JP4390347B2 - 位置検出装置 - Google Patents
位置検出装置 Download PDFInfo
- Publication number
- JP4390347B2 JP4390347B2 JP2000070303A JP2000070303A JP4390347B2 JP 4390347 B2 JP4390347 B2 JP 4390347B2 JP 2000070303 A JP2000070303 A JP 2000070303A JP 2000070303 A JP2000070303 A JP 2000070303A JP 4390347 B2 JP4390347 B2 JP 4390347B2
- Authority
- JP
- Japan
- Prior art keywords
- coil
- response member
- magnetic response
- voltage
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
【発明の属する技術分野】
この発明は、交流励磁されるコイルとこのコイルに対して相対的に変位する磁性体又は導電体とを含んで構成される位置検出装置に関し、所定範囲での直線位置または回転位置の検出に適したものであり、特に、1相の交流で励磁される1次コイルのみを使用して複数相の振幅関数特性を示す出力交流信号を検出対象位置に応じて生成するものに関する。
【0002】
【従来の技術】
LVDTといわれる誘導型直線位置検出器が知られている。2ワイヤタイプLVDTは、1個の1次コイルと1個の2次コイルとからなり、磁性体からなる可動部のコイル部への侵入量に応じて1次2次コイル間の誘導結合が変化し、それに応じた電圧レベルの誘導出力信号を2次コイルに生成する。3ワイヤタイプLVDTは、1個の1次コイルと逆相直列接続された2個の2次コイルとからなる差動トランス構成であり、この場合は、所定長の磁性体からなる可動部が逆相2次コイルのどちらかへの侵入量に応じて1次2次コイル間の誘導結合がバランス的に変化し、それに応じた電圧レベルの誘導出力信号を2次コイルに生成する。このLVDTの2次出力信号をアナログ的に加算または減算する演算を行うことで、可動部の位置に応じたサイン特性の出力信号とコサイン特性の出力信号とを生成し、これらのサイン特性の出力信号とコサイン特性の出力信号とをRDコンバータで処理して、可動部の位置を検出したディジタルデータを生成する。また、別のタイプの位置検出器として、励磁コイルのみを設け、可動磁性体コアの変位に応じたその自己インダクタンスの変化をR−L回路による移相量を測定することで検出するようにしたものも知られている。
【0003】
【発明が解決しようとする課題】
従来知られたLVDTは、1次コイルと2次コイルが必要であるため、部品点数が多くなり、製造コストを低廉にするのに限界があった。また、小型化するにも限界があった。また、可動部の位置に応じたサイン特性及びコサイン特性の出力信号における利用可能な位相角範囲は、2ワイヤタイプLVDTでは45度程度、3ワイヤタイプLVDTでは90度程度と比較的狭く、検出可能位相角範囲を拡大することは困難であった。また、3ワイヤタイプLVDTでは、可動部がコイル部の中央に位置する状態を基準にしてその左右に変位する位置しか検出することができないため、応用の際に、使い勝手が悪いという問題があった。また、検出対象の微小変位に対する検出分解能が悪かった。一方、励磁コイルの自己インダクタンスを測定するタイプの位置検出器では、コイル数を減らすことができるが、検出対象の変位に応じた移相量が狭い範囲でしか得られないため、実際はその移相量の測定が困難であり、また、検出分解能が悪く、実用化には不向きであった。また、周辺環境温度の変化に付随してコイルのインピーダンスが変化すると、移相量も変化してしまうため、温度特性の補償を行うことができなかった。
【0004】
本発明は上述の点に鑑みてなされたもので、小型かつシンプルな構造を持つと共に、利用可能な位相角範囲を広くとることができ、また、検出対象の変位が微小でも高分解能での検出が可能であり、温度特性の補償も容易な、位置検出装置を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明に係る位置検出装置は、1相の交流信号で励磁される少なくとも1つのコイルを配置してなるコイル部と、前記コイル部に対して相対的に変位するよう配置された磁気応答部材であって、検出対象の変位に応じて該部材と前記コイル部との相対的位置が変化し、この相対的位置に応じて前記コイルのインピーダンスを変化させ、このインピーダンス変化に基づき前記相対的位置が所定の範囲にわたって変化する間で前記コイルに生じる電圧が変化するようにしたものと、交流信号からなる所定の少なくとも1つの基準電圧を発生する回路と、前記少なくとも1つのコイルに生じる電圧を取り出し、前記基準電圧と加算又は減算することで、互いに異なる所定の周期的振幅関数を振幅係数として持つ交流出力信号を少なくとも2つ生成する演算回路であって、前記各交流出力信号の前記周期的振幅関数はその周期特性において所定位相だけずれているものとを具える。
【0006】
磁気応答部材は、典型的には、磁性体及び導電体の少なくとも一方を含んでなるものである。磁気応答部材が磁性体からなる場合は、該部材のコイルに対する近接の度合いが増すほど、該コイルのインダクタンスが増加して、該コイルの電気的インピーダンスが増加し、該コイルに生じる電圧、つまり端子間電圧(若しくは電圧降下)、が増加する。反対に、該磁気応答部材のコイルに対する近接の度合いが減少するほど、該コイルのインダクタンスが減少して、該コイルの電気的インピーダンスが減少し、該コイルに生じる電圧、つまり端子間電圧、が減少する。こうして、検出対象の変位に伴い、コイルに対する磁気応答部材の相対的位置が所定の範囲にわたって変化する間で該コイルの端子間電圧は、増加若しくは減少変化することになる。
【0007】
例えば、典型的には、コイルに対する磁気応答部材の相対的位置が所定の範囲にわたって変化する間で該コイルの端子間電圧が示す漸増変化カーブは、サイン関数における0度から90度までの範囲の関数値変化になぞらえることができる。ここで、交流信号成分をsinωtで示し、コイルの端子間電圧が示す漸増変化カーブにおける適当な区間の始まりの位置に対応して得られるコイル出力電圧Vxの振幅係数レベル値をPaとすると、該区間の始まりの位置に対応するコイル出力電圧Vxは、Pa sinωtと表わせる。そして、該区間の終わりの位置に対応して得られるコイル出力電圧Vxの振幅係数レベル値をPbとすると、該区間の終わりの位置に対応するコイル出力電圧は、Pb sinωtと表わせる。ここで、始まりの位置に対応するコイル出力電圧Vxの値Pa sinωtと同じ値の交流電圧を基準電圧Vaと定めて、これをコイル出力電圧Vxから減算すると、コイル出力電圧Vxの振幅係数を関数A(x)で示すと、
となる。前記区間の始まりの位置では、A(x)=Paであることから、この演算結果の振幅係数「A(x) −Pa 」は「0」となる。一方、前記区間の終わり位置では、A(x)=Pbであることから、この演算結果の振幅係数「A(x) −Pa 」は「Pb −Pa 」となる。よって、この演算結果の振幅係数「A(x) −Pa 」は、前記区間の範囲内において、「0」から「Pb −Pa 」まで漸増する関数特性を示す。ここで、「Pb −Pa 」は最大値であるから、これを等価的に「1」と考えると、前記式(1)に従う交流信号の振幅係数「A(x) −Pa 」は、前記区間の範囲内において、「0」から「1」まで変化することになり、この振幅係数の関数特性は、サイン関数の第1象限(つまり0度から90度の範囲)の特性になぞらえることができる。よって、前記式(1)に従う交流信号の振幅係数「A(x) −Pa 」は、等価的にsinθ(ただし、大体、0°≦θ≦90°)と表わせる。
【0008】
好ましい一実施形態は、前記コイル部は、1つのコイルを配置してなり、前記所定の基準電圧を発生する回路は、第1及び第2の基準電圧を発生し、前記演算回路は、前記1つのコイルから取り出した電圧と前記第1及び第2の基準電圧とをそれぞれ加算又は減算することで、第1の振幅関数を振幅係数として持つ第1の交流出力信号と、第2の振幅関数を振幅係数として持つ第2の交流出力信号とをそれぞれ生成するものである。この場合、コイル部は、ただ1つのコイルを持つだけでよいので、構成を最小限に簡略化することができる。上記第1の基準電圧として上記Vaを使用することで、上記第1の振幅関数として、サイン関数のほぼ第1象限(つまり0度から90度の範囲)の特性を持つものを得ることができる。
【0009】
また、前記区間の終わりの位置に対応するコイル出力電圧Vxの値Pb sinωtと同じ値の交流電圧を第2の基準電圧Vbと定め、これとコイル出力電圧Vxとの差を求めると、
となる。前記区間の始まりの位置では、A(x)=Paであることから、この演算結果の振幅係数「Pb −A(x) 」は「Pb −Pa 」となる。一方、前記区間の終わり位置では、A(x)=Pbであることから、この演算結果の振幅係数「Pb −A(x) 」は「0」となる。よって、この演算結果の振幅係数「Pb −A(x) 」は、前記区間の範囲内において、「Pb −Pa 」から「0」まで漸減する関数特性を示す。前記と同様に、「Pb −Pa 」を等価的に「1」と考えると、前記式(2)に従う交流信号の振幅係数「Pb −A(x) 」は、前記区間の範囲内において、「1」から「0」まで変化することになり、この振幅係数の関数特性は、コサイン関数の第1象限(つまり0度から90度の範囲)の特性になぞらえることができる。よって、前記式(2)に従う交流信号の振幅係数「Pb −A(x) 」は、等価的にcosθ(ただし、大体、0°≦θ≦90°)と表わせる。なお、式(2)の減算は「Vx−Vb」であってもよい。
【0010】
こうして、1つのコイルと2つの基準電圧を用いるだけで、検出対象位置に応じてサイン及びコサイン関数特性に従う振幅をそれぞれ示す2つの交流出力信号を生成することができる。例えば、検出対象位置を角度θに置き換えて示すと、概ね、サイン関数特性を示す振幅を持つ交流出力信号は、sinθsinωtで示すことができるものであり、コサイン関数特性を示す振幅を持つ交流出力信号は、cosθsinωtで示すことができるものである。これは、レゾルバといわれる位置検出器の出力信号の形態と同様のものであり、極めて有用なものである。例えば、前記演算回路で生成された前記2つの交流出力信号を入力し、該2つの交流出力信号における振幅値の相関関係から該振幅値を規定する前記サイン及びコサイン関数における位相値を検出し、検出した位相値に基づき前記検出対象の位置検出データを生成する振幅位相変換部を具備するようにするとよい。なお、上記サイン及びコサイン関数は、ほぼ1象限分(90度)の範囲の特性を示すので、検出可能な位置範囲がほぼ90度の範囲の位相角に換算されて検出されることになる。
【0011】
ここで、基準電圧Va,VbのレベルPa,Pbを可変設定することは、検出可能な位置範囲を可変設定することにつながる。例えば、レベルPaとPbの差が大きくなるようにこれらの値を設定すると、検出可能な位置範囲が広がり、小さくなるようにこれらの値を設定すると、検出可能な位置範囲が狭まる。検出可能な位置範囲の変化にかかわらず、この範囲内での位置が、常にほぼ90度の範囲の位相角に換算されて検出されるので、基準電圧Va,Vbのレベルを可変設定することで位置検出の分解能を可変設定できることになる。このことは、例えば、微小変位を検出する場合であっても、超高分解能での位置検出が可能であることを意味している。
【0012】
別の一実施形態は、前記コイル部は、2つのコイルを配置してなり、検出対象の変位に応じて前記磁気応答部材に対する各コイルの相対的位置が逆特性で変化し、これに応じて前記各コイルのインピーダンスが逆特性で変化し、前記所定の基準電圧を発生する回路は、1つの基準電圧を発生し、前記演算回路は、前記各コイルから取り出した電圧と前記基準電圧とをそれぞれ加算又は減算することで、第1の振幅関数を振幅係数として持つ第1の交流出力信号と、第2の振幅関数を振幅係数として持つ第2の交流出力信号とをそれぞれ生成するものである。
【0013】
例えば、前述と同様に、磁気応答部材の相対的位置が所定の範囲にわたって変化する間で第1のコイルの端子間電圧が示す漸増変化カーブは、サイン関数における0度から90度までの範囲の関数値変化になぞらえることができる。すなわち、適当な区間の始まりの位置に対応して得られるコイル出力電圧VxはPa sinωtと表わすことができ、これは最小値に相当する。この始まりの位置を基準電圧Vaで設定できる。基準電圧Va=Pa sinωtを用いて上記(式1)と同じ演算を行うことにより、
Vx−Va={A(x) −Pa }sinωt
となり、前述と同様に、この振幅係数「A(x) −Pa 」の関数特性として、サイン関数の第1象限(つまり0度から90度の範囲)の特性、つまり等価的にsinθ(ただし、大体、0°≦θ≦90°)になぞらえることができる。
【0014】
一方、第2のコイルの端子間電圧は、上記とは逆特性の漸減変化カーブを示し、前記区間の始まりの位置に対応して得られる第2のコイル出力電圧Vyを仮りにPa' sinωtと表わすと、これは最大値に相当する。上記基準電圧Vaを第2コイル出力電圧Vyから減算すると、コイル出力電圧Vyの振幅係数を関数A(y)で示すと、
となる。前記区間の始まりの位置では、A(y)=Pa' であることから、この演算結果の振幅係数「A(y) −Pa 」は「Pa' −Pa 」であり、「最大値−最小値」であるから、等価的に「1」とみなせる最大値、となる。一方、前記区間の終わり位置では、A(y)=Paであることから、この演算結果の振幅係数「A(y) −Pa 」は「0」となる。よって、この演算結果の振幅係数「A(y) −Pa 」は、前記区間の範囲内において、最大値「Pa' −Pa 」(つまり「1」)から「0」まで漸減する関数特性を示し、この振幅係数の関数特性は、コサイン関数の第1象限(つまり0度から90度の範囲)の特性になぞらえることができる。よって、前記式(3)に従う交流信号の振幅係数「A(y) −Pa 」は、等価的にcosθ(ただし、大体、0°≦θ≦90°)と表わせる。
【0015】
こうして、2つのコイルと1つの基準電圧を用いる場合も、検出対象位置に応じてサイン及びコサイン関数特性に従う振幅をそれぞれ示す2つの交流出力信号(sinθsinωtとcosθsinωt)を生成することができる。この場合も、上記サイン及びコサイン関数は、ほぼ1象限分(90度)の範囲の特性を示すので、検出可能な位置範囲がほぼ90度の範囲の位相角に換算されて検出されることになる。また、前述と同様に、基準電圧Vaを可変することにより、検出可能な位置範囲を可変設定することができ、検出分解能を調整することができる。
【0016】
なお、磁気応答部材として、銅のような良導電体を使用した場合は、渦電流損によってコイルの自己インダクタンスが減少し、磁気応答部材のコイルに対する近接に伴い該コイルの端子間電圧が漸減することになる。この場合も、上記と同様に検出することが可能である。また、磁気応答部材として、磁性体と導電体を組合わせたハイブリッドタイプのものを用いてもよい。
別の実施形態として、磁気応答部材として永久磁石を含み、コイルは磁性体コアを含むようにしてもよい。この場合は、コイルの側の磁性体コアにおいて永久磁石の接近に応じて対応する箇所が磁気飽和又は過飽和となり、該磁気応答部材すなわち永久磁石のコイルに対する相対的変位に応じて該コイルの端子間電圧が漸減することになる。
【0017】
かくして、この発明によれば、1次コイルのみを設ければよく、2次コイルは不要であるため、小型かつシンプルな構造の位置検出装置を提供することができる。また、1つのコイルと2つの基準電圧を用いるだけで、あるいは2つのコイルと1つの基準電圧を用いることにより、検出対象位置に応じて所定の周期関数特性に従う振幅をそれぞれ示す複数の交流出力信号(例えばサイン及びコサイン関数特性に従う振幅をそれぞれ示す2つの交流出力信号)を容易に生成することができ、利用可能な位相角範囲として少なくともほぼ1象限(90度)分をとることができる。従って、少ないコイルでありながら比較的広い位相角範囲で検出を行うことができ、検出分解能を向上させることができる。また、検出対象の変位が微小でも高分解能での位置検出が可能である。更に、基準電圧を発生する回路として、検出用のコイルと同等の温度特性を示す回路(例えばコイル)を使用すれば、演算回路におけ減算演算によって、温度ドリフト特性が自動的に補償されることとなり、温度変化の影響を排除した位置検出を容易に行うことができる。勿論、基準電圧を発生する回路は、コイルに限らず、抵抗等、その他適宜の構成からなる電圧生成回路を使用してよい。なお、コイルと基準電圧の数は1又は2に限定されず、それ以上であってもよく、これに伴い、利用可能な位相角範囲を、ほぼ1象限(90度)分に限らず、更に拡大することも可能である。
【0018】
【発明の実施の形態】
以下、添付図面を参照してこの発明の実施の形態を詳細に説明しよう。
図1(A)は、この発明の一実施例に係る位置検出装置におけるコイル部50と磁気応答部材60との物理的配置関係の一例をコイル軸方向断面略図によって示すもの、同図(B)はその平面略図、同図(C)は該コイル部50に関連する電気回路の一例を示す図である。図1に示す位置検出装置は、検出対象の直線位置を検出するものであり、例えば、コイル部50が相対的に固定されており、磁気応答部材60が検出対象の変位に応じて相対的に直線変位する。この逆に、磁気応答部材60を相対的に固定し、コイル部50を検出対象の変位に応じて相対的に変位させてもよいのは勿論である。
【0019】
コイル部50は、所定の交流信号によって励磁される1つのコイルL1を含み、該コイルL1には磁性体コア51が設けられている。磁気応答部材60は、コイルL1の磁性体コア51の端部に対して空隙を介して対向するフラットな面を成し、検出対象位置の変化に連動して磁気応答部材60の面が矢印x方向又はその逆向きに変位する。この空隙の変化によって、磁性体コア51を通ってコイルL1を貫く磁束量が変化し、もって、コイルL1の自己インダクタンスが変化する。このインダクタンス変化は、コイルL1のインピーダンス変化でもあり、該コイルL1の端子間電圧として測定できる。一例として、磁気応答部材60の材質は、鉄のような磁性体からなっているものとして説明を進める。このような構造の位置検出装置は例えばダイヤフラムのような膜の微小な変位の検出に適している。その場合、検出対象たるダイヤフラムそれ自体が磁性体(若しくは導電体)からなっている場合は、それ自体を磁気応答部材60として機能させることができる。あるいは、検出対象たるダイヤフラム等に膜状若しくは面状の磁気応答部材60を貼り付ける若しくは塗布するようにしてもよい。
【0020】
図1(A)において、磁気応答部材60の最大移動範囲を点aとbで例示した。点aの位置がコイルL1から最も離れる位置、点bが最も近づく位置である。図2(A)は、検出対象位置(横軸x)に対するコイルL1のインピーダンス(たて軸z)を例示するグラフである。磁気応答部材60が点aのときのコイルL1のインピーダンスをZaで示し、点bのときのそれをZbで示す。インピーダンスZaのときコイルL1の端子間電圧つまり出力電圧は最小レベル(最小振幅係数)であり、インピーダンスZbのときのそれは最大レベル(最大振幅係数)である。
【0021】
コイルL1の端子間電圧は、磁気応答部材60の相対的位置がaからbまで動く間で、前記インピーダンスZaに対応する最小値からインピーダンスZbに対応する最大値まで漸増変化する。このようなコイルL1の端子間電圧がとり得る値の範囲内で第1及び第2の基準電圧Va,Vbを適宜に設定する。すなわち、位置aからbまでの最大移動範囲のうち、適当な区間を検出対象区間Rとして選定し、この区間Rの始まりの位置に対応して生じるコイルL1の端子間電圧の振幅係数レベル値(すなわちインピーダンス)をPaとすると、該区間Rの始まりの位置に対応するコイルL1の端子間電圧すなわち出力電圧VxはPa sinωtであり、これを第1の基準電圧Vaとして設定する。すなわち、
Va=Pa sinωt
である。また、該区間Rの終わりの位置に対応して生じるコイルL1の端子間電圧の振幅係数レベル値(すなわちインピーダンス)をPbとすると、該区間Rの終わりの位置に対応するコイルL1の端子間電圧すなわち出力電圧VxはPb sinωtであり、これを第2の基準電圧Vbとして設定する。すなわち、
Vb=Pb sinωt
である。
【0022】
図1(C)に示すように、検出用のコイルL1は、交流発生源30から発生される所定の1相の交流信号(仮にsinωtで示す)によって定電圧又は定電流で励磁される。前述の通り、検出用のコイルL1のインダクタンスは、検出対象位置に応じて可変であるため、図では等価的に可変インダクタンスとして図示してある。また、各基準電圧Va,Vbを発生するための回路として、コイルLr1,Lr2が設けられており、これらも交流発生源30からの交流信号によって駆動される。これらは、所望の検出対象区間Rを決定するために一旦設定した後は、その設定値に固定される。
【0023】
演算回路31Aは、検出用コイルL1の出力電圧Vxから第1の基準電圧Vaを減算するもので、前記式(1)のように、コイル出力電圧Vxの振幅係数を関数A(x)で示すと、
なる演算を行う。第1基準電圧Vaによって設定した検出対象区間Rの始まりの位置では、A(x)=Paであることから、この演算結果の振幅係数「A(x) −Pa 」は「0」となる。一方、該区間Rの終わり位置では、A(x)=Pbであることから、この演算結果の振幅係数「A(x) −Pa 」は「Pb −Pa 」となる。よって、この演算結果の振幅係数「A(x) −Pa 」は、該区間Rの範囲内において、「0」から「Pb −Pa 」まで漸増する関数特性を示す。ここで、「Pb −Pa 」は最大値であるから、これを等価的に「1」と考えると、前記式に従う交流信号の振幅係数「A(x) −Pa 」は、区間Rの範囲内において、「0」から「1」まで変化することになり、この振幅係数の関数特性は、図2(B)に示すように、サイン関数の第1象限(つまり0度から90度の範囲)の特性になぞらえることができる。よって、前記式に従う交流信号の振幅係数「A(x)−Pa 」は、等価的にsinθ(ただし、大体、0°≦θ≦90°)を用いて表わせる。なお、図2(B)では、位置xに対するサイン関数特性の振幅係数のカーブsinθのみを示しているが、実際の演算回路31Aの出力はこの振幅係数sinθに対応する振幅レベルを持つ交流信号sinθsinωtである。
【0024】
演算回路31Bは、検出用コイルL1の出力電圧Vxと第2の基準電圧Vbとの差を求めるもので、前記式(2)のように、
なる演算を行う。検出対象区間Rの始まりの位置では、A(x)=Paであることから、この演算結果の振幅係数「Pb −A(x) 」は「Pb −Pa 」となる。一方、第2の基準電圧Vbによって設定した該区間Rの終わり位置では、A(x)=Pbであることから、この演算結果の振幅係数「Pb −A(x) 」は「0」となる。よって、この演算結果の振幅係数「Pb −A(x) 」は、該区間Rの範囲内において、「Pb −Pa 」から「0」まで漸減する関数特性を示す。前記と同様に、「Pb −Pa 」を等価的に「1」と考えると、前記式に従う交流信号の振幅係数「Pb −A(x) 」は、区間Rの範囲内において、「1」から「0」まで変化することになり、この振幅係数の関数特性は、コサイン関数の第1象限(つまり0度から90度の範囲)の特性になぞらえることができる。よって、前記式に従う交流信号の振幅係数「Pb −A(x) 」は、等価的にcosθ(ただし、大体、0°≦θ≦90°)を用いて表わせる。この場合も、図2(B)では、位置xに対するコサイン関数特性の振幅係数のカーブcosθのみを示しているが、実際の演算回路31Bの出力はこの振幅係数cosθに対応する振幅レベルを持つ交流信号cosθsinωtである。なお、演算回路31Bでの減算は「Vx−Vb」であってもよい。
【0025】
こうして、検出対象位置xに応じてサイン及びコサイン関数特性に従う振幅をそれぞれ示す2つの交流出力信号sinθsinωtとcosθsinωtを生成することができる。これは一般にレゾルバといわれる位置検出器の出力信号の形態と同様のものであり、有効に活用することができる。例えば、演算回路31A,31Bで生成されたレゾルバタイプの2つの交流出力信号を位相検出回路(若しくは振幅位相変換手段)32に入力し、該2つの交流出力信号における振幅値の相関関係から該振幅値を規定する前記サイン及びコサイン関数sinθ及びcosθの位相値θを計測することで、検出対象位置をアブソリュートで検出することができる。この位相検出回路32としては、例えば本出願人の出願に係る特開平9−126809号公報に示された技術を用いて構成するとよい。例えば、第1の交流出力信号sinθsinωtを電気的に90度シフトすることで、交流信号sinθcosωtを生成し、これと第2の交流出力信号cosθsinωtを加減算合成することで、sin(ωt+θ)およびsin(ωt−θ)なる、θに応じて進相および遅相方向に位相シフトされた2つの交流信号(位相成分θを交流位相ずれに変換した信号)を生成し、その位相θを測定することで、ストローク位置検出データを得ることができる。位相検出回路32は、専用回路(例えば集積回路装置)で構成してもよいし、プログラム可能なプロセッサまたはコンピュータを使用して所定のソフトウェアを実行することにより位相検出処理を行うようにしてもよい。あるいは、公知のレゾルバ出力を処理するために使用されるR−Dコンバータを、この位相検出回路32として使用するようにしてもよい。また、位相検出回路32における位相成分θの検出処理は、ディジタル処理に限らず、積分回路等を使用したアナログ処理で行ってもよい。また、ディジタル位相検出処理によって回転位置θを示すディジタル検出データを生成した後、これをアナログ変換して回転位置θを示すアナログ検出データを得るようにしてもよい。勿論、位相検出回路32を設けずに、演算回路31A,31Bの出力信号sinθsinωt及びcosθsinωtをそのまま出力するようにしてもよい。
【0026】
なお、図2(B)に示すように、サイン及びコサイン関数特性の交流出力信号sinθsinωt及びcosθsinωtにおける振幅特性は、位相角θと検出対象位置xとの対応関係が線形性を持つものとすると、真のサイン及びコサイン関数特性を示していない。しかし、位相検出回路32では、見かけ上、この交流出力信号sinθsinωt及びcosθsinωtをそれぞれサイン及びコサイン関数の振幅特性を持つものとして位相検出処理する。その結果、検出した位相角θは、検出対象位置xに対して、線形性を示さないことになる。しかし、位置検出にあたっては、そのように、検出出力データ(検出した位相角θ)と実際の検出対象位置との非直線性はあまり重要な問題とはならない。つまり、所定の反復再現性をもって位置検出を行なうことができればよいのである。また、必要とあらば、位相検出回路32の出力データを適宜のデータ変換テーブルを用いてデータ変換することにより、検出出力データと実際の検出対象位置との間に正確な線形性を持たせることが容易に行なえる。よって、本発明でいうサイン及びコサイン関数の振幅特性とは、真のサイン及びコサイン関数特性を示していなければならないものではなく、図2(B)に示されるように、実際は三角波形状のようなものであってよいものであり、要するに、そのような傾向を示していればよい。つまり、サイン等の三角関数に類似した関数であればよい。なお、図2(B)の例では、観点を変えて、その横軸の目盛をθと見立ててその目盛が所要の非線形目盛からなっているとすれば、横軸の目盛をxと見立てた場合には見かけ上三角波形状に見えるものであっても、θに関してはサイン関数又はコサイン関数ということができる。
【0027】
ここで、温度ドリフト特性の補償について説明する。温度に応じて検出用コイルL1のインピーダンスが変化しても、基準電圧Va,Vbもこれと同様の温度ドリフト特性を持つものとすれば、演算回路31A,31Bにおける差演算によって、温度ドリフト分が相殺されることになり、温度ドリフト特性が補償さることになる。そのためには、基準電圧発生用に、検出用コイルL1と同等の特性のコイルLr1,Lr2を使用し、これらのコイルLr1,Lr2と検出用コイルL1と同様の温度環境に置く(つまり検出用コイルL1の比較的近くに配置する)のがよい。勿論、基準電圧発生用のコイルLr1,Lr2の特性を検出用コイルL1と同等の特性とすることは好ましいが必須ではなく、付加抵抗の調整等によって実質的に同等の温度ドリフト特性を持たせるように構成することが可能である。また、基準電圧発生用回路は、コイルLr1,Lr2に限らず、抵抗その他の適当な定電圧発生回路を使用してもよい。
【0028】
前述の通り、基準電圧Va,VbのレベルつまりインピーダンスPa,Pbを可変設定することは、検出可能な位置範囲つまり検出対象区間Rを可変設定することにつながる。検出可能な位置範囲つまり検出対象区間Rの長さがどれほどであるかにかかわらず、この区間R内での位置が、常にほぼ90度の範囲の位相角θに換算されて検出されるので、基準電圧Va,Vbのレベルを可変設定することで位置検出の分解能を可変設定できることになる。このことは、例えば、微小変位を検出する場合であっても、超高分解能での位置検出が可能であることを意味している。一例として、位相検出回路32が12ビットバイナリカウンタを用いて一回転360度フルの位相角を「2の12乗」=4096の分解能で検出する性能を持っている場合、90度の範囲の位相角の検出分解能は「1024」であり、検出可能な位置範囲つまり検出対象区間Rの長さを5ミリメートルに設定したとすると、約5ミクロンの超高分解能での微小位置検出が可能となる。
【0029】
図3は、図1の変更例を示すものであり、磁気応答部材61の変位の方向xが図1とは異なっており、コイル部50の構造は図1と同じであってよい。図3(A)は断面略図、(B)は平面略図であり、コイル部50に関連する電気回路は図1(C)と同様の構成を使用できるので図示を省略する。図3(A)において、磁気応答部材61の最大移動範囲を点aとbで例示した。点aの位置では磁気応答部材61はコイルL1の端部をカバーしていない状態であり、コイルL1の出力レベルは最小である。磁気応答部材61は、この位置から矢印x方向にコイルL1の端部を横切るように直線変位し、該磁気応答部材61の端部が一点鎖線61’で示すように点bに対応する位置まで来ると、磁気応答部材61がコイルL1の端部を完全にカバーした状態となり、コイルL1の出力レベルは最大となる。図3の装置による位置検出動作は、図1と同様である。
【0030】
図4は、図1の更に別の変更例を示す一部断面側面略図であり、コイル部50のコイルL1には磁性体コア51が設けられておらず、検出対象の変位に応じてロッド状の磁気応答部材62が、矢印x方向に相対的に変位して、コイルL1の内部空間内に侵入していく構造からなっている。この場合も、磁気応答部材62の最大移動範囲を点aとbで例示するが、この範囲はほぼコイルL1の長さに対応する。図4の装置による位置検出動作も、図1と同様である。
【0031】
図5は、図1の更に別の変更例を示す一部断面側面略図であり、コイル部50のコイルL1には磁性体コア51が設けられており、検出対象の変位に応じて円筒スリーブ状の磁気応答部材63が、矢印x方向に相対的に変位して、コイルL1をその円筒スリーブの空間内に呑みこんでいく構造からなっている。この場合も、磁気応答部材63の最大移動範囲を点aとbで例示するが、この範囲はほぼコイルL1の長さに対応する。ただし、図5では、磁気応答部材63は銅のような非磁性良導電体からなり、該磁気応答部材63がコイルL1に近接する(コイルL1が磁気応答部材63の円筒スリーブ空間内に入り込む)ほど、渦電流損が生じて、該コイルL1のインピーダンスを減少させる。よって、点aとbの位置が図4とは逆になるように図示してある。図5の装置による位置検出動作も、図1と同様である。
【0032】
図6は、図1の更に別の変更例を示す一部断面側面略図であり、コイル部50のコイルL1には磁性体コア51が設けられており、検出対象の変位に応じて円筒スリーブ状の磁気応答部材64は永久磁石からなっていて、矢印x方向に相対的に変位して、コイルL1をその円筒スリーブの空間内に呑みこんでいく構造からなっている。永久磁石64が、コイルL1に接近するとその近接箇所に対応する磁性体コア51が部分的に磁気飽和ないし過飽和状態となり、該コイルL1の端子間電圧が低下する。永久磁石64がコイルL1一端から他端まで変位する間で該コイルL1の端子間電圧が漸減するように、該永久磁石64の長さは少なくともコイル長に相当する長さを持つ。このように、磁気応答部材64として永久磁石を使用する場合も、上記非磁性良導電体63を用いる場合と同様に、磁気応答部材64つまり永久磁石がコイルL1の一端から他端まで変位する間で該コイルの端子間電圧の漸減変化を引き起こさせることができる。永久磁石64はリング状のものに限らず、棒状等その他形状であってもよい。その場合、コイル軸心方向に平行にその近傍を永久磁石からなる磁気応答部材64が通過する配置構成を採用すればよい。なお、この場合のコイルL1の磁性体コア51は磁気飽和を起こし易いように比較的細い形状等とするとよい。
【0033】
図7は、この発明に係る位置検出装置の別の実施例を示すもので、コイル部50において2つのコイルL1,L2を設け、1つの基準電圧Vaだけを使用する例を示している。図7(A)は、コイル部50と磁気応答部材60との物理的配置関係の一例をコイル軸方向断面略図によって示すもの、同図(B)は該コイル部50に関連する電気回路の一例を示す図である。図7では、コイル部50において、一方のコイルL1には図1と同様に磁性体コア51が挿入されている。また、他方のコイルL2にも同様に磁性体コア52が挿入されている。これらのコイルL1,L2は、それぞれの磁性体コア51,52の端部が向き合うように、同軸上に向き合って配置され、その間に平板状の磁気応答部材60が配置されている。
【0034】
前述と同様に、磁気応答部材60の最大移動範囲が点aとbで例示されており、点aの位置がコイルL1から最も離れる位置、点bが最も近づく位置である。逆に、コイルL2にとっては、点aの位置が磁気応答部材60が最も近づく位置、点bが最も離れる位置である。よって、検出対象の変位に応じて磁気応答部材60に対する各コイルL1,L2の相対的位置が逆特性で変化し、これに応じて各コイルL1,L2のインピーダンスが逆特性で変化する。図8(A)は、検出対象位置(横軸x)に対するコイルL1及びL2のインピーダンス(たて軸z)を例示するグラフである。磁気応答部材60が点aのときのコイルL1のインピーダンスをZaで示し、点bのときのそれをZbで示すと、逆特性であるため、磁気応答部材60が点aのときのコイルL2のインピーダンスはZb、点bのときのそれはZaとなる。
【0035】
コイルL1の端子間電圧は、磁気応答部材60の相対的位置がaからbまで動く間で、前記インピーダンスZaに対応する最小値からインピーダンスZbに対応する最大値まで漸増変化する。一方、コイルL2の端子間電圧は、磁気応答部材60の相対的位置がaからbまで動く間で、前記インピーダンスZbに対応する最大値からインピーダンスZaに対応する最小値まで漸減変化する。1つの基準電圧Vaは、位置aからbまでの最大移動範囲のうちから選ばれた適当なを検出対象区間Rの始まりの位置に対応して生じるコイルL1の端子間電圧の振幅係数レベル値(すなわちインピーダンス)Paに対応して設定される。すなわち、前述のように、
Va=Pa sinωt
である。
【0036】
図7(B)に示すように、検出用のコイルL1及びL2は、交流発生源30から発生される所定の1相の交流信号(仮にsinωtで示す)によって定電圧又は定電流で励磁される。前述の通り、各コイルL1,L2のインダクタンスは、検出対象位置に応じて可変であるため、図では等価的に可変インダクタンスとして図示してある。また、基準電圧Vaを発生するための回路として、コイルLr1が設けられており、これも交流発生源30からの交流信号によって駆動される。
【0037】
演算回路31Cは、図1の演算回路31Aと同様に、検出用コイルL1の出力電圧Vxから基準電圧Vaを減算するもので、前記式(1)と同様に、
なる演算を行う。よって、前述と同様に、演算回路31Cの出力交流信号における振幅係数の関数特性は、図8(B)に示すように、サイン関数の第1象限(つまり0度から90度の範囲)の特性になぞらえることができる。
【0038】
演算回路31Dは、もう一方の検出用コイルL2の出力電圧Vyと基準電圧Vaとの差を求めるもので、前記式(3)のように、
なる演算を行う。図8(A)から理解できるように、コイルL2の端子間電圧Vyは、コイルL1の端子間電圧Vxとは逆特性の漸減変化カーブを示し、区間Rの始まりの位置に対応して得られる該コイル出力電圧Vyを仮りにPa' sinωtと表わすと、これは最大値に相当する。このように区間Rの始まりの位置では、A(y)=Pa' であることから、演算回路31Dの出力交流信号の振幅係数「A(y) −Pa 」は「Pa' −Pa 」であり、「最大値−最小値」であるから、等価的に「1」とみなせる最大値、となる。一方、該区間Rの終わり位置では、A(y)=Paであることから、この演算結果の振幅係数「A(y) −Pa 」は「0」となる。よって、演算回路31Dの出力交流信号の振幅係数「A(y) −Pa 」は、検出対象区間Rの範囲内において、最大値「Pa' −Pa 」(つまり「1」)から「0」まで漸減する関数特性を示し、この振幅係数の関数特性は、コサイン関数の第1象限(つまり0度から90度の範囲)の特性になぞらえることができる。よって、演算回路31Dの出力交流信号の振幅係数「A(y) −Pa 」は、図8(B)に示すように、等価的にcosθ(ただし、大体、0°≦θ≦90°)で表わせる。
【0039】
こうして、2つの検出用コイルL1,L2と1つの基準電圧Vaを用いる場合も、検出対象位置に応じてサイン及びコサイン関数特性に従う振幅をそれぞれ示す2つの交流出力信号(sinθsinωtとcosθsinωt)を生成することができる。この場合も、上記サイン及びコサイン関数は、ほぼ1象限分(90度)の範囲の特性を示すので、検出可能な位置範囲つまり検出対象区間Rがほぼ90度の範囲の位相角θに換算されて検出されることになる。また、前述と同様に、基準電圧Vaを可変することにより、検出可能な位置範囲つまり検出対象区間Rを可変設定することができ、検出分解能を調整することができる。また、図1の実施例と同様に、図7の実施例でも、温度ドリフト特性の補償を行うことができる。
【0040】
更に、図1の実施例に対して適用可能な図3〜図6の変更例は、図7の実施例に対しても同様のやり方で適用可能である。その変形の仕方の詳細は、図3〜図6から容易に類推できるので、特に図示しない。
なお、上記各実施例において、磁気応答部材60、61、62として、磁性体の代わりに、銅のような非磁性良導電体を使用してもよい。その場合は、渦電流損によってコイルのインダクタンスが減少し、磁気応答部材60、61、62の近接に応じてコイルの端子間電圧が減少することになる。この場合も、上記と同様に位置検出動作することが可能である。また、磁気応答部材として、磁性体と導電体を組合わせたハイブリッドタイプのものを用いてもよい。
【0041】
次に、更に別の実施例について説明する。
図9は、サイン及びコサイン関数特性を示す振幅をそれぞれ持つ2つの交流出力信号において、電気角でほぼ0度から180度までの範囲での振幅変化が得られるようにする実施例を示す。図9(A)は、この実施例に係る位置検出装置におけるコイル部10と磁気応答部材11との物理的配置関係の一例を外観略図によって示すもの、同図(B)はそのコイル軸方向断面略図、同図(C)は該コイル部10の電気回路の一例を示す図である。図1に示す位置検出装置は、検出対象の直線位置を検出するものであり、例えば、コイル部10が相対的に固定されており、磁気応答部材11が検出対象の変位に応じて相対的に直線変位する。この逆に、磁気応答部材11を相対的に固定し、コイル部10を検出対象の変位に応じて相対的に変位させてもよいのは勿論である。コイル部10は、所定の1相の交流信号によって励磁される複数のコイル区間(図示例では2個のコイル区間LA,LB)を、検出対象の変位方向に沿って順次縦続的に配列してなる。例えば、各コイル区間LA,LBは、巻数、コイル長等の性質が同等であるとする。磁気応答部材11は、例えば棒状の鉄のような磁性体からなり、コイル部10のコイル空間内に侵入する。一例として、図の右方向に磁気応答部材11が進行するとき、磁気応答部材11の先端11aが、最初にコイル区間LAに侵入し、次に、コイル区間LBの順に侵入する、というように順次に侵入する。2点鎖線11’は最後のコイル区間LBに侵入した磁気応答部材11を示している。
【0042】
各コイル区間LA,LBに対応する範囲が有効検出範囲である。1つのコイル区間の長さをKとすると、図示のように2個のコイル区間LA,LBを縦続的に設けた場合はその2倍の長さ2Kが有効検出範囲となる。
図9(C)に示すように、各コイル区間Lα,LA,LB,LC,LD,Lβは、交流電源30から発生される所定の1相の交流信号(仮にsinωtで示す)によって定電圧又は定電流で励磁される。各コイル区間LA,LBの各端子間電圧をそれぞれVA,VBで示す。これらの各コイル区間LA,LBの各端子間電圧VA,VBは、アナログ演算回路315及び316に入力され、所定の演算式に従って加算又は減算されることで、各アナログ演算回路315及び316から検出対象位置に応じたサイン及びコサイン関数特性を示す振幅をそれぞれ持つ2つの交流出力信号(つまりsinθsinωtとcosθsinωt)が生成される。
【0043】
以上の構成により、磁気応答部材11の各コイルに対する近接又は侵入の度合いが増すほど該コイルの自己インダクタンスすなわちインピーダンスが増加し、該部材の端部が1つのコイルの一端から他端まで変位する間で該コイルの端子間電圧が漸増する。複数のコイルLA,LBが検出対象の変位方向に沿って順次配列されてなることにより、これらコイルに対する磁気応答部材の位置が、検出対象の変位に応じて相対的に変位するにつれ、図10(A)に例示するように、各コイルの端子間電圧VA,VBの漸増変化が順番に起こる。図10(A)において、或るコイルの出力電圧が傾斜している区間において、当該コイルの一端から他端に向かって磁気応答部材11の端部が変位していることになる。典型的には、磁気応答部材11の端部が或る1つのコイルの一端から他端まで変位する間に生じる該コイルの両端間電圧の漸増変化カーブは、サイン又はコサイン関数における90度の範囲の関数値変化になぞらえることができる。そこで、各コイルの出力電圧VA,VBを所定の基準電圧とを適切に組み合わせて加算及び/又は減算することにより、検出対象位置に応じたサイン及びコサイン関数特性を示す振幅をそれぞれ持つ2つの交流出力信号sinθsinωt及びcosθsinωtを生成することができる。
【0044】
図10(A)に例示するように、各コイルの端子間電圧VA,VBの漸増変化が順番に起こる。ここで、コイル内に磁気応答部材11が全く入っていないときに得られる電圧がVo(最小電圧)であるとし、コイル内に磁気応答部材11がフルに入り込んだときに得られる電圧をVN(最大電圧)とすると、該電圧VoとVNの加算値「VN+Vo」に相当する交流(sinωt)の定電圧を基準電圧として、適宜の定電圧発生回路27から発生する。各コイルの出力電圧VAとVBの加算値から該定電圧「VN+Vo」を減算すると、得られる電圧「VA+VB−VN−Vo」は、図10(B)に示すように0度から180度の範囲でのコサイン関数特性(若しくはマイナス・コサイン関数特性)を示す。一方、電圧VAからVBを減算すると、得られる電圧「VA−VB」は、図10(B)に示すように0度から180度の範囲でのサイン関数特性を示す。
【0045】
従って、図9(C)において、コイルLA,LBの出力電圧VA,VBを演算回路315で減算することにより、その減算結果「VA−VB」として、サイン関数特性の交流出力信号sinθsinωtを生成することができる。また、コイルLA,LBの出力電圧VA,VBを演算回路316で加算し、その加算結果VA+VBから定電圧発生回路27から発生した基準電圧「VN+Vo」を減算回路317で減算することにより、その減算結果「VA+VB−(VN+Vo)」(つまり「VA+VB−VN−Vo」)として、コサイン関数特性の交流出力信号cosθsinωtを生成することができる。ここで、定電圧発生回路27から発生する基準電圧「VN+Vo」が、コイルLA,LBの温度特性変化と同じように温度特性を持って変化するようにするものとする。そのために、定電圧発生回路27は、コイルLA又はLBと同等の特性を持つダミーコイルを用いて構成し、同じ励磁交流信号によって励磁するようにすればよい。例えば、そのようなダミーコイルに、磁気応答部材11と同じ特性の磁性体コアを常時挿入しておけば、コイル内に磁気応答部材11がフルに入り込んだときに得られる最大電圧VNと同様の定電圧VNを、温度特性をもたせながら常時発生することができる。また、そのようなダミーコイルに磁性体コアを挿入しなければ、最小電圧Voと同様の定電圧Voを得ることができる。
【0046】
上記のような定電圧発生回路27は、コイル数が2個の場合に限らず、その他適宜の数のコイルを使用する場合においても、適用できる。例えば、3個のコイルLA,LB,LCを順次縦続接続して、3Kの有効検出範囲につき、0度から270度までの範囲での位相変化を生じさせることができるようにする場合は、定電圧発生回路27から前記定電圧VNとVoを別々の基準電圧として発生し、各コイルの出力電圧VA,VB,VCと定電圧発生回路27からの基準電圧VN,Voとを用いて、「VA−VB−VC+Vo」なる演算によってサイン関数特性の交流出力信号sinθsinωtを生成することができ、また、「VA+VB−VC−VN」なる演算によってコサイン関数特性の交流出力信号cosθsinωtを生成することができる。
【0047】
図11は、有効検出範囲に対応して1個のコイルLAのみを設け、かつ1つの基準電圧VNだけを使用する実施例を示す。この場合、1個のコイルのコイル長Kに対応する有効検出範囲の位相変化幅は、90度未満となる。図11(A)の例では、ダミーコイルLNは、磁気応答部材11の変位の影響を受ける検出用コイルLAに直列に接続されているが、該磁気応答部材11の変位の影響を受けないようになっており、コイルLA内に磁気応答部材11がフルに入り込んだときに得られる最大電圧VNと同じ定電圧VNを基準電圧として常時発生する。よって、コイルLAから出力される検出電圧VAと基準電圧VNとは同等の温度特性をもつ。これにより、磁気応答部材11の変位に応じたコイルLAの端子間電圧VAとダミーコイルLNの端子間電圧VNとは、図11(B)のように生成される。演算回路318はこれら電圧VA,VNを所定の演算式に従って演算し、例えば図11(C)に示すように、「VA+VN」なる演算によってサイン関数特性の交流出力信号sinθsinωtを生成し、「VA−VN」なる演算によってコサイン関数特性の交流出力信号cosθsinωtを生成する。これは、図11(D)に示すように或る90度未満の幅の角度範囲における特性に対応づけることができる。よって、これらの交流出力信号を位相検出回路32に入力することにより、該当する90度未満の幅の角度範囲における位相角θをアブソリュート検出することができる。なお、図11(A)のような直列接続に限らず、図11(E)のように、ダミーコイルLNを検出用コイルLAに並列に接続するようにしてもよい。
【0048】
図12は、図11の変形例であり、ダミーコイルLNに代えて抵抗素子R1を用いたものである。同図(A)に示すように、1個のコイルLAを設けてなり、該コイルLAに直列に抵抗素子R1を接続してなる。これにより、磁気応答部材11の変位に応じてコイルLAの端子間電圧VAの振幅成分が図12(B)に示すように漸増変化すると、これに応じて抵抗素子R1の端子間の電圧降下VRの振幅成分が図12(B)に示すように漸減変化する。抵抗素子R1の端子間電圧VRをサイン関数特性の交流出力信号sinθsinωtとみなし、コイルLAの端子間電圧VAをコサイン関数特性の交流出力信号cosθsinωtとみなせば、図12(C)に示すようにサイン関数とコサイン関数とがクロスする或る90度未満の幅の角度範囲における特性に対応づけることができる。よって、これらの交流出力信号を位相検出回路32に入力することにより、該当する90度未満の幅の角度範囲における位相角θをアブソリュート検出することができる。
【0049】
なお、図9の実施例では、コイル部10において各コイルの軸が略一致するように配置されており、コイルの中心空間内に磁気応答部材11が侵入する構成からなっているが、これに限らず、コイル部10と磁気応答部材11との配置関係はどのようなものでもよい。例えば図13に例示するように、コイル部10において複数のコイルLA,LB,…の軸線が横並びに並列するように配置し、該コイルの端部の近傍を磁気応答部材11が通過する構成からなっていてもよい。その場合、各コイルLA,LB,…は鉄心に巻かれたものを用いるとよい。
【0050】
また、図9の例のようにコイル部10において複数の各コイルの軸が略一致するようにした配置の場合であっても、コイルの中心空間内に磁気応答部材11が侵入しないような構成としてもよい。図14(A)は、その一例を示すもので、コイル部10の軸心方向に平行にその近傍を磁気応答部材11が通過する構成からなっている。その場合、各コイルLA,LB,…の軸心空間に鉄心コア53を挿入しておくのがよい。これによって、コイルの外周への磁束の出方がよくなり、その外周近傍に近接する磁気応答部材11に対する感度が良くなり、検出精度が良好となる。図14(B)は、その別の一例を示すもので、磁気応答部材11が中空の円筒形状からなっており、コイル部10が該磁気応答部材11の中空円筒空間内に入り込むようになっている。この場合も、各コイルLA,LB,…の軸心空間に鉄心コア53を挿入しておき、コイルの外周への磁束の出方をよくするとよい。
【0051】
図15は、コイル部10及び磁気応答部材11の別の構成例を示す側面及び断面図である。この場合、各コイルLA,LB,…の相互の配置間隔は、図9の例と同様に、Kであるが、各コイルの長さが短くなっている。すなわち、隣接する各コイルLA,LB,…は図9のように密接している必要はなく、適宜離隔していてもよい。磁気応答部材11の先端11aは、とがった、先細りの形状をしている。例えば、ほぼKぐらいの長さの先端部分が先細りの形状をしている。これにより、磁気応答部材11の先端11aの移動にともなうコイルのインダクタンス変化を滑らかな漸増(若しくは漸減)変化特性とすることができる。勿論、図9のように各コイルLA,LB,…が密接して配置されている場合も、磁気応答部材11の先端11aを適宜先細りの形状としてもよい。
【0052】
更に別の例として、コイル部10の各コイルは、分離配置された複数のコイル部分からなっていてもよい。図16は、その一例として、1個のコイルLAについて、その分離配置例を示している。図16においては、分離配置された4つのコイル部分LA1,LA2,LA3,LA4によって、Kの範囲をカバーする1個のコイルLAが構成されている。各コイル部分LA1,LA2,LA3,LA4は直列接続され、コイルLAの端子間電圧VAが出力される。この場合、各コイル部分LA1,LA2,LA3,LA4の巻数は、共通していてもよいし、適宜異なっていてもよい。また、各コイル部分LA1,LA2,LA3,LA4の配置の離隔間隔は均等であってもよいし、適宜異なっていてもよい。これら、コイル巻数や離隔間隔などを不均一(非線形)にすることにより、サイン関数またはコサイン関数のカーブにより近い特性の自己インピーダンス変化を引き起こすことができる。そうすれば、前述した検出位相角θと実際の検出対象距離(位置)との関係の非線形性を改善することができる。同様に、図9のように隣接するコイルLA,LB,…を密接して配置する場合も、1つのコイルの全長Kの範囲でその巻数を均一にせずに、不均一にしてもよい。これによっても、サイン関数またはコサイン関数のカーブにより近い特性の自己インピーダンス変化を引き起こすことができ、前述した検出位相角θと実際の検出対象距離(位置)との関係の非線形性を改善することができる。
【0053】
また、本発明に係る位置検出装置は、完全にまっすぐな直線位置の検出に限らず、所定の範囲で円弧状または曲線状に変位する検出対象の位置検出にも適用することができる。図17はその一例を示すもので、コイル部10の各コイルLA,LB,…が所定の角度範囲ψにおいて円弧状に順次配置されており、磁気応答部材11が軸Cを中心にして該角度範囲ψにわたって揺動するように配置されている。さらに、回転における所定範囲の角度を検出する検出装置として本発明の位置検出装置を構成することも可能である。
【0054】
また、前述と同様に、上記各実施例において、磁気応答部材11としては、磁性体に限らず、銅やアルミニウムのような非磁性良導電体を使用してもよい。その場合は、磁気応答部材11の近接につれて渦電流損によりコイル端子間電圧が漸減することとなる。また、磁性体と導電体とを組み合わせたハイブリッドタイプとしてもよい。その場合、例えば、図18に示すように、磁気応答部材11の先端部分11aにおいて、非磁性良導電体11bの先細り形状を構成し、先細りによる非磁性良導電体11bの減少を補うように磁性体11cを配置するとよい。
【0055】
図9のように複数のコイルを順次縦続配置する場合も、前記図6と同様に、磁気応答部材11として永久磁石を含み、コイル部10の各コイルには鉄心コアを含むようにしてもよい。図19は、その一例を示すもので、磁気応答部材11として機能する永久磁石11Mは、例えば中空リング状をなしており、このリング空間内にコイル部10が入り込むようになっている。コイル部10の各コイルLA,LB,…の軸心空間には鉄心コア54が挿入されている。永久磁石11Mが、いずれかのコイルに接近するとその近接箇所に対応する鉄心コア31が部分的に磁気飽和ないし過飽和状態となり、該コイルの端子間電圧が低下する。永久磁石11Mが1つのコイルの一端から他端まで変位する間で該コイルの両端間電圧が漸減するように、該永久磁石11Mの長さは少なくともコイル長Kに相当する長さを持つ。このように、磁気応答部材11として永久磁石11Mを使用する場合も、上記非磁性良導電体11bを用いる場合と同様に、磁気応答部材11つまり永久磁石11Mが1つのコイルの一端から他端まで変位する間で該コイルの両端間電圧の漸減変化を引き起こさせることができる。ただし、図19の例では、或るコイルの箇所を永久磁石11Mが通り過ぎてしまうと、また非飽和状態に戻るが、後段のアナログ演算を適切に行なうことで所望のサイン及びコサイン関数特性の出力振幅レベル変化が得られるようにすればよい。あるいは、磁気応答部材11として永久磁石11Mを連続的に複数配置することにより、磁気飽和ないし過飽和状態が持続するようにしてもよい。永久磁石11Mはリング状のものに限らず、棒状等その他形状であってもよい。その場合、図14(A)の例と同様に、軸心方向に平行にその近傍を永久磁石11Mからなる磁気応答部材11が通過する配置構成からなる。なお、鉄心コア54は磁気飽和を起こし易いように比較的細い形状等とするとよい。
【0056】
図20は、図14(B)におけるコイル部10の各コイルの配置の変形例であり、隣接コイル間でのクロストークを防いで検出精度を向上させることができるようにしたものである。図20(A)においては、各コイルLA,LB,…の間に磁性体スペーサ69が配置されている。これにより、個々のコイルで発生した磁束の通り道が拡散されずに、個々のコイルの内部から直近端部(磁性体スペーサ69の箇所)を通り、外周を通り、直近端部(磁性体スペーサ69の箇所)を通り、内部に戻るという、図示のΦに示すようなルートを通ることになる。よって、クロストークを防ぎ、各コイルの外周に対して近接する磁気応答物質11の存在に対する個々のコイルの応答性(インピーダンス変化)を極めて良好にし、検出精度を向上させることができる。図20(A)では隣接コイル間に設ける磁性体スペーサ69は1個であるが、図20(B)のように、隣接コイル間に2個の磁性体スペーサ69a,69bを幾分分離させて配置するようにしてもよい。この場合、コイルのボビンとして鉄心コア53に代えて非磁性体を用いてもよい。図20に示された変形のように、磁性体スペーサ69,69a,69bによって各コイルを区画することは、図19の実施例においても適用可能である。
【0057】
図21は、本発明に係る位置検出装置の別の実施例を示す断面図である。磁気応答部材11がコイル部10に侵入していくにつれて、コイルのインダクタンスが漸減するようになっている。図21において、コイル部10は、ボビン部70に1又は複数のコイル(図示例では便宜上4個のコイルLA,LB,LC,LDを示したが1又は2個でもよいことは前述の通りである。)を順次巻設してなり、その外周を非磁性および非導電性の保護チューブ(若しくはコーテングあるいはモールド)71によってカバーしてなるものである。保護チューブ71としてはいかなる材質のものを用いてもよいが、例えば、絶縁性樹脂からなる熱収縮チューブを用いると安価である。
【0058】
ボビン部70は、非磁性の中空筒からなり、その内部に1又は複数の磁性体棒72が収納されている。磁性体棒72は、コイル部10の全長にわたって延びており、該コイル部10の全長にわたるインダクタンス値を設定する。ボビン部70内に収納する磁性体棒72の太さあるいは数を適宜調節することにより、コイル部10の全長にわたるインダクタンス値の設定変更を行うことができる。なお、磁性体棒72として、その周囲に銅めっき等を施して導電性被膜を形成したものを用いるとよい。そうすれば、温度ドリフト特性の補償に役立つ。ボビン部70は、非磁性であればよく、金属あるいは樹脂等からなっていてもよい。この位置検出装置を適用する装置が大型建設機械等大きな荷重が加わる用途に使用される場合は、十分な強度を確保するために金属を用いるのがよい。例えば、ボビン部70は非磁性のステンレス等を用いて構成する。そうでない小型の装置の場合は、樹脂を用いるのが安価で軽量である。
【0059】
図21の実施例において、コイル部10と磁気応答部材11との相対的位置関係の変化は、図9の実施例と同様である。すなわち、検出対象の変位に応じて、図の右方向に磁気応答部材11が進行するとき、磁気応答部材11の先端11aが、最初にコイルLAの磁場に侵入し、次に、コイルLB,LC,LDの順にその磁場に侵入していく。
【0060】
各コイルLA,LB,LC,LDはその芯部に全長にわたって1又は数本の磁性体棒72が挿入された状態となっており、磁気応答部材11が近接していない限り、そのインダクタンス値は最大である。磁気応答部材11の各コイルの磁場に対する近接又は侵入の度合いが増すほど該コイルの自己インダクタンスが減少し、該磁気応答部材11の端部11aが1つのコイルの一端から他端まで変位する間で該コイルの両端間電圧が漸減する。すなわち、磁気応答部材11が磁性体である場合は、磁性体がコイル外周にかぶさる格好になるため、コイル芯部の磁性体コアつまり72にのみ集中していた磁束が外側にかぶさった磁気応答部材11の方に漏洩し、コイルの自己インダクタンスが減少する。また、磁気応答部材11が導電体である場合は、導電体がコイル外周にかぶさる格好になり、磁界によるうず電流損が生じ、コイルの自己インダクタンスが減少する。このように、磁気応答部材11として磁性体と導電体のどちらを用いても、コイル部10に対する磁気応答部材11の近接に応じて、コイルの自己インダクタンスが減少する。外周の導電体のうず電流損によるインダクタンス減少率の方が、外周の磁性体による磁束漏洩によるインダクタンス減少率よりも大であるので、より好ましい実施態様は磁気応答部材11として導電体を使用することである。なお、磁気応答部材11として導電体は、表皮効果を生ずるものであればよいので、薄い層であってよい。その場合は、例えば、中空の円筒形状の適宜のベース部材(可動体)の円筒空間周壁に、導電体を配置する(銅めっき等であってもよい)ことで磁気応答部材11を形成するとよい。
【0061】
図13〜図21の各実施例において、特に図示していないが、図1〜図12の実施例と同様に、適宜の基準電圧発生手段を併設し、コイル出力電圧と基準電圧とを演算することで、検出対象位置に応じてサイン及びコサイン関数特性に従う振幅をそれぞれ示す2つの交流出力信号(sinθsinωtとcosθsinωt)を生成することができる。
【0062】
上記各実施例において、磁気応答部材は、ロッドや板等の基材の表面にめっき等の表面加工技術によって、所定のパターンで形成されたものであってもよい。図22は、その一例を略示するもので、(A)は概略斜視図、(B)コイルを断面にて示す側面図、(C)はロッド基材の表面に形成された磁気応答部材のパターンの一例を示す展開図、である。この図22に示した例では、図1の実施例と同様に、コイル部50に1個のコイルL1を有し、このコイルL1の出力電圧Vxと2つの基準電圧Va,Vbとを用いて検出信号を発生する。磁気応答部材65は、例えばシリンダピストンロッドのような、ロッド状の基材66の表面において漸増又は漸減する三角形のような所定形状のパターンを形成してなるものである。磁気応答部材65と基材66の材質の磁気的性質は異なる。例えば、基材66が鉄のような磁性体の場合、磁気応答部材65は銅のような非磁性の良導電体からなる。あるいは磁気応答部材65が鉄のような磁性体の場合、基材66は非磁性体からなるか、あるいは磁性体であっても凸部として形成された磁気応答部材65に対して、凹みとして形成されたものからなる。
【0063】
図22(B)に示すように、コイルL1は、断面U字状であってリング状を成した磁性体コア52の断面U字空間内に挿入されてなり、コイルL1のリング状空間内に、磁気応答部材65を具えたロッド状の基材66がその軸方向に直線移動可能に挿入されている。コイルL1の磁路Φは、ロッド状の基材66の比較的表面において多く通過する。この実施例において、コイルL1の長さは、検出可能範囲Kに無関係であり、短いシンプルなものであってよい。基材66に設けられた磁気応答部材65の漸増又は漸減のパターンの範囲Kが検出可能範囲Kに対応する。すなわち、検出対象の変位に応じてロッド状の基材66が変位すると、コイルL1に対応する磁気応答部材65の位置が変化し、該コイルL1に対応している(横切っている)磁気応答部材65の面積に応じた自己インダクタンスすなわちインピーダンスがコイルL1に生じ、検出対象位置に対応する出力電圧VxがコイルL1から得られる。図22(C)は、ロッド状の基材66の表面に形成された磁気応答部材65のパターンの一例を示す展開図で、このパターンは1個のみであってもよいし、同じ形状のものが図示のように複数併設されていてもよい。
【0064】
図23は図22の変形例を示し、(A)に示すように、面積が漸減する三角形状の磁気応答部材65のパターンが、ロッド状の基材66の表面で螺旋を描くように配置されてなるものである。この磁気応答部材65の螺旋パターンは、検出対象位置の変位方向xに沿って面積が漸増又は漸減するもので、これは展開すると、図23(B)に示すような、図で左から右に向かって面積が漸減する三角形状の1つのパターンと等価であり、実質的には1パターンからなっている。磁気応答部材65のパターンが螺旋状になっていること及び、コイル部50のコイルL1はロッド状基材66の全周を覆っていることから、仮りにロッド状基材66の回転や軸芯ずれなどがあっても、それによる検出誤差が生じないようにすることができる。よって、1パターンだけであっても、回転及び軸芯ずれによる検出誤差のない位置検出が可能である。また、このような螺旋形状の磁気応答部パターンは、ロッド状基材66に対する形成加工が非常に容易であるので、有利である。更に、コイル部50のコイルL1は1個でよいため、構成が簡単である。勿論、超小型、微小変位の検出にも適している。
【0065】
図22及び図23の実施例に適用される電気回路は図1(C)と同様の構成であってよく、その動作説明も基本的には図2と同様のものが適用できる。また、図22及び図23の実施例に関して、図7,図9のような複数のコイルを用いる変形や、図11のように1つの基準電圧VNを使用する変形、あるいは図12のように抵抗要素を用いて変位xに連動して可変する基準電圧VRを使用する変形が適用可能である。
【0066】
上記図22及び図23の実施例のように基材66の表面に磁気応答部材65を配置形成する例において、基材66は、ロッド状のものに限らず、平板状であってもい。その場合は、板面上に形成された磁気応答部材65に対向するようにコイルL1が配置される。なお、図22(c)に例示したように同一パターンの磁気応答部材65を複数併設する場合は、コイル部50においては各磁気応答部材65のパターン毎に対応するように複数のコイルを併設し、各コイルの出力電圧を合計若しくは平均することで、検出対象位置に対応する前記1つのコイルL1の出力電圧Vx(図1)と同等の出力電圧を得るようにするとよい。
【0067】
図24は、本発明をスライド式位置センサに応用した実施例の概略斜視図である。この例では、基部80上に配置されたフラット状のコイルL1のリング形状が丸ではなく三角形を成しており、2本のガイド棒81、82に沿ってx方向にスライド可能なブレード状の磁気応答部材67が、フラット状のコイルL1に対して非接触で対峙し、この磁気応答部材67のスライド位置に対応して三角形のコイルL1に対応する該磁気応答部材67の面積が変化し、該コイルL1のインダクタンス即ちインピーダンスを漸増的に(または漸減的に)変化させる。この図24の実施例においては、図1(C)と同様の検出回路を適用することができ、図2と同様の検出動作を行う。さらに、この変形例として、点線で示すように、基部80上において第2のコイルL2をコイルL1とは逆三角形状に並列配置するようにしてもよく、その場合は図7(B)と同様の検出回路を適用することができ、図8と同様の検出動作を行う。磁気応答部材67は、図示しない検出対象の動きに連動してスライドするようになっていればよく、あるいは人手によるスライド操作に応じて任意にスライドできるようにすることで入力操作装置として応用することも可能である。
【0068】
上記各実施例では、出力交流信号の数(相数)はサインとコサインの2相(つまりレゾルバタイプ)であるが、これに限らないのは勿論である。例えば、3相(各相の振幅関数が例えばsinθ,sin(θ+120),sin(θ+240)のようなもの)であってもよい。
なお、この発明において、コイルに生じる電圧若しくはコイルの端子間電圧とは、必ずしも電圧検出タイプの回路構成に限定されるものではなく、広義に解釈されるべきであり、電流検出タイプの回路構成を採用するものも範囲に含まれる。要するにコイルのインピーダンス変化に応じたアナログ電圧または電流を生じ、これを検出することのできる回路構成であればよい。
【0069】
【発明の効果】
以上のとおり、この発明によれば、1次コイルのみを設ければよく、2次コイルは不要であるため、小型かつシンプルな構造の位置検出装置を提供することができる。また、1つのコイルと2つの基準電圧を用いるだけで、あるいは2つのコイルと1つの基準電圧を用いることにより、検出対象位置に応じて所定の周期関数特性に従う振幅をそれぞれ示す複数の交流出力信号(例えばサイン及びコサイン関数特性に従う振幅をそれぞれ示す2つの交流出力信号)を容易に生成することができ、利用可能な位相角範囲として少なくともほぼ1象限(90度)分をとることができる。従って、少ないコイルでありながら比較的広い位相角範囲で検出を行うことができ、検出分解能を向上させることができる。また、検出対象の変位が微小でも高分解能での位置検出が可能である。更に、基準電圧を発生する回路として、検出用のコイルと同等の温度特性を示す回路(例えばコイル)を使用すれば、演算回路におけ減算演算によって、温度ドリフト特性が自動的に補償されることとなり、温度変化の影響を排除した位置検出を容易に行うことができる。
【図面の簡単な説明】
【図1】 本発明に係る位置検出装置の一実施例を示すもので、(A)はその軸方向断面略図、(B)はその平面略図、(C)はコイル部に関連する回路の一例を示すブロック図。
【図2】 図1の実施例の検出動作を説明するグラフ。
【図3】 図1の実施例に係る位置検出装置の変更例を示すもので、(A)は軸方向断面略図、(B)はその平面略図。
【図4】 図1の実施例に係る位置検出装置の別の変更例を示す軸方向断面略図。
【図5】 図1の実施例に係る位置検出装置の更に別の変更例を示す軸方向断面略図。
【図6】 図1の実施例に係る位置検出装置の更に他の変更例を示す軸方向断面略図。
【図7】 本発明に係る位置検出装置の別の実施例を示すもので、(A)はその軸方向断面略図、(B)はコイル部に関連する回路の一例を示すブロック図。
【図8】 図7の実施例の検出動作を説明するグラフ。
【図9】 本発明に係る位置検出装置の更に別の実施例を示すもので、(A)は外観略図、(B)はコイル軸方向の断面図、(C)はコイル部に関連する電気回路図。
【図10】 図9の位置検出装置の検出動作説明図。
【図11】 本発明に係る位置検出装置の更に他の実施例を示すもので、(A)はコイル部に関連する電気回路図、(B)は各コイルの出力例を示す図、(C)は各コイル出力の演算合成例を示す図、(D)は演算合成出力に基づく検出原理を説明するための図、(E)はコイル接続の変更例を示す回路図。
【図12】 本発明に係る位置検出装置の更に他の実施例を示すもので、(A)はコイル部に関連する電気回路図、(B)はコイルの出力例を示す図、(C)はコイル出力に基づく検出原理を説明する図。
【図13】 本発明各実施例におけるコイル配置の変形例を示す略図。
【図14】 (A)は、本発明における磁気応答部材とコイルとの配置の変形例を示す断面略図、(B)は、同じく磁気応答部材とコイルとの配置の別の変形例を略示する斜視図。
【図15】 本発明各実施例におけるコイル配置の更に別の変形例及び磁気応答部材の先端形状の変形例を示す断面略図。
【図16】 本発明各実施例におけるコイル配置の更に他の変形例を示す断面略図。
【図17】 円弧状または曲線状に変位する位置検出に適用する場合の本発明の実施例を略示する側面図。
【図18】 本発明各実施例において磁気応答部材を磁性体と導電体によりハイブリッド構成する一例を略示する平面図。
【図19】 本発明各実施例において磁気応答部材として永久磁石を含んで構成する一例を略示する斜視図。
【図20】 図14(B)におけるコイル部のコイルの配置の変形例を示す断面略図。
【図21】 本発明に係る位置検出装置の更に他の実施例を示す軸方向断面略図。
【図22】 本発明に係る位置検出装置の更に別の実施例を示すもので、(A)は概略斜視図、(B)コイルを断面にて示す側面図、(C)はロッド基材の表面に形成された磁気応答部材のパターンの一例を示す展開図。
【図23】 図22の変形例を示すもので、(A)は概略側面図、(C)はロッド基材の表面に形成された磁気応答部材の螺旋状パターンを展開して示す図。
【図24】 本発明に係る位置検出装置の更に他の実施例を示す概略斜視図。
【符号の説明】
L1,L2 検出用のコイル
Lr1,Lr2 基準電圧発生用のコイル
50 コイル部
51,52 磁性体コア
60,61,62,63,64,65,67 磁気応答部材
66 基材
30 交流発生源
31A〜31D 演算回路
32 位相検出回路
10 コイル部
11 磁気応答部材
11a 先端部分
11b 導電体
11M 永久磁石
70 ホビン部
71 保護チューブ
72 磁性体棒
80 基部
81、82 スライド用ガイド棒
Claims (13)
- 1相の交流信号で励磁される少なくとも1つのコイルを配置してなるコイル部と、
前記コイル部に対して相対的に変位するよう配置された磁気応答部材であって、検出対象の変位に応じて該部材と前記コイル部との相対的位置が変化し、この相対的位置に応じて前記コイルのインピーダンスを変化させ、このインピーダンス変化に基づき前記相対的位置が所定の範囲にわたって変化する間で前記コイルに生じる電圧が変化するようにしたものと、
交流信号からなる所定の少なくとも1つの基準電圧を発生する回路と、
前記少なくとも1つのコイルに生じる電圧を取り出し、前記基準電圧と加算又は減算することで、互いに異なる所定の周期的振幅関数を振幅係数として持つ交流出力信号を少なくとも2つ生成する演算回路であって、前記各交流出力信号の前記周期的振幅関数はその周期特性において所定位相だけずれているものと
を具えた位置検出装置。 - 前記コイル部は、1つのコイルを配置してなり、
前記所定の基準電圧を発生する回路は、第1及び第2の基準電圧を発生し、
前記演算回路は、前記1つのコイルから取り出した電圧と前記第1及び第2の基準電圧とをそれぞれ加算又は減算することで、第1の振幅関数を振幅係数として持つ第1の交流出力信号と、第2の振幅関数を振幅係数として持つ第2の交流出力信号とをそれぞれ生成するものである請求項1に記載の位置検出装置。 - 前記第1及び第2の基準電圧は、前記第1及び第2の交流出力信号における前記第1及び第2の振幅関数の周期特性における特定の位相区間を定めるものであり、この第1及び第2の基準電圧を可変することで、該特定の位相区間と前記相対的位置の変化範囲との対応関係を可変できることを特徴とする請求項2に記載の位置検出装置。
- 前記コイル部は、2つのコイルを配置してなり、検出対象の変位に応じて前記磁気応答部材に対する各コイルの相対的位置が逆特性で変化し、これに応じて前記各コイルのインピーダンスが逆特性で変化し、
前記所定の基準電圧を発生する回路は、1つの基準電圧を発生し、
前記演算回路は、前記各コイルから取り出した電圧と前記基準電圧とをそれぞれ加算又は減算することで、第1の振幅関数を振幅係数として持つ第1の交流出力信号と、第2の振幅関数を振幅係数として持つ第2の交流出力信号とをそれぞれ生成するものである請求項1に記載の位置検出装置。 - 前記基準電圧を発生する回路は、前記磁気応答部材の変位の影響を受けないように配置された所定インピーダンスのコイルを含む請求項1乃至4のいずれかに記載の位置検出装置。
- 前記基準電圧を発生する回路は、設定された定電圧で基準電圧を発生する請求項1乃至5のいずれかに記載の位置検出装置。
- 前記基準電圧を発生する回路は、前記コイルに電気的に接続された電気的インピーダンス要素を含み、該コイルに生じる電圧の変化に応じて変化する電圧を基準電圧として発生する請求項1乃至4のいずれかに記載の位置検出装置。
- 前記コイルは磁性体コアを含み、前記磁気応答部材は前記コイルの磁性体コアに対して空隙を介して対向するフラットな面を成し、前記検出対象の位置に応じて前記磁気応答部材の面が変位することで前記空隙が変化して、該コイルのインピーダンス変化が生ぜしめられる請求項1乃至7のいずれかに記載の位置検出装置。
- 前記コイルに対する前記磁気応答部材の間隔又は面積が前記検出対象の位置に応じて変化することで、該コイルのインピーダンス変化が生ぜしめられる請求項1乃至7のいずれかに記載の位置検出装置。
- 前記磁気応答部材は、所定の基材上において検出対象位置の変位方向に沿って面積が漸増又は漸減する区間を有する所定のパターンで配置されてなるものである請求項1乃至9のいずれかに記載の位置検出装置。
- 前記所定の周期的振幅関数は、サイン関数とコサイン関数である請求項1乃至10のいずれか記載の位置検出装置。
- 前記磁気応答部材は、磁性体又は導電体の少なくとも一方を含む請求項1乃至11のいずれかに記載の位置検出装置。
- 前記磁気応答部材は永久磁石を含み、前記コイル部は磁性体コアを含む請求項1乃至11のいずれかに記載の位置検出装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000070303A JP4390347B2 (ja) | 1999-03-15 | 2000-03-14 | 位置検出装置 |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6922999 | 1999-03-15 | ||
JP7538799 | 1999-03-19 | ||
JP11-249755 | 1999-09-03 | ||
JP11-75387 | 1999-09-03 | ||
JP24975599 | 1999-09-03 | ||
JP11-69229 | 1999-09-03 | ||
JP2000070303A JP4390347B2 (ja) | 1999-03-15 | 2000-03-14 | 位置検出装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001141409A JP2001141409A (ja) | 2001-05-25 |
JP4390347B2 true JP4390347B2 (ja) | 2009-12-24 |
Family
ID=27465087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000070303A Expired - Lifetime JP4390347B2 (ja) | 1999-03-15 | 2000-03-14 | 位置検出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4390347B2 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10768019B2 (en) | 2017-11-24 | 2020-09-08 | Samsung Electro-Mechanics Co., Ltd. | Actuator and camera module including same |
US10834322B2 (en) | 2017-10-24 | 2020-11-10 | Samsung Electro-Mechanics Co., Ltd. | Camera module with actuator and lens module position detection |
US10840835B2 (en) | 2018-08-13 | 2020-11-17 | Samsung EIectro-Mechanics Co., Ltd. | Camera module |
US10859793B2 (en) | 2017-11-24 | 2020-12-08 | Samsung Electro-Mechanics Co., Ltd. | Actuator for a camera module |
US10880480B2 (en) | 2019-03-15 | 2020-12-29 | Samsung Electro-Mechanics Co., Ltd. | Camera module, actuator, and portable electronic device |
US11042005B2 (en) | 2017-10-31 | 2021-06-22 | Samsung Electro-Mechanics Co., Ltd. | Actuator of camera module |
US11131901B2 (en) | 2019-02-21 | 2021-09-28 | Samsung Electro-Mechanics Co., Ltd. | Portable electronic device and camera module |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4862625B2 (ja) * | 2006-11-21 | 2012-01-25 | シンフォニアテクノロジー株式会社 | 非接触型変位センサ装置 |
JP5042946B2 (ja) * | 2008-08-27 | 2012-10-03 | Ntn株式会社 | 等速自在継手用作動角センサ |
EP2166312B2 (de) * | 2008-09-18 | 2020-01-15 | Sick Ag | Magnetischer oder induktiver Wegsensor |
US8307700B2 (en) * | 2010-02-19 | 2012-11-13 | Sunpower, Inc. | Internal position and limit sensor for free piston machines |
JP2013069169A (ja) * | 2011-09-22 | 2013-04-18 | Mitsumi Electric Co Ltd | 操作入力装置及びそれを備える電子機器 |
WO2015069887A1 (en) | 2013-11-07 | 2015-05-14 | St. Jude Medical, Cardiology Division, Inc. | Medical device with contact force sensing tip |
JP6476382B2 (ja) * | 2014-10-23 | 2019-03-06 | 多摩川精機株式会社 | 差動変圧器の製造方法 |
JP6383916B2 (ja) * | 2014-10-23 | 2018-09-05 | 多摩川精機株式会社 | 差動変圧器の製造方法 |
KR101912277B1 (ko) | 2015-11-23 | 2018-10-30 | 삼성전기 주식회사 | 액추에이터 구동 장치 및 이를 포함하는 카메라 모듈 |
JP6962727B2 (ja) * | 2017-07-10 | 2021-11-05 | 三木 篤子 | 位置検出装置 |
CN108923776B (zh) * | 2018-06-09 | 2024-02-20 | 成都凯天电子股份有限公司 | 电感式圆柱形远距离检测接近开关 |
-
2000
- 2000-03-14 JP JP2000070303A patent/JP4390347B2/ja not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10834322B2 (en) | 2017-10-24 | 2020-11-10 | Samsung Electro-Mechanics Co., Ltd. | Camera module with actuator and lens module position detection |
US11042005B2 (en) | 2017-10-31 | 2021-06-22 | Samsung Electro-Mechanics Co., Ltd. | Actuator of camera module |
US10768019B2 (en) | 2017-11-24 | 2020-09-08 | Samsung Electro-Mechanics Co., Ltd. | Actuator and camera module including same |
US10859793B2 (en) | 2017-11-24 | 2020-12-08 | Samsung Electro-Mechanics Co., Ltd. | Actuator for a camera module |
US10840835B2 (en) | 2018-08-13 | 2020-11-17 | Samsung EIectro-Mechanics Co., Ltd. | Camera module |
US11131901B2 (en) | 2019-02-21 | 2021-09-28 | Samsung Electro-Mechanics Co., Ltd. | Portable electronic device and camera module |
US10880480B2 (en) | 2019-03-15 | 2020-12-29 | Samsung Electro-Mechanics Co., Ltd. | Camera module, actuator, and portable electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP2001141409A (ja) | 2001-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4390347B2 (ja) | 位置検出装置 | |
KR100654790B1 (ko) | 스트로크 센서 | |
JPH11223505A (ja) | 誘導型位置測定装置 | |
Anandan et al. | A flexible, planar-coil-based sensor for through-shaft angle sensing | |
JP2002039793A (ja) | 誘導形測長システム | |
JP5016165B2 (ja) | 相対回転位置検出装置 | |
JP2003532884A (ja) | 誘導測定トランスデューサー | |
JP4740438B2 (ja) | シリンダ位置検出装置 | |
US7576532B2 (en) | Motion transducer for motion related to the direction of the axis of an eddy-current displacement sensor | |
JP4464517B2 (ja) | 位置検出装置 | |
US20150061650A1 (en) | Method and arrangement and sensor for determing the postion of a component | |
JP4810021B2 (ja) | 位置検出装置 | |
JP4503806B2 (ja) | 位置検出装置 | |
JP3920394B2 (ja) | シリンダ位置検出装置 | |
JP4441593B2 (ja) | 荷重計 | |
JP4688268B2 (ja) | 圧力計 | |
JP3926902B2 (ja) | シリンダ位置検出装置 | |
JP4115036B2 (ja) | 液面検出装置 | |
JP3749955B2 (ja) | 誘導型2次元位置検出装置 | |
JP4573417B2 (ja) | 荷重センサ | |
JP4612143B2 (ja) | 相対的回転位置検出装置 | |
JP4124256B2 (ja) | 直線位置検出装置 | |
JP4185170B2 (ja) | 圧力計 | |
JP2020537152A (ja) | 磁気インピーダンス効果を利用した距離及び角度を測定するための電磁計測システム | |
JP2010145423A (ja) | シリンダ位置検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060825 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070308 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090908 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091006 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4390347 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131016 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |