JP4386788B2 - Method for producing titanium oxide photocatalyst - Google Patents
Method for producing titanium oxide photocatalyst Download PDFInfo
- Publication number
- JP4386788B2 JP4386788B2 JP2004141033A JP2004141033A JP4386788B2 JP 4386788 B2 JP4386788 B2 JP 4386788B2 JP 2004141033 A JP2004141033 A JP 2004141033A JP 2004141033 A JP2004141033 A JP 2004141033A JP 4386788 B2 JP4386788 B2 JP 4386788B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium oxide
- titanium
- sulfur
- oxide photocatalyst
- photocatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims description 162
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims description 148
- 239000011941 photocatalyst Substances 0.000 title claims description 83
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 60
- 239000000203 mixture Substances 0.000 claims description 39
- 239000007864 aqueous solution Substances 0.000 claims description 35
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 31
- 238000010304 firing Methods 0.000 claims description 27
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 22
- 239000003513 alkali Substances 0.000 claims description 22
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 22
- 238000006386 neutralization reaction Methods 0.000 claims description 21
- 239000012298 atmosphere Substances 0.000 claims description 18
- 230000007062 hydrolysis Effects 0.000 claims description 16
- 238000006460 hydrolysis reaction Methods 0.000 claims description 16
- 239000004202 carbamide Substances 0.000 claims description 10
- 230000003472 neutralizing effect Effects 0.000 claims description 9
- 229910021529 ammonia Inorganic materials 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- 230000003301 hydrolyzing effect Effects 0.000 claims description 7
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 3
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 description 49
- 239000011593 sulfur Substances 0.000 description 44
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 43
- 150000001875 compounds Chemical class 0.000 description 40
- 238000000034 method Methods 0.000 description 37
- 229910052799 carbon Inorganic materials 0.000 description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 24
- 239000000243 solution Substances 0.000 description 24
- 230000001699 photocatalysis Effects 0.000 description 22
- -1 titanium ions Chemical class 0.000 description 20
- 239000000843 powder Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 13
- 239000007789 gas Substances 0.000 description 13
- 229910052719 titanium Inorganic materials 0.000 description 13
- 239000010936 titanium Substances 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 125000004434 sulfur atom Chemical group 0.000 description 12
- 239000013078 crystal Substances 0.000 description 10
- 238000011282 treatment Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 125000004433 nitrogen atom Chemical group N* 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 235000013877 carbamide Nutrition 0.000 description 8
- 230000031700 light absorption Effects 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 150000001768 cations Chemical group 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 4
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000012295 chemical reaction liquid Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004887 air purification Methods 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004332 deodorization Methods 0.000 description 2
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 125000001297 nitrogen containing inorganic group Chemical group 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- IYVLHQRADFNKAU-UHFFFAOYSA-N oxygen(2-);titanium(4+);hydrate Chemical compound O.[O-2].[O-2].[Ti+4] IYVLHQRADFNKAU-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 150000003455 sulfinic acids Chemical class 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- PVPBBTJXIKFICP-UHFFFAOYSA-N (7-aminophenothiazin-3-ylidene)azanium;chloride Chemical compound [Cl-].C1=CC(=[NH2+])C=C2SC3=CC(N)=CC=C3N=C21 PVPBBTJXIKFICP-UHFFFAOYSA-N 0.000 description 1
- OGYGFUAIIOPWQD-UHFFFAOYSA-N 1,3-thiazolidine Chemical compound C1CSCN1 OGYGFUAIIOPWQD-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- OHZAHWOAMVVGEL-UHFFFAOYSA-N 2,2'-bithiophene Chemical compound C1=CSC(C=2SC=CC=2)=C1 OHZAHWOAMVVGEL-UHFFFAOYSA-N 0.000 description 1
- AGIJRRREJXSQJR-UHFFFAOYSA-N 2h-thiazine Chemical compound N1SC=CC=C1 AGIJRRREJXSQJR-UHFFFAOYSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 239000005997 Calcium carbide Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- YPWFISCTZQNZAU-UHFFFAOYSA-N Thiane Chemical compound C1CCSCC1 YPWFISCTZQNZAU-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- QIOZLISABUUKJY-UHFFFAOYSA-N Thiobenzamide Chemical compound NC(=S)C1=CC=CC=C1 QIOZLISABUUKJY-UHFFFAOYSA-N 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910011210 Ti—O—N Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229940124277 aminobutyric acid Drugs 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- MWCGLTCRJJFXKR-UHFFFAOYSA-N n-phenylethanethioamide Chemical compound CC(=S)NC1=CC=CC=C1 MWCGLTCRJJFXKR-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- AGGIJOLULBJGTQ-UHFFFAOYSA-N sulfoacetic acid Chemical compound OC(=O)CS(O)(=O)=O AGGIJOLULBJGTQ-UHFFFAOYSA-N 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- 125000002153 sulfur containing inorganic group Chemical group 0.000 description 1
- YFUKQRBNWGJAKY-UHFFFAOYSA-N sulfuric acid;thiocyanic acid Chemical compound SC#N.OS(O)(=O)=O YFUKQRBNWGJAKY-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- GVIJJXMXTUZIOD-UHFFFAOYSA-N thianthrene Chemical compound C1=CC=C2SC3=CC=CC=C3SC2=C1 GVIJJXMXTUZIOD-UHFFFAOYSA-N 0.000 description 1
- CBDKQYKMCICBOF-UHFFFAOYSA-N thiazoline Chemical compound C1CN=CS1 CBDKQYKMCICBOF-UHFFFAOYSA-N 0.000 description 1
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 150000003556 thioamides Chemical class 0.000 description 1
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 description 1
- XDDVRYDDMGRFAZ-UHFFFAOYSA-N thiobenzophenone Chemical compound C=1C=CC=CC=1C(=S)C1=CC=CC=C1 XDDVRYDDMGRFAZ-UHFFFAOYSA-N 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 229940045136 urea Drugs 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Description
本発明は、酸化チタン光触媒の製造方法に関するものであり、詳しくは、可視光応答型で光触媒活性が高く有害物分解や湿式太陽電池に有効な酸化チタン光触媒を工業的に効率よく製造する方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for producing a titanium oxide photocatalyst, and more particularly, to a method for industrially producing a titanium oxide photocatalyst that is visible light responsive and has high photocatalytic activity and is effective for decomposing harmful substances and wet solar cells. Is.
酸化チタン粉末は、白色顔料として古くから利用されており、近年は化粧品などの紫外線遮蔽材料、光触媒、コンデンサ、サーミスタの構成材料あるいはチタン酸バリウムの原料等電子材料に用いられる焼結材料に広く利用されている。特にここ数年、光触媒としての利用が盛んに試みられており、酸化チタンにそのバンドギャップ以上のエネルギーを持つ光を照射することによって価電子帯が励起されて、伝導帯に電子又は価電子帯に正孔が生じるが、この電子による還元力又は正孔による酸化力を利用した光触媒反応の用途開発が盛んに行われている。この酸化チタン光触媒の用途は非常に多岐に渡っており、水の分解による水素の発生、排ガス処理、空気清浄、防臭、殺菌、抗菌、水処理、照明機器等の汚れ防止等、数多くの用途開発が行われている。 Titanium oxide powder has long been used as a white pigment, and in recent years it has been widely used in sintered materials used in electronic materials such as UV shielding materials for cosmetics, photocatalysts, capacitors, thermistors, and barium titanate materials. Has been. In particular, it has been actively used as a photocatalyst for several years, and the valence band is excited by irradiating titanium oxide with light having energy higher than its band gap, and the conduction band has an electron or valence band. Holes are generated in the photocatalyst, and application development of photocatalytic reaction utilizing the reducing power by electrons or the oxidizing power by holes has been actively conducted. This titanium oxide photocatalyst has a wide variety of uses. Development of many applications such as generation of hydrogen due to water decomposition, exhaust gas treatment, air purification, deodorization, sterilization, antibacterial, water treatment, and prevention of dirt from lighting equipment, etc. Has been done.
しかしながら、酸化チタンは可視光付近の波長領域において大きな屈折率を示すため、可視光領域では殆ど光吸収は起こらない。これは、アナターゼ型二酸化チタンは3.2eV、ルチル型二酸化チタンは3.0eVというバンドギャップを有することに起因しており、酸化チタンの吸収可能な光の波長は、アナターゼ型酸化チタンで385nm以下、ルチル型酸化チタンで415nm以下である。これらの波長の光は大部分が紫外線領域に該当し、地球上に無限にある太陽光にはごく一部しか含まれておらず、従来知られている酸化チタン光触媒は、紫外線照射下では光触媒特性を発現するものの、太陽光のもとでは、そのエネルギーのうちごく一部しか活用できずに、光触媒として十分な活性は期待できない。また、屋内での蛍光灯などの下での利用を考えると、蛍光灯のスペクトルは殆どが400nm以上であるため、光触媒として十分な特性を発現することはできない。そこで可視光領域で触媒活性を発現させ、利用性の高い、高活性の光触媒の開発が行なわれている。 However, since titanium oxide exhibits a large refractive index in the wavelength region near visible light, light absorption hardly occurs in the visible light region. This is because anatase-type titanium dioxide has a band gap of 3.2 eV and rutile-type titanium dioxide has a band gap of 3.0 eV, and the wavelength of light that can be absorbed by titanium oxide is 385 nm or less for anatase-type titanium oxide. The rutile type titanium oxide has a thickness of 415 nm or less. Most of the light of these wavelengths falls in the ultraviolet region, and only a small portion is contained in infinite sunlight on the earth. Conventionally known titanium oxide photocatalysts are photocatalysts under ultraviolet irradiation. Although it exhibits the characteristics, only a part of its energy can be used under sunlight, and sufficient activity as a photocatalyst cannot be expected. Also, considering the use under fluorescent lamps indoors, since the spectrum of fluorescent lamps is almost 400 nm or more, sufficient characteristics as a photocatalyst cannot be expressed. In view of this, development of highly active photocatalysts that exhibit catalytic activity in the visible light region and have high utility is being carried out.
例えば、特許文献1(特開平9−262482号公報)には、Cr、V、Cu、Fe、Mg、Ag、Pd、Ni、Mn及びPtからなる群から選択される1種以上の金属のイオンを1×1015イオン/g−TiO2以上の割合で酸化チタンの表面から内部に含有させた光触媒が開示されており、これらの金属のイオンを30keV以上の高エネルギーに加速して、酸化チタンに照射し、該金属イオンを酸化チタンに導入する。また、特許文献2(特開平11−290697号公報)には、真空槽内に遷移金属を含む固体と前記遷移金属がドーピングされる酸化チタンとを保持する工程と、前記真空槽内の内部に金属プラズマを発生させ、発生した前記金属プラズマを照射することにより前記遷移金属がドーピングされた光触媒酸化チタンが開示されている。しかしながら、これらの方法は酸化チタンに金属イオンをドーピングするために金属イオンを高エネルギーに加速したり、また金属プラズマを発生させるなど非常に特別な装置を用いなければならず、工業的規模での製造には適していない。 For example, Patent Document 1 (Japanese Patent Laid-Open No. 9-262482) discloses ions of one or more metals selected from the group consisting of Cr, V, Cu, Fe, Mg, Ag, Pd, Ni, Mn, and Pt. 1 × 10 15 ions / g-TiO 2 or more is contained in the photocatalyst from the surface of the titanium oxide, and the ions of these metals are accelerated to a high energy of 30 keV or more. Then, the metal ions are introduced into titanium oxide. Further, Patent Document 2 (Japanese Patent Laid-Open No. 11-290697) discloses a step of holding a solid containing a transition metal in a vacuum chamber and titanium oxide doped with the transition metal, and the inside of the vacuum chamber. A photocatalytic titanium oxide doped with the transition metal by generating a metal plasma and irradiating the generated metal plasma is disclosed. However, these methods require the use of very special equipment such as accelerating metal ions to high energy and generating metal plasma in order to dope titanium oxide with metal ions, on an industrial scale. Not suitable for manufacturing.
このような問題を解決するために、特許文献3(特開平12−237598号公報)には、酸化チタンなどの半導体の表面に、前記半導体の構成成分とは異なる成分であるB, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, W, Pt, Hg, Pb, Bi, Pr, Nd, Pm, Sm, Eu, Gd,Tb, Dy, Ho, Er, Tm, Yb及びLuからなる群から選ばれる少なくとも1種である陽イオンを含む媒体を接触させることにより、前記半導体に前記陽イオンを含有させる第1の工程と、前記陽イオンを含有する前記半導体を還元雰囲気において加熱する第2の工程とを含むことを特徴とする可視光応答型光触媒の製造方法が開示されている。しかしながら、このような方法により金属イオンを酸化チタンにドープした光触媒は必ずしも触媒活性が十分ではなく、さらなる改良が望まれていた。 In order to solve such a problem, Patent Document 3 (Japanese Patent Laid-Open No. 12-237598) discloses that B, P, Ti, which are components different from the constituent components of the semiconductor, on the surface of the semiconductor such as titanium oxide. , V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, W, Pt, Hg, Pb, Bi, Pr , Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and a medium containing at least one cation selected from the group consisting of Lu, and contacting the semiconductor A method for producing a visible light responsive photocatalyst comprising a first step of containing a cation and a second step of heating the semiconductor containing the cation in a reducing atmosphere is disclosed. . However, the photocatalyst doped with metal ions in titanium oxide by such a method does not necessarily have sufficient catalytic activity, and further improvement has been desired.
上記のように遷移金属などの金属イオンを酸化チタンにドープし可視光領域での触媒活性を発現させた光触媒の他、特許文献4(WO 01/010552号公報)では、酸化チタン結晶の酸素サイトの一部を窒素原子で置換すること、酸化チタン結晶の格子間に窒素原子をドーピングすること、又は酸化チタンの結晶粒界に窒素原子をドーピングすることのいずれか、あるいはこれらの組み合わせにより酸化チタン結晶に窒素原子を含有させた光触媒物質が開示されており、該光触媒物質は、酸化チタン結晶中にTi−O−N構成を有している。このような光触媒物質を得る方法としては、窒素ガス雰囲気中での酸化チタンのスパッタリングが挙げられているが、製造コストが高く工業的規模での製造は困難である。また、酸化チタンをアンモニア雰囲気で焼成するという簡便な方法の開示もあるが、酸化チタン中に十分に窒素原子がドーピングされず、結果として得られる光触媒は触媒活性が十分ではなかった。
従って、本発明の課題は、可視光領域で光触媒活性が発現する酸化チタン光触媒であって、高活性且つ低コストの酸化チタン光触媒を、効率よく工業的規模で製造する方法を提供することにある。 Accordingly, an object of the present invention is to provide a titanium oxide photocatalyst exhibiting photocatalytic activity in the visible light region, and to provide a method for efficiently producing a titanium oxide photocatalyst having high activity and low cost on an industrial scale. .
かかる実情において、本発明者らは鋭意検討を行った結果、四塩化チタン等の塩化チタンを加水分解又はアルカリで中和して得られる酸化チタン(A)、硫黄又は含硫黄化合物(B)、及び含窒素化合物又は含炭素化合物(C)の混合物(D)を形成し、該混合物(D)を焼成して得られる酸化チタン光触媒は、可視光領域において、高い光触媒活性を発現することを見出し、本発明を完成するに至った。 In such a situation, as a result of intensive studies, the present inventors have obtained titanium oxide (A) obtained by hydrolysis or neutralization of titanium chloride such as titanium tetrachloride with alkali, sulfur or a sulfur-containing compound (B), And a titanium oxide photocatalyst obtained by forming a mixture (D) of the nitrogen-containing compound or carbon-containing compound (C) and firing the mixture (D) has been found to exhibit high photocatalytic activity in the visible light region. The present invention has been completed.
すなわち本発明は、塩化チタンを加水分解又はアルカリで中和して得られる酸化チタン(A)、チオ尿素(B)、及び尿素(C)の混合物(D)を形成する混合物形成工程、並びに該混合物形成工程で得られる該混合物(D)の焼成を行う焼成工程を有する酸化チタン光触媒の製造方法を提供するものである。 That is, the present invention provides a mixture forming step of forming a mixture (D) of titanium oxide (A), thiourea (B), and urea (C) obtained by hydrolyzing or neutralizing titanium chloride with an alkali, The present invention provides a method for producing a titanium oxide photocatalyst having a firing step of firing the mixture (D) obtained in the mixture forming step.
本発明によれば、可視光領域で光触媒活性が発現する酸化チタン光触媒であって、高活性且つ低コストの酸化チタン光触媒を、効率よく工業的規模で製造することができる。 According to the present invention, a titanium oxide photocatalyst exhibiting photocatalytic activity in the visible light region, which is a highly active and low-cost titanium oxide photocatalyst, can be efficiently produced on an industrial scale.
本発明の酸化チタン光触媒の製造方法は、酸化チタン(A)、硫黄又は含硫黄化合物(B)、及び含窒素化合物又は含炭素化合物(C)の混合物(D)を形成する混合物形成工程、並びに該混合物(D)を焼成し、酸化チタン光触媒を得る焼成工程を有する。 The method for producing a titanium oxide photocatalyst of the present invention comprises a mixture forming step of forming a mixture (D) of titanium oxide (A), sulfur or a sulfur-containing compound (B), and a nitrogen-containing compound or a carbon-containing compound (C), and The mixture (D) is fired to have a firing step for obtaining a titanium oxide photocatalyst.
該混合物形成工程における該酸化チタン(A)は、塩化チタンを加水分解又はアルカリで中和して得られる。該塩化チタンを加水分解又はアルカリで中和する方法としては、特に制限されないが、例えば、(1)塩化チタンの水溶液を調製し、該水溶液を加熱することにより加水分解し、酸化チタンを生成させる方法(以下、塩化チタン水溶液の加水分解方法とも記載する。)、又は(2)塩化チタンの水溶液を調製し、該水溶液にアンモニア等のアルカリを接触させ、酸化チタンを生成させる方法(以下、塩化チタン水溶液の中和方法とも記載する。)等が挙げられる。 The titanium oxide (A) in the mixture forming step is obtained by hydrolyzing or neutralizing titanium chloride with an alkali. The method for hydrolyzing or neutralizing the titanium chloride with an alkali is not particularly limited. For example, (1) an aqueous solution of titanium chloride is prepared, and the aqueous solution is hydrolyzed to produce titanium oxide. A method (hereinafter also referred to as a hydrolysis method of a titanium chloride aqueous solution), or (2) a method in which an aqueous solution of titanium chloride is prepared, and an alkali such as ammonia is contacted with the aqueous solution to produce titanium oxide (hereinafter referred to as chloride). It is also referred to as a neutralizing method for an aqueous titanium solution.).
該塩化チタン水溶液の加水分解方法又は塩化チタン水溶液の中和方法において用いられる該塩化チタン水溶液としては、三塩化チタン水溶液、四塩化チタン水溶液又はそれらの混合水溶液が挙げられる。該三塩化チタン水溶液は、例えば塩酸に金属チタンを溶解させることで得られる。該金属チタンとしてはチタン粉末やスポンジ状チタン、又は切粉等のチタンスクラップを用いることができる。また、該四塩化チタン水溶液は、例えば、四塩化チタンを水又は塩酸に溶解させることにより得られる。該塩化チタン水溶液中のチタン含有量は任意であるが、製造効率または得られる酸化チタン(A)の粒径等を考慮すると、該チタン含有量は、1〜20重量%、好ましくは3〜10重量%である。また、該塩化チタン水溶液は、不純物成分が少なく、純度が高いことが望ましく、具体的にはアルミニウム、鉄、及びバナジウムがそれぞれ1ppm以下、ケイ素及びスズがそれぞれ10ppm以下が好ましい。 Examples of the aqueous titanium chloride solution used in the hydrolysis method of the aqueous titanium chloride solution or the neutralization method of the aqueous titanium chloride solution include an aqueous titanium trichloride solution, an aqueous titanium tetrachloride solution, or a mixed aqueous solution thereof. The aqueous titanium trichloride solution can be obtained, for example, by dissolving titanium metal in hydrochloric acid. As the metal titanium, titanium powder, sponge titanium, or titanium scrap such as chips can be used. The aqueous titanium tetrachloride solution can be obtained, for example, by dissolving titanium tetrachloride in water or hydrochloric acid. The titanium content in the titanium chloride aqueous solution is arbitrary, but considering the production efficiency or the particle size of the resulting titanium oxide (A), the titanium content is 1 to 20% by weight, preferably 3 to 10%. % By weight. Further, it is desirable that the aqueous titanium chloride solution has few impurity components and high purity. Specifically, aluminum, iron, and vanadium are each preferably 1 ppm or less, and silicon and tin are each preferably 10 ppm or less.
該塩化チタン水溶液の加水分解方法は、該塩化チタン水溶液を加熱下、攪拌することにより行なわれる。加水分解温度は、20〜水溶液の沸点、好ましくは30〜水溶液の沸点、特に好ましくは40〜80℃である。該加水分解温度が、20℃未満だと加水分解が起こり難くなる。また、加水分解時間は、通常5分〜10時間、好ましくは10分〜5時間、特に好ましくは10分〜1時間である。 The method for hydrolyzing the titanium chloride aqueous solution is carried out by stirring the titanium chloride aqueous solution under heating. The hydrolysis temperature is 20 to the boiling point of the aqueous solution, preferably 30 to the boiling point of the aqueous solution, and particularly preferably 40 to 80 ° C. If the hydrolysis temperature is less than 20 ° C., hydrolysis is difficult to occur. The hydrolysis time is usually 5 minutes to 10 hours, preferably 10 minutes to 5 hours, particularly preferably 10 minutes to 1 hour.
また、該塩化チタン水溶液の加水分解方法においては、低pH領域で反応を行うことが、粒径が小さい酸化チタン(A)を得ることができる点で好ましい。従って、該塩化チタン水溶液の加水分解方法、特に、加水分解温度が水溶液の沸点付近である場合においては、反応槽に還流装置等を設置し、発生する塩化水素が塩化水素ガスとして反応系外へ排出されることを抑えることが、反応系のpHを低くできる点で好ましい。 Further, in the hydrolysis method of the aqueous titanium chloride solution, it is preferable to carry out the reaction in a low pH region because titanium oxide (A) having a small particle size can be obtained. Therefore, when the hydrolysis method of the aqueous titanium chloride solution, particularly when the hydrolysis temperature is close to the boiling point of the aqueous solution, a reflux device or the like is installed in the reaction tank, and the generated hydrogen chloride is removed from the reaction system as hydrogen chloride gas. Suppressing the discharge is preferable in that the pH of the reaction system can be lowered.
該塩化チタン水溶液の中和方法において、該塩化チタン水溶液と接触させるアルカリとしては、特に制限されず、例えば、アンモニア;アンモニア水;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属の水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸カルシウム等の炭酸塩等が挙げられる。これらのうち、アンモニア又はアンモニア水が、酸化チタン光触媒中に金属成分が含有されないので、該触媒の光触媒活性が高まる点で好ましい。 In the neutralization method of the aqueous titanium chloride solution, the alkali to be brought into contact with the aqueous titanium chloride solution is not particularly limited. For example, ammonia; aqueous ammonia; hydroxylation of a metal such as sodium hydroxide, potassium hydroxide, calcium hydroxide Products; carbonates such as sodium carbonate, potassium carbonate and calcium carbonate; Among these, ammonia or aqueous ammonia is preferable because the metal component is not contained in the titanium oxide photocatalyst, so that the photocatalytic activity of the catalyst is increased.
また、アルカリ金属又はアルカリ土類金属は、該酸化チタン光触媒中に含まれていても、該触媒の光触媒活性に与える影響が少ないので、該塩化チタン水溶液の中和方法におけるアルカリとして、アルカリ金属又はアルカリ土類金属の水酸化物を、好適に用いることができる。一般的な塩化チタンの工業的排水処理においては、水酸化カルシウム水溶液(消石灰溶液)等のアルカリ金属又はアルカリ土類金属の水酸化物を、該排水に加え中和し、酸化チタン水和物を析出させ、析出した該酸化チタン水和物の懸濁液に、ポリ塩化アルミニウムのような凝集剤を添加して固形物を沈降分離させることにより、排水中からチタン化合物を除去することが行われている。そして、このような方法は、非常に効率が良く、該酸化チタン(A)の製造に応用可能である。従って、アルカリ金属又はアルカリ土類金属の水酸化物を用いることが、工業的に効率よく該酸化チタン(A)を製造できる点で好ましい。 In addition, even if the alkali metal or alkaline earth metal is contained in the titanium oxide photocatalyst, it has little influence on the photocatalytic activity of the catalyst. Alkaline earth metal hydroxides can be suitably used. In general industrial wastewater treatment of titanium chloride, alkali metal or alkaline earth metal hydroxide such as calcium hydroxide aqueous solution (slaked lime solution) is added to the wastewater to neutralize it, and titanium oxide hydrate is added. The titanium compound is removed from the waste water by precipitating and adding a flocculant such as polyaluminum chloride to the suspension of the precipitated titanium oxide hydrate to precipitate and separate the solid. ing. Such a method is very efficient and can be applied to the production of the titanium oxide (A). Therefore, it is preferable to use an alkali metal or alkaline earth metal hydroxide because the titanium oxide (A) can be produced industrially efficiently.
該塩化チタン水溶液の中和方法の反応温度は、10〜80℃、好ましくは30〜80℃、特に好ましくは40〜70℃である。該反応温度が、10℃未満だと中和反応が起こり難く、また、80℃を超えると発熱が激しく、塩化水素の発生が著しくなるため、平均粒径が小さく比表面積の大きい酸化チタン(A)が得られ難くなる。また、該中和反応におけるアルカリの添加時間は、通常5分〜10時間、好ましくは30分〜5時間、特に好ましくは3〜5時間である。 The reaction temperature of the method for neutralizing the aqueous titanium chloride solution is 10 to 80 ° C, preferably 30 to 80 ° C, particularly preferably 40 to 70 ° C. When the reaction temperature is less than 10 ° C., the neutralization reaction hardly occurs. When the reaction temperature exceeds 80 ° C., heat generation is severe and hydrogen chloride is remarkably generated, so that titanium oxide (A ) Is difficult to obtain. The alkali addition time in the neutralization reaction is usually 5 minutes to 10 hours, preferably 30 minutes to 5 hours, and particularly preferably 3 to 5 hours.
また、該塩化チタン水溶液の加水分解方法又は該塩化チタン水溶液の中和方法は、該硫黄又は含硫黄化合物(B)、あるいは含窒素化合物又は含炭素化合物(C)が反応系中に存在していても、特に該成分(B)又は(C)の影響を受けない。従って、例えば、該塩化チタン水溶液と、該成分(B)及び(C)の混合物を用いて、該塩化チタン水溶液の加水分解方法又は塩化チタン水溶液の中和方法を行うことができる。 Further, in the hydrolysis method of the titanium chloride aqueous solution or the neutralization method of the titanium chloride aqueous solution, the sulfur or sulfur-containing compound (B), or the nitrogen-containing compound or carbon-containing compound (C) is present in the reaction system. However, it is not particularly affected by the component (B) or (C). Therefore, for example, the titanium chloride aqueous solution can be hydrolyzed or the titanium chloride aqueous solution neutralized using the titanium chloride aqueous solution and a mixture of the components (B) and (C).
該塩化チタン水溶液の加水分解方法又は塩化チタン水溶液の中和方法により得られる該酸化チタン(A)は、オルトチタン酸又はメタチタン酸であるが、メタチタン酸であることが、光触媒活性が高まる点で好ましい。該塩化チタン水溶液の加水分解方法又は塩化チタン水溶液の中和方法において、該メタチタン酸が生成し易い条件としては、例えば、塩化チタン水溶液を予め40〜70℃程度に加熱し、その後、アンモニア等のアルカリを添加して中和することが挙げられる。 The titanium oxide (A) obtained by the hydrolysis method of the aqueous titanium chloride solution or the neutralization method of the aqueous titanium chloride solution is orthotitanic acid or metatitanic acid, but it is metatitanic acid in that the photocatalytic activity is increased. preferable. In the method of hydrolyzing the titanium chloride aqueous solution or the method of neutralizing the titanium chloride aqueous solution, the conditions for the formation of the metatitanic acid include, for example, preheating the titanium chloride aqueous solution to about 40 to 70 ° C. An example is neutralization by adding an alkali.
該酸化チタン(A)の比表面積は、特に制限されないが、BET比表面積で50m2/g以上、好ましくは100m2/g以上、特に好ましくは150〜250m2/gである。該比表面積が、50m2/g以上であると、酸化チタン光触媒の光触媒活性が高くなる。また、該酸化チタン(A)の平均粒径は、特に制限されないが、0.1μm以下、好ましくは0.05μm以下、特に好ましくは0.03μm以下である。該平均粒径が小さい程、該酸化チタン(A)の比表面積が大きくなるので、酸化チタン光触媒の光触媒活性が高くなる。従って、該平均粒径が大きすぎると、酸化チタン光触媒の光触媒活性が発現され難くなる。また、該酸化チタン(A)の結晶形は、ルチル型又はアナターゼ型のいずれであってもよいが、好ましくはルチル型単独結晶、又はルチル型及びアナターゼ型の混合結晶である。 The specific surface area of titanium oxide (A) is not particularly limited, 50 m 2 / g or more in BET specific surface area is preferably 100 m 2 / g or more, particularly preferably 150 to 250 2 / g. When the specific surface area is 50 m 2 / g or more, the photocatalytic activity of the titanium oxide photocatalyst increases. The average particle size of the titanium oxide (A) is not particularly limited, but is 0.1 μm or less, preferably 0.05 μm or less, and particularly preferably 0.03 μm or less. Since the specific surface area of the titanium oxide (A) increases as the average particle size decreases, the photocatalytic activity of the titanium oxide photocatalyst increases. Therefore, when the average particle size is too large, the photocatalytic activity of the titanium oxide photocatalyst becomes difficult to be expressed. The crystal form of the titanium oxide (A) may be either a rutile type or an anatase type, but is preferably a rutile type single crystal or a mixed crystal of a rutile type and an anatase type.
該酸化チタン(A)の比表面積、平均粒径又は結晶形は、該塩化チタン水溶液の加水分解方法又は塩化チタン水溶液の中和方法の条件を調整することにより、制御することができる。該塩化チタン水溶液の加水分解方法においては、反応系のpHが低い程、酸化チタン(A)の平均粒径が小さくなり、そして、該平均粒径が小さくなることにより該比表面積が大きくなる。また、酸化チタン(A)の生成後に、該酸化チタン(A)を塩酸酸性雰囲気等の低pH領域で熟成することにより、ルチル型の構成比率が高い酸化チタン(A)が得られる。従って、例えば、該塩化チタン水溶液の加水分解方法の場合、反応中に発生する塩化水素が反応系から排出されることを制御し、反応系のpHを低く保持し、且つ低pH領域で酸化チタンの熟成を行うことが、平均粒径が小さく、比表面積が大きく、且つルチル型の構成比率が高い酸化チタン(A)を得る条件として挙げられる。また、該塩化チタン水溶液の中和方法においては、塩化チタン水溶液にアルカリを一度に加え、中和反応を短時間で行うと、得られる酸化チタン(A)は大部分がアナターゼ型となり、一方、塩化チタン水溶液にアルカリを徐々に加え、中和反応の反応時間を長くすると、得られる酸化チタン(A)中のルチル型の比率が増え、そして、反応時間を概ね5時間以上とした場合、得られる酸化チタン(A)は大部分がルチル型となる。従って、例えば、該塩化チタン水溶液の中和方法の場合、アルカリの添加速度を遅くし、概ね5時間以上かけてアルカリを添加することが、ルチル型の構成比率が高い酸化チタン(A)を得る条件として挙げられる。 The specific surface area, average particle diameter or crystal form of the titanium oxide (A) can be controlled by adjusting the conditions of the hydrolysis method of the titanium chloride aqueous solution or the neutralization method of the titanium chloride aqueous solution. In the hydrolysis method of the aqueous titanium chloride solution, the lower the pH of the reaction system, the smaller the average particle diameter of titanium oxide (A), and the smaller the average particle diameter, the larger the specific surface area. In addition, after the production of titanium oxide (A), titanium oxide (A) having a high rutile structure ratio can be obtained by aging titanium oxide (A) in a low pH region such as an acidic atmosphere of hydrochloric acid. Therefore, for example, in the case of the hydrolysis method of the aqueous titanium chloride solution, the hydrogen chloride generated during the reaction is controlled to be discharged from the reaction system, the pH of the reaction system is kept low, and the titanium oxide in the low pH region. Is a condition for obtaining titanium oxide (A) having a small average particle diameter, a large specific surface area, and a high rutile-type composition ratio. Moreover, in the neutralization method of the aqueous titanium chloride solution, when alkali is added to the aqueous titanium chloride solution at once and the neutralization reaction is performed in a short time, the resulting titanium oxide (A) is mostly anatase type, When the alkali is gradually added to the aqueous titanium chloride solution and the reaction time of the neutralization reaction is increased, the ratio of the rutile type in the obtained titanium oxide (A) increases, and when the reaction time is approximately 5 hours or more, it is obtained. Most of the obtained titanium oxide (A) is a rutile type. Therefore, for example, in the case of the neutralization method of the aqueous titanium chloride solution, slowing the addition rate of the alkali and adding the alkali over about 5 hours or more provides the titanium oxide (A) having a high rutile-type composition ratio. As a condition.
また、該酸化チタン(A)は、該塩化チタンの加水分解方法又は塩化チタン水溶液の中和方法を行って得られる酸化チタン(A)を含有する反応液、又は該反応液から該酸化チタン(A)をろ過等により取り出し、必要に応じ塩酸分やアルカリ成分等の不純物の除去のための洗浄、乾燥等を行って得られる酸化チタン(A)の粉末のいずれであってもよい。 In addition, the titanium oxide (A) is a reaction liquid containing titanium oxide (A) obtained by hydrolyzing the titanium chloride or neutralizing the aqueous titanium chloride solution, or the titanium oxide (A) from the reaction liquid. It may be any powder of titanium oxide (A) obtained by removing A) by filtration or the like, and performing washing, drying, etc. for removing impurities such as hydrochloric acid and alkali components as necessary.
また、該酸化チタン(A)の粉末を用いる場合、該酸化チタン(A)の粉末は、水分又は塩素分の含有量が少ないことが、酸化チタン光触媒の光触媒活性が高まる点で好ましい。従って、該酸化チタン(A)の粉末中の水分又は塩素分を除去するために、該粉末を焼成することが好ましく、焼成温度は、200〜800℃、好ましくは300〜600℃である。 In addition, when the titanium oxide (A) powder is used, it is preferable that the titanium oxide (A) powder has a low water or chlorine content in terms of enhancing the photocatalytic activity of the titanium oxide photocatalyst. Therefore, in order to remove moisture or chlorine content in the titanium oxide (A) powder, the powder is preferably fired, and the firing temperature is 200 to 800 ° C, preferably 300 to 600 ° C.
該含硫黄化合物としては、特に制限されず、例えば、金属の硫化物又は硫酸塩等の含硫黄無機化合物;チオ尿素等の含硫黄有機化合物等が挙げられ、具体的には、チオエーテル類、チオ尿素類、チオアミド類、チオアルコール類、チオアルデヒド類、チアジル類、メルカプタール類、チオール類、チオシアン酸塩類等であり、更に具体的には、チオ尿素、スルホ酢酸、チオフェノール、チオフェン、ベンゾチオフェン、ジベンゾチオフェン、チオベンゾフェノン、ビチオフェン、フェノチアジン、スルホラン、チアジン、チアゾール、チアジアゾール、チアゾリン、チアゾリジン、チアントレン、チアン、チオアセトアニリド、チオアセトアミド、チオベンズアミド、チオアニソール、チオニン、メチルチオール、チオエーテル、チオシアン、硫酸、スルホン酸類、硫酸塩、スルホン酸塩、スルホニウム塩類、スルホンアミド類、スルフィン酸類、スルホキシド類、スルフィン類、スルファン類等が挙げられる。また、該含硫黄化合物は、1種又は2種以上組み合わせて用いることができる。これらのうち、含硫黄有機化合物が好ましく、酸素原子を含有せず且つ窒素原子を含有する含硫黄有機化合物が特に好ましく、チオ尿素が更に好ましい。また、該含硫黄化合物は、常温で液体又は固体であることが、取り扱い易い点で好ましい。また、該含硫黄化合物は、水又はアルコール等の溶媒に溶解し易いことが、酸化チタン(A)と均一に接触し易い点で好ましい。 The sulfur-containing compound is not particularly limited, and examples thereof include sulfur-containing inorganic compounds such as metal sulfides and sulfates; sulfur-containing organic compounds such as thiourea. Ureas, thioamides, thioalcohols, thioaldehydes, thiazyl, mercaptals, thiols, thiocyanates, and more specifically, thiourea, sulfoacetic acid, thiophenol, thiophene, benzothiophene, Dibenzothiophene, thiobenzophenone, bithiophene, phenothiazine, sulfolane, thiazine, thiazole, thiadiazole, thiazoline, thiazolidine, thianthrene, thiane, thioacetanilide, thioacetamide, thiobenzamide, thioanisole, thionine, methylthiol, thioether, thiocyanate Sulfuric acid, sulfonic acids, sulfates, sulfonates, sulfonium salts, sulfonamides, sulfinic acids, sulfoxides, sulfinic acids, sulfane and the like can be mentioned. Moreover, this sulfur-containing compound can be used 1 type or in combination of 2 or more types. Of these, sulfur-containing organic compounds are preferred, sulfur-containing organic compounds containing no nitrogen atoms and containing nitrogen atoms are particularly preferred, and thiourea is more preferred. In addition, the sulfur-containing compound is preferably liquid or solid at normal temperature because it is easy to handle. In addition, it is preferable that the sulfur-containing compound is easily dissolved in a solvent such as water or alcohol from the viewpoint of easily contacting with the titanium oxide (A) uniformly.
該硫黄又は含硫黄化合物(B)の混合量は、特に制限されないが、該硫黄又は含硫黄化合物(B)中の硫黄原子の重量が、該酸化チタン(A)に対し、好ましくは1重量%以上、特に好ましくは5重量%以上、更に好ましくは10〜30重量%である。該混合量が、酸化チタン(A)に対し、1重量%未満だと、酸化チタン光触媒に含まれる硫黄原子の量が少なくなるため、酸化チタン光触媒による十分な可視光吸収が起こり難くなる。 The mixing amount of the sulfur or sulfur-containing compound (B) is not particularly limited, but the weight of the sulfur atom in the sulfur or sulfur-containing compound (B) is preferably 1% by weight with respect to the titanium oxide (A). Above, especially preferably 5% by weight or more, more preferably 10 to 30% by weight. When the mixing amount is less than 1% by weight with respect to the titanium oxide (A), the amount of sulfur atoms contained in the titanium oxide photocatalyst decreases, so that sufficient visible light absorption by the titanium oxide photocatalyst hardly occurs.
該含窒素化合物又は含炭素化合物(C)としては、特に制限されず、含窒素無機化合物;アミン類、アミノ酸等の含窒素有機化合物、又は二酸化炭素等の窒素原子を含有しない含炭素化合物が挙げられ、具体的には、含窒素無機化合物としては、アンモニア等が、含窒素有機化合物としては、酢酸アンモニウム、尿素、アミノ酪酸、アミノベンゼン、グリシン、アラニン等が、窒素を含有しない含炭素化合物としては、炭素、一酸化炭素、二酸化炭素、炭化チタン、炭化カルシウム、炭酸等が挙げられる。これらのうち、アンモニア、又は含窒素有機化合物が好ましく、尿素が特に好ましい。また、これらは1種又は2種以上の組合わせて用いることができる。 The nitrogen-containing compound or carbon-containing compound (C) is not particularly limited, and examples thereof include nitrogen-containing inorganic compounds; nitrogen-containing organic compounds such as amines and amino acids, and carbon-containing compounds not containing nitrogen atoms such as carbon dioxide. Specifically, as the nitrogen-containing inorganic compound, ammonia or the like, and as the nitrogen-containing organic compound, ammonium acetate, urea, aminobutyric acid, aminobenzene, glycine, alanine, etc. as the carbon-containing compound not containing nitrogen. Examples include carbon, carbon monoxide, carbon dioxide, titanium carbide, calcium carbide, and carbonic acid. Of these, ammonia or nitrogen-containing organic compounds are preferable, and urea is particularly preferable. Moreover, these can be used 1 type or in combination of 2 or more types.
該含窒素化合物又は含炭素化合物(C)の混合量は、特に制限されないが、含窒素化合物の場合は、該含窒素化合物中の窒素原子の重量が、該酸化チタン(A)に対し、好ましくは1重量%以上、特に好ましくは5重量%以上、更に好ましくは10〜30重量%であり、また、窒素を含有しない含炭素化合物の場合は、該窒素を含有しない含炭素化合物中の炭素原子の重量が、該酸化チタン(A)に対し、好ましくは1重量%以上、特に好ましくは5重量%以上、更に好ましくは10〜30重量%である。該含窒素化合物又は含炭素化合物(C)の混合量が、上記範囲内であることにより、酸化チタン光触媒が吸収する可視光領域が広くなる。 The mixing amount of the nitrogen-containing compound or carbon-containing compound (C) is not particularly limited, but in the case of a nitrogen-containing compound, the weight of the nitrogen atom in the nitrogen-containing compound is preferably relative to the titanium oxide (A). Is 1% by weight or more, particularly preferably 5% by weight or more, more preferably 10 to 30% by weight, and in the case of a carbon-containing compound not containing nitrogen, the carbon atom in the carbon-containing compound not containing nitrogen Is preferably 1% by weight or more, particularly preferably 5% by weight or more, and further preferably 10 to 30% by weight with respect to the titanium oxide (A). When the mixing amount of the nitrogen-containing compound or carbon-containing compound (C) is within the above range, the visible light region absorbed by the titanium oxide photocatalyst is widened.
そして、該酸化チタン(A)、硫黄又は含硫黄化合物(B)、及び含窒素化合物又は含炭素化合物(C)を混合することにより、該混合物(D)を得ることができる。該混合物(D)を形成する方法としては、例えば、
(i)塩化チタンの水溶液(E)に、硫黄又は含硫黄化合物(B)、及び含窒素化合物又は含炭素化合物(C)を混合し、次いで加熱又はアルカリを添加することにより、該(E)、(B)及び(C)の混合物中で、塩化チタンを加水分解又はアルカリで中和して酸化チタン(A)を生成させ、混合物(D)を得る方法、
(ii)塩化チタンの水溶液(E)を加水分解又はアルカリで中和して酸化チタン(A)を生成させ、次いで該酸化チタン(A)を含む反応液に、硫黄又は含硫黄化合物(B)、及び含窒素化合物又は含炭素化合物(C)を混合し、混合物(D)を得る方法、
(iii)塩化チタンを加水分解又はアルカリで中和して酸化チタン(A)を生成させた後、該生成した酸化チタン(A)をろ過等により取り出し、必要に応じて水洗、仮焼し、該酸化チタン(A)の粉末を得、次いで得られた該酸化チタン(A)の粉末、硫黄又は含硫黄化合物(B)、及び含窒素化合物又は含炭素化合物(C)を混合し、混合物(D)を得る方法、
(iv)塩化チタンの水溶液(E)に、硫黄又は含硫黄化合物(B)、あるいは含窒素化合物又は含炭素化合物(C)のいずれか一方を混合し、次いで該塩化チタンを加水分解又はアルカリで中和して酸化チタン(A)を生成させた後、更に硫黄又は含硫黄化合物(B)、あるいは含窒素化合物又は含炭素化合物(C)の他方を混合して、混合物(D)を得る方法等が挙げられる。すなわち、該塩化チタンの加水分解又はアルカリによる中和は、硫黄又は含硫黄化合物(B)、あるいは含窒素化合物又は含炭素化合物(C)を、混合する前又は混合した後のいずれであっても行うことができる。なお、例えば、上記(iii)の方法のように、酸化チタン(A)の粉末を、(B)及び(C)と混合する場合は、溶媒として水又はアルコールを用いることができる。
And this mixture (D) can be obtained by mixing this titanium oxide (A), sulfur or a sulfur-containing compound (B), and a nitrogen-containing compound or a carbon-containing compound (C). As a method for forming the mixture (D), for example,
(I) The aqueous solution (E) of titanium chloride is mixed with sulfur or a sulfur-containing compound (B), and a nitrogen-containing compound or a carbon-containing compound (C), and then heated or added with an alkali. In a mixture of (B) and (C), titanium chloride is hydrolyzed or neutralized with alkali to produce titanium oxide (A) to obtain a mixture (D).
(Ii) Titanium chloride aqueous solution (E) is hydrolyzed or neutralized with alkali to produce titanium oxide (A), and then the reaction liquid containing titanium oxide (A) is added with sulfur or a sulfur-containing compound (B). , And a nitrogen-containing compound or a carbon-containing compound (C), to obtain a mixture (D),
(Iii) Titanium chloride is hydrolyzed or neutralized with alkali to produce titanium oxide (A), and then the produced titanium oxide (A) is taken out by filtration or the like, washed with water if necessary, and calcined. The titanium oxide (A) powder is obtained, and then the obtained titanium oxide (A) powder, sulfur or sulfur-containing compound (B), and nitrogen-containing compound or carbon-containing compound (C) are mixed, D) a method of obtaining
(Iv) The aqueous solution (E) of titanium chloride is mixed with either sulfur or a sulfur-containing compound (B), or a nitrogen-containing compound or a carbon-containing compound (C), and then the titanium chloride is hydrolyzed or alkalinized. After neutralizing to produce titanium oxide (A), the other of sulfur or sulfur-containing compound (B), or nitrogen-containing compound or carbon-containing compound (C) is further mixed to obtain a mixture (D) Etc. That is, the titanium chloride is hydrolyzed or neutralized with an alkali either before or after mixing sulfur or a sulfur-containing compound (B), or a nitrogen-containing compound or a carbon-containing compound (C). It can be carried out. For example, when the titanium oxide (A) powder is mixed with (B) and (C) as in the method (iii) above, water or alcohol can be used as the solvent.
これらのうち、上記(i)の方法が、該混合物中に、該硫黄又は含硫黄化合物(B)、及び含窒素化合物又は含炭素化合物(C)が、均一に分散するので、該酸化チタン光触媒の可視光領域での光触媒活性が高くなる点、また、酸化チタン(A)を取り出す必要がないので、製造コストが低くできる点で好ましい。また、上記(iii)の方法が、該酸化チタン光触媒中の不純物の含有量を少なくすることができ、酸化チタン光触媒の可視光領域での光触媒活性が高くなる点で好ましい。 Among these, since the method of (i) above is such that the sulfur or sulfur-containing compound (B) and the nitrogen-containing compound or carbon-containing compound (C) are uniformly dispersed in the mixture, the titanium oxide photocatalyst This is preferable in that the photocatalytic activity in the visible light region is high, and since it is not necessary to take out titanium oxide (A), the production cost can be reduced. The method (iii) is preferable in that the content of impurities in the titanium oxide photocatalyst can be reduced, and the photocatalytic activity in the visible light region of the titanium oxide photocatalyst is increased.
該混合物(D)の形成を行う温度は、通常10〜100℃、好ましくは20〜50℃であり、該混合物(D)の形成を行う時間は、通常1分〜10時間、好ましくは10分〜1時間である。 The temperature for forming the mixture (D) is usually 10 to 100 ° C., preferably 20 to 50 ° C., and the time for forming the mixture (D) is usually 1 minute to 10 hours, preferably 10 minutes. ~ 1 hour.
該混合物(D)の形成後、ろ過等により該混合物(D)を取り出し、必要に応じて該混合物(D)の乾燥、粉砕等を行うことができる。 After the formation of the mixture (D), the mixture (D) can be taken out by filtration or the like, and the mixture (D) can be dried, ground, or the like as necessary.
該焼成工程は、前記混合物形成工程で得られる該混合物(D)を焼成することにより行う。該焼成工程の焼成温度は、200〜800℃、好ましくは300〜600℃、特に好ましくは400〜500℃である。なお、含硫黄化合物を用いる場合は、該化合物が分解し、該化合物中の硫黄が遊離する温度以上で行う。また、焼成時間は、1〜10時間、好ましくは1〜5時間、特に好ましくは2〜5時間である。 The firing step is performed by firing the mixture (D) obtained in the mixture forming step. The firing temperature in the firing step is 200 to 800 ° C, preferably 300 to 600 ° C, particularly preferably 400 to 500 ° C. In addition, when using a sulfur-containing compound, it carries out above the temperature which this compound decomposes | disassembles and sulfur in this compound liberates. The firing time is 1 to 10 hours, preferably 1 to 5 hours, particularly preferably 2 to 5 hours.
また、該焼成の際の焼成雰囲気としては、特に制限されず、例えば、空気、酸素ガス等の酸化性雰囲気下、水素ガス、アンモニアガス等の還元性雰囲気下、窒素ガス、アルゴンガス等の不活性雰囲気下、又は真空下等が挙げられる。これらのうち、還元性雰囲気下が、該酸化チタン光触媒の可視光領域での光触媒活性が高くなる点で好ましい。また、水素ガスのような還元性ガスのみでもよいが、水素ガス及び酸素ガスの混合ガス、又は水素ガス、酸素ガス及び不活性ガスの混合ガスの雰囲気下で焼成することも有効である。水素ガス等の還元性ガスの雰囲気下又は水素ガス等の還元性ガスを含有する混合ガスの雰囲気下で焼成することにより、酸化チタンが若干還元され、酸化チタン結晶中に酸素の欠陥ができるので、その結果、可視光領域での光吸収特性が向上し、光触媒活性が向上する。 In addition, the firing atmosphere at the time of firing is not particularly limited, and for example, in an oxidizing atmosphere such as air or oxygen gas, in a reducing atmosphere such as hydrogen gas or ammonia gas, nitrogen gas, argon gas or the like is not used. Examples thereof include an active atmosphere or a vacuum. Among these, a reducing atmosphere is preferable in that the photocatalytic activity of the titanium oxide photocatalyst in the visible light region is increased. Further, although only a reducing gas such as hydrogen gas may be used, it is also effective to perform firing in an atmosphere of a mixed gas of hydrogen gas and oxygen gas, or a mixed gas of hydrogen gas, oxygen gas and inert gas. By firing in a reducing gas atmosphere such as hydrogen gas or in a mixed gas atmosphere containing a reducing gas such as hydrogen gas, titanium oxide is slightly reduced and oxygen defects are formed in the titanium oxide crystal. As a result, the light absorption characteristics in the visible light region are improved, and the photocatalytic activity is improved.
また、焼成の際に、硫黄が蒸発し又は含硫黄化合物が分解して、硫黄成分が焼成雰囲気から排出しないように、焼成雰囲気の硫黄成分の分圧をある程度の値に保持しつつ、含硫黄有機化合物等の分解により生じる炭酸ガス等の副生ガスを、ある程度焼成雰囲気から排出することが、該酸化チタン光触媒中に硫黄原子が十分にドープされ、該酸化チタン光触媒の可視光領域での光触媒活性が高くなる点で好ましい。従って、該焼成は、ある程度の圧力がかかり、且つ副生ガスを排出し得る、上部に非固定式の蓋体を備えた円筒形、皿状又は矩形等の容器中で行うことが好ましい。 In addition, during the firing, the sulfur-containing compound is maintained while maintaining the partial pressure of the sulfur component in the firing atmosphere at a certain value so that the sulfur does not evaporate or the sulfur-containing compound decomposes and the sulfur component is not discharged from the firing atmosphere. A by-product gas such as carbon dioxide generated by the decomposition of an organic compound or the like is discharged from the firing atmosphere to some extent, the titanium oxide photocatalyst is sufficiently doped with sulfur atoms, and the photocatalyst in the visible light region of the titanium oxide photocatalyst It is preferable in that the activity becomes high. Therefore, the firing is preferably performed in a cylindrical, dish-shaped or rectangular container having a non-fixed lid on the top, to which a certain amount of pressure is applied and by-product gas can be discharged.
また、該焼成により得られる該酸化チタン光触媒を、必要に応じて洗浄することにより、該酸化チタン光触媒中の遊離の硫黄成分やその他の不純物を除去することができる。また、分散液、コーティング液又は塗料への該酸化チタン光触媒粒子の分散性を向上させるために、界面活性剤等を用いて、該酸化チタン光触媒を表面処理することもできる。 Moreover, the free sulfur component and other impurities in the titanium oxide photocatalyst can be removed by washing the titanium oxide photocatalyst obtained by the calcination as necessary. Moreover, in order to improve the dispersibility of the titanium oxide photocatalyst particles in the dispersion, coating liquid or paint, the titanium oxide photocatalyst can be surface-treated using a surfactant or the like.
本発明の酸化チタン光触媒の製造方法により得られる該酸化チタン光触媒は、淡黄色、黄色又は黄橙色の粉末であり、硫黄原子及び窒素原子若しくは炭素原子を、あるいは硫黄原子、窒素原子及び炭素原子を含有する。該酸化チタン光触媒中の各原子の含有量については、硫黄原子の含有量が、0.01〜5重量%、好ましくは0.05〜1.0重量%、特に好ましくは0.1〜0.5重量%であり、炭素原子の含有量が、0.1〜10重量%、好ましくは0.5〜5.0重量%、特に好ましくは1.0〜3.0重量%であり、窒素原子の含有量が、0〜3重量%、好ましくは0.01〜1.0重量%、特に好ましくは0.1〜0.5重量%である。そして、該酸化チタン光触媒には、酸化チタン中のチタン原子の一部が、硫黄原子に置換、すなわち、該硫黄原子が、陽イオンとして酸化チタン中にドープされたものも含まれ、具体的には、陽イオンとして硫黄原子がドープされた場合、Ti1−xSxO2の化学式で表わされる。該化学式中、Xは、チタン原子の数及び硫黄原子の数の合計に対する、該硫黄原子の数の割合を示し、0.001以上、好ましくは0.002以上、特に好ましくは0.002〜0.008である。また、該酸化チタン光触媒の平均粒径は、SEM写真画像観察による1次粒子の粒径で5〜50nm、BET比表面積は100〜250m2/gである。 The titanium oxide photocatalyst obtained by the method for producing a titanium oxide photocatalyst of the present invention is a pale yellow, yellow or yellow-orange powder, and contains sulfur atoms and nitrogen atoms or carbon atoms, or sulfur atoms, nitrogen atoms and carbon atoms. contains. About content of each atom in this titanium oxide photocatalyst, content of a sulfur atom is 0.01-5 weight%, Preferably it is 0.05-1.0 weight%, Most preferably, it is 0.1-0. 5% by weight, and the carbon atom content is 0.1 to 10% by weight, preferably 0.5 to 5.0% by weight, particularly preferably 1.0 to 3.0% by weight. Is 0 to 3% by weight, preferably 0.01 to 1.0% by weight, particularly preferably 0.1 to 0.5% by weight. In addition, the titanium oxide photocatalyst includes those in which a part of the titanium atom in the titanium oxide is substituted with a sulfur atom, that is, the sulfur atom is doped into the titanium oxide as a cation, specifically, Is represented by the chemical formula Ti 1-x S x O 2 when a sulfur atom is doped as a cation. In the chemical formula, X represents a ratio of the number of sulfur atoms to the total number of titanium atoms and sulfur atoms, and is 0.001 or more, preferably 0.002 or more, particularly preferably 0.002 to 0. .008. Moreover, the average particle diameter of the titanium oxide photocatalyst is 5 to 50 nm in terms of the particle diameter of primary particles by SEM photograph image observation, and the BET specific surface area is 100 to 250 m 2 / g.
また、該酸化チタン光触媒は、粉末状で用いられることができるが、一般的には、水又は有機溶媒に分散された分散液、コーティング液又は塗料(以下、分散液等とも記載する。)の形態で用いられる。そして、該分散液等が、排ガス処理、防臭、防汚等の基材に塗付され、酸化チタン光触媒層が形成される。近年では、シックハウスの問題から、光触媒材料も、アセトアルデヒド等のアルデヒド系の溶剤を用いない、水系の環境問題対応型の分散液等であることが要求されているので、該酸化チタン光触媒は、水系の分散液、コーティング剤又は塗料の形態として用いることが望ましい。 The titanium oxide photocatalyst can be used in the form of powder, but generally, a dispersion, coating liquid or paint (hereinafter also referred to as dispersion liquid) dispersed in water or an organic solvent. Used in form. And this dispersion liquid etc. are apply | coated to base materials, such as exhaust gas treatment, deodorizing, and antifouling, and a titanium oxide photocatalyst layer is formed. In recent years, due to the problem of sick house, the photocatalyst material is also required to be an aqueous environment-friendly dispersion liquid that does not use an aldehyde solvent such as acetaldehyde. It is desirable to use it as a dispersion, coating agent or paint form.
該酸化チタン光触媒は、可視光領域での吸収特性に優れているので、ブラックライト等の紫外光を多く発する光源がなくとも、太陽光や室内における蛍光灯による光源で十分に光触媒活性を発現することができる。また、該酸化チタン光触媒は、従来の可視光応答型光触媒に比べて、効率的に且つ低コストで製造できるため、工業的に非常に有利なので、排ガス処理、空気清浄、防臭、殺菌、抗菌、水処理又は照明機器等の汚れ防止等を目的とする光触媒塗料及び光触媒コーティング剤用に、あるいは、酸化作用による有害物の分解作用を利用した光触媒装置の光触媒用等に広く適用できる。 Since the titanium oxide photocatalyst has excellent absorption characteristics in the visible light region, even if there is no light source that emits a lot of ultraviolet light such as black light, the photocatalytic activity is sufficiently exhibited by sunlight or a light source using a fluorescent lamp in the room. be able to. In addition, since the titanium oxide photocatalyst can be produced efficiently and at a low cost compared to the conventional visible light responsive photocatalyst, it is very advantageous industrially, and therefore, exhaust gas treatment, air purification, deodorization, sterilization, antibacterial, It can be widely applied to photocatalyst paints and photocatalyst coating agents for the purpose of preventing soiling of water treatment or lighting equipment, etc., or for photocatalysts of photocatalyst devices using the decomposition action of harmful substances due to oxidation.
該酸化チタン光触媒は、紫外線領域だけではなく可視光領域の光触媒活性が高いことから、太陽光の当たらない室内においても、蛍光灯の光で十分に光触媒作用を発揮することができるので、今まで紫外線領域に止まっていた光触媒の用途を拡大することが可能となる。 Since the titanium oxide photocatalyst has high photocatalytic activity not only in the ultraviolet region but also in the visible light region, it can fully exhibit the photocatalytic action with the light of a fluorescent lamp even in a room not exposed to sunlight. The application of the photocatalyst that has stopped in the ultraviolet region can be expanded.
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
(実施例)
実施例及び比較例において、酸化チタン光触媒の評価は以下のように実施した。
(1)酸化チタン光触媒中の硫黄含有量の測定
エネルギー分散型蛍光X線分析装置(EDX)を付帯した電界放出型走査型電子顕微鏡(Field Emission-SEM:FE-SEM)(日立電子走査顕微鏡S−4700)を用いて、酸化チタン光触媒中の硫黄原子の定量分析を行なった。
(2)酸化チタン光触媒中の炭素含有量の測定
炭素分析装置(EMIA620V 堀場製作所製)を用いて、高周波加熱燃焼−赤外吸収法により、酸化チタン光触媒中の炭素の定量分析を行った。
(3)可視光吸収特性の測定
積分球付き紫外可視分光光度計(日本分光株式会社製V−550−DS)を用いて、酸化チタン光触媒の拡散反射吸収スペクトルを測定した。
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.
(Example)
In the examples and comparative examples, the titanium oxide photocatalyst was evaluated as follows.
(1) Measurement of Sulfur Content in Titanium Oxide Photocatalyst Field Emission Scanning Electron Microscope (Field Emission-SEM: FE-SEM) with Energy Dispersive X-ray Fluorescence Spectrometer (EDX) (Hitachi Electronic Scanning Microscope S) -4700) was used for quantitative analysis of sulfur atoms in the titanium oxide photocatalyst.
(2) Measurement of carbon content in titanium oxide photocatalyst Using a carbon analyzer (EMIA620V, manufactured by Horiba Seisakusho), quantitative analysis of carbon in the titanium oxide photocatalyst was performed by high-frequency heating combustion-infrared absorption method.
(3) Measurement of visible light absorption characteristics The diffuse reflection absorption spectrum of the titanium oxide photocatalyst was measured using an ultraviolet-visible spectrophotometer with an integrating sphere (V-550-DS manufactured by JASCO Corporation).
攪拌器を具備した容量1000mlの丸底フラスコに、チタン濃度が4重量%の四塩化チタン水溶液297gを挿入し、攪拌しながら60℃に加熱した。次いで、アンモニア水を添加し、60℃で1時間中和処理を行なった。なお、該中和処理は、反応系のpHが7.4に維持されるように行った。中和処理後、生成した固形物をろ過し、更に純水で洗浄して、酸化チタン粉末を得た。得た酸化チタン粉末を500℃で3時間焼成した後、冷却し、次いで、該焼成後の酸化チタンを、100mlの純水に対しチオ尿素9.7g及び尿素7.7gを溶解させた水溶液に添加し、30分攪拌を行ない、酸化チタン粉末、チオ尿素及び尿素の混合物の形成を行った。その後、該形成された混合物をろ過により取り出し、60℃で乾燥後、ボールミルにて粉砕した。 Into a 1000 ml round bottom flask equipped with a stirrer, 297 g of titanium tetrachloride aqueous solution having a titanium concentration of 4% by weight was inserted and heated to 60 ° C. with stirring. Subsequently, aqueous ammonia was added and neutralization was performed at 60 ° C. for 1 hour. The neutralization treatment was performed so that the pH of the reaction system was maintained at 7.4. After the neutralization treatment, the generated solid was filtered and further washed with pure water to obtain a titanium oxide powder. The obtained titanium oxide powder was fired at 500 ° C. for 3 hours and then cooled, and the fired titanium oxide was then dissolved in an aqueous solution in which 9.7 g of thiourea and 7.7 g of urea were dissolved in 100 ml of pure water. The mixture was added and stirred for 30 minutes to form a mixture of titanium oxide powder, thiourea and urea. Thereafter, the formed mixture was removed by filtration, dried at 60 ° C., and pulverized with a ball mill.
次に、該混合物を焼成炉に入れ400℃で3時間焼成した。得られた焼成物をボールミルにて粉砕して、純水で洗浄した後、60℃で乾燥して黄色から黄橙色の酸化チタン光触媒を得た。得られた酸化チタン光触媒中の硫黄含有量は0.46重量%、炭素含有量は2.0重量%、比表面積は170m2/gであった。また可視光吸収特性を図1に示す。 Next, the mixture was placed in a firing furnace and fired at 400 ° C. for 3 hours. The fired product obtained was pulverized with a ball mill, washed with pure water, and then dried at 60 ° C. to obtain a yellow to yellow-orange titanium oxide photocatalyst. The obtained titanium oxide photocatalyst had a sulfur content of 0.46% by weight, a carbon content of 2.0% by weight, and a specific surface area of 170 m 2 / g. The visible light absorption characteristics are shown in FIG.
攪拌器を具備した容量1000mlの丸底フラスコに、チタン濃度が4重量%の四塩化チタン水溶液297gを挿入し、更に100mlの純水に対しチオ尿素9.7g及び尿素7.7gを溶解させた水溶液を添加し、攪拌しながら60℃に加熱した。次いで、アンモニア水を添加し、60℃で1時間中和処理を行い、更に30分攪拌を続け、酸化チタン粉末、チオ尿素及び尿素の混合物の形成を行った。なお、該中和処理は、反応系のpHが7.4に維持されるように行った。 Into a 1000 ml round bottom flask equipped with a stirrer, 297 g of titanium tetrachloride aqueous solution having a titanium concentration of 4% by weight was inserted, and 9.7 g of thiourea and 7.7 g of urea were dissolved in 100 ml of pure water. An aqueous solution was added and heated to 60 ° C. with stirring. Next, ammonia water was added, neutralized at 60 ° C. for 1 hour, and further stirred for 30 minutes to form a mixture of titanium oxide powder, thiourea and urea. The neutralization treatment was performed so that the pH of the reaction system was maintained at 7.4.
次に、該混合物を焼成炉に入れ400℃で3時間焼成した。得られた焼成物をボールミルにて粉砕して、純水で洗浄した後、60℃で乾燥して淡黄色の酸化チタン光触媒を得た。得られた酸化チタン光触媒中の硫黄含有量は0.1重量%、炭素含有量は5.0重量%、比表面積は170m2/gであった。また可視光吸収特性を図1に示す。 Next, the mixture was placed in a firing furnace and fired at 400 ° C. for 3 hours. The obtained fired product was pulverized with a ball mill, washed with pure water, and then dried at 60 ° C. to obtain a pale yellow titanium oxide photocatalyst. In the obtained titanium oxide photocatalyst, the sulfur content was 0.1% by weight, the carbon content was 5.0% by weight, and the specific surface area was 170 m 2 / g. The visible light absorption characteristics are shown in FIG.
(比較例1)
攪拌器を具備した容量1000mlの丸底フラスコに、チタン濃度が4重量%の四塩化チタン水溶液297gを挿入し、攪拌しながら60℃に加熱した。次いで、アンモニア水を添加し、60℃で1時間中和処理を行なった。なお、該中和処理は、反応系のpHが7.4に維持されるように行った。中和処理後、生成した固形物をろ過し、更に純水で洗浄して、酸化チタン粉末を得た。得た酸化チタン粉末を、焼成炉に入れ、更にアンモニアガスを該焼成炉内に導入し、アンモニア雰囲気下、400℃で3時間焼成を行った。その後、得られた焼成物をボールミルにて粉砕して、純水で洗浄した後、60℃で乾燥して淡黄色の酸化チタン光触媒を得た。得られた酸化チタン光触媒の比表面積は160m2/gであった。また可視光吸収特性を図1に示す。
(Comparative Example 1)
Into a 1000 ml round bottom flask equipped with a stirrer, 297 g of titanium tetrachloride aqueous solution having a titanium concentration of 4% by weight was inserted and heated to 60 ° C. with stirring. Subsequently, aqueous ammonia was added and neutralization was performed at 60 ° C. for 1 hour. The neutralization treatment was performed so that the pH of the reaction system was maintained at 7.4. After the neutralization treatment, the produced solid was filtered and further washed with pure water to obtain a titanium oxide powder. The obtained titanium oxide powder was put into a firing furnace, and ammonia gas was further introduced into the firing furnace, followed by firing at 400 ° C. for 3 hours in an ammonia atmosphere. Thereafter, the fired product obtained was pulverized with a ball mill, washed with pure water, and then dried at 60 ° C. to obtain a light yellow titanium oxide photocatalyst. The specific surface area of the obtained titanium oxide photocatalyst was 160 m 2 / g. The visible light absorption characteristics are shown in FIG.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004141033A JP4386788B2 (en) | 2004-05-11 | 2004-05-11 | Method for producing titanium oxide photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004141033A JP4386788B2 (en) | 2004-05-11 | 2004-05-11 | Method for producing titanium oxide photocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005319423A JP2005319423A (en) | 2005-11-17 |
JP4386788B2 true JP4386788B2 (en) | 2009-12-16 |
Family
ID=35467097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004141033A Expired - Fee Related JP4386788B2 (en) | 2004-05-11 | 2004-05-11 | Method for producing titanium oxide photocatalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4386788B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4536470B2 (en) * | 2004-09-24 | 2010-09-01 | ダイセル化学工業株式会社 | Other element doped rutile type titanium oxide and method for producing the same, photocatalyst, and method for oxidizing organic compound using the catalyst |
KR100769481B1 (en) | 2006-06-16 | 2007-10-23 | 계명대학교 산학협력단 | Synthesis method of titanium dioxide photocatalyst whose crystal structure is converted by low temperature heat treatment |
JP2008179528A (en) * | 2006-12-26 | 2008-08-07 | Toho Titanium Co Ltd | Manufacture method of titanium oxide |
JP2008199924A (en) * | 2007-02-19 | 2008-09-04 | Nippon Sheet Glass Co Ltd | Bioreactor by porous carrier coated with photocatalyst |
JP2008273815A (en) * | 2007-04-06 | 2008-11-13 | Toho Titanium Co Ltd | Method for producing metal oxide powder, method for producing anatase-type titanium oxide powder, and method for producing sulfur-containing anatase-type titanium oxide powder |
CN111530485B (en) * | 2019-11-25 | 2023-05-26 | 中国石油大学(华东) | Titanium dioxide nanomaterials co-doped with carbon and nitrogen and its preparation method and application |
-
2004
- 2004-05-11 JP JP2004141033A patent/JP4386788B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005319423A (en) | 2005-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4353978B2 (en) | Method for producing titanium oxide photocatalyst | |
US8791044B2 (en) | Doped titanium dioxide as a visible and sun light photo catalyst | |
JP4523344B2 (en) | Method for producing titanium oxide dispersion | |
Zaleska | Doped-TiO2: a review | |
WO2006064799A1 (en) | Composite metal oxide photocatalyst exhibiting responsibility to visible light | |
KR20020031054A (en) | Photocatalyst, process for producing the same and photocatalyst coating composition comprising the same | |
CN101318694A (en) | A method for preparing titanium dioxide nanocrystals with high photocatalytic activity at low temperature | |
JP4540069B2 (en) | Composition for forming titanium oxide photocatalyst coating film, method for producing the same, coating film for photocatalyst, and coated product for photocatalyst | |
US20120309617A1 (en) | Method of Production of Photocatalytic Powder Comprising Titanium Dioxide and Manganese Dioxide Active Under Ultraviolet and Visible Light | |
US20090263314A1 (en) | Method for producing catalyst for wastewater treatment | |
Mittal et al. | Photocatalytic studies of crystal violet dye using Mn doped and PVP capped ZnO nanoparticles | |
Ulyankina et al. | Photocatalytic properties of SnO 2–SnO nanocomposite prepared via pulse alternating current synthesis | |
JP4386788B2 (en) | Method for producing titanium oxide photocatalyst | |
JP4351936B2 (en) | Method for producing titanium oxide photocatalyst | |
JP4150712B2 (en) | Visible light-activated photocatalyst and process for producing the same | |
JP4475594B2 (en) | Method for forming coating film for titanium oxide photocatalyst | |
Pouretedal et al. | Preparation, characterization and catalytic activity of tin dioxide and zero-valent tin nanoparticles | |
JP2008230950A (en) | N- and / or S-doped tubular titanium oxide particles and method for producing the same | |
WO2011102353A1 (en) | Tungsten oxide photocatalyst modified with copper ion, and process for production thereof | |
JP3981757B2 (en) | Photocatalyst body and photocatalyst body coating agent using the same | |
KR101855747B1 (en) | Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom | |
JP2005254173A (en) | Titania fiber photocatalyst and its manufacturing method | |
JP2010149046A (en) | Method for producing visible light-responsive photocatalyst and visible light-responsive photocatalyst | |
JP4496427B2 (en) | Method for producing titanium oxide for visible light responsive photocatalyst | |
Gota et al. | Preparation and Its Application of TiO 2/ZrO 2 and TiO 2/Fe Photocatalysts: A Perspective Study. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090928 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090929 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131009 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131009 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131009 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |