炉内空気の吹込方式は、炉形状に籾がら焼成に最適な燃焼法の実用化を可能にするため、空気吹き込みに炉底斜面に配列した流動化空気口と、層内に多段流動化を形成する複数の空気口を炉前縁壁面と相対する炉側壁面に配列した。加えて、補完燃焼域にも空気口を配備した。
三方の炉側壁面の多段空気口群から炉中央部に向って吹き込む空気で生ずる籾がら粒子間の摩擦と衝突による向流効果を使って形成させた複数の流動層に籾がらを留め、層内の燃焼空気の反応率を高める向流機能をもった多段流動層燃焼法が可能となった。炉底表面と炉側壁面の空気口群から吹き込む空気と籾がら粒子の向流反応で生ずる多段流動層燃焼は、籾がらの粒子の表面に生成する灰分を除去分離しつつ、燃焼を層状に進行させるので、空気の拡散が速く、温度分布が一様となり、局所過熱で生ずる籾がら粒子の焼結化を防ぐことができた。
4) As for the furnace type of the ashing process, the temperature condition of surface combustion of fixed carbon is set to 600 to 900 ° C. below the fusion point in the working temperature range in the furnace, and an accurate model for firing soot is developed. Therefore, the functions having the characteristics shown in the following a) and b) were provided.
a) In-furnace air blow-in system allows fluidization air ports arranged on the slope of the bottom of the furnace to be air blown in order to enable the practical use of a combustion method that is optimal for firing in the furnace shape, and multistage flow in the bed The plurality of air ports forming the gas were arranged on the furnace side wall surface opposite to the furnace front edge wall surface. In addition, air ports were also provided in the complementary combustion zone.
Slag is retained in a plurality of fluidized beds formed by using the countercurrent effect caused by friction and collision between the dust particles generated by the air blown toward the center of the furnace from the multistage air port group on the side wall surface of the three sides. A multi-stage fluidized bed combustion method with a counter-current function to increase the reaction rate of the combustion air in the inside became possible. Multi-stage fluidized bed combustion, which is caused by countercurrent reaction between the air blown from the air inlets on the furnace bottom surface and the furnace side wall, and soot particles, removes and separates the ash generated on the surface of soot particles and stratifies the combustion. Because of the progress, the air diffused quickly, the temperature distribution became uniform, and it was possible to prevent sintering of the particles caused by local overheating.

b)炉底床には、表面燃焼の進行につれて炉の中心軸に沿った溝部分に多量に生成する灰分の灰づまりやクリンカー化を防いで移動しやすいように、灰ピットに向けて傾斜勾配をつけた。
上述のように、籾がらを焼成する燃焼法の基本設計の立案には、通常の燃焼法である燃料の投入量を空気吹込量に合わせて燃焼させるストーカーを使った押込通風燃焼法や流動媒体を使って流動化する流動層燃焼法があるが、いずれも籾がらを燃料として使用しにくく、処理しにくい欠点をもっているので、その欠点を細かく分析し、籾がら燃焼炉の炉形式をその目的に最適化するため、新たに下記イ)、ロ)の二つの機能を実現する多段流動層燃焼法の炉形式とした。
b) Inclined slope toward the ash pit on the bottom floor of the furnace so that it is easy to move by preventing ash clogging and clinker formation in large quantities in the groove along the central axis of the furnace as surface combustion progresses I put on.
As described above, the basic design of the combustion method for burning soot is made by the forced-air combustion method using a stalker that burns according to the amount of air blown, which is a normal combustion method, or a fluid medium. There are fluidized-bed combustion methods that fluidize using methane, but all of them have defects that make it difficult to use and process soot as a fuel. In order to optimize, the multi-stage fluidized bed combustion method furnace that realizes the following two functions a) and b) was adopted.

イ)向流効果を付加した多段流動層燃焼法により、流動媒体と段間のグリッドを使わずに、複数の流動層を形成させることが可能となった。形成された多段流動層は、籾がら粒子と空気の向流反応を充分に行えることから、攪拌混合効果が助長されて、籾がら粒子と空気両者の予熱、冷却が容易となり、全体として融着点以下の低温反応が均一に行えるので、籾がら粒子を固定炭素の燃焼が完了するまで滞留時間を調節すれば、熱経済性の高い熱エネルギーの回収と確保が可能となる。
ロ)籾がら燃焼層中の多段流動層燃焼の温度に対し、精密調節と均一化が容易であるので、籾がら中のシリカの焙焼条件に適合する作用温度を設定し、完全に燃焼反応を終了させることで、産出する籾がら灰は未燃物とクリンカー粒を含まず、品質が安定し、均質化した微細構造の活性シリカ多孔質体が主成分となる。この形成されたシリカは、同じ籾がらを低温反応の燃焼法を使い、完全燃焼させるのに長い滞留時間をかけて焼成した灰中のシリカと比較して、結晶化度で同等以上の微細組織の反応性の高い物性を有している。
B) The multi-stage fluidized bed combustion method with the countercurrent effect added enables the formation of multiple fluidized beds without using a fluidized medium and grids between stages. The formed multistage fluidized bed can sufficiently counter flow reaction between the soot particles and the air, so that the stirring and mixing effect is promoted, and both the soot particles and the air can be easily preheated and cooled, and the whole is fused. Since the low temperature reaction below the point can be performed uniformly, if the residence time of the soot particles is adjusted until the combustion of the fixed carbon is completed, it is possible to recover and secure thermal energy with high thermo economic efficiency.
B) Since precise adjustment and homogenization are easy with respect to the temperature of multistage fluidized bed combustion in the soot combustion chamber, an operating temperature that matches the roasting conditions of silica in soot is set and the combustion reaction is complete , The soot ash produced does not contain unburned matter and clinker particles, has a stable quality, and has a homogenized microstructured active silica porous body as a main component. This formed silica has the same or better microstructure than the silica in ash that is burned by using a low temperature reaction combustion method for the same soot and taking a long residence time to complete combustion. It has physical properties with high reactivity.

以下に、本発明において焼成を最適化するための燃焼法の概略と燃焼装置の概略について説明する。
〔焼成を最適化するための燃焼法の概略〕
本発明では、籾がらを主燃焼炉上部の一次燃焼域に装入し、一次燃焼空気を送って分解燃焼させた後、炭化した籾がら粒子をできるだけ層の上に分散させて供給する。
酸化雰囲気の炉内に供給された籾がらは、一次燃焼空気によって揮発分が直ちに加熱され、分解燃焼する。
Below, the outline of the combustion method for optimizing baking in this invention and the outline of a combustion apparatus are demonstrated.
[Outline of combustion method to optimize firing]
In the present invention, the soot is introduced into the primary combustion zone at the upper part of the main combustion furnace, the primary combustion air is sent and decomposed and burned, and then the carbonized soot particles are dispersed as much as possible on the bed.
The soot supplied to the furnace in the oxidizing atmosphere is immediately heated by the primary combustion air and decomposes and burns.

分解燃焼して炭化した籾がら粒子(くん炭)は主燃焼炉下部の二次燃焼域の比較的層密度のある籾がら焼層の表面に落下堆積し、未燃部分を占める主成分の固定炭素は炉底表面の空気口群から吹き上げる一定量の流動化空気と炉側壁に中央方向に相対して配備した多段の空気口群から吹き込む設定量の多段化空気を機能させた多段流動層燃焼法によって表面燃焼させ、灰化まで正確に設定した作用温度域と反応時間をかけて完全燃焼させる。
焼成された灰は、炉底床の斜面に沿って、安定した連続燃焼を阻害する灰づまりなしに、排出端の灰ピットに移動する。
二次燃焼域の燃焼で発生する不完全燃焼ガスは、完全燃焼ガスと一緒に熱エネルギーを確保するため、補完燃焼域に誘引ファンによるエゼクター効果を使って吸引移動させ、炉側壁に配置した空気口から燃焼用空気を吹き込むことで完全燃焼させ、熱エネルギーを回収する。
Slag particles (charcoal) charred by cracking and burning fallen and deposit on the surface of the relatively dense layer of the burnt layer in the secondary combustion zone at the bottom of the main combustion furnace, fixing the main component occupying the unburned part Carbon is a multi-stage fluidized bed combustion functioning with a certain amount of fluidized air blown from the air port group on the bottom surface of the furnace and a set amount of multi-stage air blown from the multi-stage air port group arranged in the central direction on the furnace side wall. Surface combustion is performed by the method, and complete combustion is performed over a set reaction temperature range and reaction time precisely until ashing.
The calcined ash moves along the slope of the bottom floor of the furnace to the ash pit at the discharge end without ash clogging that prevents stable continuous combustion.
The incomplete combustion gas generated by the combustion in the secondary combustion zone is sucked and moved to the complementary combustion zone using the ejector effect of the induction fan in order to secure thermal energy together with the complete combustion gas, and the air placed on the furnace side wall Combustion air is blown from the mouth to complete combustion and recover thermal energy.

〔焼成を最適化するための燃焼装置の概略〕
次に、本発明を実施する燃焼装置についてその概略を説明する。
本発明を実施する燃焼装置は、主燃焼炉と、該主燃焼炉で発生した生成ガスを完全燃焼させて熱エネルギーを回収・確保する補完装置とからなり、該主燃焼炉と補完装置は連通して構成されている。
主燃焼炉の炉前縁側壁面に設けられた装入口を通じて装入された籾がらは、燃焼過程を構成する該主燃焼炉の二つの燃焼域(一次及び二次燃焼域)で籾がらの揮発分の分解燃焼と固定炭素の表面燃焼が進行し、籾がらの完全燃焼による焼成に必要な融着点以下の設定温度域と必要な滞留時間を調整することにより、籾がらの低位発熱量3000Kcal/kgのほぼ全量を熱エネルギーとして確保することができる。
[Outline of combustion equipment for optimizing firing]
Next, the outline of the combustion apparatus for carrying out the present invention will be described.
A combustion apparatus for carrying out the present invention is composed of a main combustion furnace and a supplementary device that recovers and secures thermal energy by completely combusting the generated gas generated in the main combustion furnace, and the main combustion furnace and the supplementary device communicate with each other. Configured.
The soot introduced through the inlet provided on the side wall of the front edge of the main combustion furnace is volatilized soot in the two combustion areas (primary and secondary combustion areas) of the main combustion furnace constituting the combustion process. Decomposition combustion and surface combustion of fixed carbon proceed, and by adjusting the set temperature range below the fusing point necessary for firing by complete combustion of soot and the necessary residence time, low calorific value of soot is 3000 Kcal Almost all of / kg can be secured as heat energy.

多段流動焙焼された灰は、微細構造を保持した活性シリカ多孔質体を主体とし、品質も均一で、結晶化度も低く、クリンカー粒を含まない。
次に、本発明を実施する燃焼装置の構造について、その一例の概略を図面を用いて説明する。
図1は本発明を実施する燃焼装置の一例の全体構造を示す図であり、図2は同図1のA−A矢視断面を示す図である。主燃焼装置本体は多段流動層の形成に適した竪型角形で、炉前縁の側壁と対峙する二つの側壁から炉中央方向に向けて籾がら供給装置2と空気口5を備えており、炉頂部にはボイラーのような冷却用の熱エネルギー回収機器3を装着している。これらの装置部分を除き、炉本体の側壁、底床部は全て耐火レンガで内張りされている。また、炉底床は、焼成過程で中央部分を中心に多量に産出する灰分が、炉内に吹き込まれる空気口5からの空気に押されて補完燃焼域底部に設置した灰ピット4に向かう際に灰づまりを起こさないように、炉底床9表面に傾斜勾配と炉中心軸に沿って溝をつけている。また、図において、6は押込みファン、7は昇温着火用重油バーナー、8は灰排出コンベヤーである。
The ash obtained by multi-stage fluid roasting is mainly composed of an active silica porous body having a fine structure, has a uniform quality, a low crystallinity, and does not contain clinker grains.
Next, the outline of an example of the structure of the combustion apparatus for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an overall structure of an example of a combustion apparatus for carrying out the present invention, and FIG. 2 is a diagram showing a cross section taken along the line AA of FIG. The main combustion apparatus main body 1 has a vertical square shape suitable for forming a multistage fluidized bed, and includes a vertical supply apparatus 2 and an air port 5 from two side walls facing the side wall of the furnace front edge toward the center of the furnace. A cooling thermal energy recovery device 3 such as a boiler is mounted on the top of the furnace. Except for these device parts, the side walls and bottom floor of the furnace body are all lined with refractory bricks. In addition, the bottom of the furnace floor is when the ash produced in large quantities mainly in the center during the firing process is pushed by the air from the air port 5 that is blown into the furnace and heads toward the ash pit 4 installed at the bottom of the complementary combustion zone. In order to prevent ash clogging, the surface of the furnace bottom floor 9 is provided with a groove along the slope and the furnace center axis. In the figure, 6 is a pushing fan, 7 is a heavy oil burner for temperature-ignition ignition, and 8 is an ash discharge conveyor.

以下に、本発明において焼成を最適化するための燃焼法と燃焼装置について、さらに詳細に説明する。
〔焼成を最適化するための燃焼法の詳細な説明〕
下記の1)〜3)に本発明の燃焼法について詳細に説明する。
1)一次燃焼域(分解燃焼域)
サイロに収集され、導管を通じて籾がら供給装置2に送られた籾がらは、自動制御により主燃焼装置本体の一次燃焼域(フリーボード;燃焼室内の流動層上方の空間)内に連続的に装入される。籾がらは、押込ファン6からの吹き込み空気及び下部籾がら焼層より排出する可燃ガスと混合し、着火後に局所高温域を作らないようにするため、出来る限り籾がら焼層の上に分散させて装入する。
一次燃焼域の炉側壁には、籾がら供給装置2の他に、炉初動時の昇温着火用重油バーナー7の取付口と空気供給量を調節するための空気口5が備えられている。
Below, the combustion method and combustion apparatus for optimizing baking in this invention are demonstrated in detail.
[Detailed description of combustion method to optimize firing]
The combustion method of the present invention will be described in detail in the following 1) to 3).
1) Primary combustion area (decomposition combustion area)
The soot collected in the silo and sent to the soot supply device 2 through the conduit is continuously controlled in the primary combustion zone (free board; space above the fluidized bed in the combustion chamber) of the main combustion device body 1 by automatic control. It is inserted. Soot is mixed with the air blown from the indenter fan 6 and the combustible gas discharged from the lower soot layer, and is dispersed on the soot layer as much as possible so as not to create a local high temperature region after ignition. To charge.
In addition to the soot supply device 2, the side wall of the primary combustion zone is provided with an attachment port for the temperature rising ignition heavy oil burner 7 at the time of the initial operation of the furnace and an air port 5 for adjusting the air supply amount.

籾がらは、炉装入後一次燃焼域内の温度が300℃以上の炉雰囲気の中で、籾がら粒子自身の温度は低くても、炉内から供給された熱によって、乾燥とその成分の約60%を占める有機質の揮発分の熱分解が生じ、発生した分解生成ガスは燃焼して炭化する。
その分解燃焼過程は、セルロース、リグニン等の有機質分の熱分解によって発生する可燃性揮発分の燃焼反応速度(昇温速度)が速いため、雰囲気温度が急上昇する。
揮発分の燃焼反応速度が速いために起こる有害な副反応としての局所的過熱に起因する灰分のクリンカー化やタール分の凝結を抑制するため、下記のa)〜c)に示す三つの制御機能を具備させた。
In the furnace atmosphere in which the temperature in the primary combustion zone after furnace charging is 300 ° C. or higher, soot powder is dried and its components are reduced by the heat supplied from the furnace even if the temperature of the soot particles is low. Thermal decomposition of the organic volatile matter occupying 60% occurs, and the generated decomposition product gas burns and carbonizes.
In the decomposition combustion process, since the combustion reaction rate (temperature increase rate) of combustible volatile matter generated by thermal decomposition of organic matters such as cellulose and lignin is fast, the ambient temperature rapidly rises.
Three control functions shown in a) to c) below to suppress clinkeration of ash and condensation of tar due to local overheating as a harmful side reaction that occurs due to the high combustion reaction rate of volatile matter. Was provided.

a)主燃焼装置本体の頂部に、分解燃焼ガスの保有する多量の顕熱を回収するため、ボイラー3(対流伝熱機器)と温度調節をするための収熱用伝熱管を配備した。
b)一次燃焼域は二次燃焼域での多段流動層上部の炉空間(フリーボード)でもあり、流動層から飛び出す微小籾がら粒子は、分解燃焼する籾がら粒子と混合燃焼をさせて、飛散籾がら粒子(キャリオーバー)の発生を抑止するシステムとした。
c)炉内雰囲気の設定温度(最大900℃)の上下の変動を最小化するため、多段流動層燃焼で発生する不完全燃焼ガスは完全燃焼ガスと共に平衡通風方式による並行流のエゼクター効果を使って補完燃焼域に誘引し、完全燃焼させた上で、発生する熱エネルギーは確保されるようにした。
a) In order to recover a large amount of sensible heat held by the cracked combustion gas, a boiler 3 (convection heat transfer device) and a heat transfer heat transfer tube for adjusting the temperature were arranged at the top of the main combustion apparatus main body 1 .
b) The primary combustion zone is also the furnace space (freeboard) above the multi-stage fluidized bed in the secondary combustion zone, and the fine soot particles popping out of the fluidized bed are mixed and burned with the soot particles that are decomposed and burned. A system that suppresses the generation of soot particles (carryover).
c) In order to minimize the fluctuations in the set temperature of the furnace atmosphere (maximum 900 ° C), the incomplete combustion gas generated in the multistage fluidized bed combustion uses the parallel flow ejector effect by the balanced ventilation method together with the complete combustion gas. At the same time, it is attracted to the complementary combustion zone, and after complete combustion, the generated heat energy is secured.

2)二次燃焼域(表面燃焼)
籾がらは、前過程の一次燃焼域でその有機分が分解燃焼し、炭化して主燃焼装置下部の二次燃焼域の籾がら焼層の上に分散して層状に落下堆積する。
これまで、通常の燃焼方法では、焼成に適した完全燃焼は困難視されていた籾がらなので、主燃焼装置の炉形式の技術開発には、籾がらの焼成条件に必要な未燃残留炭素量の完全燃焼と灰分中の微細構造の活性多孔質シリカの熱による性状変化をそれぞれ制御できる新たな燃焼システムの確立が不可欠である。
2) Secondary combustion zone (surface combustion)
The soot is decomposed and burned in the primary combustion zone of the previous process, carbonized, dispersed on the soot layer in the secondary combustion zone at the bottom of the main combustion device, and deposited in layers.
So far, it has been considered difficult to complete combustion suitable for firing with ordinary combustion methods. Therefore, the amount of unburned residual carbon required for firing conditions for soot is necessary for the development of furnace-type technology for main combustion equipment. It is indispensable to establish a new combustion system capable of controlling the complete combustion of ash and the change in the properties of activated porous silica with fine structure in ash.

そのための焼成方法開発の試みとして、籾がらの流動層燃焼には欠かせない流動媒体は焼成する灰に不純物として混入するおそれがあるので、これを使わない多段流動層燃焼法の改善技術の開発に流動層に籾がらが完全燃焼するまで留められる向流接触機能をもったパイロットプラントを使って実験研究を実施し、その結果として、籾がらの微細構造の制御技術も可能にする炉形式の燃焼法が実用化できた。
この炉形式による多段流動層燃焼法では、装入された籾がら層に対して吹き込まれる燃焼用空気は、主燃焼装置の炉底床9表面に炉中心軸に沿ってその両側に配列された空気口5と、炉中心軸に向けて三つの炉側壁面に配列された空気口5を通じて、それぞれ空気供給量を調節し、炉内温度を自在に設定することが可能である。
As an attempt to develop a firing method for that purpose, the fluidized medium that is indispensable for fluidized bed combustion of soot may be mixed as impurities in the ash to be fired. In addition, we conducted experimental research using a pilot plant with a countercurrent contact function that keeps soot until it completely burns in the fluidized bed, and as a result, a furnace type that enables control technology of soot fine structure. Combustion method has been put to practical use.
In the multistage fluidized bed combustion method using this furnace type, the combustion air blown into the charged soot layer is arranged on both sides of the furnace bottom floor 9 surface of the main combustion apparatus along the furnace center axis. Through the air port 5 and the air ports 5 arranged on the three furnace side walls toward the furnace center axis, it is possible to adjust the air supply amount and set the furnace temperature freely.

炉底床9表面の空気口5から吹き上げられる流動化空気と、三つの炉側壁面の空気口5から籾がら層内に向かって吹き込まれる多段化空気を機能させて、層内の籾がら粒子は激しく攪拌され、動的懸垂の状態を保ちながら空気との均一混合物となり、この向流反応効果から形成される多段流動層燃焼法によって、設定した作用温度域と滞留時間を制御しながら、籾がらの安定した焼成と焙焼が可能となる。
籾がらの焼成に最適な多段流動層燃焼法のシステム開発に要求される主なパラメーターとしては、籾がら供給量、炉内圧、流動層温度(フリーボード、炉底、炉側壁)、吹込空気の速度、空気量、籾がら焼層の厚さ、層密度の分布、シリカの温度による形態変化、昇温速度等があり、その中から流動層温度を選び、灰分のシリカの形態変化と残留する炭素量のそれぞれの最少化が得られる焼成のための燃焼条件に必要なパラメーターを体系的にとらえ、シミュレーションを行って、流動媒体を使わない新たな多段流動層燃焼法が実用化できた。
The fluidized air blown up from the air port 5 on the surface of the furnace bottom floor 9 and the multistage air blown into the soot layer from the air ports 5 on the three side walls of the furnace function to function soot particles in the layer. Is stirred vigorously and becomes a homogeneous mixture with air while maintaining a state of dynamic suspension, and the multi-stage fluidized bed combustion method formed from this countercurrent reaction effect controls the set operating temperature range and residence time while Stable firing and roasting of the waste can be achieved.
The main parameters required for the development of a multi-stage fluidized bed combustion system that is optimal for the firing of soot are as follows: soot supply amount, furnace pressure, fluidized bed temperature (freeboard, furnace bottom, furnace side wall), blowing air There are speed, amount of air, thickness of smoked layer, distribution of layer density, shape change due to silica temperature, temperature increase rate, etc. A new multi-stage fluidized bed combustion method that does not use a fluidized medium has been put into practical use by systematically grasping the parameters necessary for the combustion conditions for firing that can minimize each carbon content, and performing simulations.

籾がら焼層の中央部分を中心に派生する灰化した籾がらは、炉底床9表面の空気口5からの吹込空気によって冷却効果の受けながら、順次溝部分に沿って下部方向に移動し、補完燃焼域底部の灰ピット4に落下する。灰ピット4に堆積した灰は、灰排出コンベヤー8で定期的に炉外に排出される。
3)補完燃焼域
一次、二次燃焼域の炉系内を平衡通風の操作で多段流動層燃焼させる過程で、酸化・還元両作用により発生する可燃性ガスは、完全燃焼ガスと共に主燃焼装置に連通する補完燃焼装置内に誘引ファンによる通風のエゼクター効果で反転移動する。
Ashed soot derived from the center part of the soot glazed layer is successively moved downward along the groove part while receiving the cooling effect by the air blown from the air port 5 on the surface of the bottom 9 of the hearth. Then, it falls into the ash pit 4 at the bottom of the complementary combustion zone. The ash deposited in the ash pit 4 is periodically discharged out of the furnace by the ash discharge conveyor 8.
3) Complementary combustion zone Combustible gas generated by both oxidation and reduction in the process of multistage fluidized bed combustion in the furnace system of the primary and secondary combustion zones by the operation of equilibrium ventilation is transferred to the main combustion device together with the complete combustion gas. It reverses by the ejector effect of the ventilation by the attracting fan in the complementary combustion device that communicates.

補完燃焼域の炉側壁に配列された多段の空気口5から吹き込まれる空気により、流入してきた不完全燃焼ガスは完全燃焼される。
補完燃焼域で発生した高温の燃焼ガスは、ボイラー3、スーパーヒーター、エコノマイザー等の伝熱面に接触させながら流動させることで熱エネルギーに変換された後、さらに煙道設備の集塵機、誘引ファン、煙突を経て大気中に放出される。
The incomplete combustion gas that has flowed in is completely burned by the air blown from the multistage air ports 5 arranged on the side wall of the furnace in the complementary combustion zone.
The high-temperature combustion gas generated in the complementary combustion zone is converted into thermal energy by flowing while contacting the heat transfer surface of the boiler 3, super heater, economizer, etc. It is released into the atmosphere through a chimney.

以下に本発明の実施例を示す。
〔実施形態〕
下記1)〜4に本発明の実施形態を示す。
1)籾がら焚き蒸気タービン発電設備(熱エネルギーの確保)
出力 445KWH
ボイラー蒸発量 5500kg/H
蒸気圧力×温度 15.5kg/cm2 ×325℃
籾がら消費量 1780kg/H
Examples of the present invention are shown below.
Embodiment
The following 1) to 4 show embodiments of the present invention.
1) Firewood steam turbine power generation facility (ensuring thermal energy)
Output 445KWH
Boiler evaporation 5500kg / H
Steam pressure × temperature 15.5kg / cm 2 × 325 ℃
Rice bran consumption 1780kg / H

2)籾がら灰の分析
採取した籾がら灰サンプルより、C、SiO2 、残留発熱量を測定した。
籾がら灰分析値
SiO2 93.20%
C 1.84%
残留発熱量 344kcal(残留固定炭素)
2) Analysis of soot ash C, SiO 2 and residual calorific value were measured from the collected soot ash sample.
Analysis value of rice husk ash SiO 2 93.20%
C 1.84%
Residual calorific value 344 kcal (residual fixed carbon)

3)発熱量のデータ
籾がらの発熱量の測定結果
高位発熱量 3932Kcal/kg
低位発熱量 3165Kcal/kg
含水率 10.5%
灰分・残留物 20.5%
3) Data of calorific value Measurement result of calorific value of Kaigagar High calorific value 3932Kcal / kg
Lower heating value 3165Kcal / kg
Moisture content 10.5%
Ash / residue 20.5%

4)燃焼装置を使ってエネルギー変換できた熱量
Q=3165Kcal/kg−{(20.5×344)/100}
=3094Kcal/kg
燃焼効率
n=(3094/3165)×100=97.76%
4) The amount of heat that can be converted using the combustion device Q = 3165 Kcal / kg-{(20.5 × 344) / 100}
= 3094 Kcal / kg
Combustion efficiency n = (3094/3165) × 100 = 97.76%

〔本発明の燃焼方式の特質について〕
1)炉内雰囲気の設定温度を変えた場合の燃焼比較実験
本燃焼機構のもつ籾がら焼層の多段流動化を使って籾がらと流体の向流反応を充分に付与することで籾がらと流体双方の加熱と冷却を精密に調節できるので、設定温度を変えて焼成する籾がらから得られる籾がら灰のもつ微細構造の制御技術を研究するため、以下の実験を行った。
[About the characteristics of the combustion system of the present invention]
1) Combustion comparison experiment when the set temperature of the furnace atmosphere is changed By using the multistage fluidization of the soot burning layer of this combustion mechanism, the countercurrent reaction between soot and fluid is sufficiently imparted. Since the heating and cooling of both fluids can be precisely controlled, the following experiments were conducted to study the fine structure control technology of soot ash obtained from the soot that is fired at different preset temperatures.

シミュレーションの結果から、多段流動層燃焼の炉内雰囲気温度を650℃及び750℃に設定し、その±50℃で二通りの燃焼実験を実施した。結果を表1に示す。
試験1 設定温度:650℃±50℃
試験2 設定温度:750℃±50℃
燃料炉内滞留時間:20分
試験1、2から得られた籾がら灰は、それぞれ結晶粒の発達度合いに明確な差異が見られた。いずれの灰の微細組織も、少量の残留炭素を含む生の籾がらよりも多孔質の活性シリカ(SiO2 )が主なものであり、焼成過程で発生する局所過熱がないので、焼結化に起因するクリンカー粒は含んでいない。
From the simulation results, the furnace atmosphere temperature of multistage fluidized bed combustion was set to 650 ° C. and 750 ° C., and two combustion experiments were performed at ± 50 ° C. The results are shown in Table 1.
Test 1 Set temperature: 650 ° C ± 50 ° C
Test 2 Set temperature: 750 ° C ± 50 ° C
Residence time in fuel furnace: 20 minutes The soot ash obtained from tests 1 and 2 showed clear differences in the degree of crystal grain development. All ash microstructures are made of porous active silica (SiO 2 ), which is more porous than raw straw containing a small amount of residual carbon, and there is no local overheating that occurs during the firing process. Does not contain clinker grains due to

Figure 0004396843
Figure 0004396843

これらの焼成された微細構造の籾がら灰は、温度差によるSiO2 の性状の変化でクリストバライト化に差異は出るものの、この温度域では微細構造を破壊することなしに、反応性と可溶性はクリストバライト岩(クリストバライトの多い岩石)よりも高く、結晶化度の低いシリカの多孔質体である。
2)他の燃焼方式との燃焼特性の違いについて
本燃焼方式と他の方式の燃焼特性を比較することを目的に、これまでに東南アジア諸国に導入され、今もって稼働しているマレーシアのベルギー製籾がら専焼発電設備から産出する籾がら灰の組成を分析し、本燃焼設備から産出する籾がら灰の組成の分析値との比較を行った。その結果を表2に示す。
Although these calcined fine ash ash has a difference in the cristobalite formation due to the change in the properties of SiO 2 due to the temperature difference, the reactivity and solubility are not cristobalite without destroying the microstructure in this temperature range. It is a porous body of silica that is higher than rocks (rocks with much cristobalite) and has low crystallinity.
2) Differences in combustion characteristics from other combustion systems For the purpose of comparing the combustion characteristics of this combustion system with those of other systems, Malaysia has been introduced to Southeast Asian countries so far and is still operating in Malaysia. The composition of soot ash produced from the soot ash-fired power generation facility was analyzed and compared with the analytical value of the composition of soot ash produced from this combustion facility. The results are shown in Table 2.

Figure 0004396843
Figure 0004396843

表2より、両燃焼装置から産出する籾がら灰中の残留炭素量(未燃部分)について比較してみると、本燃焼方式の融着点以下の設定温度で完全燃焼させる制御技術が、他の方式(ストーカー方式、リアクター方式)に比べて、極めて精密に機能していることが分かる。
このように燃焼条件が及ぼす籾がら灰の形態の違いについて以下に考察する。
籾がらを焼成して得られる灰の化学成分値は、主として燃焼の作用温度域、昇温速度、滞留時間、空気量によって違ってくるが、完全燃焼した場合はSiO2 が90〜98%まで焼成され、他に残留炭素1〜3%を含む結晶化度の低い高純度シリカが得られる。
From Table 2, when comparing the amount of residual carbon (unburned part) in the soot ash produced from both combustion devices, the control technology for complete combustion at the set temperature below the fusion point of this combustion method is It can be seen that it functions extremely precisely compared to the method (Stalker method, Reactor method).
The difference in the form of soot ash affected by the combustion conditions will be discussed below.
The chemical component value of the ash obtained by baking the soot varies mainly depending on the temperature range of combustion, the heating rate, the residence time, and the amount of air, but in the case of complete combustion, SiO 2 is 90 to 98% A high-purity silica having a low crystallinity containing 1 to 3% of residual carbon is obtained by firing.

一般に、籾がらの揮発分が分解燃焼する300〜500℃の間の作用温度域では、燃焼の局所的温度急上昇によって、灰分に発生する焼結現象から成分中のカリウムがシリカと反応し、過度の早期溶融が起こってクリンカーの粒状化が進み、さらに、600℃以上の炭素の表面燃焼域では、次第に凝集して焼塊となり、通風を妨げ、未燃炭素を取り込むことにより安定的完全燃焼が持続できなくなる。
この現象が、籾がらのもつ固有のSiO2 の骨格構造が完全燃焼を妨げる障害となり、燃料として活用しにくい欠点とされる。それ故、本燃焼方式以外の方式では、いずれも籾がらの燃焼特性を制御する技術を確立していないため、炉内の作用温度域で燃焼障害を起こし、継続燃焼ができなくなるので、未燃部分を残したまま炉外に排出せざるを得ず、完全燃焼はほぼ不可能となる。
In general, in the working temperature range between 300 and 500 ° C. at which the volatile matter of the soot is decomposed and burned, the potassium in the component reacts with silica from the sintering phenomenon generated in the ash due to a rapid rise in the local temperature of combustion, and excessively In the surface combustion zone of carbon above 600 ° C, it gradually aggregates into an ingot, obstructs ventilation, and incorporates unburned carbon to achieve stable complete combustion. It cannot be sustained.
This phenomenon is a drawback that the inherent SiO 2 skeletal structure of soot is an obstacle to complete combustion and is difficult to use as a fuel. Therefore, no method other than this combustion method has established the technology to control the combustion characteristics of soot, so that combustion failure occurs in the operating temperature range of the furnace and continuous combustion cannot be performed. It must be discharged outside the furnace while leaving a part, and complete combustion is almost impossible.

継続燃焼を保持するため強制的に排出される未燃籾がら灰は、クリンカーの混在する結晶化の進んだ不均質な品質となる。成分は、SiO2 :50〜80%、残留炭素:8〜35%とばらつきが大きい。一般に、残留炭素量を減量するために焼成した籾がら灰のSiO2 は結晶化が進んでクリンカー化していることが多い。
このことから、本燃焼方式以外の方式を使って、熱エネルギーの確保問題と併せて、その利用技術に結びつける価値ある籾がら灰を焼成することはできない。
因みに、最近タイ国で可動している都市ゴミと籾がらの混焼による発電設備から排出される灰に含まれる残留炭素量は7%以上で、本燃焼方式の結果には及ばない。本燃焼方式で産出する籾がら灰と他の燃焼方式で排出される籾がら灰とは、クリンカー化と籾がらのもつ微細構造の有無による結晶化の進み具合から、明らかに区別することができる。
Unburnt soot ash that is forcibly discharged to maintain continuous combustion has a heterogeneous quality with advanced crystallization mixed with clinker. Components, SiO 2: 50~80%, residual carbon: 8-35% and vary widely. Generally, soot ash SiO 2 baked to reduce the amount of residual carbon is often crystallized and clinkered.
For this reason, it is not possible to burn soot ash that is valuable in connection with its utilization technology, together with the problem of securing thermal energy, using a method other than the present combustion method.
Incidentally, the amount of residual carbon contained in the ash discharged from the power generation facility by the combined combustion of municipal waste and straw that has recently moved in Thailand is more than 7%, which is not the result of this combustion method. Soot ash produced by this combustion method and soot ash emitted by other combustion methods can be clearly distinguished from the clinkerization and the progress of crystallization due to the presence or absence of fine structure of soot. .

〔本燃焼方式で産出する多孔質活性シリカを含む籾がら灰の利用について〕
本燃焼方式で焼成された籾がら灰に含まれる微細組織の多孔質活性シリカは、クリストバライト岩(クリストバライトの多い岩石)と比べてSiO2 の純度が高い。籾がら灰に含まれる多孔質活性シリカは、その特性を利用技術に結びつける新素材として、以下のような工業利用の分野が考えられる。
・微生物担体(微生物の付着性に優れている。)
・活性汚泥添加材(消化促進、バルキング解消、処理能力の向上が図れる。)
・ガス吸着能(アンモニアガス、水中、蛋白質に強い吸着能を保有している。)
・脱臭剤
・ケイ酸系肥料原料
・農薬担体(農業、食品加工、環境浄化用材料として使用可能である。)
・その他
[Use of soot ash containing porous activated silica produced by this combustion method]
Porous activated silica having a fine structure contained in soot ash fired by this combustion method has a higher SiO 2 purity than cristobalite rock (rock with a lot of cristobalite). The following fields of industrial use are conceivable as a new material for linking the characteristics of porous activated silica contained in straw ash to utilization technology.
・ Microbial carrier (excellent adhesion of microorganisms)
・ Activated sludge additive (Promotes digestion, eliminates bulking, and improves processing capacity.)
・ Gas adsorption capacity (A strong adsorption capacity for ammonia gas, water and protein)
・ Deodorizer ・ Silica fertilizer raw material ・ Agricultural chemical carrier (can be used as a material for agriculture, food processing and environmental purification)
・ Other

上記のような工業用途に流通しているクリストバライト岩シリカゲル等に比較して、開発された微細構造を持つ有機性の多孔質活性シリカの優位性としては、以下のようなことを挙げることができる。
・SiO2 の含有量が高い。
・可溶性と反応性が高く、結晶化度が低い。
・不純物の塩基性酸化物群(Fe2 3 、MgO、Al2 3 、CaO等)の含有量が低い。
As compared with cristobalite rock silica gel and the like that are distributed in industrial applications as described above, the advantages of the organic porous active silica having a fine structure developed can include the following. .
・ The content of SiO 2 is high.
-Highly soluble and reactive, with low crystallinity.
- basic oxide groups impurities (Fe 2 O 3, MgO, Al 2 O 3, CaO , etc.) a low content of.

図1は、本発明を実施する籾がら燃焼装置の全体を示す図である。FIG. 1 is a view showing the whole of a soot burning apparatus for carrying out the present invention. 図2は、図1のA−A矢視断面を示す図である。FIG. 2 is a diagram illustrating a cross-section taken along the line AA in FIG. 1.

符号の説明Explanation of symbols

図において、
1:主燃焼装置本体
2:籾がら供給装置
3:熱エネルギー回収機器
4:灰ピット
5:空気口
6:押込みファン
7:昇温着火用重油バーナー
8:灰排出コンベヤー
9:炉底床
In the figure,
1: Main combustion device body 2: Slag supply device 3: Thermal energy recovery device 4: Ash pit 5: Air port
6: Pushing fan 7: Heavy oil burner for temperature rising ignition 8: Ash discharge conveyor 9: Furnace bottom floor

Claims (1)

籾がらを、その融着点以下の400〜800℃の炉内温度に設定し、かつ炉雰囲気を酸化雰囲気に調整しながら、連続的に完全燃焼するように構成した一次燃焼域及び二次燃焼域からなる焼成炉の前記一次燃焼域に連続的に装入し、該一次燃焼域で加熱燃焼させて炭化した籾がらを、一次燃焼域の下部に位置する二次燃焼域の炉底床上に既に積層されている多段流動層の表面に重畳させるように供給し、一次燃焼域で時系列的に炭化した籾がらを、表面燃焼させるため、二次燃焼域の炉底床から吹き込む流動化空気に、焼成炉の炉前縁壁面に相対する炉側壁面に設置した多段空気口から横吹き空気を吹き込むことで、積層内に生ずる空気と籾がら粒子の向流接触反応を高めて、積層した籾がらを攪拌し、かくして形成された複数段の流動層からなる多段流動層を、籾がら焼層中のすべての籾がら粒子を完全燃焼するのに必要な時間以上に、ほぼ同じ時間、層内に滞留させて灰化し、かくして結晶化度の低い可溶性で反応性の高い活性シリカの多孔質体を主成分とする籾がら灰を得ることを特徴とする籾がらの多段流動層燃焼法。
Primary combustion zone and secondary combustion configured to continuously burn completely while setting the soot inside the furnace temperature of 400 to 800 ° C. below the fusion point and adjusting the furnace atmosphere to an oxidizing atmosphere On the bottom floor of the secondary combustion zone located in the lower part of the primary combustion zone, the charcoal that is continuously charged into the primary combustion zone of the firing furnace comprising the zone and carbonized by heating and burning in the primary combustion zone. Fluidized air blown from the bottom floor of the secondary combustion zone in order to superimpose soot on the surface of the multistage fluidized bed that has already been laminated, The cross-flow contact reaction between the air generated in the stack and the soot particles is increased by laminating the air from the multistage air port installed on the side wall of the furnace facing the furnace front edge wall of the firing furnace. The stirrer is stirred and the fluidized bed thus formed A multi-stage fluidized bed that stays in the bed for about the same time as the time required to completely burn all the soot particles in the soot-fired bed, and ashes, and thus has a low crystallinity and solubility. A multistage fluidized bed combustion method of soot obtained by obtaining soot ash mainly composed of a porous body of highly active silica.
JP2004299207A 2004-10-13 2004-10-13 Multi-stage fluidized bed combustion method Expired - Lifetime JP4396843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299207A JP4396843B2 (en) 2004-10-13 2004-10-13 Multi-stage fluidized bed combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299207A JP4396843B2 (en) 2004-10-13 2004-10-13 Multi-stage fluidized bed combustion method

Publications (2)

Publication Number Publication Date
JP2006112687A JP2006112687A (en) 2006-04-27
JP4396843B2 true JP4396843B2 (en) 2010-01-13

Family

ID=36381345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299207A Expired - Lifetime JP4396843B2 (en) 2004-10-13 2004-10-13 Multi-stage fluidized bed combustion method

Country Status (1)

Country Link
JP (1) JP4396843B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558838B1 (en) * 2009-12-26 2010-10-06 開発電業株式会社 Heat exchanger
WO2013035334A1 (en) * 2011-09-09 2013-03-14 國分農場有限会社 Combustion apparatus
CN102732276A (en) * 2012-06-21 2012-10-17 安徽明太生物科技有限公司 Rice husk direct-combustion and carbonization combination apparatus
JP5707012B2 (en) * 2012-09-09 2015-04-22 有限会社ヤマエンタープライズ Low temperature pyrolysis volume reduction device for organic waste and method of using the same
CN104235833B (en) * 2014-08-12 2017-02-15 吉林省瑞昊能源科技有限公司 Transformed boiler for burning rice husk and method for producing thermal insulation covering agent by using boiler
JP2017090027A (en) * 2015-11-02 2017-05-25 建十 鳥居 Fluid bed type stoker furnace
JP6618131B1 (en) * 2019-02-21 2019-12-11 株式会社Scmソリューションズ Apparatus for producing silica from rice husk and method for producing the same
CN110631008B (en) * 2019-10-29 2024-10-01 绿源能源环境科技集团有限公司 Hierarchical air supply layer combustion boiler structure
CN111517334B (en) * 2020-05-25 2022-11-08 合肥学院 Device for preparing rice hull-based silicon dioxide
CN113714246B (en) * 2021-08-03 2022-12-23 武汉武锅能源工程有限公司 Waste incineration fly ash treatment system and method

Also Published As

Publication number Publication date
JP2006112687A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
US4081285A (en) Portland cement manufacture
CN104456575B (en) One way of life refuse pyrolysis combustion furnace and operation process thereof
CN100594228C (en) Integral process for oil shale retorting oil refining and coal-char combustion power generation
US20220236009A1 (en) Kiln system and method for firing ceramsite and by-producing waste heat by utilizing raw materials with heating values
CN101376813B (en) Carbonization treatment method and device for high-water-content organic matter
RU2002110816A (en) The method of gasification of organic substances and mixtures of substances
CA2387690A1 (en) Method for gasifying organic materials and mixtures of materials
CN102329656B (en) Downdraft biomass gasification reaction chamber and gasification process thereof
JP4396843B2 (en) Multi-stage fluidized bed combustion method
CN108026458A (en) Industrial furnace is integrated with biomass gasification system
CN106995708A (en) A kind of biomass charcoal making system and method
CN1945116B (en) Circulation fixing bed split phase combustion technology
CN102213413B (en) Coal-saving high-temperature boiling furnace
CN109974005A (en) A kind of sludge incineration method
JP2011038695A (en) Fluidized-bed heat treatment device and its method
JP2007146016A (en) Carbonization furnace for woody material
CN100363461C (en) Method and device for preparing fuel gas from biomass/domestic garbage double bed type heat decomposition
Xu et al. The influence of high-temperature crystallite growth and petrography of pulverized char on combustion characteristics☆
CN105737373A (en) Small and medium sized environment-friendly biomass water heater
CN212298956U (en) Circulating fluidized bed boiler using semi coke or natural gas as fuel
CN211952767U (en) Bubbling type internal circulating fluidized bed incinerator capable of self-sustaining incineration of low-calorific-value sludge
CN103013573A (en) System for supplying high temperature air for fluidized bed coal gasification furnace
CN113847596A (en) Mixed fuel fluidized combustion method and device
CN202973115U (en) Lifting spiral feeding device
CN105889906A (en) Thermal-pulverization high-efficiency combustion device and method for high-volatile-component carbon-containing fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4396843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250